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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. The analysis of random coding error exponents
pertaining to optimal decoding in a degraded broadcast with
degraded message sets is revisited. Instead of using Jensens
inequality as well as some other inequalities in the derivation,
we demonstrate that, after an initial step, an exponentially tight
analysis can be carried out by assessing the relevant moments of
a certain type class enumerator.

I. INTRODUCTION

In a broadcast channel (BC), as introduced by Cover [1],
a single source is communicating to two or more receivers.
In this work, we concentrate on the case of two receivers.
The encoder sends a common message, to be decoded by both
receivers and a private message for each decoder. In the case of
a degraded message set, one of the private messages is absent.
The capacity region for a BC with a degraded message set
was found in [2]. The coding theorem for degraded broadcast
channels was given by Bergmans [3] and the converse was
given by Gallager [4]. Bergmans suggested the use of a
random hierarchical code: First draw “cloud centers”. Next,
around each “cloud center”, draw a cloud of codewords. The
sender sends a specific codeword from one of the clouds.
The strong decoder (the one with the better channel) can
identify the specific codeword while the weak decoder can
only identify the cloud it originated from (see Section II and
[3]).

The error exponent is the rate of exponential decay of the
average probability of error as a function of the block length.
Unlike in the single user regime, where the error exponent is
a function of the rate at which the transmitter operates, in the
multiuser regime, the error exponent for each user is a function
of all rates in the system. The tradeoff between the exponents
is controlled by the random coding distributions.

Works on error exponents for general degraded broadcast
channels include [4], [5] and [8]. Both [4] and [5] used the
coding scheme of [3] but did not use optimal decoding. In
[5], universally attainable error exponents were given for a
suboptimal decoder. In [4] a direct channel from the cloud
center to the weak user was defined and the error exponent
was calculated for this channel. In [8] we derived the error

exponents for both the weak and the strong decoders while us-
ing optimal maximum likelihood decoders. Numerical results
for the binary symmetric broadcast channel demonstrated that
by using optimal decoders, we can achieve better exponents
compared to the results in [4]. Another effect that was shown
in [8] is that when we required that one of the exponents will
be greater than a given threshold, discontinuities in the other
exponent may arise.

In this work, we revisit the setting of [8] using a substan-
tially different analysis technique to derive the error exponent
for the weak decoder of a degraded BC with degraded message
sets that pertains to optimum decoding. Unlike [4], [8] , where
Jensen’s inequality, as well as other inequalities were used,
which possibly risked the tightness of the obtained bounds,
our technique in this paper is guaranteed to be exponentially
tight in all steps from the very beginning. The underlying
ideas behind this technique are inspired from the statistical
mechanical point of view on random code ensembles [10].
These analysis tools are applicable to other problem settings as
well, e.g. [7] and [11] where they lead to tighter bounds than
the bounds obtained by other methods that were previously
used. The goal of this work is not only to improve the error
exponent of the case at hand, but also to demonstrate the use of
the analysis technique we offer here. With this in mind, since
the derivation of the weak decoder error exponent, using our
technique, is much more involved than the derivation of the
strong decoder exponent, in this work we present only the
derivation of the weak decoder exponent. The derivation of
the other exponent will be presented in the full paper [9].

The rest of this work is structured as follows: Section II
gives the formal setting and notation. In section III, we will
give the main result of the paper. Section IV will outline the
proof of the main result. Finally. Numerical results for the
degraded BSC are given in section V.

II. PRELIMINARIES

We begin with notation. Capital letters represent scalar
random variables (RVs) and specific realizations of them are
denoted by the corresponding lower case letters. Random
vectors of dimension n will be denoted by bold-face letters.



Indicator functions of events will be denoted by I(·). We
write [x]+ for the positive part of a real number x, i.e
[x]+

4
= max(x, 0). The expectation operator will be denoted

by E{·}. When we wish to emphasize the dependence of the
expectation on a certain underlying probability distribution
Q, we subscript it by Q. i.e EQ{·}.
We consider a memoryless degraded broadcast channel
(MDBC) with a finite input alphabet X and finite
output alphabets Y and Z , of the strong decoder and
the weak decoder, respectively, given by P (y, z|x) =∏n
t=1 P1(yt|xt)P2(zt|yt), (x,y, z) ∈ Xn × Yn × Zn. We

are interested in sending one of Myz = enRyz messages
to both receivers and one of My = enRy to the strong
receiver, that observes y. Consider next a random selection
of an hierarchical code [3] as follows: First, Myz = enRyz

“cloud centers” u1, . . . ,uMyz ∈ Un are drawn independently,
each one using a distribution P (u) =

∏n
t=1 P (ut),

and then, for each m = 1, 2, . . . ,Myz , My = enRy

codewords xm,1, . . . ,xm,My
∈ Xn are drawn according to

P (x|u) =
∏n
t=1 P (xt|ut), with u = um.

The strong decoder is interested in decoding both indices
(m, i) of the transmitted codeword xm,i, whereas
the weak decoder, the one that observes z, is only
interested in decoding the index m. Thus, while the
strong decoder best applies full maximum likelihood
(ML) decoding, (m̂(y), î(y)) = arg maxm,i P1(y|xm,i),
the best decoding rule for the weak decoder is given
by m̃(z) = arg maxm 1

My

∑My

i=1 P3(z|xm,i), where
P3(z|x) =

∏
t=1 P3(zt|xt) =

∏
t=1

∑
y P2(zt|y)P1(y|xt).

Denote the average error probability of the strong decoder
by P yE = Pr

{
(m̂(y), î(y)) 6= (m, i)

}
and the average error

probability of the weak decoder by P zE = Pr {m̃(z) 6= m}.
The exponents of the strong and weak decoders will be
denoted by Ey and Ez , respectively. A pair (Ey, Ez) is said
to be an attainable pair in the random coding sense, for a
given (Ry, Ryz), if there exist random coding distributions
P (u), P (x|u) such that the random coding exponents satisfy
Ey ≤ limn→∞− 1

n logP yE and Ez ≤ limn→∞− 1
n logP zE ,

where all logarithms throughout the sequel are taken to the
natural base. For a given pair (Ry, Ryz), we say that Ez
is an attainable exponent for the weak user if there there
exists Ey > 0 such that the pair (Ey, Ez) is attainable in the
random coding sense.

III. MAIN RESULT

Let (X,U,Z) be a triplet of random variables, taking values
in X ×U ×Z , and being governed by a generic joint distribu-
tion QXUZ = {QXUZ(x, u, z), x ∈ X , u ∈ U , z ∈ Z}. Let
us denote the various marginals and conditional distributions
derived from QXUZ , using the standard conventions, e.g., QX
is the marginal distribution of X , QU |Z is the conditional
distribution of U given Z, etc. Expectation w.r.t. QXUZ , or
Q for short, will be denoted by EQ. Similarly, information
measures, like entropy and conditional entropy induced by Q,

will be subscripted by Q, e.g., HQ(X|U,Z) is the conditional
entropy of X given U and Z under Q = QXUZ . In the
following description, we allow various joint distributions {Q}
to govern (X,U,Z).

Let QZ be given. We define G(Ry, QU |Z) to be the
set of conditional distributions {QX|UZ} that satisfy Ry +
EQ logP (X|U) + HQ(X|U,Z) > 0, where, as described
in Section II, {P (X|U)} is the random coding distribution
according to which the codewords {xm,i} are drawn given
um. Next define,

α(QU |Z)
4
= (1− ρλ) max

QX|UZ∈G(Ry,QU|Z)
[EQ logP (X|U)+

HQ(X|U,Z) + EQ logP3(Z|X)] (1)

where, as described in Section II, P3(·|·) is the overall channel
to the weak user. Similarly, define:

β(QU |Z)
4
= ρλRy + max

QX|UZ∈G(Ry,QU|Z)
[EQ logP (X|U)+

HQ(X|U,Z) + (1− ρλ)EQ logP3(Z|X)] (2)

and
Eαβ(QU |Z) = max{α(QU |Z), β(QU |Z)}.

Also, define

m̄(QU |Z)
4
= Ryz +HQ(U |Z) + EQ logP (U)

where, as said, {P (U)} is the random coding distribution of
the cloud centers {um}. Now,

N(QX|Z , QU |Z , Ry)
4
= Ry + max

QX|UZ
[EQ logP (X|U)+

HQ(X|U,Z)] , (3)

where the maximization is over all {QX|UZ} that are consis-
tent with QX|Z . Next, we define

G(Ryz)
4
= {QU |Z : Ryz +HQ(U |Z) + E logP (U) ≥ 0},

B(QX|Z , QU |Z , Ry) =

ρN(QX|Z , QU |Z , Ry) · λI{N(QX|Z ,QU|Z ,Ry)>0} (4)

and

C(QX|Z , QU |Z , Ry) =

N(QX|Z , QU |Z , Ry) · (ρλ)I{N(QX|Z ,QU|Z ,Ry)>0}, (5)

We also define

E(QX|Z)
4
= max

{
max

QU|Z∈G(Ry)
[B(QX|Z , QU|Z , Ry)+

ρm̄(QU|Z)], max
QU|Z∈Gc(Ry)

[C(QX|Z , QU|Z , Ry) + m̄(QU|Z)]

}
,

EA(QZ , Ry, Ryz, ρ, λ)
4
=

min
QU|Z

[
EQ log

1

P (U)
−HQ(U |Z)− Eαβ(QU|Z)

]
,

EB(QZ , Ry, Ryz, ρ, λ)
4
=

min
QX|Z

[
ρλ log

1

P3(Z|X)
− E(QX|Z) + ρλRy

]
.



Finally,

Ez(Ryz, Ry) = max
ρ≥0

max
0≤λ≤1/ρ

min
QZ

[EA(QZ , Ry, Ryz, ρ, λ)+

EB(QZ , Ry, Ryz, ρ, λ)−HQ(Z)]. (6)

Theorem 1: For the degraded broadcast channel defined in
Section II, Ez(Ryz, Ry), as defined in eq. (6), is an attainable
exponent for the weak user.

Unlike the result of [8], where the exponent had four free
parameters, the new bound has only two free parameters (λ, ρ).
Also, it is at least as tight as the exponent of [8] since, as we
will see in the next section, its derivation is exponentially tight
after the same initial step of [8]. In Section V we show that
the new exponent is tighter, at least for the binary symmetric
case.

IV. SKETCH OF PROOF

In this section, we outline the main ideas of the proof of
Theorem 1. The full proof will appear in [9]. Throughout, we
rely on the method of types [12]. We start with notation. The
empirical distribution pertaining to a vector x ∈ Xn will be
denoted by Q̂x and its type class by Tx. In other words, Q̂x =
{q̂x(a), a ∈ X}, where qx(a) = nx(a)/n, nx(a) being the
number of occurrences of the letter a in x. Similar conventions
will apply to empirical joint distributions of pairs of letters,
(a, b) ∈ X × Y , extracted from the corresponding pairs of
vectors (x,y). Similarly, q̂x|y(a|b) = q̂xy(a, b)/q̂y(b) will
denote the empirical conditional probability of X = a given
Y = b (with convention that 0/0 = 0), and Q̂x|y will denote
{q̂x|y(a|b), a ∈ X , b ∈ Y}. Tx|y will denote the conditional
type class of x given y. The expectation w.r.t. the empirical
distribution of (x,y) will be denoted by Êxy{·}, i.e., for a
given function f : X ×Y → IR, we define Êxy{f(X,Y )} as∑

(a,b)∈X×Y q̂xy(a, b)f(a, b), where in this notation, X and
Y are understood to be random variables jointly distributed
according to Q̂xy . The entropy, with respect to the empiric
distribution of a vector x will be denoted by Ĥ(x). Finally,
the notation an

·= bn means that 1
n log an

bn
→ 0 as n → ∞.

Applying Gallager’s general upper bound [6, p. 65] to the
“channel” P (z|m) = 1

My

∑My

i=1 P3(z|xm,i), the average error
probability w.r.t. the ensemble of codes for λ ≥ 0, ρ ≥ 0 is
given by:

P zE ≤
∑
z

E

 1

My

My∑
i=1

P3(z|xm,i)

1−ρλ

×

E

 ∑
m′ 6=m

 1

My

My∑
j=1

P3(z|xm′,j)

λρ (7)

since messages from different clouds are independent. We will
see that both expectations depend on the z only through its
empirical distribution. All the analysis is done for a given
z. The summation over all possible empirical distributions
of z is done in the last step. EA(Qz, Ry, Ryz, ρ, λ) and

EB(Qz, Ry, Ryz, ρ, λ) are the exponential rates of the first
and second expectations in (7), respectively. Note that (7) is
the same initial step as in [8]. After this step, our analysis
is exponentially tight, whereas in [8] this is not necessarily
the case. The price for this tightness is that the derivation and
the resulting expression are much more involved, as we will
see in the following subsections that outline the derivation of
EA(Qz, Ry, Ryz, ρ, λ) and EB(Qz, Ry, Ryz, ρ, λ).

A. Deriving EA(Qz, Ry, Ryz, ρ, λ)

Let Nz,m(Q̂x|z,u) be a type class enumerator, that is,
the number of codewords within cloud m having the same
empirical conditional probability Q̂x|z,u.

E

 1

My

My∑
i=1

P (z|xm,i)

1−ρλ

= Mρλ−1
y EPuEPx|u

My∑
i=1

P (z|xmi)

1−ρλ

= Mρλ−1
y EPuEPx|u

 ∑
Q̂x|z,u

Nz,m(Q̂x|z,u)enÊzx logP3(Z|X)


1−ρλ

·
= Mρλ−1

y EPu

[ ∑
Q̂x|z,u

EPx|uN
1−ρλ
z,m (Q̂x|z,u)×

en(1−ρλ)Êxz logP3(Z|X)

]
(8)

The last exponential equality is the first main point in our
approach: It holds, even before taking the expectations because
the summation over Q̂x|z,u consists of a subexponential
number of terms. Thus, the key issue here is how to assess the
moments of the type class enumerator. Note that the probabil-
ity, under P (xn|un) =

∏n
i=1 P (xi|ui), to fall into Tx|u,z is

(exponentially) en(Êxu logP (X|U)+Ĥ(x|z,u)). Therefore:

Ex|uNz,m(Q̂x|z,u) ·= en(Ry+Êxu logP (X|U)+Ĥ(x|z,u))

By the same arguments as in [7, Section IV]:

Ex|uN1−ρλ
z,m (Q̂x|z,u)

·
={

en(1−ρλ)(Ry+Êxu logP (X|U)+Ĥ(x|z,u)) Q̂x|u,z ∈ G(Ry , Q̂u|z)

en(Ry+Êxu logP (X|U)+Ĥ(x|z,u)) Q̂x|u,z ∈ Gc(Ry , Q̂u|z)
(9)

We require ρλ ≤ 1 since the probability of {Nz,m(Q̂x|z,u) =
0} is positive, and so, negative moments of Nz,m(Q̂x|u,z)
will diverge. We continue (8) by splitting the sum over all
conditional types to those that belong to G(Ry, Qu|z) and
those that do not. Using (9) and taking the dominant element
of each sum we have that (8) is of the exponential order of

max
Q̂u|z

Pr(Q̂u|z |z)(enα(Q̂u|z) + enβ(Q̂u|z))

the last line is true since α(Q̂u|z) and β(Q̂u|z) (cf. (1), (2))
depend on u through Q̂u|z . Pr(Q̂u|z |z) is the probability,



under P (un) =
∏n
i=1 P (ui), to belong to Tu|z .

We sketch here only the evaluation of α(Q̂u|z): The
unconstrained achiever of (1) is P (x|z, u) which might belong
to G(Ry, Q̂u|z) for large enough Ry . When P (x|z, u) ∈
Gc(Ry, Q̂u|z), by following the arguments of [7, Section
IV], every internal point of G(Ry, Q̂u|z) can be improved
by a point on the boundary of G(Ry, Q̂u|z). Since the
constrained maximizer is on the boundary, we use the
fact that on that boundary −Ry = Êxu logP (X|U) +
Ĥ(x|z,u) to get α(Q̂u|z) = (1 − ρλ)(−Ry +
maxG(Ry,Q̂u|z) Êzx logP3(Z|X)). The achieving p.m.f is

Q∗(x|z, u) =
P (x|u)P δR(Q̂u|z )(z|x)∑
x P (x|u)P δR(Q̂u|z )(z|x)

where δR(Q̂u|z) is such that −Ry = EQ∗ logP (X|U) +
HQ∗(X|Z,U). It can be shown that δR(Q̂u|z) either exists
or Gc(Ry, Q̂u|z) is empty.

B. Deriving EB(Qz, Ry, Ryz, ρ, λ)

Here, we evaluate the second expectation of (7).

E

 ∑
m′ 6=m

 1

My

My∑
j=1

P (z|x)

λρ

=M−ρλy E

 ∑
m′ 6=m

 ∑
Q̂x|z

Nz,m′(Q̂x|z)enÊzx logP3(Z|X)


λ

ρ

·
=M−ρλy

∑
Q̂x|z

enλρÊzx logP3(Z|X)E

 ∑
m′ 6=m

Nλ
z,m′(Q̂x|z)

ρ
(10)

Here, the enumerators {Nz,m′(Q̂x|z)} are distributed differ-
ently for every m′ and there is an exponential number of
such m′. We divide [0, Ryz] into a grid with a sub-exponential
number of intervals in n (for example, d = Ryz

n ). Evaluating
the last expectation in (10), we have:

E

 ∑
m′ 6=m

Nλ
z,m′(Q̂x|z)

ρ

= E

Ryz∑
A≥0

(number of times Nz,m′(Q̂x|z)
·
= enA)enλA

ρ

·
=

Ryz∑
A≥0

enλρAE

 ∑
m′ 6=m

Im′(A)

ρ (11)

where Im′(A)
4
= I

(
Nz,m′(Q̂x|z) ·= enA

)
(we omit the

dependence on Q̂x|z to simplify notation). Next, we partition
the summation over m′ into subsets in which the enumerators
are identically distributed.

E

 ∑
m′ 6=m

Im′(A)

ρ ·= ∑
Q̂u|z

E

 ∑
m′:um′∈Tu|z

Im′(A)

ρ (12)

Note that the number of terms in the inner summation of (12)
is a random variable. Define MQ̂u|z

4
= |m′ : um′ ∈ Tu|z |

- the number of cloud centers that belong to the same condi-
tional type. Since we draw enRyz cloud centers independently
with P (un) =

∏n
i=1 P (ui) we have:

E
[
MQ̂u|z

]
·= en(Ryz+Ĥ(u|z)+Êu logP (U)) 4= enm̄(Q̂u|z)

The sign of the last exponent determines if we are likely
to find an exponential number of codewords of this type. It
can be shown [7, Appendix] that when m̄(Q̂u|z) > 0 (i.e
Q̂u|z ∈ GRyz ), MQ̂u|z

converges to its expectation double

exponentially fast. When m̄(Q̂u|z) ≤ 0, Pr
(
MQ̂u|z

> enε
)

vanishes double exponentially fast. Let PA(Q̂x|z , Q̂u|z)
4
=

Pr {Im′(A) = 1} and define:

A∗(Q̂x|z , Q̂u|z) =
[
N(Q̂x|z , Q̂u|z , Ry)

]+
By using the Chernoff bound, we show that if
A∗(Q̂x|z , Q̂u|z) > 0, PA∗(Q̂x|z , Q̂u|z) converges
to unity double exponentially fast and vanishes
for any other A. When A∗(Q̂x|z , Q̂u|z) = 0,
P0(Q̂x|z , Q̂u|z) = enN(Q̂x|z ,Q̂u|z ,Ry). Hence the terms of
the summation of (11) are non-zero for A = A∗(Q̂x|z , Q̂u|z).

Continuing (12), there are four cases: Q̂u|z ∈ GRyz or not
and A∗(Q̂x|z , Q̂u|z) > 0 or A∗(Q̂x|z , Q̂u|z) = 0. We start
with the case A∗(Q̂x|z , Q̂u|z) > 0.

The case A∗(Q̂x|z , Q̂u|z) > 0
We use the fact that for this case, PA(Q̂x|z , Q̂u|z) > 1−

e−nεe
nε

for some ε > 0. For Q̂u|z ∈ GRyz we have for the
expectation in (12):

E

 ∑
m′:um′∈Tu|z

Im′(A)

ρ ≤
enρ(m̄(Q̂u|z )+ε)Pr

{
MQ̂u|z

≤ en(m̄(Q̂u|z )+ε)
}

+

enRyzPr
{
MQ̂u|z

≥ en(m̄(Q̂u|z )+ε)
}

≤ enρ(m̄(Q̂u|z )+ε) + enRyze−nεe
n(m̄(Q̂u|z )+ε)

On the other hand:

E

 ∑
m′:um′∈Tu|z

Im′(A)

ρ

≥ enρ(m̄(Q̂u|z )−ε)Pr
{
MQ̂u|z

≥ en(m̄(Q̂u|z )−ε)
}



≥ enρ(m̄(Q̂u|z )−ε)

{
1− e−nεe

n(m̄(Q̂u|z )−ε)
}

Handling Q̂u|z ∈ GcRyz by the same methods as in [7] we
have for A = A∗

Q̂u|z
> 0, Q̂u|z ∈ GcRyz :

E

 ∑
m′:um′∈Tu|z

Im′(A)

ρ ·= enm̄(Q̂u|z )

The case A∗
Q̂u|z

= 0

We know that P0(Q̂x|z , Q̂u|z) ·= enN(Q̂x|z ,Q̂u|z ,Ry) as
in this case N(Q̂x|z , Q̂u|z , Ry) < 0. Here, P0(Q̂x|z , Q̂u|z)
vanishes exponentially. For Q̂u|z ∈ GRyz , we have similarly:

E

 ∑
m′:um′∈Tu|z

Im′(0)

ρ ·= enρ(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry))

When Q̂u|z ∈ GcRyz , we use the fact that the probability that
MQ̂u|z

is subexponential converges to 1 double exponentially
fast.

E

 ∑
m′:um′∈Tu|z

Im′(0)

ρ = Pr
{
MQ̂u|z

< enε
}
×

E


 ∑
m′:um′∈Tu|z

Im′(0)

ρ |MQ̂u|z
< enε

+O(e−nεe
nε

)

(13)

As the sum in the last expectation is of sub exponential
order, we can distribute ρ over the sum and still preserve
exponential tightness. We now condition on MQ̂u|z

. This
will introduce dependencies in the drawings of {um} and of
{xm,i} and change P0(Q̂x|z , Q̂u|z) (since given MQ̂u|z

, the
drawings {um} are no longer independent). To avoid this, we
condition also on um′ . Given um′ , {xm′,i} are independent
and P0(Q̂x|z , Q̂u|z) remain intact. Thus , (13) is shown to
be given by

EM
Q̂u|z

 ∑
m′:um′∈Tu|z

EuE
[
Im′(0)|MQ̂u|z

,u
]

Given u, the inner expectation is independent of the num-
ber of MQ̂u|z

and becomes P0(Q̂x|z , Q̂u|z). Now, since

P0(Q̂x|z , Q̂u|z) is constant for all u’s in Tu|z , we are left
with en(m̄(Q̂u|z)+N(Q̂x|z ,Q̂u|z ,Ry)). Using this in (11), then
in (10) and letting n→∞ yields EB(Qz, Ry, Ryz, ρ, λ).

V. NUMERICAL RESULTS

In this section, we show some numerical results of our error
exponents and compare them to the exponents of [4] and [8].
Our setup is that of a binary BC with a binary input X and a
separate BSC to Y and Z with parameters py, pz (py < pz <
1
2 ), respectively. This channel can be recast into a cascade of

(degraded) binary symmetric channels with parameters py, α,
where α = p(z 6= y) = pz−py

1−2py
. Here, U is also binary. By

symmetry, U is distributed uniformly on {0, 1} and connected
to X by another BSC with parameter β (see Fig. 1). In Fig.
2, we show the best attainable Ez(Ry, Ryz) (maximized over
β) for two values of Ry , compared to results in [4] and [8]. In
both cases, although we confined ρ to [0, 1] in order to limit the
computation time, the new exponents are better. We used Ey
that was derived in [8] and allowed it to be arbitrarily small,
thus complying with the definition of an attainable exponent
for the weak user.
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Fig. 1: The recast channel with the auxiliary variable.
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(b)

Fig. 2: Ez for (a) Ry = 0.05[nats] and (b) Ry = 0.3[nats].

REFERENCES

[1] T. M. Cover, “Broadcast Channels,” IEEE Transactions on Information
Theory, vol. IT–18, pp. 2–14, January 1972.

[2] J. Körner and K. Marton, “General Broadcast Channels with Degraded
Message Sets,” IEEE Transactions on Information Theory, vol. IT–23,
no. 1, pp. 60–64, November 1977.

[3] P. P. Bergmans, “Random Coding Theorem for Broadcast Channels With
Degraded Components,” IEEE Transactions on Information Theory,
vol. IT–19, pp. 197–207, March 1973.

[4] R. G. Gallager, “Capacity and Coding for Degraded Broadcast Chan-
nels,” Problemy Peredachi Informatsii, vol. 10(3), pp. 3–14, 1974.

[5] J. Körner and A. Sgarro, “Universally Attainable Error Exponents for
Broadcast Channels with Degraded Message Sets,” IEEE Transactions
on Information Theory, vol. IT–26, no. 6, pp. 670–679, November 1980.

[6] A. J. Viterbi, J. K. Omura, Principles of Digital Communication and
Coding”, McGraw-Hill, 1979.

[7] N. Merhav, “Error Exponents of Erasure/List Decoding Revisited via
Moments of Distance Enumerators,” IEEE Trans. Inform. Theory, vol.
54, no. 10 pp. 4439-4447, October 2008.

[8] Y. Kaspi, N. Merhav, “Error Exponents for Degraded Broadcast Chan-
nels with Degraded Message Sets,” Proc. ISIT 2008, pp. 1518–1522,
Toronto, Canada, July 2008.

[9] Y. Kaspi, N. Merhav, “Error Exponents of Optimum Decoding for the
Degraded Broadcast Channel Using Moments of Type Class Enumera-
tors,” in preperation.

[10] N. Merhav, “Relations Between Random Coding Exponents and the
Statistical Physics of Random Codes,” IEEE Trans. Inform. Theory, vol.
55, no. 1, pp. 83–92, Jan. 2009.

[11] R. Etkin, N. Merhav, E. Ordentlich, “Error Exponents of Optimum
Decoding for the Interference Channel,” Proc. ISIT 2008, pp. 1523–
1527, Toronto, Canada, July 2008.

[12] I. Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Systems”, Academic Press 1981.


