Universal Decoding for Arbitrary Channels Relative to a Given Class of Decoding Metrics

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

IZS 2014, Zurich, Switzerland, February 26–28, 2014.

Some Background on Universal Decoding

Memoryless channels:

- Goppa (1975) MMI decoder achieves capacity.
- Csiszár & Körner (1981) MMI achieves random coding exponent.
- Csiszár (1982) minimum entropy decoder for linear codes.
- Merhav (1993) similar results for memoryless Gaussian channels.

Channels with memory:

- Ziv (1985) LZ-based metric for unifilar finite-state channels.
- Lapidoth & Ziv (1998) extension to HMM channels.
- Feder & Lapidoth (1998) merged decoder.
- Feder & Merhav (2002) competitive minimax approach.

Some Background on Universal Decoding (Cont'd)

- Deterministic arbitrary channels ("individual" channels):
 - Lomnitz & Feder (2012) empirical rate functions.
 - Misra & Weissman (2012) porosity of additive noise channels.
 - Shayevtiz & Feder (2012) binary additive channels with feedback.
 - Elkayam & Feder (2014) following and very related to this work.

System Model and Problem Definition

- \blacksquare A rate-R code \mathcal{C} selected at random.
- lacksquare The marginal of each codeword $m{x}_i \in \mathcal{X}^n$ is Q.
- \blacksquare The channel P(y|x) is arbitrary and unknown (may be deterministic).
- **●** We are given a class of decoding metrics $\mathcal{M} = \{m_{\theta}(\mathbf{x}, \mathbf{y}), \theta \in \Theta\}$.
- $m{P}$ Decoder $\mathcal{D}_{ heta}$ picks the message i with highest $m_{ heta}(m{x}_i, m{y})$.
- $\overline{P_{e,\theta}(R,n)}\stackrel{\triangle}{=}$ average error probability of \mathcal{D}_{θ} .
- ullet We seek a universal decoding metric u(x,y) with

$$\overline{P_{e,u}(R,n)} \stackrel{\cdot}{\leq} \min_{\theta \in \Theta} \overline{P_{e,\theta}(R,n)}$$

for every channel P(y|x).

The Proposed Universal Decoding Metric

For the given class M of decoding metrics, define

$$\mathcal{T}(\boldsymbol{x}|\boldsymbol{y}) \stackrel{\triangle}{=} \left\{ \boldsymbol{x}': \ \forall \theta \in \Theta \ m_{\theta}(\boldsymbol{x}', \boldsymbol{y}) = m_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right\}.$$

Our universal decoding metric is defined as

$$u(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\triangle}{=} -\frac{1}{n} \log Q[\mathcal{T}(\boldsymbol{x}|\boldsymbol{y})].$$

For a given y, $\{T(x|y)\}$ are equivalence classes that partition \mathcal{X}^n . Define

 $K_n(oldsymbol{y}) \stackrel{\triangle}{=}$ number of distinct $\{\mathcal{T}(oldsymbol{x}|oldsymbol{y})\}$ for a given $oldsymbol{y}$

$$\Delta_n \stackrel{\triangle}{=} \frac{\max_{\boldsymbol{y}} \log K_n(\boldsymbol{y})}{n}.$$

 Δ_n is a measure for the richness of the class of metrics \mathcal{M} .

Basic Result and Discussion

Theorem: Let the randomly selected codewords in C be conditionally pairwise independent. Then,

$$\overline{P_{e,u}(R,n)} \le 2 \cdot e^{n\Delta_n} \cdot \min_{\theta \in \Theta} \overline{P_{e,\theta}(R,n)}$$

and

$$\overline{P_{e,u}(R,n)} \le 2 \cdot \min_{\theta \in \Theta} \overline{P_{e,\theta}(R + \Delta_n, n)}.$$

Discussion:

- u(x,y) has a competitive error exponent if $\Delta_n \to 0$.
- \blacksquare The class \mathcal{M} should not be too rich.
- **▶** In general, $\Delta = \lim_{n\to\infty} \Delta_n$ is the rate loss and the loss in error exponent.

Example

- \blacksquare $Q = \text{uniform distribution within a single type class } T_Q.$
- \blacktriangleright M is the class of metrics of the form

$$m_{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{t=1}^{n} \theta(x_t, y_t).$$

In this case, $T(x|y) = T_{x|y}$, the conditional type class of x given y. Thus,

$$u(\boldsymbol{x}, \boldsymbol{y}) = -\frac{1}{n} \log Q[T_{\boldsymbol{x}|\boldsymbol{y}}] = -\frac{1}{n} \log[Q(\boldsymbol{x}) \cdot |T_{\boldsymbol{x}|\boldsymbol{y}}|]$$
$$= \hat{H}_{\boldsymbol{x}}(X) - \hat{H}_{\boldsymbol{x}\boldsymbol{y}}(X|Y) + o(n) \approx \hat{I}_{\boldsymbol{x}\boldsymbol{y}}(X;Y),$$

which is the MMI decoder. Here, $\Delta_n = O(\log n/n)$. If Q is i.i.d.

$$u(\boldsymbol{x}, \boldsymbol{y}) = \hat{I}_{\boldsymbol{x}\boldsymbol{y}}(X; Y) + D(\hat{P}_{\boldsymbol{x}} \| Q).$$

Comparison with Elkayam & Feder (2014)

Elkayam & Feder propose a different universal metric:

$$\tilde{u}(\boldsymbol{x}, \boldsymbol{y}) = -\frac{1}{n} \log \min_{\theta \in \Theta} Q\{m_{\theta}(\boldsymbol{X}, \boldsymbol{y}) \geq m_{\theta}(\boldsymbol{x}, \boldsymbol{y})\},$$

which satisfies the same theorem, provided that

$$\limsup_{n\to\infty} \frac{1}{n} \log \left(\max_{\boldsymbol{y}} \mathbf{E}_Q \{ \exp[n\tilde{u}(\boldsymbol{X}, \boldsymbol{y})] \} \right) = 0.$$

Plus: This condition of univerality is weaker than ours.

Minuses:

- The error exponent of \tilde{u} cannot be better than that of u.
- Difficult to implement (even for the above example, which is elementary).
- The above condition is difficult to verify.

Useful Approximations of $u(\boldsymbol{x}, \boldsymbol{y})$

- ▶ For an explicit expression of u(x, y) need to assess Q[T(x|y)].
- If Q is invariant within $\mathcal{T}(x|y)$, then $Q[\mathcal{T}(x|y)] = Q(x) \cdot |\mathcal{T}(x|y)|$.
- ▶ In many cases, we can assess $|\mathcal{T}(x|y)|$ (method of types, stat. mech.,..).
- In other cases, it is difficult, but some approximations might help.

Theorem: Suppose that $Q[T(x|y)] = e^{-nu(x,y)}$ can be lower bounded by $e^{-nu'(x,y)}$ such that

$$\max_{\mathbf{y}} \mathbf{E}_Q \{ \exp_2[nu'(\mathbf{X}, \mathbf{y})] \} \stackrel{\cdot}{=} 1.$$

Then, our earlier theorem applies to u' as well.

Example – Finite–State Decoding Metrics

Given x and y, and $g: \mathcal{X} \times \mathcal{Y} \times \mathcal{S} \to \mathcal{S}$, consider the evolution of a finite-state machine $s_{t+1} = g(x_t, y_t, s_t)$, t = 1, 2, ..., n-1, and let \mathcal{M} be the class of metrics

$$m_{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{t=1}^{n} \theta(x_t, y_t, s_t).$$

Here, there is no simple expression for $|\mathcal{T}(x|y)|$ (even if g is known), but [Ziv 1985]:

$$|\mathcal{T}(\boldsymbol{x}|\boldsymbol{y})| \ge e^{LZ(\boldsymbol{x}|\boldsymbol{y}) - o(n)}$$

and so, for $Q(x) = |\mathcal{X}|^{-n}$, one can take

$$u'(\boldsymbol{x}, \boldsymbol{y}) = \log |\mathcal{X}| - \frac{LZ(\boldsymbol{x}|\boldsymbol{y})}{n},$$

which satisfies the condition since the LZ code satisfies Kraft's inequality.

Extension 1 – Feedback

In the presence of feedback, Q(x) can be replaced by

$$Q(x|y) = \prod_{t=1}^{n} Q(x_t|x^{t-1}, y^{t-1})$$

and the results extend straightforwardly with u(x, y) being redefined as

$$u(\boldsymbol{x}, \boldsymbol{y}) = -\frac{1}{n} \log Q[\mathcal{T}(\boldsymbol{x}|\boldsymbol{y})|\boldsymbol{y}].$$

For example, the LZ decoding metric would generalize (under certain conditions) to

$$u'(\boldsymbol{x}, \boldsymbol{y}) = -\frac{1}{n}[\log Q(\boldsymbol{x}|\boldsymbol{y}) + LZ(\boldsymbol{x}|\boldsymbol{y})].$$

Extension 2 – MAC

For a certain class of MAC's (e.g., $P(y|x_1, x_2) = W(y|x_1 \oplus x_2)$), the following extension applies: Let $\mathcal{M} = \{m_{\theta}(x_1, x_2, y), \ \theta \in \Theta\}$ be given and define

$$\mathcal{T}(x_1, x_2 | y) = \{(x_1', x_2') : \forall \theta \in \Theta \ m_{\theta}(x_1', x_2', y) = m_{\theta}(x_1, x_2, y)\}$$
 $\mathcal{T}(x_1 | x_2, y) = \{x_1' : \forall \theta \in \Theta \ m_{\theta}(x_1', x_2, y) = m_{\theta}(x_1, x_2, y)\}$

and similarly $T(x_2|x_1,y)$. Now, let

$$u_0(x_1, x_2, y) = -\frac{1}{n} \log \{ (Q_1 \times Q_2) [\mathcal{T}(x_1, x_2 | y)] \}$$

 $u_1(x_1, x_2, y) = -\frac{1}{n} \log Q_1 [\mathcal{T}(x_1 | x_2, y)]$

and similarly $u_2(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{y})$. Finally, our decoding metric is:

$$u(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = \min\{u_0 - R_1 - R_2, u_1 - R_1, u_2 - R_2\}.$$

Extension 3 – Continuous Alphabet Case

Our results can in principle be modified to the case $\mathcal{X}=\mathcal{Y}=\mathbb{R}$ (with some caution): For example, let Q be zero—mean, Gaussian i.i.d. with variance σ^2 , and let

$$m_{\theta}(\mathbf{x}, \mathbf{y}) = \theta_1 \sum_{t=1}^{n} x_t^2 + \theta_2 \sum_{t=1}^{n} x_t y_t.$$

Here we need to assess the volume of $\mathcal{T}(x|y)$, the set of all x' with (approximately) the same empirical variance and empirical correlation with y as that of x. The resulting metric is:

$$u(x, y) = \frac{S(x)}{2\sigma^2} - \frac{1}{2}\ln[S(x)(1 - \rho_{xy}^2)],$$

where

$$S(\boldsymbol{x}) = \frac{1}{n} \sum_{t=1}^{n} x_t^2, \quad \rho \boldsymbol{x} \boldsymbol{y} = \frac{\frac{1}{n} \sum_{t=1}^{n} x_t y_t}{\sqrt{S(\boldsymbol{x})S(\boldsymbol{y})}}.$$

Summary and Conclusion

- We have defined a general framework. Earlier results are special cases.
- lacksquare If $\mathcal M$ is a singleton, this is mismatched decoding.
- Deterministic channels ("individual" channels) are included.
- The proof technique is simple and easy to extend.
- **Implementability relies on an expression of** $|\mathcal{T}(x|y)|$ or a lower bound.