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Some Background on Universal Decoding

Memoryless channels:

Goppa (1975) – MMI decoder achieves capacity.

Csiszár & Körner (1981) – MMI achieves random coding exponent.

Csiszár (1982) – minimum entropy decoder for linear codes.

Merhav (1993) – similar results for memoryless Gaussian channels.

Channels with memory:

Ziv (1985) – LZ-based metric for unifilar finite–state channels.

Lapidoth & Ziv (1998) – extension to HMM channels.

Feder & Lapidoth (1998) – merged decoder.

Feder & Merhav (2002) – competitive minimax approach.
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Some Background on Universal Decoding (Cont’d)

Deterministic arbitrary channels (“individual” channels):

Lomnitz & Feder (2012) – empirical rate functions.

Misra & Weissman (2012) – porosity of additive noise channels.

Shayevtiz & Feder (2012) – binary additive channels with feedback.

Elkayam & Feder (2014) – following and very related to this work.
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System Model and Problem Definition

A rate–R code C selected at random.

The marginal of each codeword xi ∈ Xn is Q.

The channel P (y|x) is arbitrary and unknown (may be deterministic).

We are given a class of decoding metrics M = {mθ(x, y), θ ∈ Θ}.

Decoder Dθ picks the message i with highest mθ(xi, y).

Pe,θ(R,n)
△
= average error probability of Dθ.

We seek a universal decoding metric u(x, y) with

Pe,u(R, n)
·
≤ min

θ∈Θ
Pe,θ(R, n)

for every channel P (y|x).
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The Proposed Univeral Decoding Metric

For the given class M of decoding metrics, define

T (x|y)
△
=

˘

x
′ : ∀θ ∈ Θ mθ(x′, y) = mθ(x, y)

¯

.

Our universal decoding metric is defined as

u(x, y)
△
= −

1

n
log Q[T (x|y)].

For a given y, {T (x|y)} are equivalence classes that partition Xn. Define

Kn(y)
△
= number of distinct {T (x|y)} for a given y

∆n
△
=

maxy log Kn(y)

n
.

∆n is a measure for the richness of the class of metrics M.
– p. 5/14



Basic Result and Discussion

Theorem: Let the randomly selected codewords in C be conditionally pairwise

independent. Then,

Pe,u(R,n) ≤ 2 · en∆n · min
θ∈Θ

Pe,θ(R,n)

and

Pe,u(R, n) ≤ 2 · min
θ∈Θ

Pe,θ(R + ∆n, n).

Discussion:

u(x, y) has a competitive error exponent if ∆n → 0.

The class M should not be too rich.

In general, ∆ = limn→∞ ∆n is the rate loss and the loss in error exponent.
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Example

Q = uniform distribution within a single type class TQ.

M is the class of metrics of the form

mθ(x, y) =

n
X

t=1

θ(xt, yt).

In this case, T (x|y) = Tx|y , the conditional type class of x given y. Thus,

u(x, y) = −
1

n
log Q[Tx|y ] = −

1

n
log[Q(x) · |Tx|y |]

= Ĥx(X) − Ĥxy(X|Y ) + o(n) ≈ Îxy(X;Y ),

which is the MMI decoder. Here, ∆n = O(log n/n).

If Q is i.i.d.

u(x, y) = Îxy(X;Y ) + D(P̂x‖Q).
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Comparison with Elkayam & Feder (2014)

Elkayam & Feder propose a different universal metric:

ũ(x, y) = −
1

n
log min

θ∈Θ
Q{mθ(X , y) ≥ mθ(x, y)},

which satisfies the same theorem, provided that

lim sup
n→∞

1

n
log

„

max
y

EQ{exp[nũ(X , y)]}

«

= 0.

Plus: This condition of univerality is weaker than ours.

Minuses:

The error exponent of ũ cannot be better than that of u.

Difficult to implement (even for the above example, which is elementary).

The above condition is difficult to verify.
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Useful Approximations of u(x,y)

For an explicit expression of u(x, y) – need to assess Q[T (x|y)].

If Q is invariant within T (x|y), then Q[T (x|y)] = Q(x) · |T (x|y)|.

In many cases, we can assess |T (x|y)| (method of types, stat. mech.,..).

In other cases, it is difficult, but some approximatons might help.

Theorem: Suppose that Q[T (x|y)] = e−nu(x,y) can be lower bounded by

e−nu′(x,y) such that

max
y

EQ{exp2[nu′(X , y)]}
·
= 1.

Then, our earlier theorem applies to u′ as well.
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Example – Finite–State Decoding Metrics

Given x and y, and g : X × Y × S → S, consider the evolution of a finite–state

machine st+1 = g(xt, yt, st), t = 1, 2, . . . , n − 1, and let M be the class of

metrics

mθ(x, y) =

n
X

t=1

θ(xt, yt, st).

Here, there is no simple expression for |T (x|y)| (even if g is known), but [Ziv

1985]:

|T (x|y)| ≥ eLZ(x|y)−o(n)

and so, for Q(x) = |X |−n, one can take

u′(x, y) = log |X | −
LZ(x|y)

n
,

which satisfies the condition since the LZ code satisfies Kraft’s inequality.
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Extension 1 – Feedback

In the presence of feedback, Q(x) can be replaced by

Q(x|y) =

n
Y

t=1

Q(xt|x
t−1, yt−1)

and the results extend straightforwardly with u(x, y) being redefined as

u(x, y) = −
1

n
log Q[T (x|y)|y].

For example, the LZ decoding metric would generalize (under certain

conditions) to

u′(x, y) = −
1

n
[log Q(x|y) + LZ(x|y)].
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Extension 2 – MAC

For a certain class of MAC’s (e.g., P (y|x1, x2) = W (y|x1 ⊕ x2)), the following

extension applies: Let M = {mθ(x1, x2, y), θ ∈ Θ} be given and define

T (x1, x2|y) =
˘

(x′
1, x′

2) : ∀θ ∈ Θ mθ(x′
1, x′

2, y) = mθ(x1, x2, y)
¯

T (x1|x2, y) =
˘

x
′
1 : ∀θ ∈ Θ mθ(x′

1, x2, y) = mθ(x1, x2, y)
¯

and similarly T (x2|x1, y). Now, let

u0(x1, x2, y) = −
1

n
log {(Q1 × Q2)[T (x1, x2|y)]}

u1(x1, x2, y) = −
1

n
log Q1[T (x1|x2, y)]

and similarly u2(x1, x2, y). Finally, our decoding metric is:

u(x1, x2, y) = min{u0 − R1 − R2, u1 − R1, u2 − R2}.
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Extension 3 – Continuous Alphabet Case

Our results can in principle be modified to the case X = Y = IR (with some

caution): For example, let Q be zero–mean, Gaussian i.i.d. with variance σ2,

and let

mθ(x, y) = θ1

n
X

t=1

x2
t + θ2

n
X

t=1

xtyt.

Here we need to assess the volume of T (x|y), the set of all x′ with

(approximately) the same empirical variance and empirical correlation with y

as that of x. The resulting metric is:

u(x, y) =
S(x)

2σ2
−

1

2
ln[S(x)(1 − ρ2

xy)],

where

S(x) =
1

n

n
X

t=1

x2
t , ρxy =

1
n

Pn
t=1 xtyt

p

S(x)S(y)
.

– p. 13/14



Summary and Conclusion

We have defined a general framework. Earlier results are special cases.

If M is a singleton, this is mismatched decoding.

Deterministic channels (“individual” channels) are included.

The proof technique is simple and easy to extend.

Implenentability relies on an expression of |T (x|y)| or a lower bound.
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