
Analogy Between Gambling and
Measurement-Based Work Extraction

Dror A. Vinkler
Dept. of Electrical & Computer Eng.
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel
Email: vinklerd@post.bgu.ac.il

Haim H. Permuter
Dept. of Electrical & Computer Eng.
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel
Email: haimp@bgu.ac.il

Neri Merhav
Dept. of Electrical Eng.

Technion - Israel Institute of Technology
Technion City, Haifa 32000, Israel
Email: merhav@ee.technion.ac.il

Abstract—TO BE CONSIDERED FOR AN IEEE JACK KEIL
WOLF ISIT STUDENT PAPER AWARD. In information theory,
mutual information is a known bound on the gain in the growth
rate due to knowledge of side information on a gambling result;
the betting strategy that reaches that bound is named the
Kelly criterion. In physics, it was recently shown that mutual
information is also a bound on the amount of work that can
be extracted from a single heat bath using measurement-based
control protocols; extraction that is done using “Information
Engines”. However, to the best of our knowledge, no relation
between these two fields has been presented before. In this paper,
we briefly review the two fields and then show an analogy
between gambling, where bits are converted to wealth, and
information engines, where bits representing measurement results
are converted to energy. This enables us to use well-known
methods and results from one field to solve problems in the other.
We present three such cases: maximal work extraction when the
joint distribution of X and Y is unknown, work extraction when
some energy is lost in each cycle, e.g., due to friction, and an
analysis of systems with memory. In all three cases, the analogy
enables us to use known results to reach new ones.

I. INTRODUCTION

While both work extraction from feedback controlled sys-
tems and information theoretic analysis of gambling are old
concepts, to the best of our knowledge the relation between
them has not been highlighted before. This relation includes
a straightforward mapping of concepts from one field to the
other, e.g., measurements are analogous to side information
and control protocols - to betting strategies. Fundamental for-
mulas in either field apply to the other after simple replacement
of variables according to the mapping found. This allows us
to gain insights on one field from known results in the other
one.

The relationship between work extraction and information
was first suggested by Maxwell [1] in a thought experiment
consisting of an intelligent agent, later named Maxwell’s
demon; the agent measures the velocity of ideal gas molecules
in a box that is divided into two parts by a barrier. Although
the box is attached to a heat bath and thus has a constant
temperature, T , the molecules inside the box have different
velocities. The demon opens a small hole in the barrier only
when a faster-than-average molecule arrives from the left
part of the box, allowing it to pass to the right part, and
when slower-than-average molecules arrive from the right part

of the box. By doing this, the demon causes molecules of
higher energy to concentrate in the right part of the box and
those of lower energy - to concentrate in the left part. This
causes the right part to heat up and the left part to cool
down, thus enabling work extraction when the system returns
to equilibrium, in apparent contradiction to the second law
of thermodynamics. This experiment shows how information
on the speed and location of individual molecules can be
transformed to extracted energy, setting the basis for what is
now known as “Information Engines”.

Extensive research and debate has centered around
Maxwell’s demon since its inception, expanding the concept
to more general cases of feedback control based on measure-
ments where work is extracted at the price of writing bits
[2]–[6]. However, it was not until recently that Sagawa et
al. reached an upper bound on the amount of work that can
be extracted [7], [8], owing to the development of fluctuation
theorems. That upper bound was found to be closely related
to Shannon’s mutual information, hinting at a possible relation
to problems in information theory; a relation that was not yet
explored in full.

Another field where bits of information were given concrete
value is gambling, through the analysis of optimal gambling
strategies using tools from information theory; an analysis
that was first done by Kelly [9]. The setting consisted of
consecutive bets on some random variable, where all the
money won in the previous bet is invested in the current
one. Kelly showed that maximizing over the expectation of
the gambler’s capital would lead to the loss of all capital
with high probability after sufficiently many rounds. However,
this problem is solved when maximization is done over the
expectation of the capital’s logarithm. Moreover, the logarithm
of the capital is additive in consecutive bets, which means that
the law of large numbers applies. Under these assumptions,
the optimal betting strategy is to place bets proportional to
the probability of each result, a strategy dubbed the “Kelly
criterion”. Kelly also showed that given some side information
on the event, the profit that can be made compared to some-
one with no side information is given by Shannon’s mutual
information. This serves as another hint at a possible relation
between information engines and gambling, as the amount of
work that can be extracted using measurements, compared to



that which can be extracted without measurements, is also
given by mutual information.

In this paper, we present an analogy between the analysis of
feedback controlled systems and the analysis of gambling in
information theory. We show that finding the optimal control
protocol in various systems is analogous to finding the optimal
betting strategy using the Kelly criterion. Furthermore, the
amount of work extracted after n cycles of an information
engine is shown to be analogous to the capital gained after
n rounds of gambling. The analogy is then shown on two
models: the Szilard engine, where the particle’s location is
discrete, and a particle in some potential field, where the
location is continuous.

This analogy allows us to generalize the models presented
here to more elaborate cases, such as gambling on continuous-
valued random variables. Moreover, it enables us to develop a
simple criterion to determine the best control protocol in cases
where an optimal protocol is inapplicable, and an optimal
protocol when the probabilities governing the system are not
known. Finally, well known results for gambling with memory
and causal knowledge of side information are transferred to
the field of physical systems with memory, yielding the bounds
on extracted work in such systems.

Due to space limitations we omit proofs of Lemmas, which
will appear in the full paper [10].

II. THE HORSE RACE GAMBLING

The problem of gambling, as presented in [9] and [11],
consists of n experiments whose results are marked by the
random vector Xn, e.g., the winning horse in n horse races.
We will assume that the gambler has some side information,
Y n, about the races, and that the experiments and side
information are i.i.d. The following notation is used:

• PX|y - the probability vector of X , the winning horse,
given an observation y of the side information.

• bX|y - a vector describing the amount of money invested
in each result given y.

• oX - a vector describing the amount of money earned for
each dollar invested on each horse, if that horse wins.

• Sn - the gambler’s capital after n experiments.

PX|y(x|y) (which we will abbreviate as P (x|y)) marks the
probability that X = x, given y. Similarly, bX|y(x|y) and
oX(x) (abbreviated b(x|y) and o(x), respectively) mark the
amount of money invested and earned, respectively, when X =
x. Each round, the gambler invests all of his capital.

Without loss of generality, we will set S0 = 1, namely, the
gambling starts with 1 dollar. Sn is then given by:

Sn =

n∏
i=1

b(Xi|yi)o(Xi), (1)

and maximization will be done on logSn. We define the profit
in round i as

logSi − logSi−1 = log [b(Xi|yi)o(Xi)] . (2)

Since the experiments are i.i.d., the same betting strategy
bX|y will be used in every round. As shown in [11, Chapter 6],
the optimal betting strategy is then given by:

b∗X|y = argmax
bX|y

E[logSn|yn] = PX|y. (3)

Substituting b∗X|y into eq. (1), the following maximum is
derived:

max
bX|y

E[logSn|yn] = n
∑
x

P (x|y) log [P (x|y)o(x)] . (4)

The bet is said to be fair if o(x) = 1/P (x), and it can be seen
from eq. (4) that without side information no money can be
earned in that case. In this paper, we only consider fair bets.

For a fair bet, the expected value of logSn with respect to
P (xn, yn) is

max
bX|y

E[logSn] = nI(X;Y ). (5)

In a constrained bet, meaning a fair bet where the betting
strategy is limited to some set B of possible strategies, the
maximum gain will be given by

max
bX|y∈B

E[logSn] = nI(X;Y )− n
∑
y∈Y

P (y)D(PX|y||b∗X|y),

(6)
where the optimal betting strategy b∗X|y ∈ B is the one that
minimizes D(PX|y||bX|y).

III. THE SZILARD ENGINE

We now examine the Szilard engine [12], which involves
a single particle of an ideal gas enclosed in a box of volume
V and attached to a heat bath of temperature T . The engine’s
cycle consists of the following stages (see Fig. 1):

1) The particle is moving freely in equilibrium with the
heat bath.

2) A divider is inserted, dividing the box into two parts of
volumes V L

0 and V R
0 . The part of the box that contains

the particle is denoted by X , with the alphabet X =
{L,R}.

3) A noisy measurement of the particle’s location is made;
the result is denoted Y with Y = {L,R}.

4) The divider is moved quasi-statically1, until the volumes
of the parts are V L

f and V R
f .

5) The divider is removed from the box.
Without loss of generality, we will set V = 1. Denote V0(x)

as V L
0 for x = L and V R

0 otherwise. Similarly, Vf (x|y) is
V L
f for x = L and V R

f otherwise, and these values depend
on the measurement y. Since the particle starts each cycle in
equilibrium with its environment, different cycles of the engine
are independent of each other. Assuming V0 is the same for
each cycle, Xn are i.i.d. with PX = V0. Following the analysis
in [13], the work extracted in round i given Yi = yi is

Wi = kBT ln
Vf (Xi|yi)
P (Xi)

, (7)

1Infinitesimally slowly, keeping the system close to equilibrium.



Fig. 1. The cycle of Szilard’s engine.

where kB is the Boltzmann constant. The optimal Vf is

V ∗f (x|y) = argmax
Vf

E[W |y] = P (x|y), (8)

and the maximal amount of work extracted after n cycles is

max
Vf

E[Wn] = nkBTE

[
ln
PX|Y

PX

]
= nkBTI(X;Y ). (9)

Note that the initial location of the barrier V0(x) can also
be optimized, leading to the following formula

max
Vf ,V0

E[Wn] = nkBT max
P (x)

I(X;Y ). (10)

An analogy with gambling arises from this analysis, as
presented in Table I. The equations defining both problems,
eqs. (2) and (7), are the same when renaming b(X|y) as
Vf (X|y) and o(X) as 1/P (X). The analogy also holds for the
optimal strategy in both problems, presented in eqs. (3) and
(8), and maximum gain, presented in eqs. (5) and (9), where
logSn is renamed Wn/kBT .

Specifically, the Szilard engine is analogous to a fair bet,
since V0 = PX and this is analogous to o(x) = 1/P (x). As
stated previously, in a fair bet no money can be earned without
side information. Equivalently, no work can be extracted from
the Szilard engine without measurements, which conforms
with the second law of thermodynamics. Moreover, the option
to maximize over P (x) prompts us to consider an extension to
horse race gambling, where the gambler can choose between
several different races and thus maximize eq. (5) over all
distributions P (x) in some set of possible distributions.

IV. A PARTICLE IN AN EXTERNAL POTENTIAL AND
CONTINUOUS-VALUED GAMBLING

We now consider a system of one particle that has the
Hamiltonian (energy function):

H(X, p) =
p2

2M
+ E0(X), (11)

where p is the particle’s momentum, M its mass, X its
location, and E0(X) is some potential energy. Again, the
particle is kept at constant temperature T . The optimal control
protocol for this system was presented in [14] and [15] to be
as follows:
• Given y, change the external potential immediately to be
E∗f (X, y) such that the induced Boltzmann distribution

TABLE I
ANALOGY OF GAMBLING AND SZILARD’S ENGINE

Gambling Szilard’s engine
Xi - result of horse race in round
i.

Xi - location of the particle in
cycle i. Namely, left or right.

Side information. Measurements results, possibly
with noise.

Yi - some side information on
round i.

Yi - noisy measurement of the par-
ticle’s location in cycle i.

PX - PMF of the result. PX - PMF of the particle’s loca-
tion.

PX|y - PMF of the result given
side information y.

PX|y - PMF of the particle’s loca-
tion given measurement y.

oX - amount of money earned for
every dollar gambled.

1/V0 - the reciprocal of the initial
volume of the box’s parts.

Placing bets on different horses. Moving the dividers to their final
positions.

Choosing the optimal race to bet
on.

Choosing the optimal initial loca-
tion for the divider.

bX|y - amount of money gambled
on each result, given y.

Vf (X|y) - the final volume of the
box’s parts, given y.

Log of the capital. Extracted work.
logSn - log of the acquired money
after n rounds of gambling.

Wn/(kBT ) - total work extracted
after n cycles of the engine.

Transforming bits to wealth. Transforming bits to energy.
Eqs. (2), (3), (5) - Profit in round i,
optimal betting strategy and maxi-
mum profit.

Eqs. (7), (8), (9) - Work extracted
in round i, optimal control protocol
and maximum work extraction.

of X will be P ∗f (x|y) = P (x|y), i.e., equal to the
conditional distribution of X given y.

• Change the potential quasi-statically back to E0(X).
Noting that in eq. (8) V ∗f equals P ∗f , one notices that both
in this case and in the Szilard engine the control protocol is
defined by P (x|y). Furthermore, eq. (7) is also valid for this
case. If X is a continuous random variable, P (x), P (x|y) will
be the particle’s PDF and conditional PDF, respectively.

The protocol presented above is optimal in the sense that it
reaches the upper bound on extracted work, i.e.,

E[Wn(P
∗
f )] = nkBTI(X;Y ), (12)

where Wn is the extracted work after n cycles of the engine. If
E0 is under our control, we can maximize over all P0 as well.
However, it is important to note that there will always be some
constraint over P0, due to the finite volume of the system or
to the method of creating the external potential or both. Thus,
denoting by P the set of allowed initial distributions P0, the
maximal amount of extracted work is given by

max
P0∈P,Pf

E[Wn] = nkBT max
P (x)∈P

I(X;Y ). (13)

Another point of interest is that setting P ∗f = PX|y will not
necessarily be possible. This gives rise to the following, more
general, formula

max
P0∈P,Pf

E[Wn]

= kBT max
P (x)∈P
Pf∈PB

{I(X;Y )− EY [D(PX|y||Pf )]}, (14)

where PB is the set of all possible distributions Pf , which
stems from the set of all possible potentials. Thus, the optimal



Pf is the one that minimizes EY [D(PX|y||Pf )]. Notice that
this analysis holds both for continuous and discrete X .

It follows that the analogy presented in Table I can be
extended to work extraction from a particle in an external
potential. Again, this system is analogous to a fair bet, in
conformance with the second law of thermodynamics. This
system is also analogous to a constrained bet, as can be seen
from eq. (14) and its analogy with eq. (6). If X is continuous,
an interesting extension to the gambling problem arises where
the bet is on continuous random variables. We will now present
this extension in detail.

A. Continuous-Valued Gambling

We consider a bet on some continuous-valued random vari-
able, where the gambler has knowledge of side information.
The gambler’s wealth is still given by eq. (1), where the betting
strategy, b(X|y), and the odds, o(X), are functions instead of
vectors. In the case of stocks or currency exchange rates, for
instance, such betting strategy and odds can be implemented
using options. The constraint that the gambler invests all his
capital on each round is translated in this case to the constraint∫
X b(x|y)dx = 1. The optimal betting strategy is then given by
b∗(x|y) = f(x|y), where f(x|y) is the conditional probability
mass function (PMF) of X given y, and the bet is said to be
fair if o(x) = 1/f(x), where f(x) is the PMF of X . For a fair
bet, eq. (5) holds and eq. (6) holds with the sum replaced by
an integral and each PDF replaced by the appropriate PMF.

We conclude that two often discussed schemes of work
extraction are analogous to the well-known problem of horse
race gambling or to the extension of that problem to the
continuous-valued case, an extension that actually arose from
the analogy. We will now discuss some of the possible benefits
from this analogy.

V. ANALOGY CONSEQUENCES

The analogy that was shown in this paper enables us to use
well-known methods and results from horse race gambling to
solve problems regarding measurement-based work extraction,
and vice versa. We present three such cases: maximal work
extraction when the joint distribution of X and Y is unknown,
work extraction when some energy is lost in each cycle, e.g.,
due to friction, and an analysis of systems with memory. In
all three cases the analogy enables us to use known results to
gain new insight.

A. Universal Work Extraction

The control protocols presented so far consisted of a change
to the system that changed the distribution of X from the
vector P0 to some measurement-dependent vector Pf (·|y),
and then a return back to P0. However, in order to achieve
the upper bound of E[W ] = kBTI(X;Y ), it was necessary
to know PX|y in advance. The question then arises whether
this bound could be achieved when the conditional probability
is not known, e.g., a system with an unknown measurement
error. For portfolio management, which is a generalization of
horse race gambling, the problem of investment with unknown

probability distributions was solved by Cover and Ordentlich
[16]. They devised the µ-weighted universal portfolio with side
information, which was shown to asymptotically achieve the
same wealth as the best constant betting strategy for any pair
of sequences xn, yn. Namely, it was shown that

lim
n→∞

max
xn,yn

1

n
log

S∗n(x
n|yn)

Ŝn(xn|yn)
= 0, (15)

where Ŝn is the wealth achieved by the universal portfolio and
S∗n is the maximal wealth that can be achieved by a portfolio
where bi(yi) = b∗(yi) for all i. Furthermore, choosing µ to
be the uniform (Dirichlet(1, . . . , 1)) distribution, it was shown
that the wealth achieved by the portfolio can be bounded by

log Ŝn(x
n|yn) ≥ logS∗n(x

n|yn)−k(m−1) log(n+1), (16)

where m is the cardinality of X and k is the cardinality of
Y . For this µ, the universal portfolio can be reduced to the
following betting strategy for the horse race gamble:

b̂i(y
i, xi−1) =

(
ni(1, yi) + 1

ni(yi) +m
, . . . ,

ni(m, yi) + 1

ni(yi) +m

)
, (17)

where ni(j, yi) is the number of times X was observed to
be j and Y was observed to be yi before the ith cycle, i.e.,
ni(j, y) = |{l : xl = j, yl = y, l < i}|, and similarly ni(y) =
|{l : yl = y, l < i}|.

Using the analogy presented above, this universal portfolio
can be adapted straightforwardly into a universal control
protocol in cases where X has a finite alphabet. In this control
protocol, Pf ,i is given by the right-hand-side of eq. (17) and
the extracted work can be bounded by

Ŵn ≥W ∗n − kBTk(m− 1) ln(n+ 1), (18)

a bound that follows directly from eq. (16). Namely, the work
extracted by this universal control protocol is asymptotically
equal to the work extracted by the best constant control
protocol, i.e., the best control protocol for which Pf ,i(·|yi) =
P∗f (·|yi) for all i. However, this derivation is applicable only
for cases where X and Y have finite alphabets.

B. Imperfect Work Extraction

Another result that arises from the analogy shown above
is the analysis of an imperfect system of work extraction.
Consider a system where some amount of energy f(x) is lost
in each cycle, e.g., due to friction. I.e.,

Wi = kBT ln
Pf (Xi|yi)
P0(Xi)

− f(Xi). (19)

This is analogous to an unfair bet with the odds

o(x) =
1

P (x)
e−fT (x), (20)

where fT (x) = f(x)/kBT and T is an “unfairness” parameter.
As shown, if the gambler has to invest all the capital in each

round, the optimal b(x|y) is independent of o(x), i.e., for the
odds given in eq. (20) the optimal betting strategy is still given



by eq. (3). However, it may be the case that for some values
of y the gambler should not gamble at all.

In the same manner, the optimal control protocol for imper-
fect systems of work extraction is still given by P ∗f (x|y) =
P (x|y), but for some measurement results it may be preferable
not to perform the cycle at all. Substituting P ∗f into eq. (19)
and taking the average w.r.t. P (x|y) yields

Wi = kBTD(PX|yi
||PX)− E[f(Xi)|yi]. (21)

Thus, the engine’s cycle should be performed only in cases
where W > 0. Equivalently, the cycle should be performed
only if y satisfies kBTD(PX|yi

||PX) > E[f(Xi)|yi].

C. Systems With Memory
Finally, we would like to analyze cases where the different

cycles of the engine, or different measurements, are not inde-
pendent. Again, we would use known results from the analysis
of gambling on dependent horse races. If the gambler has
only causal knowledge of the side information, the maximum
growth rate of wealth is [17]

max
b(Xn||Y n)

E[logSn] = I(Y n → Xn), (22)

where I(Y n → Xn) is the directed information from Y n to
Xn, as defined by Massey [18], and b(Xn||Y n) indicates the
betting strategy in round i depends causally on previous results
Xi−1 and side-information Y i. The optimal betting strategy
in this case is given by b∗(xn||yn) = P (xn||yn), where
P (xn||yn) =

∏n
i=1 P (xi|yi, xi−1) is the causal conditioning

of Xn by Y n as defined by Karmer [19].
In the Szilard engine, dependence arises, for instance, if

the initial placement of the barrier in each cycle is done
before the system has reached equilibrium. In that case,
the location of the particle depends on its location on the
previous cycle, i.e., P (xn) 6=

∏n
i=1 P (xi) and the Markov

Xi−Xi−1− (Xi−2, Y i−1) holds. This leads to the following
formula for maximizing the extracted work

argmax
Vf,i

E[W |yi, xi−1] = argmin
Vf,i

D(PXi|yi,xi−1 ||Vf,i)

= PXi|yi,xi−1 , (23)

which means that maximal work extraction is given by

max
V n
f

E[Wn] = kBTI(Y
n → Xn), (24)

for some P (xn) induced by the initial location of the barrier.
As was done previously, this initial location can be optimized,
yielding the optimal P (xn) in the set of possible distributions,
i.e., the distributions for which the Markov property holds.
Denoting this set P , maximal extracted work is given by

max
V n
f ,V n

0

E[Wn] = kBT max
P (xn||yn−1)∈P

I(Y n → Xn), (25)

where P (yn||xn) is a constant depending on the measuring
device. Due to the Markov property, eq. (25) can reduced to

max
V n
f ,V n

0

E[Wn] = kBT max
P (xn||yn−1)∈P

n∑
i=1

I(Xi;Yi|Xi−1, Y i−1).

(26)

It would be beneficial to have a scheme to find the set of
probabilities that achieves the maximum in this case. In order
to do that, the following two lemmas are first needed.

Lemma 1 The rhs of eq. (26) is concave in P (xn||yn−1) with
P (yn||xn) constant.

Lemma 2 The maximization problem in eq. (26) is a convex
optimization problem over the affine set P .

Using these two lemmas, the alternating maximiza-
tion procedure can be used to maximize over each term
P (xi|xi−1, yi−1) separately while setting all other terms as
constant, beginning with i = n and moving backward to i = 1,
similarly to [20]. Since each term depends only on previous
terms and not on the following ones, this procedure will yield
the global maximum as needed.
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