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Abstract—We analyze a binary hypothesis testing problem in which a
defender has to decide whether or not a test sequence has been drawn
from a given source P0 whereas, an attacker strives to impede the correct
detection. In contrast to previous works, the adversarial setup addressed
in this paper considers a fully active attacker, i.e. the attacker is active
under both hypotheses. Specifically, the goal of the attacker is to distort
the given sequence, no matter whether it has emerged from P0 or not,
to confuse the defender and induce a wrong decision. We formulate the
defender-attacker interaction as a game and study two versions of the
game, corresponding to two different setups: a Neyman-Pearson setup
and a Bayesian one. By focusing on asymptotic versions of the games,
we show that there exists an attacking strategy that is both dominant
(i.e., optimal no matter what the defense strategy is) and universal
(i.e., independent of the underlying sources) and we derive equilibrium
strategies for both parties.

I. INTRODUCTION

There are many fields in signal processing and communications
where the detection problem should naturally be framed within
an adversarial setting: multimedia forensics (MF), spam filtering,
biometric-based verification, one-bit watermarking, digital/analogue
transmission under jammer attacks, just to mention a few [1].

In recent literature, game theory and information theory have
been combined to address the problem of adversarial detection,
see e.g. [2], [3]. Specifically, in [3] the general problem of binary
hypothesis testing under adversarial conditions has been addressed
and formulated as a game between two players, the defender and the
attacker, which have conflicting goals. Given two discrete memoryless
sources, P0 and P1, the goal of the defender is to decide whether a
given test sequence has been generated by P0 (null hypothesis, H0)
or P1 (alternative hypothesis, H1). By adopting the Neyman-Pearson
(NP) approach, the set of strategies the defender can choose from is
the set of decision regions forH0 ensuring that the false positive error
probability is lower than a given threshold. On the other hand, the
ultimate goal of the attacker in [3] is causing a false negative decision,
so the attacker acts under H1 only. In other words, the attacker
modifies a sequence generated by P1, in attempt to move it into
the acceptance region of H0. In doing so, the attacker has to respect
a distortion constraint, limiting the amount of modifications that can
be introduced into the sequence. In [3], such a struggle between the
defender and the attacker is modeled as a competitive zero-sum game
and the asymptotic equilibrium, that is, the equilibrium when the
length of the observed sequence tends to infinity, is derived under
the assumption that the defender bases its decision on the analysis
of first order statistics only. The latter assumption, often referred
to as limited resources assumption, is quite reasonable, given the
memoryless nature of the sources. The analysis conducted in [3]
extends the one of [4] to the adversarial scenario.

Some variants of this attack-detection game have also been studied:
in [5], the setting was extended to the case where the sources are
known to neither the defender nor the attacker, yet training data
from both sources is available to both parities; within this framework,
the case where part of the training data available to the defender is
corrupted by the attacker has also been studied (see [6]).

There are many situations in which it is reasonable to assume that
the attacker is active under both hypotheses with the goal of causing
both false positive and false negative detection errors. For instance, in
applications of fingerprint detection, an adversary might be interested
to remove the fingerprint from a given image so that the generating
camera would not be identified and, at the same time, to modify the
specific fingerprint to blame an innocent victim, [7], [8].

With the above ideas in mind, in this paper, we extend the game–
theoretic formulation of the defender-attacker interaction to the case
where the attacker acts under both hypotheses. We refer to this
scenario as a detection game with a fully-active attacker. We address
both the case where the underlying hypothesis is known to the
attacker and the case where it is not. We define and solve two versions
of the detection game with fully active attackers, corresponding to
two different detection setups: in the former, we assume that the
defender bases the decision on an adversary-aware NP test; in the
latter, a Bayesian approach is adopted, where the role of the two
error probabilities is symmetrized, and the decision is based on the
minimization of a Bayesian risk function.

As an additional contribution, we extend the analysis developed in
[3] to consider randomized detection strategies. We also show that for
both the classical version of the game and the game with fully active
adversary, there exists an attacking strategy that is both dominant
(i.e., optimal no matter what the defense strategy is) and universal
(i.e., independent of the underlying sources). This marks a significant
difference with respect to previous works, where the existence of a
dominant strategy was proven only with reference to the defender.

The outline of the paper is the following: we introduce the notation
and the main concepts in Section II; then, in Section III, we revisit the
analysis developed in [3] to consider randomized detection strategies
and show that there exists an attack strategy which is both universal
and asymptotically dominant.

In Section IV, these findings are extended to a setting where the
attacker is active under both hypotheses: the two versions of the game
are studied in Section IV-A and IV-B.

II. NOTATION AND DEFINITIONS

Given a random variable X , we denote by x = (x1, x2, ..., xn),
xi ∈ A, i = 1, 2, . . . , n, a sequence of n (independent) copies of X .

Throughout this paper, we make an extensive use of the concept
of typicality and the method of types (see, [9], [10], [11]). The type
of a sequence x is defined as the empirical probability distribution
P̂x, that is, the vector {Px(x), x ∈ A} of the relative frequencies
of the various alphabet symbols in x. A type class T (x) is defined
as the set of all the sequences having the same type of x. Similarly,
given a pair of sequences (x,y), the conditional type class T (y|x)
is the set of the sequences having empirical conditional probability
distribution (or conditional type) P̂y|x.

We denote by A(y|x) the conditional probability distribution of
a channel with input x and output y. Given a permutation-invariant



distortion function d : An×An → IR+1 and a maximum per-symbol
distortion ∆, we define the class of admissible channels C as the
class of channels A that assigns zero probability to output sequences
y such that the distance from x is larger than the prescribed
maximum value; i.e., A(y|x) = 0 ∀y s.t. d(x,y) > n∆.

For sake of clarity, we introduce some basic definitions of game
theory. A 2-player game is defined as a quadruple (S1,S2, u1, u2),
where S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the set
of strategies the first and the second player can choose from, and
ul(s1,i, s2,j), l = 1, 2, is the payoff of the game for player l, when the
first player chooses the strategy s1,i and the second chooses s2,j . A
pair of strategies (s1,i, s2,j) is called a profile. When u1(ss1,i, s2,j)+
u2(s1,i, s2,j) = 0, the win of a player is equal to the loss of the other
and the game is said to be a zero-sum game. The sets S1, S2 and the
payoff functions are assumed to be known to both players. In addition,
we consider strategic games, i.e., games in which the players choose
their strategies before starting the game without knowing the strategy
chosen by the opponent player.

A common goal in game theory is to determine the existence
of equilibrium points, i.e. profiles that in some sense represent a
satisfactory choice for both players [12]. The most famous notion
of equilibrium is due to Nash. A profile is said to be a Nash
equilibrium if no player can improve its payoff by changing its
strategy unilaterally.

Despite its popularity, the practical meaning of Nash equilibrium
is often unclear, since there is no guarantee that the players will end
up playing at the equilibrium. A particular kind of games for which
stronger forms of equilibrium exist are the so called dominance
solvable games [12]. The concept of dominance-solvability is
directly related to the notion of dominant and dominated strategies.
In particular, a strategy is said to be strictly dominant for one
player if it is the best strategy for the player, i.e., the strategy which
corresponds to the largest payoff, no matter how the other player
decides to play. When one such strategy exists for one of the players,
he will surely adopt it. In a similar way, we say that a strategy
sl,i is strictly dominated by strategy sl,j , if the payoff achieved by
player l choosing sl,i is always lower than that obtained by playing
sl,j regardless of the choice made by the other player. The recursive
elimination of dominated strategies is one common technique for
solving games. In the first step, all the dominated strategies are
removed from the set of available strategies, since no rational player
would ever play them. In this way, a new, smaller game is obtained.
At this point, some strategies, that were not dominated before, may
be dominated in the remaining game, and hence are eliminated. The
process goes on until no dominated strategy exists for any player. A
rationalizable equilibrium is any profile which survives the iterated
elimination of dominated strategies [13], [14]. If at the end of the
process only one profile is left, the remaining profile is said to be
the only rationalizable equilibrium of the game, which is also the
only Nash equilibrium point. Dominance solvable games are easy
to analyze since, under the assumption of rational players, we can
anticipate that the players will choose the strategies corresponding
to the unique rationalizable equilibrium. An interesting notion of
equilibrium is that of dominant equilibrium. A dominant equilibrium
is a profile which corresponds to dominant strategies for both players
and is the strongest kind of equilibrium that a strategic game may
have.

1For a permutation-invariant distance, the distance does not change by
applying the same permutation to x and y.
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Fig. 1. Schematic representation of the adversarial setup considered in this
paper. In the case of partially active attacker, channel A0 corresponds to the
identity channel.

Regarding the notation, for two positive sequences {an} and {bn},
the notation an

·
= bn means that limn→∞ 1/n log (an/bn) = 0,

and an
·
≤ bn designates that lim supn→∞ 1/n log (an/bn) ≤ 0.

Throughout the paper, for a given quantity s, we adopt the following
notation: [s]+

4
= max{s, 0}.

Given two random variables X and Y , we use notation Ĥx(X)
(Ĥy(Y )) for the empirical entropy of a sequence x (y) and notation
Ĥxy(X,Y ) (Ĥxy(X|Y )) for the joint (conditional) entropy, see
[9]. Finally, we denote with D(·‖·) the Kullback–Leibler (K-L)
divergence, see again [9].

III. DETECTION GAME WITH PARTIALLY ACTIVE ATTACKER

In this section, we extend the analysis of the binary hypothesis
testing game developed in [3], where the attacker is active under H1

only. The analysis not only introduces new results with respect to
[3], but it also represents the basis for studying the version of the
game with a fully active attacker.

Given two discrete memoryless sources, P0 and P1, defined over
a same source alphabet A, we denote by x = (x1, . . . , xn) ∈ An
a sequence emitted by one of these sources. The sequence x is
available to the attacker. Let y = (y1, y2, ..., yn) ∈ An denote the
sequence observed by the defender: in the scenario considered in this
section, we have y = x under H0 (no attack occurs), whereas under
H1, y is obtained as the output of an attack channel defined by a
conditional probability distribution A1(y|x). Figure 1 illustrated the
general framework.

Let us denote by Qi(·) the probability distribution of y under
hypothesis Hi; then, we have Q0(y) = P0(y) and Q1(y) =∑

x P1(x)A1(y|x).
With regard to the defender, we assume a possibly randomized

decision strategy, where D(Hi|y) designates the probability of
deciding in favor of Hi, i = 0, 1, given the observed sequence y.
Accordingly, the probability of a false positive (FP) decision error is
given by

PFP(D) =
∑
y
P0(y)D(H1|y), (1)

whereas the false negative (FN) error probability assumes the form:

PFN(D,A1) =
∑
x,y

P1(x)A1(y|x)D(H0|y). (2)

As in [3], due to the limited resources assumption, the defender
makes a decision based on first order empirical statistics of y, which
implies that D(·|y) depends on y only via its type class T (y). The
set T (y) can be interpreted as the set of all the sequences which
can be obtained by permuting y. In other words, D(·|y) is invariant
to permutations of y. Concerning the attack, in order to limit the
amount of distortion, we will assume a distortion constraint: for some



chosen permutation-invariant distortion function d(·, ·) and per-letter
distortion ∆, the attack channel A1 belongs to C.

We define the generalized detection game with a partially active
attacker (i.e., an attacker active under H1 only) as follows.

Definition 1. The DG-PA(SD,SA,u) game is a zero-sum, strategic
game played by a defender and an attacker, defined as follows:

• The set of strategies the defender is the class SD of randomized
decision rules that satisfy the following properties:

(i) D(H0|y) = D(H0|y′) whenever y′ is a permutation
of y.

(ii) PFP(D) ≤ e−λn for a given prescribed λ > 0.
• The set of strategies for the attacker is the class SA of attack

channels A1 with the property that d(x,y) > n∆ implies
A1(y|x) = 0; that is SA ≡ C.

• The payoff function: u(D,A) = PFN(D,A), where the attacker’s
perspective is adopted (the attacker is in the quest for minimizing
u(D,A) and the defender wishes to maximize u(D,A)).

We point out that the DG-PA game is an extension of the source
identification (SI) game defined in [3], since in the DG-PA both play-
ers of the game are allowed to employ randomized strategies, while in
the SI, only deterministic strategies were considered. Specifically, in
[3], the defense strategies are confined to deterministic rules (decision
regions) and the attack is confined to the application of deterministic
functions to the to-be-attacked sequence.

As in [3], we focus on the asymptotic behavior of the DG-PA game,
that is, the behavior when n tends to infinity. We say that a strategy
is asymptotically optimum (or dominant) strategy if the strategy is
optimum (dominant) with respect to the exponent of the payoff.

We start by asserting the following lemma:

Lemma 1. The defence strategy

D∗(H1|y)
4
= exp{−n[λ−D(P̂y‖P0)]+}, (3)

is an asymptotically dominant strategy for the defender.

Proof: The asymptotic optimality of D∗(·|y) follows directly
from the false positive (FP) constraint:

e−λn ≥
∑
y′

P0(y′)D(H1|y′) ≥ |T (y)| · P0(y)D(H1|y)

·
≥e−nD(P̂y‖P0)

D(H1|y), ∀y, (4)

where we have exploited the permutation–invariance of D(H1|y)
and the memoryless of nature P0, which implies P0(y) = P0(y′)
whenever y′ is a permuted version of y. It follows that

D(H1|y)
·
≤ min{1, e−n[λ−D(P̂y‖P0)]} = D∗(H1|y).

By using the method of types [10], it is easy to see that D∗

satisfies the false positive constraint within a polynomial factor. Since
D∗(H1|y)

·
≥ D(H1|y), obviously, D∗(H0|y)

·
≤ D(H0|y), and so,

PFN(D∗, A1)
·
≤ PFN(D,A1) for every attack channel A1.

According to Lemma 1, the best defending strategy is dominant,
and then it is the optimum strategy regardless of the attacking
channel. Furthermore, we argue that the optimum decision function
asymptotically tends to a deterministic function which essentially
corresponds to the Hoeffding test [15]. Note that Lemma 1 is in
line with the results obtained in [3] where the analysis is confined
to deterministic decision rules. As the optimum strategy D∗ depends
only on P0, but not on P1, it is said to be semi–universal.

We now move on to the analysis of the attack. One of the main
results of the paper is stated by the following theorem.

Theorem 1. Let cn(x) denote the reciprocal of the total number of
conditional type classes T (y|x) that satisfy the constraint d(x,y) ≤
n∆, namely, admissible conditional type classes2. The attack channel

A∗(y|x) =

{
cn(x)
|T (y|x)| d(x,y) ≤ n∆

0 elsewhere
, (5)

is an asymptotically dominant strategy for the attacker.

Proof: Consider an arbitrary channel A1 ∈ SA. Let Π : An →
An denote a permutation operator that permutes any member of An
according to a given permutation matrix and let

AΠ(y|x)
4
= A1(Πy|Πx), (6)

Since the distortion is invariant to permutations, channel AΠ(y|x)
introduces the same distortion as A1 and hence satisfies the distortion
constraint. Thanks to the memorylessness of P1 and the assumed
permutation–invariance of D(H0|y), we have

PFN(D,AΠ) =
∑
x,y

P1(y)AΠ(y|x)D(H0|y)

=
∑
x,y

P1(y)A1(Πy|Πx)D(H0|y)

=
∑
x,y

P1(Πy)A1(Πy|Πx)D(H0|Πy)

=
∑
x,y

P1(y)A1(y|x)D(H0|y)

= PFN(D,A1), (7)

and so, PFN(D,A1) = PFN(D, Ā) where we have defined

Ā(y|x) =
1

n!

∑
Π

AΠ(y|x) =
1

n!

∑
Π

A1(Πy|Πx), (8)

which also introduces the same distortion as A1. This channel assigns
the same probability to all the sequences in the same conditional
type class T (y|x). To prove it, we observe that any sequence y′ ∈
T (y|x) can be seen as being obtained from y through the application
of a permutation Π′ which leaves x unaltered. Then, we have:

Ā(y′|x) = Ā(Π′y|Π′x) =
1

n!

∑
Π

A1(Π(Π′y)|Π(Π′x))

=
1

n!

∑
Π

A1(Πy|Πx) = Ā(y|x). (9)

Therefore, we argue that

Ā(y|x)
·
≤
{ 1
|T (y|x)| d(x,y) ≤ n∆

0 elsewhere

=
A∗(y|x)

cn(x)

≤(n+ 1)|A|·(|A|−1)A∗(y|x), (10)

which implies that, for every permutation–invariant defense strategy
D, PFN(D,A1) ≤ (n+ 1)|A|·(|A|−1)PFN(A∗, D), or equivalently

PFN(D,A∗) ≥ (n+ 1)−|A|·(|A|−1)PFN(A1, D). (11)

We conclude that A∗ minimizes the error exponent of PFN(D,A1)
for every given A1 ∈ SA and D ∈ SD .

2From the method of the types it is known that 1 ≥ cn(x) ≥ (n +
1)−|A|·(|A|−1) for any x [9].



Theorem 1 states that strategy A∗ is dominant for the attacker,
and so the optimum attacking channel does not depend on the
decision strategy D(·|y). Then, given a sequence x, in order to
generate an attacked sequence y which undermines the detection
(with the prescribed maximum allowed distortion), the best way is to
choose an admissible conditional type class according to the uniform
distribution (at random) and then select at random a sequence y
within this conditional type class. As a further result, Theorem 1
states that the optimum attacking strategy is universal, i.e., it depends
neither on P0 nor on P1. The existence of dominant strategies for
both players directly leads to the following result.

Theorem 2. The profile (D∗, A∗) is an asymptotically dominant
equilibrium for the DG-PA game.

IV. DETECTION GAMES WITH FULLY ACTIVE ATTACKER

We now consider the detection game when the attacker is active
under both hypotheses. In principle, we must distinguish between
two cases: in the first one, the attacker is aware of the underlying
hypothesis (hypothesis-aware attacker), whereas in the second case,
it is not (hypothesis-unaware attacker).

In the hypothesis-aware case, the attack strategy is defined by two
attack channels: A0 (carried out when H0 holds) and A1 (carried
out under H1). This attack induces the following distributions on the
observed sequence y: Q0(y) =

∑
x P0(x)A0(y|x) and Q1(y) =∑

x P1(x)A1(y|x). The FP probability becomes:

PFP(D,A0) =
∑
x,y

P0(x)A0(y|x)D(H1|y), (12)

while for the FN probability, equation (2) continues to hold.
The schematic representation of the fully-active case is given in

Figure 1. It is easy to argue that the partially active case is a
degenerate case of the fully active one (where A0 is the identity
channel).

By the same reasoning as in the proof of Theorem 1, we now show
that the (asymptotically) optimum attacking strategy is independent
on the underlying hypothesis. As a consequence, the best attack under
the fully active regime is to apply the same A∗ regardless of which
hypothesis holds. Due to this property, it becomes immaterial whether
the attacker is aware or unaware of the true hypothesis.

To be more specific, let u denote a payoff function of the form

u = γPFN(D,A1) + βPFP(D,A0), (13)

where β and γ are given positive constants, possibly dependent on
n. The following Theorem asserts the asymptotic dominance of the
channel A∗ w.r.t. the payoff function u for every choice of β and γ.

Theorem 3. Let A∗ denote the attack channel in (5). Among all
pairs of channels in C, the pair (A∗0, A

∗
1) with A∗0 = A∗1 = A∗

minimizes the asymptotic exponent of u for any γ, β ≥ 0 and any
permutation–invariant decision rule D(H0|·).

Proof: Due to the memorylessness of P1 and the permutation-
invariance of D(H0|·), and by reasoning as we did in Theorem 1,
we know that, for every A1 ∈ C, we have:

PFN(D,A∗) ≥ (n+ 1)−|A|·(|A|−1)PFN(A1, D), (14)

and then A∗ minimizes the error exponent of PFN(D,A1).
A similar argument can be applied to the FP probability; that is,

from the memorylessness of P0 and the permutation–invariance of
D(H1|·), we have:

PFP(D,A
∗) ≥ (n+ 1)−|A|·(|A|−1)PFP(A0, D), (15)

for every A0 ∈ C. Accordingly, A∗ minimizes the asymptotic
exponent of PFP(D,A0) as well. We then have:

γPFN(D,A1) + βPFP(D,A0)

≤ (n+ 1)|A|·(|A|−1)(γPFN(D,A∗) + βPFP(D,A
∗))

.
= γPFN(D,A∗) + βPFP(D,A

∗), (16)

for every A0 ∈ C and A1 ∈ C. Notice that, since the asymp-
totic equality is defined in logarithmical scale, relation (16) holds
whichever is the (eventual) dependence of γ and β on n. Hence,
A0 = A1 = A∗ minimizes the asymptotic exponent of u for any
permutation–invariant decision rule D(H0|·) and for any γ, β > 0.

We point out that, whenever γ (res. β) is equal to 0, all the
attacking strategies A1 (res. A0) are equivalent, in the sense that
all the pairs (A∗, A1) for every A1 (res. (A0, A

∗), for every A0)
lead to the same asymptotic payoff. From Theorem 3 we deduce
that, whenever an adversary aims at maximizing a payoff function of
the form (13), and as long as the defence strategy is confined to the
analysis of the first order statistics, the asymptotically optimal attack
is A∗ under either hypothesis.

We now turn the attention to the defender. The main difficulty relies
in the fact that in the presence of a fully active attacker PFP also
depends on the attack, thus forcing us to reconsider the constraint on
PFP .

In the sequel, we consider two different approaches which lead to
different formulations of the detection game with fully active attacker
(DG-FA).

A. The DG-FA game: the Neyman Pearson approach

We consider the detection based on the NP test. To define a DG-FA
game in this setup, we assume that the defender adopts a conservative
approach by imposing an FP constraint pertaining to the worst–case
attack under H0 Specifically, we define the game as follows.

Definition 2. The DG-FA1(SD,SA,u) game is a zero-sum, strategic
game defined by
• The set of strategies for the defender is the the class SD of

randomized decision rules that satisfy
(i) D(H0|y) = D(H0|y′) whenever y′ is a permutation

of y.
(ii) maxA0∈C PFP(D,A0) ≤ e−nλ for a prescribed λ > 0.

• The set of strategies for the attacker is the class SA of the pairs
of attack channels (A0, A1) such that A0, A1 ∈ C.

• The payoff function: u(D,A) = PFN(D,A1).

Having already determined the best attacking strategy, we focus
on the best defender’s strategy. We start with the following lemma:

Lemma 2. The strategy

D∗(H1|y)
4
= exp

{
−n
[
λ− min

x:d(x,y)≤n∆
D(P̂x‖|P0)

−|A|2 log(n+ 1)

n

]
+

}
, (17)

is asymptotically dominant for the defender.

Proof: Since the proof is too technical, we only give the intuition
behind. We know from Lemma 1 that for the case of no attack under
H0, the asymptotically optimal detection rule is based on D(P̂x‖P0).
In the setup of the DG-FA1 game, where the attacker is active also
under H0, the defender is subject to a constraint on the maximum FP



probability over SA. We know from Theorem 3 that, in the asymptotic
exponent sense, this maximum value is achieved when A0 = A∗.
We observe that A∗ assigns a probability which is the reciprocal
of a polynomial term at each conditional type class that satisfies
the distortion constraint (admissible conditional type class). Then, in
order to be compliant with the constraint, for a given sequence y,
the defender has to consider the minimum of D(P̂x‖P0) over all
the type classes T (x|y) which satisfy the distortion constraint, or
equivalently, all the sequences x such that d(x,y) ≤ n∆.

Lemma 2 asserts the dominance and the semi-universality of the
defence strategy, which depends only on the source P0.

With regard to the attack, since the payoff of the game is a special
case of (13) with γ = 1 and β = 0, the optimum pair of attacking
channels is given by Theorem 3 and is (A∗, A∗). We point out that,
as a consequence of Theorem 3, the optimum attacking strategy is
fully universal: the attacker does not need to know either sources (P0

and P1) or the underlying hypothesis.
We observe that, since the defender adopted a conservative ap-

proach to ensure the constraint on FP, the pairs (A0, A
∗), for every

A0 ∈ SA, are all equivalent, that is, they lead to the same payoff,
and then the attacker does not even need to perform the attack under
the null hypothesis. Therefore, if the attacker is aware of the true
hypothesis, then she could play any channel under H0. In the NP
decision setup, the sole fact that the attacker is allowed to attack
under H0 forces the defender to take countermeasures that render
the attack under H0 useless.

Due to the existence of dominant strategies for both players, we
can immediately state the following theorem:

Theorem 4. Profile (D∗, (A∗, A∗)) is an asymptotically dominant
equilibrium for the DG-FA1 game.

B. The DG-FA: the Bayesian approach

In this section, we define another version of the DG-FA game.
Specifically, we assume that the defender follows a less conservative
Bayesian approach and tries to minimize a particular Bayes risk. The
resulting game is defined as follows:

Definition 3. The DG-FA2(SD,SA,u) game is a zero-sum, strategic
game defined by

• The set of strategies for the defender is the class SD of
randomized decision rules that satisfy D(H0|y) = D(H0|y′)
whenever y′ is a permutation of y.

• The set of strategies for the attacker is the same set as before;
• The payoff function:

u = PFN(D,A1) + eanPFP(D,A0), (18)

for some positive a.

We observe that, in the definition of the payoff, the parameter a
controls the tradeoff between the two error exponents; we anticipate
that the optimum strategy D will be the one making the difference
between the two error exponents exactly equal to a. Notice also that,
with definition (18), we are implicitly considering for the defender
only the strategies D(·|y) such that PFP(D,A0)

·
≤ e−an. Indeed, any

D(·|y) which does not satisfy this constraint cannot be the optimum
strategy, yielding a payoff u > 1 which can be improved by always
deciding in favor of H0 (u = 1).

Let us define:

D̃(P̂y , P0)
4
= min
{P̂x|y :Exy(d(X,Y ))≤∆}

D(P̂x‖P0), (19)

where Exy(·) defines the empirical expectation and the minimization
is carried out for a given empirical distribution of y, P̂y . A similar
definition can be given for D̃(P̂y , P1).

Our solution for the DG-FA2 game is given by the following
theorem.

Theorem 5. Let

D#,1(H1|y) = U

(
1

n
log

Q1(y)

Q0(y)
− a
)
, (20)

where U(·) denotes the Heaviside step function, and let A∗ be defined
as usual. denote the attacking channel in (5). Strategy D#,1 is an
optimum strategy for the defender.

If, in addiction, the distortion measure is additive, i.e., d(x,y) =∑
i d(xi, yi) for some single-letter distortion function, strategy

D#,2(H1|y) = U
(
D̃(P̂y , P0)− D̃(P̂y , P1)− a

)
(21)

is asymptotically optimum for the defender.

The reason why it is meaningful to provide also the asymptotical
optimum strategy, is the following: although strategy D#,1 is prefer-
able for the defender in a game theoretical sense (being optimal
for finite n), it requires the non trivial computation of the two
probabilities Q1(y) and Q0(y). Strategy D#,2, instead, it is easier
to implement because of its single-letter form, and leads to the same
payoff asymptotically.

Proof: Since the payoff in (18) a special case of (13) (with γ = 1
and β = eαn), Since (18) is a special case of (13) (with γ = 1 and
β = eαn), for any defence strategy D ∈ SD , the asymptotically
optimum attacking channel under both hypotheses is A∗, the same
and corresponds to the channel A∗ defined in (5), see Theorem 3.
Then, we can determine the best defence strategy by assuming that
the attacker will play (A∗, A∗) and evaluating the best response of
the defender. Given the probability distributions Q0(y) and Q1(y)
induced by A∗, the optimum decision rule is deterministic and is
given by the likelihood ratio test (LRT) [16]:

1

n
log

Q1(y)

Q0(y)

H1

≷
H0

a, (22)

which proves the optimality of the decision rule in (20).
To prove the asymptotic optimality of the decision rule in (21),

let us approximate Q0(y) and Q1(y) using the method of types as
follows:

Q0(y) =
∑
x
P0(x)A∗(y|x)

·
=

∑
x: d(x,y)≤n∆

e−n[Ĥx(X)+D(P̂x‖P0)] · e−nĤxy(Y |X)

·
= max

x: d(x,y)≤n∆
e
nHxy(X|Y ) ·

(
e−n[Ĥx(X)+D(P̂x‖P0)]

·e−nĤxy(Y |X)
)

= max
x: d(x,y)≤n∆

e
−n[Ĥy(Y )+D(P̂x‖P0)]

(a)
·
= exp

{
−n
[
Ĥy(Y )+

+ min
{P̂x|y :Exy(d(X,Y ))≤∆}

D(PX‖P0)

]}
= exp

{
−n[Ĥy(Y ) + D̃(P̂y , P0)]

}
,

(23)



where in (a) we exploited the additivity of the distortion function d.
Similarly,

Q1(y)
·
= exp

{
−n[Ĥy(Y ) + D̃(P̂y , P1)]

}
. (24)

Thus, we have the following asymptotic approximation to the LRT:

D̃(P̂y , P0)− D̃(P̂y , P1)
H1

≷
H0

a, (25)

which proves the second part of the theorem.
Given the above, we can assert the following:

Theorem 6. The profile (D#,1, (A∗, A∗)) and (D#,2, (A∗, A∗)) are
asymptotic rationalizable equilibria for the DG-FA2 game.

As final remark, we observe that the analysis in this section can
be easily generalized to any payoff function defined as in (13), i.e.,
for any γ, β ≥ 0.

V. CONCLUSIONS

We considered the problem of adversarial binary hypothesis testing
when the attack is carried out under both hypotheses, aiming at
causing both false negative and false positive errors. By modeling the
defender-attacker interaction as a game, we first extended the results
in [3] to the case of an attacker which is active under the alternative
hypothesis only, then we defined and solved two different versions
of the detection game with fully active attacker corresponding to
different decision setups: the case of decision based on NP approach
and Bayesian approach. Among the possible directions for future
work, we mention the extension to the case of multiple hypothesis
testing, or classification. Another interesting direction is the extension
of the results to more realistic models (of wider applicability), like
for instance Markov sources.
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