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Abstract—We study the random-coding error exponent func-
tion of variable–length codes in the presence of a noiseless
feedback channel, which is allowed to be used merely for a
single bit feedback per each transmitted message. In this study,
we harness results and analysis techniques from the theory of
sequential hypothesis testing, and combine them with modern
distance enumeration methods which are used in the literature
on error exponents. For this setup, sometimes referred to as
stop-feedback, we derive an exact single-letter expression for
the random-coding error exponent over the binary symmetric
channel. For symmetric discrete memoryless channels, the exact
error exponent at zero rate is obtained, and a lower bound is
provided for any other positive rate below capacity.

I. INTRODUCTION

We address the problem of stop-feedback codes, which

are variable–length (VL) codes that require feedback of a

single bit to stop the transmission once the decoder is ready

to decode [1]. Stop-feedback is closely related to automatic

repeat request (ARQ) codes, the latter being an even more

restricted class of VL codes, where a single fixed-block

length, non-feedback code is used repeatedly until the decoder

produces a reliable estimate. While the reliability function of

VL coding with unlimited feedback is known for decades

[2], the question of the reliability functions for both ARQ

and stop-feedback over a general discrete memoryless channel

(DMC) is still open. The study of these reliability functions has

started about fifty years ago. Weldon [3] first considered stop-

feedback strategies for the binary symmetric channel (BSC)

and he showed that the reliability function, E (R), is lower

bounded by C − R, where C is the channel capacity, and R
is the coding rate.

In [4], Forney used Gallager’s bounding method [5, Ch. 5]

to bound the best achievable error exponents (i.e., reliability

functions) of erasure and list decoders over DMCs. Both

exponents stem from decoders that optimally trade off be-

tween error probability and erasure probability or between

error probability and average list-size. He then proposed an

achiebability scheme that uses a randomly generated fixed-

block-length code and a decoder with an erasure option to
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define an ARQ code. For symmetric DMCs and very noisy

channels (VNCs), Forney showed that [4, eq. (57)]

E (R) ≥ Er,f (R) , Esp (R) + C − R, R∞ ≤ R ≤ C (1)

where Esp (R) is the sphere-packing error exponent [5, p. 157]

and R∞ is the rate at which the sphere-packing error exponent

becomes infinite. In [6, Ch. 10], the same bound was obtained

using the method of types, analyzing a decoder which gener-

alizes the maximum mutual information (MMI) decoder for

constant composition (CC) codes. Later on, Viterbi [7] used

Gallager’s bounding technique to prove that this bound is tight

for both the Gaussian channel and VNCs, and Telatar [8] used

the method of types for CC codes to show that Er,f (R) is tight

for any DMC with ARQ codes at zero rate. In addition, [9]

shows that for the Z-channel, zero error probability can be

achieved with an ARQ code and hence Er,f (R) is, in general,

not a tight lower bound for any DMC.

In this paper, we address the problem of random-coding

error exponents with stop-feedback coding. In particular, the

main contributions of this work are as follows:

1. Obtaining a lower bound on the random-coding error ex-

ponent for symmetric DMCs which is tight at zero rate.

This generalization of Telatar’s result [8] to the stop-

feedback case also emphasizes the intuitive structure of

this bound.

2. Deriving an exact expression for the random-coding

error exponent of the BSC, which coincides with the

lower bound for ARQ codes on the right-hand side

(r.h.s.) of (1), and a lower bound on random-coding error

exponent for symmetric DMCs.

In addition, we provide a simple proof of (1) which gives rise

to an alternative expression for Er,f (R).

Following the line of research of insightful earlier works

(e.g., [10], [11]), this work further illuminates the important in-

terplay between information theory and sequential hypothesis

testing. Specifically, we combine and modify two mathemati-

cal sets of tools. The first, inspired by a statistical-mechanical

point of view on random code ensembles, uses certain distance

enumerators in order to analyze random-coding exponents, and

the second is taken from the theory of sequential multiple

hypothesis testing.



II. NOTATION CONVENTIONS

Throughout the paper, random variables (RVs) are denoted

by capital letters, their realizations are denoted by the corre-

sponding lower case letters, and their alphabets are denoted by

calligraphic letters. An infinite sequence of RVs is denoted by

bold face font. The length of finite sequences or, alternatively,

the index at which an infinite sequence is truncated, appears

as a superscript. Probability measures are denoted by P and

Q, and their dimension is determined by the dimension of

the sequence in the argument. For example, P (xn) is the

restriction of P to the σ-algebra Fn = σ (X1, . . . Xn). The

indicator function of an event A is denoted by I {A }. We

denote the binary entropy function by h2 (p) and the binary

relative entropy by d2(p‖q), where p, q ∈ [0, 1].
Define a random codebook {x(0),x(1) . . . ,x(M − 1)},

where x(i) = (x1(i), x2(i) . . .) is the codeword assigned to

the message i, chosen at random according to the measure

PX . Furthermore, let z = (z1, z2, . . .) be the sequence

zk ∈ XM × Y, zk = {xk(0), xk(1), . . . , xk(M − 1), yk}

where y = (y1, y2, . . .) is the observed sequence at the output

of the forward channel.

The forward channel is assumed to be a symmetric DMC,

in the sense that the columns of the transition probability

matrix
{

PY |X(y|x)
}

are permutations of each other, which

is the case, for example, with modulo–additive channels.

For stop-feedback codes (as well as ARQ codes), only one

feedback bit per message is allowed. Therefore, we assume

that an instantaneous and error-free binary feedback channel

is available.

Define the following M simple hypotheses:

Hi : Pr (z
n) = Pi (z

n) , i ∈ {0, . . . ,M − 1} , (2)

where

Pi (z
n) , PY|X (yn|xn (i))

M−1
∏

l=0

PX (xn (l)) .

Note that for each i, Pi (z
n) is the distribution of the random

process z = {x(0),x(1) . . . ,x(M − 1),y}, where all the x’s

are independent, and y is generated by sending x(i) through

the DMC. In other words, if we assume that the M hypotheses

are a-priori equiprobable, the problem of sequentially testing

the hypotheses (2) is equivalent to deciding which one of

the M sequences, x(0), . . . ,x(M − 1), was sent through the

forward channel. Once a decision is made, the feedback

channel is used to indicate that a new message should be

sent. An important observation is that under hypothesis Hi,

the random vectors Z1, Z2, . . . are i.i.d. We denote the class

of sequential tests that select one of the hypotheses Hi in (2),

by ∆ = (N, d), where N denotes the stopping time, and d is

the decision function.

The relative entropy from hypothesis Hi to hypothesis Hj

is defined as

D (i‖j) , Ei

{

log

[

Pi (Z)

Pj (Z)

]}

,

where Ei [·] denotes the expected value under Hi. Let

Di , minj 6=i D (i‖j). Note that the D(i‖j) > 0 since,

by assumption, the probability measures of the M hypotheses

are distinct. We shall also assume D (i‖j) < ∞. Symmetry

considerations imply that Di is independent of i, and hence

will be denoted by D. Moreover, the inequality C ≤ D ≤ C1

holds, where C is the capacity and C1 is the reliability function

at zero rate when no constraints are imposed on the feedback

channel [2]. This result is intuitive when compared to the result

in Sec. IV.

The block-length of stop-feedback codes is a function of the

realization of the channel, and hence it is a random variable.

It is customary to define the coding rate R and the reliability

function E (R) (i.e., the error exponent for optimal codes) in

such cases to be

R =
log (M)

E [N ]
, E (R) = lim sup

E[N ]→∞

− logPe

E [N ]
,

where Pe is the error probability. The error exponent for the

average error probability with the optimal input distribution

and random-coding is denoted by Er(R).

III. BACKGROUND AND KNOWN RESULTS

Generalized versions of the results stated in this section can

be found in the references herein.

A. Multi-hypothesis testing

Define M hypotheses Hi : P = Pi , i ∈ {0, . . . ,M − 1},

where Pi are known distinct probability measures. Let v be

an observation sequence, and denote the log-likelihood ratio

processes with respect to (w.r.t.) a dominating measure Q by

Li (n) = log

[

Pi (v1, . . . , vn)

Q (v1, . . . , vn)

]

, i = 0, . . . ,M − 1.

Let W (j, i) be a given loss function associated with a decision

on Hi when Hj is true, and let (π0, π1 . . . , πM−1) be the prior

distribution vector of the hypotheses. We consider a Bayesian

problem in which the risk, w.r.t. W (j, i), associated with the

average cost of deciding erroneously on Hi for i 6= j is given

by Ri (∆) =
∑M−1

j=0,j 6=i πjW (j, i)Pj (d = i) .
We introduce the following class of tests:

∆ (ρ) = {∆ : Ri (∆) ≤ ρi , i = 0, 1, . . . ,M − 1} ,

where ρ = (ρ0, ρ1, . . . , ρM−1) is a given vector of positive

finite numbers.

Next, we define the following stopping times:

Ni , min
n≥0







Li (n) ≥ ai + log





∑

j 6=i

w(j, i) exp
(

Lj(n)
)











,

(3)

where w(j, i) ,
πjW (j,i)

πi
, and {ai} are arbitrary positive

thresholds. The test procedure ∆a = (Na, da) is defined as

follows:

Na = min
0≤i≤M−1

Ni, da = i if Na = Ni. (4)

That is, we stop the data transmission as soon as the threshold

in the r.h.s. of (3) is exceeded for some time index i and



decide in favor of the hypothesis Hi. This test is motivated

by a Bayesian framework which was considered earlier, e.g.,

by Fishman [12], Golubev and Khas’minskii [13], and Baum

and Veeravalli [14]. In this work, we take a particular interest

in the case where V1, V2, . . . are i.i.d. under Hi. It will suffice

to take W (j, i) to be equal to 0 for i = j and be equal to 1
otherwise, which is known as the 0− 1 loss function.

The following theorem concerns the asymptotic optimality

of ∆a for the i.i.d. case where each observation is, in general,

a random vector.

Theorem 1 ([15]): Let Na be the stopping rule of ∆a. If the

thresholds are chosen such that ai = log πi

ρi
then, under the

asymptotic regime of growing expected stopping times and a

vanishing decision error probability

inf
∆∈∆(ρ)

Ei [N ] = Ei [Na] = |log ρi|/Di as max
i

ρi → 0.

B. Erasure decoder and ARQ schemes

Consider the case of fixed block-length coding, where, at the

end of transmission, the decoder has an additional option of

not deciding, i.e., rejecting all messages. The resulting output

is called an erasure. Under this setup, only if the decoder

estimates the message incorrectly, we have an undetected error.

It is clear that by allowing the erasure probability to increase,

the undetected error probability can be reduced. A decoding

scheme with an erasure option is a partition of the observation

space Yn into (M + 1) regions, R0, . . . ,RM . Such a decoder

operates as follows: if the output sequence yn ∈ Yn falls into

Ri with i ∈ {0, . . . ,M − 1}, then a decision is made in favor

of message i. If yn ∈ RM an erasure is declared. We will

refer to the event {yn ∈ RM} as the erasure event. Following

Forney [4], we next define two additional undesired events.

The event E1 corresponds to the case where the received vector

does not fall in the decision region Ri of the transmitted

message i ∈ {0, . . . ,M − 1}. This event is the disjoint union

of the erasure event and the event E2, which is the undetected

error event, namely, the event of making the wrong decision.

In [4], using the Neyman-Pearson theorem, Forney showed

that the best trade-off between Pr (E1) and Pr (E2) is attained

by the following decision regions:

R⋆
i =

{

yn ∈ Yn :
PY|X (yn|xn (i))

∑

j 6=i PY|X (yn|xn (j))
≥ enT

}

, (5)

R⋆
M =

M−1
⋂

i=0

(R⋆
i )

c
(6)

where T ≥ 0 is a free parameter which minimizes Pr (E1)
for a given Pr (E2). Denote by ei (R, T ) (i = 1, 2), the best

achievable error exponents associated with Pr (Ei), averaged

over the ensemble of codes drawn i.i.d.; hence ei (R, T ) ,

lim supn→∞

[

− 1
n
log (Pr (Ei))

]

. In [4], lower bounds on the

error exponents e1 (R, T ) and e2 (R, T ) were derived using

Gallager’s classical bounding method. In a more recent work

[16], Somekh-Baruch and Merhav used distance enumerators

in order to analyze random-coding exponents of an optimal

decoder with an erasure option. Unlike the classical approach,

their starting point was not a Gallager-type bound on the

probability of error, based on the expectation of the sum of

certain likelihood ratios, but rather the exact expression that

defines the probability of an erasure and undetected errors.

In other words, in [16], the authors derive exact single-letter

expressions for the error exponents, in lieu of the lower bounds

that were discussed so far. For example, for the BSC, e1 (R, T )
and e2 (R, T ) take on simple forms, as is apparent from the

following theorem:

Theorem 2 ([16]): For the BSC with crossover probability

p < 1
2 , let β = log 1−p

p
. Under uniform random-coding, if

R ≥ log (2)− h2

(

p+ T
β

)

, e1 (R, T ) = 0 and otherwise

e1 (R, T ) = min {d2(ν‖p)− h2 (ν + T/β) + log 2−R}

where the minimization is over ν ∈
[

p, δGV (R)− T
β

]

and

e2 (R, T ) = e1 (R, T ) + T . The Gilbert-Varshamov (GV)

distance, δGV (R), is defined to be the unique value δ ∈ [0, 1/2]
for which h2 (δ) = log 2−R.

For the forward and feedback channel models at hand,

Forney proposed the following ARQ scheme [4]: the trans-

mitter sends a codeword xn (i) ∈ Xn, chosen at random

from a codebook of rate R where i ∈ {0, . . . ,M − 1} and

M = ⌈enR⌉ is the total number of messages. After receiving

a block of n symbols, the receiver uses an erasure-decoder,

which decides that the transmitted codeword was xn (i) , i ∈
{0, . . . ,M − 1}, if and only if the received sequence yn ∈ Yn

falls in R⋆
i , defined in (5). In this case, the receiver transmits

an ACK message to the transmitter, and the transmitter sends

the next message. If yn ∈ R⋆
M the receiver declares an erasure,

and sends a NACK feedback bit. Upon receiving a NACK, the

transmitter repeats the message. Note that in this scheme, the

decoder discards the earlier received sequences, and it uses

only the latest received n symbols for decoding. Using this

ARQ scheme, (1) is shown to hold for symmetric DMCs and

VNCs.

A new, short proof of this result can be obtained using

Theorem 2 and the fact that, for the ARQ described above, the

error exponent is lower bounded by lime1(R,T )→0 e2 (R, T ).
This enables us to focus only on the point in which e1 (R, T )
becomes positive. Specifically, for a BSC with crossover

probability p < 1
2 , and an equiprobable input distribution for

random-coding, it follows that

lim
e1(R,T )→0

T = β [δGV (R)− δGV (C)] ≡ Er,f (R) . (7)

This expression also gives rise to a simple alternative expres-

sion for Er,f (R) in terms of the difference between the GV

distance at the capacity and the GV distance at rate R.

IV. EXACT ERROR EXPONENT AT ZERO RATE

In this section, we consider Er(0) (i.e., when M is fixed

or grows sub-exponentially with the expected value of the

observation time), and a symmetric discrete forward chan-

nel. For this zero-rate regime, the fact that the problem of

variable length coding with stop-feedback can be formalized

as a sequential multiple-hypothesis testing problem, makes



it possible to apply Theorem 1. Specifically, the symmetry

between the different hypotheses in the sequential hypothesis

testing problem in Sec. III implies that Ri (∆) = Pe(∆)
M

for

all i = 0, . . . ,M − 1. Invoking Theorem 1 yields that for any

fixed δ > 0 and small enough ǫ,

inf
∆:Pe(∆)≤ǫ

Ei [N ] ≥ (1− δ)
1

D
log

(

M

Pe (∆)

)

.

On the other hand, applying ∆a = (Na, da) to the hypothesis

testing problem at hand yields

Ei [Na] ≤ (1 + δ)
1

D
log

(

M

Pe (∆)

)

.

Combining these results and using the definition for Er (R)
at R = 0, we get that Er(0) = D = Er,f (0). This implies

that for a large family of channels, including symmetric chan-

nels, under random-coding, Er,f (0) is tight for stop-feedback

coding. Moreover, it exemplifies the usefulness of formulating

the communication problem at hand as a sequential hypothesis

test.

V. LOWER BOUND ON THE ERROR EXPONENT FUNCTION

In this section, we obtain a lower bound on the error

exponent function by applying ∆a to (2). For the BSC this

gives rise to an alternative proof for the achievability of

Er,f (R), and for symmetric DMCs, this analysis yields a new

lower bound on the error exponent.

The main challenge in this section and in Section VI is

that neither Theorem 1 nor other sequential hypothesis testing

analysis tools lend themselves easily to the asymptotic regime

in which M increases exponentially with the expected value

of the observation time. In spite of this obstacle, we next show

how the performance analysis of ∆a can be modified to take

into account an arbitrary R > 0.

Let i ∈ {0, . . . ,M − 1} and a ≥ 0. Applying the stopping

rule Ni, defined in (3), to (2) yields

Ni = min
n≥0

{Λi (n) ≥ a} , (8)

Λi (n) , log

[

PY|X (yn|xn (i))
∑

j 6=i PY|X (yn|xn (j))

]

. (9)

Assume, without loss of generality, that the message corre-

sponding to H0 was sent. By definition of Na in (4) and N0

in (8), Na ≤ N0, and so E0 [Na] ≤ E0 [N0]. For an arbitrary

n̄ ∈ N, one can bound P0 (N0 ≥ n) for all n ≤ n̄, and get

E0[Na] ≤ n̄+
∑

n>n̄

P0 (N0 ≥ n) . (10)

By definition of N0, each term of the sum on the right side of

(10) can be bounded as P0 (N0 ≥ n) ≤ P0 (Λ0 (n) < a), and

the expression on the right side lends itself to analysis using

distance enumerators, akin to [16] and [17]. This probability

is also closely related to the probability that Forney’s erasure

decoder does not make the right decision when a random code

of block length n is used as it is implied by (5) and (6). Note

that, for ∆a,

Pe (∆a) = E0

[

I {Na = N0, N0 < ∞}

∑M−1
j=1 Pj (Z)

P0 (Z)

]

and since Na = N0 implies Λ0 (Na) ≥ a a.s., Pe (∆a) ≤ e−a.

Define Rn ,
logM

n
and n̄ , maxn∈N {e1 (Rn, T ) ≥ 0}.

For example, for the BSC, using Theorem 2 yields

n̄ = max
n∈N

{

Rn ≥ log 2− h2

(

p+
a

βn

)}

. (11)

Note that n̄ → ∞ as M → ∞ and n̄ ≤ a
Er,f(Rn̄)

, which implies

that Er (R) ≥ Er,f (R). A proof that Er,f (R) is achievable was

given in [4] using ARQ coding (see also (7)). In [18], Gopola

et al. commented that this error exponent is not improved

even with incremental redundancy coding, that is, without

discarding the blocks that produced a NACK message at the

receiver. In Section VI we show that Er,f (R) is, in fact, the

best error exponent that can be achieved using random coding.

Next, we generalize this result for DMCs with the sym-

metry property under which for every real s, γy (s) =
∑

x∈X P (x)P s (y|x) is independent of y, which is the case

for symmetric channels in the sense defined above. In this

case γy (s) will be denoted by γ (s). Let sR be the solution

to the equation γ (s)−sγ′ (s) = R. Analogously to the use of

Theorem 2 in defining n̄ in (11), we use Corollary 1 in [16]

(which is not specified here due to space limitations) in order

to define n̄ for this class of channels:

n̄ = n̄ (a,M) , max
n∈N

{γ′ (sRn
)−H (Y |X) ≤ a/n} .

Analysis of (10) yields

Er (R) ≥ γ′ (sR)−H (Y |X) ,

where H (Y |X) is the conditional entropy of Y given X .

VI. UPPER BOUND FOR THE BSC

Let ∆ = (N, d) be an optimal sequential multiple hy-

pothesis test for (2) over a BSC with crossover probability

p in the error exponent sense, and let Pe = Pe (∆) be

the associated decoding error probability. Define the event

Ai,n̄ , {d = i, N ≤ n̄}, and note that for any a and n̄,
∑

j 6=i

Pj (d = i) =
∑

j 6=i

∑

z

I {d = i}Pj (z)

=
∑

z

∑

j 6=i

I {d = i}
Pj (z)

Pi (z)
Pi (z)

= Ei

[

I {d = i}

∑

j 6=i Pj (Z)

Pi (Z)

]

≥ Ei

[

I {Ai,n̄,Λi (N) < a} e−Λi(N)
]

≥ e−aPi

(

Ai,n̄, sup
n≤n̄

Λi (n) < a

)

. (12)



Using the union bound in (12), the Markov inequality on

Pi (N > n̄) and some algebra, it follows that

E [N ]

n̄
≥ 1− Pe (e

a + 1)− Pi

(

sup
n≤n̄

Λi (n) > a

)

. (13)

In order to further bound the r.h.s. of (13) we use the

following lemma:

Lemma 3: Let Fn be the filtration generated by Zn. For

symmetric DMCs, (Λi (n) ,Fn) is a submartingale w.r.t. Pi.

To show that Λn ∈ Fn and Ei [|Λi (n)|] < ∞ is straightfor-

ward, so in order to prove the claim it is left to show that for

all n

Λi (n) ≤ Ei [Λi (n+ 1) |Fn] . (14)

Towards that end, note that the r.h.s. of (14) is equal to

log
[

PY|X (Yn|Xn (i))
]

−H (Y |X)−

Ei







log





M−1
∑

j=0,j 6=i

PY|X

(

Yn+1|Xn+1 (j)
)





∣

∣

∣

∣

Fn







,

and by Jensen’s inequality,

Ei







log





M−1
∑

j=0,j 6=i

PY|X

(

Yn+1|Xn+1 (j)
)





∣

∣

∣

∣

Fn







≤ log





M−1
∑

j=0,j 6=i

PY|X (Yn|Xn (j))



−H (Y |X) .

Combining these results with (9) yields (14).

Let ǫ and µ be arbitrarily small positive numbers, and let

a , − (1− ǫ) logPe + µ and n̄ , (1 + ǫ)E [N ]. Note that,

by Lemma 3, Λi (n) + (1− ǫ) logPe is also a submartingale.

Applying Doob’s inequality [19, Theorem 5.4.2] yields

Pi

(

sup
n≤n̄

Λi (n) > a

)

≤
Ei[Λi (n̄) + (1− ǫ) logPe]

+

µ
, (15)

where [x]
+

= max {x, 0}. Henceforth, we consider only the

BSC case. Define R̄ , R
1+ǫ

and note that

Λi (n̄) = log

[

e−n̄βδi(n̄)

∑

δ Nyn̄ (n̄δ) e−n̄βδ

]

, (16)

where Nyn̄ (n̄δ) is the number of incorrect codewords whose

Hamming distance from yn̄ is n̄δ, and n̄δi (n̄) is the Hamming

distance between yn̄ and xn̄ (i). In order to further bound the

r.h.s. of (15) we use a result from [17, Ch. 6] that states that

with high probability (double-exponentially with n̄),
{

en̄[R̄+h2(δ)−log(2)−ǫ] ≤ Nyn̄ (n̄δ) ≤ en̄[R̄+h2(δ)−log(2)+ǫ]
}

,

for any δ ∈ GR̄ ,
{

δ ∈ [0, 1] :
[

δGV

(

R̄
)

, 1− δGV

(

R̄
)]}

.

The event {|δi (n̄)− p| ≤ ǫ} also holds with high probability

(exponentially with n̄). An important observation is that under

the intersection of these events,

−n̄βδi (n̄)− log
(

Nyn̄

(

n̄δ̄
)

e−n̄βδ̄
)

≤ n̄
[

Er,f

(

R̄
)

+ ǫ (1 + β)
]

.

for any δ̄ ∈ GR̄, and hence Λi (n̄) is bounded by

n̄
[

Er,f

(

R̄
)

− ǫ (1 + β)
]

. Under the complementary of this in-

tersection, Λi (n̄) is trivially bounded by a polynomial function

of n̄, but the probability of this event decays exponentially.

We use these results in order to bound the expected value in

(15). On substituting in a and n̄ and taking E [N ] → ∞ and

Pe → 0, we conclude that

lim
{

n̄
[

Er,f

(

R̄
)

+ ǫ (1 + β)
]

+ (1− ǫ) logPe

}

≥ 0

and hence Er (R) ≤ Er,f (R). In Sec. V we showed that

Er (R) ≥ Er,f (R) which implies the following theorem:

Theorem 4: For stop-feedback over a BSC, the best achiev-

able random-coding error exponent is Er,f (R), as given in (7).
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