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In this paper, we consider the problem of guessing a sequence subject to a distortion
constraint. Specifically, we assume the following game between Alice and Bob: Alice
has a sequence x of length n. Bob wishes to guess x, yet he is satisfied with finding any
sequence x̂ which is within a given distortion D from x. Thus, he successively submits
queries to Alice, until receiving an affirmative answer, stating that his guess was within
the required distortion.
Finding guessing strategies which minimize the number of guesses (the guesswork),

and analyzing its properties (e.g., its ρ–th moment) has several applications in informa-
tion security, source and channel coding. Guessing subject to a distortion constraint is
especially useful when considering contemporary biometrically–secured systems, where
the “password" which protects the data is not a single, fixed vector but rather a ball
of feature vectors centered at some x, and any feature vector within the ball results in
acceptance.
We formally define the guessing problem under distortion in four different setups:

memoryless sources, guessing through a noisy channel, sources with memory and indi-
vidual sequences. We suggest a randomized guessing strategy which is asymptotically
optimal for all setups and is five–fold universal, as it is independent of the source statis-
tics, the channel, the moment to be optimized, the distortion measure and the distortion
level.

Index Terms– Guesswork, universal guessing, asynchronous guessing, universal distribution,
rate-distortion theory.

1. Introduction
Consider the problem of guessing a realization of a random n–vector X over an alphabet X subject
to a distortion measure d. Specifically, assume Alice has such a realization x. Bob wishes to
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guess the value of x, yet is content with discovering any n–vector x̂ over X̂ which is within a
distortion D away from x. He thus submits to Alice a sequence of queries of the form “Is x̂i close
to x within distortion D?", i = 1, 2, . . ., until receiving a positive answer. Let G(x) denote the
guesswork, namely, the smallest i for which x̂i is close enough to x, in the sense of achieving an
average distortion smaller than or equal to D under the measure d : X × X̂ → R+. Clearly, Bob
is interested in devising a strategy which minimizes G(x) in some sense. If x is a realization of
a random vector, Bob may wish to minimize the expected value of G(X) or some other moment
of it. However, in many cases, Bob will have, for example, only limited knowledge (if any) on
the distribution of X or the exact distortion required for success. Moreover, x might be a single,
fixed individual sequence, without any underlying probability distribution. Bob might also have
limited resources, preventing him from remembering which queries were already submitted, or,
alternatively, it might be the case where multiple “Bobs" try to guess x simultaneously, without
any coordination. To make the matter even worse, Bob’s queries might also reach Alice indirectly,
e.g., through a noisy channel. Thus, a guessing strategy which is universal and efficient in the senses
mentioned above is highly desirable. In other words, we seek a strategy which is independent of
the source distribution, the memory structure, the moment to be optimized, the distortion measure
and the distortion value, the channel between Bob and Alice, and, finally, a strategy which requires
no memory of previously submitted queries and can be applied by multiple guessers simultaneously,
yet, despite all the above, asymptotically achieves the optimal guessing performance.
Guesswork problems have numerous applications in information theory and several other fields.

Coding applications were first given in [1, 2, 3] by Wozencraft, Arikan and Pfister and Sullivan,
respectively. In [4], Arikan and Merhav used a guessing decoder for joint source–channel coding.
Fixed-to-variable source coding without a prefix constraint, or one-shot coding, were considered by
several groups in [5, 6, 7, 8]. In fact, recently Kumar et al. [9] nicely tied several source coding,
guessing and task partitioning problems [10] to the same minimization problem, resulting in simple
proofs for several known results in the area. Guessing can also be seen as a method to quantify
the complexity of a rate–distortion encoder, that is, the number of guesses until a vector within
distortion D of the source vector is found corresponds to the number of candidate codebook vectors
the encoder examines until it finds an adequate codeword [11]. Another important application for
guessing is directly guessing the noise over a channel for capacity-achieving decoding. Duffy et al.
[12] suggested that the receiver can simply order noise sequences from most likely to least likely, then
subtract these noise sequences from the received signal. The first noise sequence subtracted which
results in a codeword corresponds to ML decoding. We review additional information–theoretic
results in Section 2.
Recent trends in information security raised further attention to guesswork problems, adopting

it as a proxy to password strength [13, 14, 15, 16]. A detailed discussion is given in [17, Section
I], supporting the applicability of guesswork analysis, and its insights, to practical problems. It is
important to note, though, that when focusing on such applications, one cannot limit the analysis
to a simple, i.i.d. case with a known distribution, as sequences used in information security appli-
cations tend to have memory [18, 19, 20] and their exact distribution is rarely known [18]. More
importantly, due to the many difficulties in managing passwords, contemporary authentication sys-
tems use different kinds of biometric measures [21]. In such systems, a feature vector is extracted
from the biometric data (e.g., fingerprint, ECG, iris photo or even a sequence of keystroke timings)
and fed to a previously–trained unit (e.g., a neural network) which either accepts or rejects the
data. In what follows, we argue that not only such a feature vector might have a complex and un-

2



known distribution, any system which either accepts or rejects it must bare some level of distortion
between the trained data and the tested data (unlike ordinary passwords), as such feature vectors
are extracted from real–world, human metrics and behaviours.
In [22], Page et al. suggested ECG-based biometric authentication. The raw QRS–complex1 of

the signal was classified using a neural network, with only minor filtering as pre–processing. Raw
ECG signals were used in [24] as 2D images. Again a (convolution) neural network was used for
classification. ECG signals where used for authentication in [25] as well. This time, several features,
such as variance, skewness and bandwidth occupied were extracted, and a Support Vector Machine
(SVM) was used for classification. SVM was also used for voice biometrics in [26]. Additional
techniques for voice authentication are discussed in [27], including both traditional MAP-based
techniques as well as modern Deep Neural Networks. Detailed surveys can also be found in [28, 21].
The underlying assumption in all is that slight variations in the input data to the authentication
system should not result in a different decision. Again, this should be contrasted with passwords,
which require a perfect match for acceptance.
In fact, the classification literature is focused on constructing robust neural networks and SVMs,

such that slightly distorted input would not distort the classification. Indeed, slightly distorted
inputs at selected places which cause the classifier to output different classes are known in the
literature as adversarial examples, and quite a few techniques were suggested to combat them (and
output the same class as the non–distorted input), including adding noise [29, 30]. Bi and Zhang
gave motivating examples in [31], referring to classifying sentences from speech recognition, or
classifying images after an image processing phase. In both, it is clear that the initial recognition
or processing might introduce errors to the input, and multiple instances of the input will result in
multiple, slightly different, feature vectors, yet all should be mapped to the same class (or have the
same accept or reject result). Hence, the classifier should be robust to such differences (distortions,
in the context of this work), in the sense of producing the same class as the non-distorted input.
Moreover, the noise model considered in [31] is i.i.d. with zero mean, which fits the distortion model
we consider in this paper. A deterministic formulation is given in [32] by Tsai et al., where one
wishes the output vector of the neural network for a perturbed input to be close to the original
output, if the perturbed input vector is in a ball around the original one. In [33], Xu et al.
suggested feature squeezing of the input data before learning or classification. For images, the
technique reduces to bit depth reduction, which essentially means, again, that a “ball" of different,
yet close, input vectors (images) is treated as one for both learning and classification, hence, in the
context of guessing, any guess within this ball should be successful.

1.1. Main Contributions
In this paper, we suggest randomized, five-fold universal guessing strategies for guessing subject to a
distortion measure. Specifically, we start with memoryless sources, and give a randomized, universal
guessing distribution which achieves the optimal guesswork exponent for any memoryless source
distribution, any moment (of the guesswork) and any distortion measure and level. As guessing
sums up to drawing sequences independently from a given universal distribution, this method is
inherently distributed, allowing multiple and asynchronous guessers to guess independently, yet
asymptotically achieve the minimal number of queries. We continue to the problem of guessing
through a noisy channel. In this case, again, the guesser (Bob) wishes to toss a sequence which is

1These are the typical downward–upward–downward deflections usually seen on an ECG signal [23].
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within a given distortion from the true word, yet now guesses pass through a noisy (memoryless)
channel before arriving at Alice. We show that now the universal guessing distribution is not only
universal in the distribution of the source, the moment and the distortion, but is also universal
in the channel transition probability matrix. We also intuitively motivate the resulting guesswork
exponent, and show how it implicitly includes the optimal, non-universal guessing distribution in
an alternative expression.
We then revisit the problem for sources with memory. We give a guessing distribution, based

on the Lempel–Ziv 78 (LZ78, [34]) parsing rule, which is shown to be universal for any Ψ-mixing
source2 and any moment or distortion level. For the direct part, we first formally define a block–
memoryless approximation for such sources. We then derive the exponent achieved by the universal
guessing distribution, and conclude with a matching converse.
Last but not least, we turn to the fourth setup, in which the sequence to be guessed is an

individual sequence, without any underlying probability distribution. We show that the LZ-based
guessing distribution discussed above is asymptotically optimal, in the sense of achieving the best
possible guesswork exponent compared to any finite–state guessing machine.
Since the distribution suggested for memoryless sources can be viewed as a special case of the

distribution for sources with memory, the results of the above four setups reveal that a single
guessing distribution, is, in fact, asymptotically optimal for all setups, and hence universal in a
multitude of dimensions: the source distribution and memory, the distortion measure and level and
the memoryless channel the guesses might pass through. Moreover, this distribution has a simple
and efficient implementation, which, in short, requires only applying an LZ decoder on a sequence
of i.i.d. uniform bits. Finally, we also note that the guesswork exponents under this distribution
meet very general converse bounds, which do not assume randomized guessing and, in fact, allow
for a wide variety of guessing strategies.

The rest of this paper is organized as follows. In Section 2, we thoroughly discuss related work.
Section 3 includes the required notation and the problem statement. Section 4 includes the main
results. Section 5 includes three important lemmas, which stand at the basis of the proofs. Indeed,
the achievability result for memoryless sources easily follows from the first lemma, and matches a
known lower bound. The achievability result for noisy guessing also follows directly, this time from
the second lemma in Section 5. Its converse, however, is new and appears separately in Section 6.
For sources with memory, both the achievability and the converse are more involved, hence their
complete proofs appear in Section 7. Finally, the appendix includes additional proofs of some
technical lemmas and claims for the first three setups, as well as the proofs for the achievability
and converse parts of the fourth setup, in which Bob tries to guess an individual sequence.

2. Related Work
Guesswork was information–theoretically formalized by Massey [35]. Later, Arikan [2] computed
the exponential rate of guesswork for memoryless sources. Specifically, it is was proved to be the
Rènyi entropy of order 1

2 . Arikan and Merhav [11] were then the first to study guesswork under
a distortion constraint, and devised a strategy which is universal and asymptotically optimal for
memoryless sources, both in the source distribution and the moment of the guesswork. Recently,

2A wide family of sources with memory, which includes Markov models, Unifilar sources, etc. Roughly speaking,
these are sources which might have long-term dependencies, yet the dependency between any two blocks decays
with the distance between the blocks. A formal definition is given in Section 4.3.
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randomized guessing subject to distortion was studied by Kuzuoka in [36, 37]. It was shown that for
memoryless sources, the optimal guesswork moment can be achieved by randomized guessing. Yet,
the distribution used was the tilted distribution similar to [38], thus depending on both the source
distribution and the moment ρ. Hence, for memoryless sources, the strategy in [11] is independent
of the distribution and the moment, yet depends on the distortion measure and value, while the
tilted distribution in [36, 37] is independent of the distortion measure and value, yet depends on
the source distribution and moment.
Ordering and Universality. Indeed, since the strategy suggested in [11] is to sort the sequences

to be guessed in an increasing order of the empirical rate–distortion function, the method is inde-
pendent of the true source distribution and the moment order. This universal strategy extends the
strategy for guessing without distortion, which sorts the sequences in an increasing order of their
empirical entropy. Such orderings were, in fact, found useful in other applications, e.g., Weinberger
et al. [39] ordered strings by the size of their type-class before assigning them codewords in a fixed-
to-variable source coding scheme, Kosut and Sankar used it in [8] and Beirami et al. [40] showed
that the dominating type in guesswork (the position of a given string in the list) is the largest
among all types whose elements are more likely than the given string. Note that in all these cases,
sequences are sorted, then guessed one after the other, using, e.g., a list of sequences. This process
is inherently centralized3. However, all methods hint towards the structure of universal guessing
distributions, which assign probabilities to sequences in an analogous manner. Such distributions
played a key role in [17] and will play a role here as well. To conclude the discussion on universality,
Sundaresan [44] also considered guessing under source uncertainty. The redundancy as a function
of the radius of the family of possible distributions was defined and quantified. As expected ([11]),
for discrete memoryless sources this redundancy tends to zero as the length of the sequence grows
without bound.
Sources with Memory. Guesswork for Markov processes was first studied by Malone and Sullivan

[45], and later extended by Pfister and Sullivan in [3]. Hanawal and Sundaresan proposed a large
deviations approach [46], generalizing results from [2] and [45]. In [47], again via large deviations,
Christiansen et al. proposed an approximation to the distribution of the guesswork. Recently, Mer-
hav and Cohen [17] considered universal randomized guessing for sources with memory, and showed
that an LZ78 [34] parsing procedure can be utilized to construct such a universal, asymptotically
optimal distribution. Motivated by these results, Merhav [48] showed that, in fact, an LZ78 decoder
fed by purely random bits is asymptotically optimal, not only for sources with memory, but also
for individual sequences, compared to any other finite–state machine. The above works, however,
considered only the lossless case, i.e., with no distortion allowed.
The need to account for sources with memory in guessing problems was also verified experimen-

tally. Dell’Amico et al. [14] evaluated the probability of guessing passwords using dictionary-based,
grammar-free and Markov chain strategies, using existing data sets of passwords. Guessing strate-
gies which account for memory performed better. Moreover, the need to tune memory parameters
was clear, thus highlighted the urgency for universal strategies. Bonneau [49] also acknowledged
the difficulty of coping with passwords from unknown distributions. Needless to say, biometric
authentication methods mentioned in Section 1 also stress out the fact that the sequences to be
guessed usually have an unknown distribution, and might contain highly dependent measurements

3From a practical viewpoint, this process applies in cases where a pre-compiled list of usernames and passwords is
used - “hard-coding" the guessing strategy [41, 42]. This should be compared to distributed brute–force attacks
[38, 43], and the asynchronous, randomized strategies we suggest herein.
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[22, 24, 26].
Noisy Channels. Guessing over a noisy channel was studied by Christiansen et al. in [50]. Therein,

the sequence to be guessed was assumed i.i.d., but was passed through a channel before reaching
the guesser. Thus, if the channel introduces erasures, the goal is to fill the missing gaps. In
a sense, this model was extended by Salamatian et al. in [43], where multiple guessers tried to
fill the missing gaps, or correct errors introduced by the channel, using either a centralized or
a decentralized approach. On the other hand, submitting guesses through a noisy channel was
considered by Merhav in [51].
A Multitude of Models. The current literature on guesswork is growing, with numerous new

results on various aspects of the problem. Christiansen et al. [52] considered a multi-user case, where
an adversary has to guess U out of V strings. Beirami et al. [53] further defined the inscrutability of a
source as the number of guesses for the above problem, and the inscrutability rate as its exponential
growth rate. The same paper also showed that ordering strings by their type-size in ascending order
is a universal guessing strategy. Yet, again, both [52] and [53] considered a single attacker, with the
ability to create a list of strings and guess one after the other. Non–asymptotic results which can be
applied to guesswork were given in [54] by Courtade and Verdú. In [55], Sason derived bounds on
the Rényi entropy of a function of a random variable, and applied them to derive non-asymptotic
bounds on the difference between the exponent in guessing the original random variable, and that
of guessing the (possibly non one–to–one) function. Several works considered guessing with side
information [2, 56, 50, 43, 57]. Yona and Diggavi [58] considered the problem of guessing a word
which has a similar hash function as the source word - a highly practical scenario as passwords
are rarely stored as is, and only a hash is used. Ardimanov et al. [59] considered the problem of
guessing with the use of an oracle, which the guesser can use before the guessing game begins. On
the same line of work, Weinberger and Shayevitz [60] considered the problem where the guesser
can receive information from a helper which saw the true word through a memoryless channel.

3. Notation and Problem Statement
3.1. Basic Notation
Throughout, random variables will be denoted by capital letters, their realizations will be denoted
by the corresponding lower case letters, and their alphabets will be denoted by calligraphic letters.
Random vectors and their realizations will be denoted in the bold. For example, the random vector
X = (X1, . . . , Xn) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian
power of X , which is the alphabet of each component of this vector. Sources will be denoted by
the letters P or Q. The expectation operator will be denoted by E{·}, and I{·} will denote the
indicator function. The entropy of a distribution Q on X will be denoted by HQ(X) where X
designates a random variable drawn by Q. D(Q‖P ) will denote the relative entropy between Q and
P . The rate–distortion function of a memoryless source Q at distortion level D will be denoted by
R(D,Q).

exp2{v} denotes 2v and log denotes log2. For two positive sequences an and bn, an
·= bn will stand

for equality on the exponential scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means that

lim supn→∞ 1
n log an

bn
≤ 0, and so on. When both sequences depend on a vector, x ∈ X n, namely,

an = an(x) and bn = bn(x), the notation an(x) ·= bn(x) means that the asymptotic convergence is
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uniform, namely,

lim
n→∞

max
x∈Xn

∣∣∣∣ 1n log an(x)
bn(x)

∣∣∣∣ = 0. (1)

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector
of relative frequencies P̂x(x) of each symbol x ∈ X in x. Information measures associated with
empirical distributions will be denoted with ‘hats’ and subscripted by the sequences from which
they are induced. For example, the entropy associated with P̂x, which is the empirical entropy
of x, will be denoted by Ĥx(X). Analogously, to stress out a distribution, e.g., Q, under which
an information measure is calculated, we use subscripts as well, e.g., HQ(X). With a slight abuse
of notation, when clear from the context, we use similar notation for multi-variate measures, e.g.,
IQ(Y ;Y ′) denotes the mutual information under the joint distribution QY Y ′ = QYQY ′|Y , which
will be abbreviated by Q. Moreover, when the Y –marginal of such a distribution Q will be the
empirical distribution of a specific y, we will use the notation QY and not P̂y, if the specific y is
clear from the context.
The type class of x ∈ X n, i.e., the set of all vectors in X n with empirical distribution P̂x, will be

denoted by T (x). Similarly, T (Q) will denote the type class of a specific (empirical) distribution
Q. E.g., T (QX|Y |y) will denote the set vectors x ∈ X n whose relative frequencies equal QX|Y for
the specific y.

3.2. Guessing Subject to a Distortion Measure
Alice selects a random n–vector X, drawn from a finite alphabet source P . Bob, which is unaware
of the realization of X, submits a sequence of guesses in the form of yes/no queries: “Is X close
within distortion D to x̂1?”, “Is X close within distortion D to x̂2?”, and so on, where x̂i ∈ X̂ n for
each i, until receiving a positive answer4. Specifically, Alice gives a positive answer iff Bob’s guess
is within an average distortion D of Alice’s realization, that is

1
n

n∑
i=1

d(xi, x̂i) ≤ D, (2)

where d : X × X̂ → R+ is a single–letter distortion measure. With a slight abuse of notation, we
may write d(x, x̂) for the n–letter distortion, that is,

∑n
i=1 d(xi, x̂i). Given x ∈ X n, let S(x) =

{x̂ : d(x, x̂) ≤ nD}. Clearly, for a given realization x, Bob’s goal is to guess a sequence x̂ ∈ S(x).
When considering the deterministic setting, a guessing list, Gn, is an ordered list of all members

of X̂ n, that is, G = {x̂1, x̂2, . . . , x̂|X̂ |n}, and it is associated with a guessing function, G(x), which is
the function that maps X n onto {1, 2, . . . , |X̂ |n} by assigning to each x ∈ X n the smallest integer i
for which x̂i satisfies the distortion constraint (2). Namely, G(x) is the number of guesses required
until success, using Gn, when X = x. In this setting, the goal is to devise a guessing list Gn that
minimizes a certain moment of G(X), namely, E{Gρ(X)}, where ρ > 0 is a given positive real.

In the randomized setting, on which we focus in this work, the guesser simply sequentially submits
a sequence of random guesses, each one drawn independently according to a certain probability
distribution P̃ (x̂). This setting consumes less memory (compared to deterministic guessing which
stores the list Gn) and needs no synchronization. Note that, in general, P̃ (x̂) may depend on i,

4Similar to the common definition in rate–distortion theory, X̂ , the reconstruction alphabet, may be different from
the source alphabet X . Clearly, the scenario in which X̂ = X is a special case.
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where i− 1 is the number of guesses submitted thus far. However, such a dependence will require
memory and synchronization between multiple guessers. More importantly, we will later see that
a distribution which is independent of i still achieves the converse bounds for all setups considered
in this paper, hence there is no significant gain in considering a sequence of guessing distributions,
indexed by the number of guesses thus far.
Clearly, in this setting, the goal is to devise a guessing distribution P̃ that minimizes a certain

moment of the guesswork. However, we will also be interested in devising a distribution which is
independent of the source Alice has, the moment of the guesswork to be minimized, the distortion
measure d(·, ·) and the distortion level D.
For a given x, the expected number of guesses until a sequence with a small enough distortion is

guessed is independent of the underlying distribution used to draw x, namely, E{Gρ|x} depends
solely on the distribution used to guess, P̃ (x̂), and the set S(x). In fact, for E{Gρ|x} we have the
following result, which directly utilizes [17, Lemma 1].

Lemma 1.
E{Gρ|x} =

∞∑
k=1

kρP̃ [S(x)](1− P̃ [S(x)])k−1 ·= 1
(P̃ [S(x)])ρ

. (3)

The expectation in Lemma 1 is with respect to the guessing distribution, yet for a given source
sequence x. When x is random, the source distribution has to be taken into account. We can
now clearly define the main goal of this paper: devise universal guessing distributions, which
achieve the smallest possible guesswork exponent. That is, we will be interested in the limit
limn→∞

1
n log E{Gρ}, where the expectation in E{Gρ} is over both the source distribution and

any randomization in the guessing strategy. Specifically, we will devise universal distributions,
compute their resulting exponent E{Gρ}, and prove matching converse results, showing that no
better exponent can be achieved.

3.3. Universal Guessing Distributions
We will utilize two important universal distributions and later show that these distributions, used
for the respective source models, will suffice to achieve the universality goals stated above. A key
step in the process will be to bound the probability of the set S(x) under these distributions. This
is done in Section 5.
Specifically, for memoryless sources, we consider a sequence of randomized guesses, all drawn

independently from the universal distribution,

P̃ (x̂) = exp2{−nĤx̂(X̂)}∑
ẑ∈X̂n exp2{−nĤẑ(Ẑ)}

, (4)

for all x̂ ∈ X̂ n. Note that this distribution satisfies P̃ (x̂) ·= 2−nĤx̂(X̂), and was used in [17] for
D = 0.
For sources with memory, we suggest a guessing distribution based on the incremental parsing

procedure of LZ78 similar to [17]. The incremental parsing procedure of [34] (see also [61, Subsection
13.4.2]) is a sequential procedure for parsing a sequence, such that each new parsed phrase is the
shortest string that has not been obtained before as a phrase. For example, the binary string

x̂ = 01101101110010111 (5)
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is parsed as
0, 1, 10, 11, 01, 110, 010, 111. (6)

For a string x̂, let c(x̂) denote the number of such distinct phrases. In the example above, c(x̂) = 8.
In general, for a binary sequence of length n, c(x̂) ≤ n/[(1 − εn) logn], where εn → 0 as n → ∞
([62, Theorem 2]). Roughly speaking, when coding x̂ losslessly, one may simply describe, for each
new phrase, the location of its previously appearing prefix, and the new symbol. This results in a
codelength of about c(x̂) log c(x̂) bits. Specifically, let LZ(x̂) be the LZ code length (in bits) of the
sequence x̂ = x̂1, x̂2, . . . , x̂n. We define a probability distribution P̃ over X̂ n as follows

P̃ (x̂) = 2−LZ(x̂)∑
ẑ∈X̂n 2−LZ(ẑ) . (7)

Note that since LZ is a uniquely decodable code, we have
∑

x̂∈X̂n 2−LZ(x̂) ≤ 1 and hence P̃ (x̂) ≥
2−LZ(x̂).

4. Main Results
In this section, we summarize the main results in this paper. We begin with memoryless sources.
Then, we provide the results for guessing through a noisy channel, followed by the results for sources
with memory. Finally, we conclude with results for guessing an individual sequence.

4.1. Memoryless Sources
Theorem 1. For any memoryless source P over X , if sequences are selected independently at
random according to the distribution P̃ (x̂) ·= 2−nĤx̂(X̂), then, the ρ-th guesswork moment, subject
to a distortion constraint D, satisfies

E{Gρ} ·= exp2

{
nmax

Q
[ρR(D,Q)−D(Q‖P )]

}
. (8)

The proof of Theorem 1 follows from Lemma 3 and appears right after it, in Section 5.
Note that Theorem 1 meets the exponential order of the lower bound in [11]. Hence, guessing

using the distribution in Theorem 1 is asymptotically optimal, and we have the following.

Corollary 1. For any memoryless source P over X , the best achievable ρ-th guesswork moment,
subject to a distortion constraint D, is achievable by randomized guessing and we have

lim
n→∞

1
n

log E{Gρ} = max
Q

[ρR(D,Q)−D(Q‖P )]. (9)

Clearly, the exponent in Corollary 1 is similar to that in [11], yet it can be achieved in a ran-
domized manner, with no memory (to hold a list) or synchronization.
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4.2. Noisy Guessing for Memoryless Sources
We consider the following scenario, studied first in [51] for D = 0. Alice draws a random n–vector,
Y = (Y1, . . . , Yn), from a discrete memoryless source (DMS), P , of a finite alphabet, Y. Bob, who
is unaware of the realization of Y , sequentially submits to Alice a (possibly, infinite) sequence of
guesses, x1,x2, . . ., where each xi is a vector of length n, whose components take on values in
a finite alphabet, X . Before arriving to Alice, each guess, xi, undergoes a discrete memoryless
channel (DMC), defined by a matrix of single–letter input–output transition probabilities, W =
{W (y|x), x ∈ X , y ∈ Y}. Let Y 1,Y 2, . . . be the corresponding noisy versions of x1,x2, . . ., after
being corrupted by the DMC, W . Alice sequentially examines the noisy guesses and she returns
to Bob an affirmative feedback upon the first match within distortion D, that is, d(Y ,Y i) ≤ nD.
Clearly, the number of guesses, G, until the first successful guess, is a random variable that depends
on the source vector Y and the guesses, Y 1,Y 2, . . . .. It is given by

G = G(Y ,Y 1,Y 2, . . .) =
∞∑
k=1

k · I{d(Y ,Y k) ≤ nD} ·
k−1∏
i=1

[1− I{d(Y ,Y i) ≤ nD}]. (10)

For a given list of guesses, Gn = {x1,x2, . . .}, xi ∈ X n, i = 1, 2, . . ., the ρ–th moment of G is given
by

EGn{Gρ} =
∑

y∈Yn
P (y) ·

∞∑
k=1

kρ ·W (S(y)|xk) ·
k−1∏
i=1

[1−W (S(y)|xi)], (11)

where
W (y|x) =

n∏
t=1

W (yt|xt) (12)

and S(y) = {y′ : d(y,y′) ≤ nD}. Randomized guessing lists (where the deterministic guesses,
{xi}, are replaced by random ones, {Xi}) are allowed as well. In this case, eq. (11) would include
also an expectation w.r.t. the randomness of the guesses.
Let P , W , and ρ ≥ 0 be given. For two given distributions, QX and QY , defined on X and Y,

respectively, define

Γ(QX , QY ) = inf{D(Q̃Y |X‖W |QX) : (QX � Q̃Y |X)Y = QY }, (13)

where
D(QY |X‖PY |X |QX) =

∑
x∈X

QX(x)
∑
y∈Y

QY |X(y|x) log
QY |X(y|x)
PY |X(y|x)

and the notation (QX � Q̃Y |X)Y = QY means that the Y –marginal induced by the given QX and
by Q̃Y |X is constrained to be the given QY , i.e.,

∑
x∈X QX(x)Q̃Y |X(y|x) = QY (y) for all y ∈ Y.

Next, define
Γ(QY ) = inf

QX
Γ(QX , QY ) = inf

QX|Y
D(QY |X‖W |QX). (14)

Finally, we define

EW (ρ) = sup
QY

{
ρR̂W (D,QY )−D(QY ‖P )

}
, (15)

10



where
R̂W (D,QY ) 4= inf

{QY ′|Y : EQd(Y,Y ′)≤D}
[IQ(Y ;Y ′) + Γ(QY ′)]. (16)

We argue that EW (ρ) is the best achievable guessing exponent.

Theorem 2. Assume Alice draws a sequence of length n from a memoryless source P over Y,
and Bob’s guesses, before arriving to Alice, undergo a discrete memoryless channel (DMC) W =
{W (y|x), x ∈ X , y ∈ Y}. Then, the optimal guesswork ρ-th moment exponent at distortion level
D is achievable using a randomized guessing strategy, which is universal in P,W, d(·, ·), D and ρ,
and satisfies

lim
n→∞

1
n

log E{Gρ} = EW (ρ). (17)

The proof of the direct part of Theorem 2 follows from Lemma 5 and appears right after it, in
Section 5. The proof of the converse part is given in Section 6.
Similar to (8), for the clean memoryless case, the exponent in (15) has a clear structure of a

rate–distortion function, minus the divergence between the distribution for which the function is
computed, and the original distribution. The rate–distortion function, however, is not simply the
minimal value of the mutual information subject to the distortion constraint, but, rather, includes
a correction term, Γ, to reflect the penalty the guesser suffers due to the noisy channel. In fact,
this is the same correction term as in [51], when no distortion is allowed.

The exponent in (15) has two alternative forms, which facilitate numerical evaluation and give
an operational meaning.

Lemma 2. The function EW (ρ) in (15) has the following two alternative forms,

EW (ρ) = sup
s≥0

inf
V

{
log

(∑
y

P (y)
[
∑
x V (x)Us(x, y)]ρ

)
− ρsD

}
(18)

= sup
s≥0

inf
M∈CH(W )

log

∑
y

P (y)[∑
y′M(y′)es[D−d(y,y′)]

]ρ
 , (19)

where the infimum on V is over all probability distributions on X , Us(x, y) 4=
∑
y′W (y′|x)e−sd(y,y′),

M(y′) 4=
∑
x V (x)W (y′|x) and CH(W ) is the convex hull of {W (·|x), x ∈ X}.

Lemma 2 is proved in Appendix A.1. Note that the form (18) can be easily evaluated for
small alphabets and simple channels (e.g., binary alphabets, Hamming distortion and the binary
symmetric channel). The form (19) has an operational meaning. To see this, first recall the result
in [38, eq. (19)], stating that E{Vρ(X)} =

∑
x∈X

P (x)
P̂ (x)ρ , where Vρ(X) =

(G(X)+ρ−1
ρ

)
and

(n
k

)
is the

generalized binomial coefficient ([38, eq. (11)-(12)]). As E{Vρ(X)} approximates the ρ–th moment
of the guesswork up to a constant factor,

∑
x∈X

P (x)
P̂ (x)ρ also has the interpretation of a guesswork’s

ρ–th moment, when the source distribution is P (x) and the guessing is randomized according to
P̂ (x). A similar interpretation was given in [51, Section V.2]. In the problem at hand, P (y), at
the numerator of (19), is the source distribution. To see that the bracketed expression at the
denominator (without the power of ρ) can be viewed as the success probability of a single guess
under some guessing strategy, note that M(y′) is the channel output distribution when its input is

11



i.i.d. according to V . Thus the bracketed expression at the denominator can be thought of as the
Chernoff bound for the probability of a single successful guess within distortion D. To conclude this
discussion, note that the minimizing V has the operative meaning of the optimal (non–universal)
i.i.d. random guessing distribution.

Remark 1 (A sufficient condition for no–noise–penalty). It is interesting to identify the scenario
where there is no loss due to the channel W . If the test channel, Q∗Y ′|Y , that achieves the ordi-
nary rate–distortion function, R(D,QY ), happens to induce a marginal distribution QY ′ such that
Γ(QY ′) = 0 for any QY (or, at least, for the dominant one), then the guessing exponent is the same
as in the clean–channel case.

4.3. Sources with Memory
Our model for sources with memory will be that of Ψ-mixing sources. Consider a stationary source
{Xi}i=∞i=−∞ over a probability space (Ω,F , P ). Let F lj denote the σ-field of events generated by the
random variables {Xm}j≤m≤l. A measure of dependence, Ψ(k), for the source {X} is defined by

Ψ(k) = sup
A∈F0

−∞,B∈F∞k ,P (A)>0,P (B)>0

∣∣∣∣ P (A ∩B)
P (A)P (B) − 1

∣∣∣∣ . (20)

A stationary source is said to be Ψ-mixing if Ψ(k)→ 0 as k →∞.
Before presenting the main result for mixing sources, a few additional definitions are in order.

For any positive integer n, denote by Rn(D,Pn) the rate-distortion function of a block-memoryless
source of block size n and a distribution Pn over X n, at a per–letter distortion level D (that is, nD
per–block). Note that we do not normalize the rate by n, hence Rn(D,Pn) represents the number
of bits required per block of size n. Now, for any stationary source P with a marginal distribution
Pn define the guessing exponent at distortion level D and moment ρ as

EP (D, ρ) = lim inf
n→∞

sup
Qn

1
n

[ρRn(D,Qn)−D (Qn||Pn)] . (21)

Remark 2. For each n, supQn 1
nRn(D,Qn) is monotonic in D and hence continuous everywhere

with the possible exception of countably many points. Thus, lim infn→∞ supQn 1
nRn(D,Qn) has the

same property.

The main result for sources with memory is the following theorem.

Theorem 3. For any stationary Ψ-mixing source P , the optimal guesswork ρ-th moment exponent
at distortion level D is achievable using a randomized guessing strategy, which is universal in
P, d(·, ·), D and ρ, and satisfies

lim sup
n→∞

1
n

log E{Gρ} = EP (D, ρ). (22)

The randomized guessing strategy is based on the incremental parsing procedure of LZ78. It was
described in Section 3.3. For the proof of Theorem 3, Section 5.3 includes a key result, focusing
on the probability this distribution assigns to sequences satisfying the distortion constraint. Then,
using this result, Section 7.1 completes the details of the direct. Section 7.2 includes the matching
converse.

12



4.4. Guessing an Individual Sequence
In [48], the guessing game was extended to guessing an individual sequence, that is, a single,
deterministic sequence without any underlying probability model. In such a setup, it is unrealistic
to measure performance against any guessing strategy, and one tries to compete against any finite–
state guessing machine. This is, in fact, the common practice in many other setups involving
individual sequences, including compression, gambling, prediction, denoising and encryption [34,
63, 64, 65, 66, 67, 68].
A finite–state guessing machine is defined by the tuple (U , X̂ ,Z,∆, f, g), where U is its input

alphabet, assumed binary, X̂ is the output alphabet, Z is a finite set of states, with |Z| = s,
∆ : Z → {0, 1, 2, . . .} defines the number of input bits used at each state, and f, g are the output
and next–state functions, that is, f : Z × U∗ → X̂ and g : Z × U∗ → Z. When a binary sequence
u1, u2, . . ., ui ∈ U , is fed to the guessing machine, the output is a sequence x̂1, x̂2, . . ., x̂i ∈ X̂ ,
according to the following recursive equations:

ti = ti−1 + ∆(zi), t0 = 0, (23)
vi = (uti−1+1, uti−1+2, . . . , uti), (24)
x̂i = f(zi, vi), (25)

zi+1 = g(zi, vi). (26)

The guessing game is thus as follows: Alice has an individual sequence x of length n. Bob is
equipped with a finite–state guessing machine and unlimited number of uniform i.i.d. bits. The
machine consumes bits, while passing through states in Z and producing output symbols in X̂ .
When the output is of length n Bob submits it to Alice and asks “is the sequence x̂ within distortion
nD of x?" If the answer is affirmative, the game ends. Otherwise, the machine is restarted to its
initial state (say, some z1 ∈ Z) and the game repeats.
For a finite–state guessing machine F, denote by GF (x) the (random, due to the random input

to the machine) number of guesses until x is guessed with distortion at most nD. Our main
result in this context is the following theorem, which, on the one hand, lower bounds the ρ–th
moment of GF (x), yet, on the other, states that this lower bound is asymptotically achievable with
a guessing distribution which can be implemented with a finite–state machine whose number of
states is independent of the length n.
To present the result, we first remind the reader of the notion of finite–state compressibility [34].

We briefly follow the notation in [48, Section III.A]. Let LE(bn) be the total length of the binary
strings b1, . . . , bn produced by an information lossless, finite–state encoder E with at most K states
as it processes the string x̂. The compression ration of E is defined by ρE(x̂) = LE(bn)

n , and the
finite–state compresibility of x̂ is defined by

ρK(x̂) = min
E∈E(K)

ρE(x̂), (27)

where E(K) is the set of all information lossless finite–state encoders with at most K states.

Theorem 4. Denote by E{GρF |x} the ρ–th moment of the guesswork for a finite–state machine F
with at most s states, given the individual sequence x. Then:
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Converse part. (i) For any fixed s independent of n we have

E{GρF |x}
·
≥

 ∑
{x̂: d(x,x̂)≤nD}

2−LZ(x̂)

−ρ . (28)

(ii) Alternatively, we have

E{GρF |x}
·
≥

 ∑
{x̂: d(x,x̂)≤nD}

exp2

{
−n

(
ρK(l)(x̂)− log

(
2s3e

)
l

)}−ρ , (29)

for any l which divides n and K(l) denoting the number of states of a machine implementing a
Shannon code on blocks of size l.
Direct part. (i) The lower bound in (28) is achieved using the guessing distribution (7). (ii)

Assume l divides n and consider the distribution

P̃ (x̂) =
n/l−1∏
i=0

 2−LZ(x̂il+l
il+1)∑

x̂l∈X̂ l 2−LZ(x̂l)

 , (30)

which is implementable with a finite–state machine with at most lαl states for any n. Then

E{GρLZ |x}
·
≤
[ ∑
{x̂: d(x,x̂)≤nD}

exp2

{
−n

[
ρK(x̂)+ log(4K2)

(1− ε(l)) log l +K2 log(4K2)
l

+ε(l)
]}]−ρ

, (31)

where ε(l)→ 0 as l→∞.

The complete proof of Theorem 4 is given in Appendix A.7.
At this point, a few remarks are in order. First, note that the universal guessing distribution

in (7) is thus not only five-fold universal, it is also asymptotically optimal for four different se-
tups: guessing memoryless sources, guessing memoryless sources through a noisy channel, guessing
sources with memory and guessing an individual sequence. Moreover, while this distribution is
not implementable with a finite–state machine as n grows without bound, it has both efficient
algorithms which allow easily sampling from this distribution5, as well as a block–wise version (30)
which still asymptotically achieves the lower bound.

5. Three Lemmas on the Probability of S(x) Under Universal Guessing
Distributions

When proving direct (achievability) results, the focus is on designing good guessing distributions,
and then analysing the expected guesswork under the relevant source distribution. Thus, roughly
speaking, a direct result includes three steps: introducing a guessing distribution P̃ (x̂), evaluating

5This can be done without directly computing the complex sum in the denominator, but, rather, feeding an LZ
decoder with uniform i.i.d. bits [17, Section V.D]. Thus, these algorithms implement (7) directly and efficiently,
without the need for the block-wise implementation in (30).
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the probability of hitting the distortion-achieving set, P̃ [S(x)], and, finally, taking into account the
actual source distribution P , computing the guesswork moment, E{Gρ} = EPE{Gρ|x}.

Evaluating P̃ [S(x)] is a key technical challenge. In this section, we include three lemmas which
indeed evaluate (or at least lower bound) P̃ [S(x)] for the three major scenarios in this paper: mem-
oryless sources (Lemma 3), noisy guessing (Lemma 4) and sources with memory (Lemma 5). In
fact, in the first and third scenarios, these lemmas will almost directly result in the achievability
proofs. For sources with memory, the analysis of the achievability is more involved and will re-
quire additional steps. Interestingly, the three lemmas also have a similar structure, relating the
exponential rate of the hitting probability to some rate–distortion–like function, depending on the
scenario considered.

5.1. Memoryless Sources
For memoryless sources, we have the following.

Lemma 3. Assume sequences of length n are chosen independently at random according to the
distribution P̃ (x̂) ·= 2−nĤx̂(X̂) in (4). Then, for any x ∈ X n

P̃ [S(x)] ·= 2−nR(D,P̂x), (32)

where R(D, P̂x) is the rate distortion function of P̂x.

Proof.

P̃ [S(x)] =
∑

{x̂: d(x,x̂)≤nD}

P̃ (x̂) (33)

·=
∑

{T (QX̂|X |x): EQd(X,X̂)≤D}

|T (QX̂|X |x)| · 2−nĤx̂(X̂) (34)

·= max
{QX̂|X : EQd(X,X̂)≤D}

2nHQ(X̂|X) · 2−nHQ(X̂) (35)

= max
{QX̂|X : EQd(X,X̂)≤D}

2−nIQ(X;X̂) (36)

= exp2

−n min
{QX̂|X : EQd(X,X̂)≤D}

IQ(X; X̂)

 (37)

= 2−nR(D,P̂x), (38)

where the last equality is since the minimum is taken over all conditional types QX̂|X , conditioned
on the specific x, satisfying the distortion constraint.

Lemma 3 is the key step in proving the direct result for memoryless sources. In fact, using
Lemma 1 of Section 3 together with Lemma 3, the direct result in Theorem 1 easily follows:

Proof of Theorem 1.

E{Gρ} =
∑
x
P (x) ·E{Gρ|x} (39)
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·=
∑
x

2−n(Ĥx(X)+D(P̂x‖P )) · 2nρR(D,P̂x) (40)

=
∑
Q∈Pn

|TQ|2−n(HQ(X)+D(Q‖P )) · 2nρR(D,Q) (41)

·
≤

∑
Q∈Pn

2nHQ(X) · 2−n(HQ(X)+D(Q‖P )) · 2nρR(D,Q) (42)

·= exp2

{
nmax

Q
[ρR(D,Q)−D(Q‖P )]

}
. (43)

5.2. Noisy Guessing
Analogously to Lemma 3, we now wish to evaluate the probability of S(y) under the guessing
distribution we use. However, since guessing is done through a noisy channel, each guess induces
a distribution on the reconstruction words. A fortiori, when using a guessing distribution. The
following lemma evaluates the probability of S(y) under the distribution induced by the guessing
distribution (4).

Lemma 4. Assume that sequences of length n are chosen independently at random according to the
distribution P̃ (x) ·= 2−nĤx(X) in (4), then sent through the memoryless channel W (y|x). Denote
by Q the distribution induced on the y–vectors. Then,

Q[S(y)] ·= exp2{−nR̂W (D, P̂y)}, (44)

where R̂W (D, P̂y) is given in (16).

Proof. Guessing using the distribution in (4) induces the following distribution on the y–vectors:

Q(y) ·=
∑

x∈Xn
exp2{−nĤx(X)} ·W (y|x) (45)

·=
∑

T (QX|Y |y)
|T (QX|Y |y)| · exp2{−n[HQ(X) +HQ(Y |X) +D(QY |X‖W |QX)]} (46)

·= max
QX|Y

exp2{n[HQ(X|Y )−HQ(X)−HQ(Y |X)−D(QY |X‖W |QX)]} (47)

= exp2{−nHQ(Y )} · max
QX|Y

exp2{−nD(QY |X‖W |QX)} (48)

= exp2{−n[HQ(Y ) + Γ(QY )]}. (49)

Note that Q above is the distribution whose Y –marginal is P̂y, hence HQ(Y ) is, in fact, Ĥy(Y ).
Thus, given that Y = y, the probability of a single successful guess within distortion D is given by∑
{y′: d(y,y′)≤nD}

Q(y′) (50)

·=
∑

{y′: d(y,y′)≤nD}
exp2{−n[HQ(Y ′) + Γ(QY ′)]} (51)

·= max
{QY ′|Y : EQd(Y,Y ′)≤D}

|T (QY ′|Y |Y = y)| · exp2{−n[HQ(Y ′) + Γ(QY ′)]} (52)
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·= max
{QY ′|Y : EQd(Y,Y ′)≤D}

exp2{nHQ(Y ′|Y )} · exp2{−n[HQ(Y ′) + Γ(QY ′)]} (53)

·= exp2

−n min
{QY ′|Y : EQd(Y,Y ′)≤D}

[IQ(Y ;Y ′) + Γ(QY ′)]

 (54)

= exp2{−nR̂W (D,QY )}. (55)

Remembering that in the above QY is empirical distribution of the specific y, that is, P̂y, completes
the proof.

The direct result for noisy guessing under distortion now easily follows.

Proof of Theorem 2 (Direct Part). Applying Lemma 1 on the result in Lemma 4, we have

E{Gρ|Y = y} ·= exp2{nρR̂W (D, P̂y)}. (56)

The proof now follows the same steps as in (39)–(43), resulting in

E{Gρ} =
∑
y
P (y) ·E{Gρ|Y = y} (57)

·= exp2{nmax
QY

[ρR̂W (D,QY )−D(QY ‖P )]}, (58)

which completes the proof of this achievability result.

5.3. Sources with Memory
Before presenting the main lemma in this section, a few definitions are required.
With proper scaling and gaps, Ψ-mixing sources can be approximated by block-memoryless

sources, for which one can use the method of types over the super–alphabet of the blocks. Note,
however, that directly applying the method of types to consecutive blocks of source symbols will not
result in a good approximation, as the blocks are not independent, hence gaps between the blocks
should be introduced. To make this precise, assume a source n-tuple is divided to consecutive,
non-overlapping tuples of length K + k. We assume both K and k are fixed, yet K � k. We
further assume that K + k divides n and denote n

K+k = m. Hence,

xn1 = xK1 , x
K+k
K+1, . . . , x

n−k
n−K−k+1, x

n
n−k+1 (59)

4= x1, g1, . . . , xm, gm, xi ∈ XK , gi ∈ X
k, 1 ≤ i ≤ m, (60)

where we refer to the K-tuples xi as blocks, and to the k-tuples g
i
as gaps. Analogously to the type

of a memoryless sequence, herein, we define the (generalized, due to the gaps) K-type of a sequence
xn1 as the vector of empirical frequencies for each possible block of size K in xn1 , disregarding the
content of the gaps. That is, denoting by Nx(aK1 ) the number of occurrences of aK1 ∈ XK in the
blocks {xi}mi=1 of x, we have

P̂Kx
4=
(
Nx(aK1 )

m
, aK1 ∈ XK

)
. (61)
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The K-type class of PK , denoted by TK(PK), is the set of all sequences with the same K-type PK ,
that is, TK(PK) =

{
x ∈ X n : P̂Kx = PK

}
. Finally, denoting by T K the set of all possible K-types

PK , clearly, ∣∣∣T K ∣∣∣ ≤ (m+ 1)|X |
K

. (62)

The following lemma generalizes Lemma 3 to guessing sequences with memory based on LZ
parsing, via the distribution in (7).

Lemma 5. Assume sequences of length n are chosen independently at random according to the
distribution P̃ (x̂) ·= 2−LZ(x̂) in (7). Then, for any δ, ε > 0 there exists a sequence εm → 0 as
m→∞ such that

P̃ [S(x)]
·
≥ 2−νK+k(n)(1− 2εm) exp2

{
−m

[
RK(D′, P̂Kx ) + ε

]}
, (63)

where D′ = D − δ2 − δ
K , δ2 = k(Dmax−D)

K , P̂Kx is the K-type of x, and for any fixed K and k < K,
limn→∞

1
nνK+k(n) = O

(
1
K

)
.

To prove Lemma 5 we first, in Proposition 1 below, consider a specific block–memoryless distri-
bution, induced by the distribution which achieves the rate–distortion function RK(D, P̂Kx ), and
connect the probability of hitting the distortion–achieving blocks under this distribution to the rate–
distortion function. In a sense, this relates the probability of a slightly smaller set, S(x) ⊂ S(x), to
be defined precisely later, to the rate-distortion function of a block memoryless source. Then, we
upper bound this block–memoryless distribution using the code length of the LZ encoder. Finally,
we connect the two results to prove Lemma 5.

Proposition 1. Fix x ∈ X n with a K-type P̂Kx . For any δ > 0, set D′ = D − δ2 − δ
K , with δ2 =

k(Dmax−D)
K and denote by PK(x̂|x), with x̂ ∈ X̂K and x ∈ X k the conditional distribution achieving

RK(D′, P̂Kx ). Finally, denote by QK the resulting distribution on the construction alphabet X̂K ,
that is, QK(x̂) =

∑
x P

K(x̂|x)P̂Kx (x). For any ε > 0, the following holds

∑
ŝm1 ∈(X̂K)m:

∑
i
d(xi,ŝi)≤mK(D−δ2)

m∏
i=1

QK (ŝi) ≥ (1− 2εm) exp2

{
−m

[
RK(D′, P̂Kx ) + ε

]}
. (64)

Proof. We first state a result for memoryless sources, then extend it to a block–memoryless scenario,
minding the gaps between the blocks.
Fix x ∈ X n with a type P̂x. For any δ > 0, set D− = D − δ and denote by P (x̂|x) the

conditional distribution achieving R(D−, P̂x). Finally, denote by Q the resulting distribution on
the construction alphabet, that is, Q(x̂) =

∑
x P (x̂|x)P̂x(x). For any ε > 0, the following holds∑

x̂∈S(x)

Qn(x̂) ≥ (1− 2εn) exp2

{
−n

[
R(D−, P̂x) + ε

]}
, (65)

where Qn(x̂) =
∏n
i=1Q(x̂) and εn → 0 as n→∞ for all x ∈ X n. To prove (65), we follow [69, eq.

(3.2.8)-(3.2.10)]. Define

T (x) =
{

x̂ : log P
n(x̂|x)
Qn(x̂) ≤ n

[
R(D−, P̂x) + ε

]}
, (66)
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where Pn(x̂|x) =
∏n
i=1 P (x̂i|xi), P (x̂i|xi) and Q(x̂) being the optimal test channel reconstruction

distribution for R(D−, P̂x), respectively. We have∑
x̂∈S(x)

Qn(x̂) ≥
∑

x̂∈S(x)∩T (x)

Qn(x̂) (67)

≥ exp2

{
−n

[
R(D−, P̂x) + ε

]} ∑
x̂∈S(x)∩T (x)

Pn(x̂|x) (68)

≥ exp2

{
−n

[
R(D−, P̂x) + ε

]} ∑
x̂∈S(x)

Pn(x̂|x)−
∑

x̂∈T c(x)

Pn(x̂|x)

 . (69)

To conclude the proof of (65), we have to show that there exists a sequence εn → 0 such that both∑
x̂∈S(x) P

n(x̂|x) ≥ 1− εn and
∑

x̂∈T c(x) P
n(x̂|x) ≤ εn uniformly in x. To this end, we have the

following two claims, whose proofs are given in Appendix A.

Claim 1. There exists ε′n such that for all x,
∑

x̂∈S(x) P
n(x̂|x) ≥ 1− ε′n with ε′n → 0 as n→∞.

Claim 2. There exists ε′′n such that for all x,
∑

x̂∈T c(x) P
n(x̂|x) ≤ ε′′n with ε′′n → 0 as n→∞.

Taking εn = max(ε′n, ε′′n) completes the proof of (65).
To complete the proof of Proposition 1, note that (65) can be easily extended to block–memoryless

sources, simply by applying it to sequences of length m over XK , with the proper definition on
a type over XK and output distribution QK on X̂K . However, we take this a step further, and
apply it to a sequence x of length n over X , using a memoryless distribution over K-tuples and the
K-type of x. Namely, given any x ∈ X n, apply (65) on the sequence (x1, . . . , xm) (that is, only the
K-tuple blocks of x, without the k-tuple gaps). This sequence, which includes m blocks of length
K over X , when viewed as an m-tuple over XK has a type P̂Kx . Thus, setting a per-super-letter
distortion level K(D − δ2), the proposition follows.

Using Proposition 1 above, we can now prove Lemma 5.

Proof. ( Lemma 5) Let MK+k(·) be any probability distribution on X̂K+k and

m∏
i=1

MK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)
(70)

be the product distribution on X̂ n. We first have Claim 3 below, which can be viewed as an
extension of Ziv’s inequality [34, Theorem 1], and is proved in Appendix A.

Claim 3. For any sequence x̂ ∈ X̂ n and any distribution MK+k(·) on X̂K+k, the LZ code length
(in bits), LZ(x̂), satisfies

LZ(x̂) ≤ − log
[
m∏
i=1

MK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)]
+ νK+k(n), (71)

where νK+k(n) depends on |X̂ | yet satisfies limn→∞
1
nνK+k(n) = O

(
1
K

)
for any fixed K and k < K.
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Similar to (59), consider the partition of a sequence x̂ of length n over X̂ into non-overlapping
blocks of length K, followed by gaps of length k

x̂ = x̂1, ĝ1, . . . , x̂m, ĝm. (72)

Next, define S(x) ⊂ S(x) as follows

S(x) =
{

x̂ : ĝ
i

= (x̂0, . . . , x̂0) for all i,
∑
i

d(xi, x̂i) ≤ mK(D − δ2)
}
. (73)

That is, S(x) includes only sequences in S(x) for which the gaps include only x̂0 (for some fixed
symbol x̂0), yet the distortion constraint is satisfied. Consequently, we have

P̃ [S(x)] ≥
∑

x̂∈S(x)

2−LZ(x̂) (74)

≥ 2−νK+k(n) ∑
x̂∈S(x)

m∏
i=1

MK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)
(75)

≥ 2−νK+k(n) ∑
x̂∈S(x)

m∏
i=1

QK
(
x̂
i(K+k)−k
(i−1)(K+k)+1

)
1{

x̂
i(K+k)
i(K+k)−k+1=(x̂0,...x̂0)

} (76)

= 2−νK+k(n) ∑
x̂∈S(x)

m∏
i=1

QK
(
x̂
i(K+k)−k
(i−1)(K+k)+1

)
(77)

= 2−νK+k(n) ∑
ŝm1 ∈(X̂K)m:

∑
i
d(xi,ŝi)≤mK(D−δ2)

m∏
i=1

QK (ŝi) (78)

≥ 2−νK+k(n)(1− 2εm) exp2

{
−m

[
RK(D′, P̂Kx ) + ε

]}
, (79)

where (75) is by Claim 3 and the last inequality follows from Proposition 1.

6. Converse for Noisy Guesses
The direct part of Theorem 2 was proved in Section 5.2 via Lemma 4. In this section, we prove the
converse part of Theorem 2. We begin from a simple preparatory lemma.

Lemma 6. Let T (QY ) be a given type class of y–vectors, and let x ∈ T (QX) be given. Then,

1
|T (QY )|

∑
y∈T (QY )

W [S(y)|x]
·
≤ exp2{−nR̂W (D,QY )} ∀ x ∈ X n. (80)

Note that the lemma above is, in a sense, a matching upper bound to the result in Lemma 4.
However, while Lemma 4 assumes that the vector x is drawn from the universal distribution used
in the direct results, Lemma 6, which is later utilized in the converse result, does not assume any
distribution on x. Yet, it includes averaging over y ∈ T (QY ).
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Proof.

1
|T (QY )|

∑
y∈T (QY )

W [S(y)|x] (81)

= 1
|T (QY )|

∑
y∈T (QY )

∑
{y′: d(y,y′)≤nD}

W (y′|x) (82)

= 1
|T (QY )|

∑
{T (QY Y ′|X |x): EQd(Y,Y ′)≤D}

|T (QY Y ′|X |x)| (83)

· exp2{−n[HQ(Y ′|X) +D(QY ′|X‖W |QX)]} (84)

·= exp2

{
− n min

{QY Y ′|X : EQd(Y,Y ′)≤D}
[HQ(Y )−HQ(Y, Y ′|X) (85)

+HQ(Y ′|X) +D(QY ′|X‖W |QX)]
}

(86)

= exp2

−n min
{QY Y ′|X : EQd(Y,Y ′)≤D}

[HQ(Y )−HQ(Y |X,Y ′) +D(QY ′|X‖W |QX)]

 (87)

= exp2

−n min
{QY Y ′|X : EQd(Y,Y ′)≤D}

[IQ(Y ;X,Y ′) +D(QY ′|X‖W |QX)]

 (88)

≤ exp2

{
− n min

{QY ′|Y : EQd(Y,Y ′)≤D}
[IQ(Y ;Y ′) (89)

+ min
{QY ′|X :(QX�QY ′|X)Y ′=QY ′}

D(QY ′|X‖W |QX)]
}

(90)

= exp2

−n min
{QY ′|Y : EQd(Y,Y ′)≤D}

[IQ(Y ;Y ′) + Γ(QX , QY ′)]

 (91)

≤ exp2

−n min
{QY ′|Y : EQd(Y,Y ′)≤D}

[IQ(Y ;Y ′) + Γ(QY ′)]

 (92)

= exp2{−nR̂W (D,QY )}. (93)

The proof of the converse is now as follows.

Proof of Theorem 2 (Converse Part). Denote by k(QY ) a positive integer, whose value, possibly
depending on the type of y, QY , will be defined later. We have the following chain of inequalities,
whose explanations are given below.

E{Gρ} =
∑
QY

P [T (QY )]E{Gρ|y ∈ T (QY )} (94)
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·=
∑
QY

2−nD(QY ||P )E{Gρ|y ∈ T (QY )} (95)

≥
∑
QY

2−nD(QY ||P )k(QY )ρ · Pr{G > k(QY )|y ∈ T (QY )} (96)

≥
∑
QY

2−nD(QY ||P )k(QY )ρ
∑

y∈T (QY )

1
|T (QY )|Pr{G > k(QY )|y} (97)

≥
∑
QY

2−nD(QY ||P )k(QY )ρ
∑

y∈T (QY )

1
|T (QY )|

1−
k(QY )∑
i=1

W (S(y)|xi)

 (98)

=
∑
QY

2−nD(QY ||P )k(QY )ρ
1−

k(QY )∑
i=1

∑
y∈T (QY )

1
|T (QY )|W (S(y)|xi)

 (99)

·
≥

∑
QY

2−nD(QY ||P )k(QY )ρ
1−

k(QY )∑
i=1

2−nR̂W (D,QY )

 (100)

=
∑
QY

2−nD(QY ||P )k(QY )ρ
[
1− k(QY )2−nR̂W (D,QY )

]
(101)

·=
∑
QY

2−nD(QY ||P )2ρn(R̂W (D,QY )−ε) [1− 2−nε
]

(102)

·= exp2

{
nmax

QY

[
ρR̂W (D,QY )−D(QY ||P )− ρε

]}
. (103)

In the above chain, (96) is since EGρ =
∑∞
k=1 k

ρ · Pr{G = k} ≥ kρ · Pr{G > k}. (97) is
since Y is drawn from a DMS, hence the conditioning Y ∈ T (QY ) means that Y is uniformly
distributed within T (QY ), which explains the uniform averaging across T (QY ). (98) is since
Pr{G > k|y} = 1 − Pr{∪ki=1 guess i is successful|y} ≥ 1 −

∑k
i=1 Pr{guess i is successful|y}, and

Pr{guess i is successful|y} = W (S(y)|xi). (100) is due to Lemma 6. (102) is by choosing k(QY ) =
d2n(R̂(D,QY )−ε)e for some arbitrarily small ε. Since the above is true for any ε > 0, we have

E{Gρ}
·
≥ exp2

{
nmax

QY

[
ρR̂W (D,QY )−D(QY ||P )

]}
, (104)

which completes the proof of the converse.

7. Direct and Converse for Sources with Memory
7.1. Direct
We can now assert the following theorem, which gives an upper bound on the guesswork exponent,
using a K-tuples parsing strategy.

Theorem 5. For any stationary Ψ-mixing source P over X , if guesses are selected independently
at random according to the distribution (7), then, for K � k, the ρ-th guesswork moment, subject
to a distortion constraint D, satisfies

lim sup
n→∞

1
n

log E{Gρ}
·
≤ lim inf

K→∞
sup
QK

1
K

[
ρRK(D,QK)−D

(
QK ||PK

)]
. (105)
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Proof. We first bound the expected guesswork moment in terms of the guessing distribution P̃ via
Lemma 1, and further bound P̃ [S(x)] via Lemma 5. Specifically,

E{Gρ} = E{E{Gρ|X}} (106)
·= E

{
P̃ [S(X)]−ρ

}
(107)

=
∑

x∈Xn
P (x)P̃ [S(x)]−ρ (108)

≤ 2ρνK+k(n) ∑
x∈Xn

P (x) 1
(1− 2εm)ρ exp2

{
ρm

[
RK(D′, P̂Kx ) + ε

]}
(109)

= 2ρνK+k(n)

(1− 2εm)ρ
∑

x∈Xn
P (x) exp2

{
ρm

[
RK(D′, P̂Kx ) + ε

]}
, (110)

where (107) is due to Lemma 1 and (109) is due to Lemma 5.
While it is tempting to replace the sum over x ∈ X n with the usual sum over types, unlike the

memoryless case, sequences in TK(PK) are not equiprobable. Fortunately, dividing TK(PK) into
subsets of sequences, which differ only in the content of the gaps between the blocks, and with the
right choice of k, results in asymptotically equiprobable subsets, whose probability can be described
similarly to that of memoryless sequences. Specifically, for any x ∈ X n, whose blocks are denoted
by xi, 1 ≤ i ≤ m (see (59)), define the gaps oblivious set as

GKx = {x̃ ∈ X n : x̃i = xi, 1 ≤ i ≤ m} . (111)

That is, GKx includes all sequences which differ from x only in the gaps between the blocks. GKx
satisfies the following bounds, proved in Appendix A.5.

Lemma 7. For any stationary Ψ-mixing source Q and any x ∈ X n,

Q
(
GKx

)
≤ (1 + εk)m−1 exp2

{
−m

(
D
(
P̂Kx ||QK

)
+ ĤK

x (XK)
)}

(112)

Q
(
GKx

)
≥ (1− εk)m−1 exp2

{
−m

(
D
(
P̂Kx ||QK

)
+ ĤK

x (XK)
)}

, (113)

where QK() is the K-th order marginal distribution of Q, ĤK
x (XK) is the empirical entropy asso-

ciated with the empirical distribution P̂Kx and εk → 0 as k →∞.

Note that if the K-th order marginal of Q satisfies QK = P̂Kx , the divergences in Lemma 7 are
zero and we have,6

P̂Kx

(
GKx

)
≤ (1 + εk)m−12−mĤ

K
x(XK) (114)

P̂Kx

(
GKx

)
≥ (1− εk)m−12−mĤ

K
x(XK). (115)

Denote by
∣∣∣TK(PK)

∣∣∣
G
the number of distinct sets GKx in TK(PK). The following corollary, proved

in Appendix A.6, bounds the number of such sets within a K-type class TK(PK).
6P̂K

x
(
GK

x
)
is the probability of a set of sequences, rather than the probability of a single sequence. Sequences in

the subset are not necessarily equiprobable, yet the probability of the whole set is equal to that of other sets of
sequences, as long as the sets are defined for the same K-type PK .
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Corollary 2.
∣∣∣TK(PK)

∣∣∣
G
≤ (1− εk)−m+12mĤ

K
x(XK).

We are now able to further bound E{Gρ}. Continuing from (110),

E{Gρ}
·
≤ 2ρνK+k(n)

(1− 2εm)ρ
∑

TK∈T K

∑
GKx∈T

K

P (GKx)2ρm[RK(D′,P̂Kx )+ε] (116)

≤ 2ρνK+k(n)(1 + εk)m−1

(1− 2εm)ρ
∑

TK∈T K

∑
GKx∈T

K

2m(−D(P̂Kx ||PK)−ĤK
x(XK))2ρm[RK(D′,P̂Kx )+ε] (117)

≤ 2ρνK+k(n)(1 + εk)m−1

(1− εk)m−1(1− 2εm)ρ (118)∑
TK∈T K

2mĤ
K
x(XK)2m(−D(P̂Kx ||PK)−ĤK

x(XK))2ρm[RK(D′,P̂Kx )+ε] (119)

= 2ρνK+k(n)(1 + εk)m−1

(1− εk)m−1(1− 2εm)ρ
∑

TK∈T K
2−mD(P̂Kx ||PK)2ρm[RK(D′,P̂Kx )+ε] (120)

≤ 2ρνK+k(n)(1 + εk)m−1

(1− εk)m−1(1− 2εm)ρ
∣∣∣T K ∣∣∣max

P̂Kx
2−mD(P̂Kx ||PK)2ρm[RK(D′,P̂Kx )+ε] (121)

≤ 2ρνK+k(n)(1 + εk)m (m+ 1)|X |
K

(1− εk)m(1− 2εm)ρ 2
max

P̂Kx
m[ρRK(D′,P̂Kx )+ρε−D(P̂Kx ||PK)]

(122)

= exp2

{
max
P̂Kx

n

[
ρ

1
K + k

RK(D′, P̂Kx )− 1
K + k

D
(
P̂Kx ||PK

)
(123)

+ ρ

(
ε− log(1− 2εm)− νK+k(n)

n

)
+

log
(

1+εk
1−εk

)
K + k

+ |X |
K log (m+ 1)

n

]}
. (124)

In the above chain, (117) is due to Lemma 7, while (119) is due to (114); (122) follows from (62)
and since 1−εk

1+εk ≤ 1.
Now, fix K � k. Since D′ = D − δ2 − δ

K , with δ2 = k(Dmax−D)
K , and since the above is true for

any δ, ε > 0, taking the limit over n, we have

lim sup
n→∞

1
n

log E{Gρ}
·
≤ max

P̂Kx

1
K

[
ρRK(D, P̂Kx )−D

(
P̂Kx ||PK

)
+O(1)

]
, (125)

where we have also used the continuity of RK(D, P̂Kx ) in D. Finally, the r.h.s of (125) is at least as
large if the maximization is done over all distributions on XK , rather than only (fractional) types.
Thus, enlarging the optimization domain, then taking a limit over K, we have

lim sup
n→∞

1
n

log E{Gρ}
·
≤ lim inf

K→∞
sup
QK

1
K

[
ρRK(D,QK)−D

(
QK ||PK

)]
, (126)

which completes the proof.
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7.2. Converse
For a converse theorem, we do not assume that the guesser is restricted to any randomized guessing
strategy. In fact, a guesser is allowed to use a guessing list, Gn, which is an ordered list of all members
of X̂ n. That is, Gn = {x̂1, x̂2, . . . , x̂|X̂ |n}. Gn is associated with a guessing function, G(x), which
is the function that maps X n to the integers, by assigning each x ∈ X n the smallest integer k for
which d(x, x̂k) ≤ nD, x̂k ∈ Gn, namely, x̂k is the first element of Gn which is in S(x). Thus, G(x)
is the number of guesses required until successfully meeting the distortion criteria, using Gn, when
X = x. Note that any randomized guessing strategy can be implemented with such a list. Note
also that for finite alphabet, and assuming that for all x ∈ X we have dmin = minx̂∈X̂ d(x, x̂) = 0,
one can easily append any list Gn such that the range of G(x) is finite. Thus, the following converse
bounds from below the best achievable exponent of the ρ-th guessing moment.
Theorem 6. For any source P with an K-letter marginal PK the guesswork ρ-th moment exponent
at distortion level D is lower bounded by

lim inf
K→∞

inf
GK

1
K

log EPK{Gρ(X)} ≥ lim inf
K→∞

sup
QK

1
K

[
ρRK(D,QK)−D(QK‖PK)

]
, (127)

where PK is any distribution on XK .
Proof. Following [11], the key tool in the converse is to view d− logG(x)e as the length of a rate–
distortion code for x ∈ XK . Specifically, assume a guesser indeed has a list GK such that for any
x ∈ XK there is at least one item in the list, say x̂k such that d(x, x̂k) ≤ KD. Then, this list
can be viewed as a rate-distortion codebook. To encode a word x, the encoder will simply use the
smallest integer k for which d(x, x̂k) ≤ KD, with an appropriate code for the integers. A decoder
will simply output x̂k. Consider the following distribution on the positive integers:

pi = c(δ)
i1+δ (128)

where δ > 0 and

c(δ) =
[ ∞∑
i=1

1
i1+δ

]−1

. (129)

Define IKi = {x : G(x) = i}. Using the Shannon code for the distribution in (128), for any
distribution QK on XK , we have

EQK l(x) =
∑
i

QK(IKi )d− log pie (130)

≤ 1−
∑
i

QK(IKi ) log pi (131)

= 1−
∑
i

QK(IKi ) log c(δ) + (1 + δ)
∑
i

QK(IKi ) log i (132)

= 1− log c(δ) + (1 + δ)
∑
x
QK(x) logG(x). (133)

However, since EQK l(x) is the expected length of a rate–distortion code for blocks of length K of
the source QK at a (per–letter) distortion level D, we have,∑

x
QK(x) logG(x) ≥

EQK l(x)− 1 + log c(δ)
1 + δ

(134)
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≥ RK(D,QK)− 1 + log c(δ)
1 + δ

. (135)

Hence, for any source P with a marginal distribution PK and any QK , we have

EPK{Gρ(X)} =
∑

x∈XK
PK(x)Gρ(x) (136)

=
∑

x∈XK
QK(x) exp2

{
− log QK(x)

PK(x)Gρ(x)

}
(137)

≥ exp2

− ∑
x∈XK

QK(x) log QK(x)
PK(x)Gρ(x)

 (138)

= exp2

−D(QK‖PK) + ρ
∑

x∈XK
QK(x) logG(x)

 (139)

≥ exp2

{
−D(QK‖PK) + ρ

RK(D,QK)− 1 + log c(δ)
1 + δ

}
, (140)

where (138) follows from Jensen’s inequality. Since the above holds for any QK , we have, for any
δ > 0,

inf
GK

1
K

log EPK{Gρ(X)} ≥ sup
QK

1
K

[
ρ

1 + δ
RK(D,QK)−D(QK‖PK) +O

(
ρ

log c(δ)− 1
1 + δ

)]
. (141)

At this point, a remark on δ is in order. Note that δ is a parameter of a code for the integers,
regardless of K and the guessing strategy used. c(δ) is a normalizing constant, with c(δ) → ∞ as
δ → 0. In fact, c(δ) = ζ(1+δ), where ζ(·) is the Riemann Zeta function, satisfying limδ→0 δζ(1+δ) =
1. Hence at the limit of δ → ∞, log c(δ) can be approximated by − log δ. Yet, due to the
independence in K, we have

lim inf
K→∞

inf
GK

1
K

log EPK{Gρ(X)} ≥ lim inf
K→∞

sup
QK

1
K

[
ρ

1 + δ
RK(D,QK)−D(QK‖PK)

]
, (142)

for any δ > 0, which completes the proof.

A. Appendix - Additional Proofs and Technical Claims
A.1. Proof of Lemma 2
First, we derive an alternative expression to Γ(QY ). We have

Γ(QY ) = inf
QX|Y

D(QY |X‖W |QX) (143)

= inf
QX|Y

∑
x,y

QXY (x, y) log
QY |X(y|x)
W (y|x) (144)

= inf
QX|Y

∑
x,y

QXY (x, y) log
QX|Y (x|y)QY (y)
QX(x)W (y|x) (145)
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= −HQ(Y ) + inf
QX|Y

∑
x,y

QXY (x, y) log
QX|Y (x|y)

QX(x)W (y|x) (146)

= −HQ(Y ) + inf
V

inf
QX|Y

∑
y

QY (y)
∑
x

QX|Y (x|y) log
QX|Y (x|y)
V (x)W (y|x) (147)

= −HQ(Y ) + inf
V

{
−
∑
y

QY (y) log
[∑
x

V (x)W (y|x)
]}

. (148)

In the above chain, (147) is true since

∑
x,y

QXY (x, y) log
QX|Y (x|y)
V (x)W (y|x) −

∑
x,y

QXY (x, y) log
QX|Y (x|y)

QX(x)W (y|x) (149)

=
∑
x,y

QXY (x, y) log QX(x)
V (x) ≥ 0 (150)

with equality when V (x) = QX(x) for all x. (148) follows by noting that

∑
x

QX|Y (x|y) log
QX|Y (x|y)
V (x)W (y|x) =

∑
x

QX|Y (x|y) log
[
∑
x̂ V (x̂)W (y|x̂)]QX|Y (x|y)

[
∑
x̂ V (x̂)W (y|x̂)]V (x)W (y|x) (151)

= D
(
QX|Y ||ṼX|Y

)
− log

[∑
x̂

V (x̂)W (y|x̂)
]
, (152)

where ṼX|Y (x|y) = 1∑
x̂
V (x̂)W (y|x̂)V (x)W (y|x) and the expression is clearly minimized by choosing

QX|Y = ṼX|Y . Now,

R̂W (D,QY ) (153)
= inf
{QY ′|Y : EQd(Y,Y ′)≤D}

[HQ(Y ′)−HQ(Y ′|Y ) + Γ(QY ′)] (154)

= inf
{QY ′|Y : EQd(Y,Y ′)≤D}

inf
V

−HQ(Y ′|Y )−
∑
y′

QY ′(y′)
[
log

∑
x

V (x)W (y′|x)
] (155)

= inf
QY ′|Y

sup
s≥0

inf
V

[∑
y

QY (y)
∑
y′

QY ′|Y (y′|y) log
QY ′|Y (y′|y)∑
x V (x)W (y′|x)+ (156)

s

(∑
y

QY (y)
∑
y′

QY ′|Y (y′|y)d(y, y′)−D
)]

(157)

= inf
QY ′|Y

inf
V

sup
s≥0

∑
y

QY (y)
∑
y′

QY ′|Y (y′|y)
[

log
QY ′|Y (y′|y)∑
x V (x)W (y′|x) + sd(y, y′)− sD

]
(158)

= inf
V

inf
QY ′|Y

sup
s≥0

∑
y

QY (y)
∑
y′

QY ′|Y (y′|y)
[
log

QY ′|Y (y′|y)
e−sd(y,y′)∑

x V (x)W (y′|x)
− sD

]
(159)

= inf
V

sup
s≥0

inf
QY ′|Y

∑
y

QY (y)
∑
y′

QY ′|Y (y′|y)
[
log

QY ′|Y (y′|y)
e−sd(y,y′)∑

x V (x)W (y′|x)
− sD

]
(160)
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= inf
V

sup
s≥0

−∑
y

QY (y) log

∑
y′

e−sd(y,y′)∑
x

V (x)W (y′|x)

− sD
 (161)

= inf
V

sup
s≥0

{
−
∑
y

QY (y) log
[∑
x

V (x)Us(x, y)
]
− sD

}
(162)

= sup
s≥0

inf
V

{
−
∑
y

QY (y) log
[∑
x

V (x)Us(x, y)
]
− sD

}
, (163)

where (156) is due to the Lagrange multipliers analogous form for the optimization problem. (160)
is since the utility function is convex in QY ′|Y and concave (in fact, linear) in s. (161) uses a similar
technique to (151)-(152), namely, the expression

∑
y′

QY ′|Y (y′|y) log
QY ′|Y (y′|y)

e−sd(y,y′)∑
x V (x)W (y′|x)

(164)

can be viewed as a divergence minus a normalization term. In (162) we have defined

Us(x, y) 4=
∑
y′

W (y′|x)e−sd(y,y′) (165)

and the last equality follows from the convexity in V (x). Finally,

E(ρ) = sup
QY

[ρR̂(D,QY )−D(QY ‖P )] (166)

= sup
QY

sup
s≥0

inf
V

{∑
y

QY (y) log P (y)
QY (y) [

∑
x V (x)Us(x, y)]ρ − ρsD

}
(167)

= sup
s≥0

sup
QY

inf
V

{∑
y

QY (y) log P (y)
QY (y) [

∑
x V (x)Us(x, y)]ρ − ρsD

}
(168)

= sup
s≥0

inf
V

sup
QY

{∑
y

QY (y) log P (y)
QY (y) [

∑
x V (x)Us(x, y)]ρ − ρsD

}
(169)

= sup
s≥0

inf
V

{
log

(∑
y

P (y)
[
∑
x V (x)Us(x, y)]ρ

)
− ρsD

}
(170)

= sup
s≥0

inf
M∈CH(W )

log

∑
y

P (y)[∑
y′M(y′)e−sd(y,y′)

]ρ
− ρsD

 (171)

= sup
s≥0

inf
M∈CH(W )

log

∑
y

P (y)[∑
y′M(y′)es[D−d(y,y′)]

]ρ
 . (172)

In the above chain, (169) is since the utility is convex in V (·) and concave in QY (·) and (170), again,
uses a similar technique to (151)-(152). For (171), remember that Us(x, y) 4=

∑
y′W (y′|x)e−sd(y,y′)

and define M(y′) =
∑
x V (x)W (y′|x). In fact, M(y′) is the channel output distribution when its

input is i.i.d. according to V . (171) thus replaces the minimization over V by minimization over
M , which is limited to CH(W ), that is, the convex hull of {W (·|x), x ∈ X}.
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A.2. Proof of Claim 1
To ease notation, we write Pn(x̂|x) =

∏n
i=1 P (x̂i|xi) as Pnx̂|x in what follows. We have∑

x̂∈S(x)

Pn(x̂|x) = Pnx̂|x (d(x, x̂) ≤ nD) (173)

= Pnx̂|x
(
d(x, x̂)− nD− ≤ nδ

)
(174)

= Pnx̂|x

(
n∑
i=1

d(xi, x̂i)− nD− ≤ nδ
)

(175)

= Pnx̂|x

∑
x∈X

∑
i:xi=x

d(x, x̂i)− nD− ≤ nδ

 (176)

= Pnx̂|x

∑
x∈X

1
n

∑
i:xi=x

d(x, x̂i)−D− ≤ δ

 . (177)

Since P (x̂|x) is the conditional distribution achieving D−, denoting

D−(x) 4=
∑
x̂∈X̂

P (x̂|x)d(x, x̂), (178)

we have
∑
x∈X P̂x(x)D−(x) = D−. Thus, denoting by Nx(x) the number of occurrences of x in x,

and analogously Nxx̂(x, x̂) the number of occurrences of the pair (x, x̂), we have

∑
x̂∈S(x)

Pn(x̂|x) = Pnx̂|x

∑
x∈X

Nx(x)
n

∑
x̂∈X̂

Nxx̂(x, x̂)
Nx(x) d(x, x̂i)− P̂x(x)D−(x)

 ≤ δ
 (179)

= Pnx̂|x

∑
x∈X

P̂x(x)

∑
x̂∈X̂

Nxx̂(x, x̂)
Nx(x) d(x, x̂i)−D−(x)

 ≤ δ
 (180)

≥ Pnx̂|x

∀x
∑
x̂∈X̂

Nxx̂(x, x̂)
Nx(x) d(x, x̂i)−D−(x)

 ≤ δ
 (181)

≥ Pnx̂|x

(
∀x
∣∣∣∣Nxx̂(x, x̂)
Nx(x) − P (x̂|x)

∣∣∣∣ ≤ δ

|X̂ |Dmax

)
(182)

≥ 1− ε′n (183)

for some ε′n such that ε′n → 0 as n→∞, where the last inequality is guaranteed by the law of large
numbers, as each entry in x̂ was drawn independently according to P (x̂|x). Note that since the
law of large numbers is applied on independent drawings from P (x̂|x), ε′n → 0 uniformly in x.

A.3. Proof of Claim 2
Following the same notation as in the proof of Claim 1, we have∑

x̂∈T c(x)

Pn(x̂|x) = Pnx̂|x

(
log P

n(x̂|x)
Qn(x̂) > n

[
R(D−, P̂x) + ε

])
(184)
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= Pnx̂|x

(
1
n

n∑
i=1

log P (x̂i|xi)
Q(x̂i)

> R(D−, P̂x) + ε

)
(185)

= Pnx̂|x

 1
n

n∑
i=1

log P (x̂i|xi)
Q(x̂i)

>
∑
x∈X

P̂x(x)
∑
x̂∈X̂

P (x̂|x) log P (x̂|x)
Q(x̂) + ε

 (186)

= Pnx̂|x

( ∑
x∈X

Nx(x)
n

∑
x̂∈X̂

Nxx̂(x, x̂)
Nx(x) log P (x̂|x)

Q(x̂) (187)

>
∑
x∈X

P̂x(x)
∑
x̂∈X̂

P (x̂|x) log P (x̂|x)
Q(x̂) + ε

)
(188)

= Pnx̂|x

∑
x∈X

P̂x(x)
∑
x̂∈X̂

[
Nxx̂(x, x̂)
Nx(x) − P (x̂|x)

]
log P (x̂|x)

Q(x̂) > ε

 (189)

≤ Pnx̂|x

∑
x∈X

P̂x(x)
∑
x̂∈X̂

[
Nxx̂(x, x̂)
Nx(x) − P (x̂|x)

]
>

ε

log 1
minx̂Q(x̂)

 (190)

≤ Pnx̂|x

max
x,x̂

[
Nxx̂(x, x̂)
Nx(x) − P (x̂|x)

]
>

ε

|X̂ | log 1
minx̂Q(x̂)

 (191)

≤ ε′′n, (192)

where, again, the last inequality is due to the law of large numbers, Nxx̂(x,x̂)
Nx(x) → P (x̂|x) for all x, x̂,

since the alphabets X , X̂ are finite and, without loss of generality, since minx̂Q(x̂) > 0. Again, the
convergence is uniform in x.

A.4. Proof of Claim 3
The proof is based on viewing any block-memoryless probability assignment for x̂, followed by a
Shannon code, as a finite-state encoder for x̂. As such, its code length cannot be significantly
shorter than the length of the code assigned by the LZ encoder [34, Theorem 1]. It is similar to
the line of argument used in [48, eq. (32)].
Let MK+k(·) be any distribution on X̂K+k, and assume the sequence x̂ is divided into blocks

of length K + k and encoded using a Shannon code for MK+k(·). The resulting compression ratio
satisfies

ρK+k = 1
n log |X̂ |

m∑
i=1

⌈
− logMK+k

(
x̂
i(K+k)
(i−1)(K+k)+1

)⌉
(193)

≤ 1
n log |X̂ |

[
−

m∑
i=1

logMK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)
+m

]
(194)

= 1
n log |X̂ |

[
− log

m∏
i=1

MK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)
+m

]
. (195)

The above encoder can clearly be implemented using a finite-state machine of s(K + k) states,
where s(·) is independent of n. Hence, by [34, Theorem 1], dropping the dependence on K + k for

30



ease of notation, we have

ρK+k ≥
c(x̂) + s2

n log |X̂ |
log

(
c(x̂) + s2

4s2

)
+ 2s2

n log |X̂ |
. (196)

Consequently,

− log
m∏
i=1

MK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)
+m ≥ (c(x̂) + s2) log

(
c(x̂) + s2

4s2

)
+ 2s2 (197)

≥ (c(x̂) + 1 + s2 − 1) log
(

2|X̂ |
2|X̂ |

c(x̂) + 1
4s2

)
+ 2s2 (198)

= (c(x̂) + 1) log
(
2|X̂ |(c(x̂) + 1)

)
(199)

+ (s2 − 1) log
(
2|X̂ |(c(x̂) + 1)

)
(200)

+ 2s2 − (c(x̂) + s2) log
(
8|X̂ |s2

)
. (201)

Finally, by [34, Theorem 2], LZ(x̂) ≤ (c(x̂) + 1) log
(
2|X̂ |(c(x̂) + 1)

)
, thus

LZ(x̂) ≤ − log
m∏
i=1

MK+k
(
x̂
i(K+k)
(i−1)(K+k)+1

)
+m+ (c(x̂) + s2) log

(
8|X̂ |s2

)
. (202)

Setting νK+k(n) = m + (c(x̂) + s2) log
(
8|X̂ |s2

)
, m = n

K+k and since c(x̂) ≤ n log |X̂ |
(1−εn) logn ([62,

Theorem 2]), we obtain the required result.

A.5. Proof of Lemma 7
Since Q is Ψ-mixing, for any two block xi, xi+1 which are k symbols apart, we have∣∣∣∣∣ Q(xi, xi+1)

Q(xi)Q(xi+1) − 1
∣∣∣∣∣ ≤ εk (203)

for some εk → 0 as k →∞. Hence,

Q
(
GKx

)
=

∑
x̃∈Xn:x̃i=xi,1≤i≤m

Q(x̃) (204)

= Q(x1, . . . , xm) (205)

≤ (1 + εk)m−1
m∏
i=1

QK(xi) (206)

= (1 + εk)m−12−m(D(P̂Kx ||QK)+ĤK
x(XK)). (207)

The opposite inequality follows in a similar manner.
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A.6. Proof of Corollary 2
Let P be any stationary Ψ-mixing distribution with a K-th order marginal PK . Then,

1 ≥ P
(
TK(PK)

)
(208)

=
∑

GKx∈T
K(PK)

PK
(
GKx

)
(209)

≥
∣∣∣TK(PK)

∣∣∣
G

(1− εk)m−12−mĤ
K
x(XK). (210)

A.7. Converse and Direct for Individual Sequences and Finite–State Guessing
A.7.1. Converse

The converse result is similar to the converse in [48], with the exception of a different notion of a
success probability. Specifically, for any sequence x, we first generalize the success probability of
the finite–state machine, P (x) in the notation of [48] when one has to guess the exact sequence
x, to a success probability in terms of guessing under a distortion constraint. That is, by [48, eq.
(21)], for any finite–state guessing machine F , which is fed by i.i.d. random bits, the ρ–th moment
satisfies the following lower bound

E{GρF |x} ≥
2−ρ

e2 exp2 {−ρ logP (x)} , (211)

where P (x) is the probability that the machine output is x. Note that similar to Lemma 1, the
bound above is based on bounding the ρ–th moment of a Geometric random variable, i.e., repeated
independent trials, where success is declared when the machine outputs the correct sequence. Thus,
analogously, when guessing subject to a distortion measure d and value D, each trail is independent
as well (as the machine is restarted after each guess), yet success is declared when the machine
outputs a sequence within the designated distortion. Hence, we have

E{GρF |x} ≥
2−ρ

e2 exp2 {−ρ logP [S(x)]} , (212)

where S(x), the success set, was defined below (2). We thus have

E{GρF |x} ≥
2−ρ

e2 exp2

−ρ log
∑

{x̂: d(x,x̂)≤nD}

P (x̂)

 . (213)

P (x̂), the probability that the machine outputs x̂, can be viewed as a probability assignment on the
sequences x̂ ∈ X̂ n. As such, − logP (x̂) cannot be too small compared to the code length of an LZ
encoder. This is similar to the argument behind Claim 3 used on a block–memoryless distribution.
In the context of the current discussion, however, it is easier to harness [48, equations (31) and
(32)], resulting in

− logP (x̂) ≥ c(x̂) log c(x̂)− n log[4K2(l)] log |X̂ |
(1− εn) logn −K2(l) log[4K2(l)]−m log(2s3e), (214)
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where s is the number of states, m and l are integers such that ml = n and K(l) is the number of
states of a machine implementing a Shannon code on blocks of size l. Thus, choosing l to grow to
infinity slow enough, we have − logP (x̂)

·
≥ LZ(x̂). Specifically, with l = log(logn) and since K(l)

is bounded by lαl, we have

n log[4K2(l)] log |X̂ |
(1− εn) logn +K2(l) log[4K2(l)] +m log(2s3e) = o(n) (215)

and hence

E{GρF |x}
·
≥ exp2

−ρ log
∑

{x̂: d(x,x̂)≤nD}

2−LZ(x̂)

 (216)

=

 ∑
{x̂: d(x,x̂)≤nD}

2−LZ(x̂)

−ρ , (217)

which proves part (i) of the converse result.
For part (ii), instead of (214), we lower bound − logP (x̂) using the finite–state compressability

of x̂, that is, by [48, eq. (31)],

− logP (x̂) ≥ nρK(l)(x̂)−m log(2s3e). (218)

Continuing from (213), we have

E{GρF |x} ≥
2−ρ

e2 exp2

−ρ log
∑

{x̂: d(x,x̂)≤nD}

exp2

{
−nρK(l)(x̂) +m log

(
2s3e

)} (219)

= 2−ρ

e2

 ∑
{x̂: d(x,x̂)≤nD}

exp2

{
−nρK(l)(x̂) +m log

(
2s3e

)}−ρ , (220)

which is true for any integers m and l such that ml = n. This completes the proof of the converse.

A.7.2. Direct

For the direct, we first note that the universal distribution given in (7), that is P̃ (x̂) ·= 2−LZ(x̂),
results in

P̃ [S(x)] ·=
∑

{x̂: d(x,x̂)≤nD}

2−LZ(x̂). (221)

Thus, invoking Lemma 1 yields

E{GρLZ |x}
·=

 ∑
{x̂: d(x,x̂)≤nD}

2−LZ(x̂)

−ρ (222)

for the specific universal distribution in (7). Clearly, this meets the converse result. However, the
distribution in (7) cannot be implemented with a finite–state machine whose number of states is
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independent of n. To asymptotically achieve (222) with such a finite–state machine, we invoke the
solution in [48] for the same problem (as the same distribution was sought). That is, we consider
the distribution in (30). This distribution can be implemented with a finite–state machine with
s(l) states, and for such a finite–state guessing machine we have

E{GρLZ |x}
·=

 ∑
{x̂: d(x,x̂)≤nD}

n/l−1∏
i=0

 2−LZ(x̂il+l
il+1)∑

x̂l∈X̂ l 2−LZ(x̂l)

−ρ (223)

·=

 ∑
{x̂: d(x,x̂)≤nD}

n/l−1∏
i=0

2−LZ(x̂il+l
il+1)

−ρ (224)

=

 ∑
{x̂: d(x,x̂)≤nD}

exp2

−
n/l−1∑
i=0

LZ(x̂il+lil+1)


−ρ (225)

≤

 ∑
{x̂: d(x,x̂)≤nD}

exp2

−
n/l−1∑
i=0

c(x̂il+lil+1) log c(x̂il+lil+1)− nε(l)


−ρ (226)

≤
[ ∑
{x̂: d(x,x̂)≤nD}

exp2

{
− n

[
ρK(x̂) +

log(4K2)
(1− ε(l)) log l + K2 log(4K2)

l
+ ε(l)

]}]−ρ
, (227)

where ε(l)→ 0 as l→∞, (226) is by [48, eq. (33)] and (227) is by [48, eq. (38)].
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