
Hierarchical Universal Coding �

Meir Federy Neri Merhavz

April 10, 1998

Abstract

In an earlier paper, we proved a strong version of the redundancy-capacity converse theorem of
universal coding, stating that for `most' sources in a given class, the universal coding redundancy is
essentially lower bounded by the capacity of the channel induced by this class. Since this result holds for
general classes of sources, it extends Rissanen's strong converse theorem for parametric families. While
our earlier result has established strong optimality only for mixture codes weighted by the capacity-
achieving prior, our �rst result herein extends this �nding to a general prior. For some cases our technique
also leads to a simpli�ed proof of the above mentioned strong converse theorem.

The major interest in this paper, however, is in extending the theory of universal coding to hierarchical
structures of classes, where each class may have a di�erent capacity. In this setting, one wishes to incur
redundancy essentially as small as that corresponding to the active class, and not the union of classes.
Our main result is that the redundancy of a code based on a two-stage mixture (�rst, within each class,
and then over the classes), is no worse than that of any other code for `most' sources of `most' classes. If,
in addition, the classes can be e�ciently distinguished by a certain decision rule, then the best attainable
redundancy is given explicitly by the capacity of the active class plus the normalized negative logarithm
of the prior probability assigned to this class. These results suggest some interesting guidelines as for
the choice of the prior. We also discuss some examples with a natural hierarchical partition into classes.

Index Terms: universal coding, minimax redundancy, maximin redundancy, capacity, redundancy-
capacity theorem, mixtures, arbitrarily varying sources.
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1. Introduction

In the basic classical setting of the problem of universal coding it is assumed that, although the exact

information source is unknown, it is still known to belong to a given class fP (�j�); � 2 �g, e.g., memoryless

sources, �rst order Markov sources, and so on. The performance of a universal code is measured in terms

of the excess compression ratio beyond the entropy, namely, the redundancy rate Rn(L; �), which depends

on the code length function L(�), the source indexed by �, and the data record length n. The minimax

redundancy R+
n = minL sup�2�Rn(L; �), de�ned by Davisson [9], is the minimum uniform redundancy rate

that can be attained for all sources in the class. Gallager [13] was the �rst to show (see also, e.g., [11],

[22]) that R+
n = Cn, where Cn is the capacity (per symbol) of the `channel' from � to the source string

x = (x1; :::; xn), i.e., the channel de�ned by the set of conditional probabilities fP (xj�), � 2 �g. This

redundancy rate can be achieved by an encoder whose length function corresponds to a mixture of the

sources in the class, where the weighting of each source � is given by the capacity-achieving distribution.

Thus, the capacity Cn = R+
n actually measures the richness of class from the viewpoint of universal coding.

One may argue that the minimax redundancy is a pessimistic measure for universal coding redundancy

since it serves as a lower bound to the redundancy for the worst source only. Nevertheless, for smooth

parametric classes of sources, Rissanen [18] has shown that this (achievable) lower bound essentially applies

to most sources in the class, namely, for all � except for a subset B whose Lebesgue measure vanishes with

n. In a recent paper [16], we have extended this result to general classes of information sources, stating

that for any given L, Rn(L; �) is essentially never smaller than Cn, simultaneously for every � except for a

`small' subset B. The subset B is small in the sense of having a vanishing measure w.r.t. the prior w� that

achieves (or nearly achieves) capacity.1 The results in [16] strengthen the notion of Shannon capacity in

characterizing the richness of a class of sources. In this context, our �rst contribution here, is in developing

a technique that both simpli�es the proof and extends the result of [16] to a general prior, not only the

capacity-achieving prior. In light of all these �ndings, this basic setting of universal coding for classes with

1It is explained in [16] why it is more reasonable to measure the exception set B w.r.t. w� (or a good approximation to w�)
rather than the uniform measure.
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uniform redundancy rates, is now well understood.

Another category of results in universal lossless source coding corresponds to situations where the class

of sources is so large and rich, that there are no uniform redundancy rates at all, for example, the class of all

stationary and ergodic sources. In these situations, the goal is normally to devise data compression schemes

that are universal in the weak sense only, namely, schemes that asymptotically attain the entropy of every

source, but there is no characterization of the redundancy, which might decay arbitrarily slowly for some

sources. In fact, this example of the class of all stationary and ergodic sources is particularly interesting

because it can be thought of as a `closure' of the union of all classes �i of ith order Markov sources: every

stationary and ergodic source can be approached, in the relative entropy sense, by a sequence of Markov

sources of growing order. But unfortunately, existing universal encoders for stationary and ergodic sources

(e.g., the Lempel-Ziv algorithm), are unable to adapt the redundancy when a source from a `small' subclass

is encountered. For example, when the underlying source is Bernoulli, the redundancy of the Lempel-Ziv

algorithm does not reduce to the capacity Cn � 0:5 logn=n of the class of Bernoulli sources.

This actually motivates the main purpose of this paper, which is to extend the scope of universal coding

theory so as to deal with hierarchies of classes. Speci�cally, we focus on the following problem: let �1;�2; : : :,

denote a �nite or countable set of source classes with possibly di�erent capacities Cn(�1); Cn(�2); :::. We

know that the source belongs to some class �i but we do not know i. Our challenge is to provide coding

schemes with optimum `adaptation' capability in the sense that, �rst, the capacity of the active classCn(�i) is

always approached, and moreover, the extra redundancy due to the lack of prior knowledge of i, is minimum.

One conceptually straightforward way to achieve this adaptation property is to apply a two-part code,

where the �rst part is a code for the index i using some prior on the integers f�ig, and the second part im-

plements optimum universal coding within each class. By doing this, one can achieve redundancy essentially

as small as Cn(�i) + (log 1=�i)=n. This method, however, requires a comparison between competing codes

for all fig or a good estimator for the true i, for example, the minimum description length (MDL) estimator

[17], [18], [19] or some of its extensions (see e.g., [2], [3]). Although this approach has been proved successful
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in certain situations, it is not clear whether it is optimal in general.

An alternative approach, proposed �rst by Ryabko [23] for Markov sources, is to make a further step in

the Bayesian direction and to use a code that corresponds to a two-stage mixture, �rst within each class

and then over the classes. (See also, e.g., [26] for e�cient implementation of two-stage mixture codes, and

[25] for other related work). It is easy to show that the resultant redundancy is never larger than that of

the above mentioned two-part code. We will see, however, that the reasoning behind the Bayesian approach

to hierarchical universal coding is deeper than that. We prove that a two-stage mixture code with a given

weighting is no worse than any other lossless code for `most' sources of `most' classes w.r.t. this weighting.

If, in addition, the classes f�ig are distinguishable in the sense that there exists a good estimator for

i (e.g., the Markovian case where there is a consistent order estimator [24]), then the minimum attainable

redundancy is essentially

Cn(�i) +
1

n
log

1

�i
: (1)

While this redundancy is well known to be achievable, here we also establish it as a lower bound. This

suggests an interesting guideline with regard to the choice of the prior: It would be reasonable to choose

f�ig so that the second term would be a negligible fraction of the �rst term, which is unavoidable. This

means that the richer classes are assigned smaller weights.

In other cases, the redundancy of this two-stage mixture code, which essentially serves as a lower bound

for any other code, can be decomposed into a sum of two capacity terms. The �rst is the intra-class capacity

Cn(�i), representing the cost of universality within �i, and the second term is the inter-class capacity cn,

which is attributed to the lack of prior knowledge of the index i. The goal of approaching Cn(�i) for every

i is now achievable if cn (which is independent of i), is very small compared to Cn(�i) for all i.

In the last part of the paper, we analyze the special case of �nite-state (FS) arbitrarily varying sources

(AVSs), where such a decomposition property takes place if the f�ig are de�ned as the type classes of all

possible underlying state sequences. Here, the �rst term Cn(�i), which depends on the type of the state

sequence, tends to a positive constant as n ! 1, while the second term cn behaves like O(logn=n). Our
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results indicate that the best attainable compression ratio is essentially as if the state sequence was i.i.d. with

a probability distribution being the same as the empirical distribution of the actual underlying (deterministic)

state sequence. This is di�erent from earlier results due to Berger [4, Sect. 6.1.2] and Csisz�ar and K�orner

[8, Theorem 4.3] for �xed length rate-distortion codes. According to [4] and [8], for the distortionless case,

the best attainable rate is the same as if the state sequence was i.i.d. with the worst possible distribution in

the sense of maximizing the source output entropy. Thus, by applying the hierarchical approach to AVSs,

we have both improved the main redundancy term and characterized the best second order term cn.

The outline of the paper is as follows. In Section 2, some preliminaries and background of earlier work

are provided. In Section 3, a simpli�ed and extended version of [16, Theorem 1] is presented. In Section

4, the main results are derived for general hierarchies of classes of sources. In Section 5, the closed-form

expression (1) for the best achievable redundancy is developed for the case of distinguishable classes. Finally,

in Section 6, the special case of FS AVSs is studied.

2. Background

Throughout this work, we adopt the convention that a (scalar) random variable is denoted by a capital letter

(e.g., X), a speci�c value it may take is denoted by the respective lower case letter (x), and its alphabet

is denoted by the respective script letter (X ). As for vectors, a bold type capital letter (X) will denote an

n-dimensional random vector (X1; : : : ; Xn), a bold type lower case letter (x) will denote a speci�c vector

value (x1; : : : ; xn), and the respective super-alphabet, which is the nth Cartesian power of the single-letter

alphabet, will be denoted by the corresponding script letter with the superscript n (Xn). The cardinality

of a set will be denoted by j � j, e.g., jX j is the size of the alphabet of X . Alphabets will be assumed �nite

throughout this paper. Probability mass functions (PMFs) of single letters will be denoted by lower case

letters (e.g., p) and PMFs of n-vectors will be denoted by the respective capital letters (P ).

A uniquely decipherable (UD) encoder for n-sequences maps each possible source string x 2 Xn to a
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binary word whose length will be denoted by L(x), where by Kraft's inequality

X
x2Xn

2�L(x) � 1: (2)

For the sake of convenience, and essentially without any e�ect on the results, we shall ignore the integer

length constraint associated with the function L(�) and allow any nonnegative function that satis�es Kraft's

inequality.

Consider a class of information sources fP (�j�)g indexed by a variable � 2 �. For a source P (�j�) and an

encoder with length function L(�), the redundancy is de�ned as

Rn(L; �) =
E[L(X)j�] �H(Xj�)

n
; (3)

where E[�j�] denotes expectation w.r.t. P (�j�) and H(Xj�) denotes the nth order entropy of P (�j�), i.e.,

H(Xj�) = �
X
x2Xn

P (xj�) logP (xj�); (4)

where logarithms throughout the sequel will be taken to the base 2.

Davisson [9] de�ned, in the context of universal coding, the minimax redundancy and the maximin

redundancy in the following manner. The minimax redundancy is de�ned as

R+
n = min

L
sup
�2�

Rn(L; �): (5)

To de�ne the maximin redundancy, let us assign a probability measure w(�) on � and let us de�ne the

mixture source

Pw(x
n) =

Z
�

w(d�)P�(x
n): (6)

The average redundancy associated with a length function L(�), is de�ned as

Rn(L;w) =

Z
�

w(d�)Rn(L; �): (7)

The minimum expected redundancy for a given w (which is attained by the ideal code length w.r.t the

mixture, i.e., Lw(x
n) = � logPw(x

n)) is de�ned as

Rn(w) = min
L

Rn(L;w): (8)
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Finally, the maximin redundancy is the worst case minimum expected redundancy among all priors w, i.e.,

R�n = sup
w

Rn(w): (9)

It is easy to see [9] that the maximin redundancy is identical to the capacity of the channel de�ned by the

conditional probability measures P (xj�), i.e.,

R�n = Cn = sup
w

1

n
Iw(�;X

n); (10)

where Iw(�;X
n) is the mutual information induced by the joint measure w(�) � P (xj�). If the supremum is

achieved by some prior w� (i.e., if it is in fact a maximum), then w� is called a capacity-achieving prior.2

Gallager [13] was the �rst to show that if P (xj�) is a measurable function of � for every x then R�n = R+
n

and hence both are equal to Cn.

While Cn = R+
n is by de�nition, an attainable lower bound to Rn(L; �) for the worst source only, it

turns out to hold simultaneously for `most' points �. Speci�cally, the following converse theorem to universal

coding, with slight modi�cations in the formalism, was stated and proved in [16, Theorem 1].

Theorem 1 [16]: For every UD encoder that is independent of �, and every positive sequence f�ng,

Rn(L; �) � Cn � �n (11)

for every � 2 � except for a subset B � � whose probability w.r.t. w� is less than e � 2�n�n .

The theorem is of course meaningful if �n << Cn and, at the same time, n�n tends to a large constant

or even to in�nity (which is possible if nCn ! 1). In this case, the lower bound on the redundancy for

every � 2 Bc = ��B is essentially Cn.

In order for Bc to cover `most' sources in �, the capacity-achieving prior w� must be bounded away

from zero. Otherwise, the theorem, though formally correct, might be meaningless. This point is discussed

extensively in [16], and it is handled in two ways. First, it is shown that a similar theorem holds for priors

that nearly achieve capacity. If such a prior is also bounded away from zero (e.g., the uniform prior or

Je�reys' prior in the parametric case), then it can be used instead of w�. Therefore, as a special case of

2Note that w� may not be unique.
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Theorem 1, one obtains Rissanen's converse theorem to universal coding [18] for smooth parametric families

with k degrees of freedom, where Cn � 0:5k logn=n. Second, another lower bound, the random coding

capacity instead of the Shannon capacity, is derived for an arbitrary prior. This bound, however, might not

be tight in general. A third approach, which leads to our main results in this paper, is described in the next

section.

3. Another Look at the Converse Theorem

The above discussed results not only provide performance bounds, but also indicate that an optimal universal

encoder, in the sense of Theorem 1, is based on a mixture of the sources in the class w.r.t. a certain prior.

It turns out, however, that the class of codes based on mixtures of fP (�j�)g is optimal in a deeper and wider

sense. In [16, eq. (17)] it was shown that for every length function L that does not depend on �, there exists

a length function L0 associated with some mixture over �, such that Rn(L
0; �) � Rn(L; �) simultaneously

for all � 2 �. Therefore, there is no loss of optimality if universal codes are sought only among these that

correspond to mixtures of fP (�j�); � 2 �g.

Furthermore, we next show that the redundancy of the Shannon code based on a mixture
R
�
w(d�)P (xj�)

with a given prior w, is optimal not only on the average w.r.t. w, but also for most � w.r.t. w. In other

words, the redundancy of any length function L is essentially lower bounded in terms of the redundancy of

Lw, which is a well de�ned quantity although may not have a closed-form expression. This is more general

than [16, Theorem 1] since it holds for arbitrary w, not just the capacity-achieving prior w�. For w = w�, it

also leads to a considerably simpler proof of [16, Theorem 1] in some cases, e.g., when � is a �nite set. An

additional bonus is that the factor e in the upper bound on the probability of B, is removed.

Theorem 2 Let L(�) be the length function of an arbitrary UD encoder that does not depend on �, and let

Lw(x) = � logPw(x) where Pw(�) is de�ned as in eq. (6). Then, for every positive sequence f�ng,

Rn(L; �) � Rn(Lw; �)� �n (12)
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for every � 2 � except for points in a subset B � � where

w(B) =

Z
B

w(d�) � 2�n�n : (13)

Observe that if � is a �nite set and w = w�, the capacity-achieving prior, then Rn(Lw� ; �) = Cn for

all � 2 � with positive prior probability [12, Theorem 4.5.1], and so, we obtain Theorem 1 of [16] at least

for a discrete � as a special case. Clarke and Barron [5], [6] have shown also that for parametric classes

of memoryless sources and Je�reys' prior wJ (which nearly attains capacity), Rn(LwJ ; �) coincides with Cn

within a term of O(1=n). Therefore, Theorem 2 extends Theorem 1 in the parametric case as well.

For choices of w that are signi�cantly di�erent from w�, the redundancy Rn(Lw; �) may depend on �.

The choice of w may depend on the desired weighting that one may wish to assign to the exceptional set

B according to Theorem 2. For example, for a uniform w, the quantity w(B) has the meaning of a simple

relative count if � is discrete, or the Lebesgue measure if � is continuous (see also [18]).

Another way to look at Theorem 2 is in terms of the relative entropy. Since one may con�ne attention

to length functions that satisfy Kraft's inequality with equality, then Q(x) = 2�L(x) can be thought of as a

probability measure and so,

Rn(L; �) =
1

n
D(P (�j�)jjQ) 4= 1

n

X
x2Xn

P (xj�) log P (xj�)
Q(x)

: (14)

From this point of view, Theorem 2 tells us that D(P (�j�)jjQ) � D(P (�j�)jjPw) for most � w.r.t. w. In

words, among all �xed probability measures of n-tuples, Pw is essentially the `closest' to `most' measures in

the class. This inequality, which was discussed extensively in [16], continues to hold even when x takes on

values in a continuous alphabet. Therefore, it is not limited merely to the context of lossless source coding.

Proof of Theorem 2. By Kraft's inequality,

1 �
X
x2Xn

2�L(x)

=
X
x2Xn

Pw(x) � 2Lw(x)�L(x)

=

Z
�

w(d�)
X
x2Xn

P (xj�)2Lw(x)�L(x)
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�
Z
�

w(d�)2EfLw(X)j�g�EfL(X)j�g

=

Z
�

w(d�)2n[Rn(Lw;�)�Rn(L;�)]; (15)

where the second inequality follows from the convexity of the function f(u) = 2u and Jensen's inequality.

Finally, by Markov's inequality, we have

w(B) = wf� : 2n[Rn(Lw;�)�Rn(L;�)] > 2n�ng �
R
�
w(d�)2n[Rn(Lw;�)�Rn(L;�)]

2n�n
� 2�n�n : (16)

The proof of Theorem 2 can be viewed as an extended version of a simple technique [1] for proving the

competitive optimality property [7]. Competitive optimality means that the Shannon code length is not

only optimum in the expected length sense, but it also wins, within c bits, any other length function with

probability at least 1�2�c. More precisely, if L�(x) = � logP (x) for a given source P , then for any other UD

code with length function L, Kraft's inequality implies (similarly as above) that 1 �Px P (x)2L�(x)�L(x),

which in turn, by Markov's inequality, leads to PrfL�(x) > L(x) + cg � 2�c for all c. The above proof of

the universal coding result just contains a re�nement that the expectation w.r.t. x is raised to the exponent,

while the expectation w.r.t. � is kept intact.

In the other direction, as will be demonstrated in the next section, the proof of Theorem 2 is easy to

extend to hierarchical structures of classes of information sources.

4. Two-Stage Mixtures Are Optimal for Hierarchical Coding

Consider a sequence of classes of sources, �1;�2; :::�Mn
. The number of classesMn may be �nite and �xed,

or growing with n, or even countably in�nite for all n. We know that the active source P (�j�) belongs to one

of the classes �i but we do not know i in advance. In view of the above �ndings, if one views this problem

just as universal coding w.r.t. the union of classes � = [i�i, then the redundancy would be the capacity

Cn(�) associated with �. For example, if �i, 1 � i �Mn, is the class of all �nite-state sources with i states,

then Cn(�) is essentially the same as the redundancy associated with the maximum number of states Mn.
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Obviously, it is easy to do better than that as there are many ways to approach the capacity Cn(�i) of the

class corresponding to the active source.

One conceptually simple approach is to apply a two-part code described as follows: For a given i, the

�rst part (the header) encodes the index i using some prior on the integers f�ig, and the second part

implements Lw�
i
, which corresponds to the capacity-achieving prior w�i of �i. The value of i is chosen so

as to minimize the total length of the code. By doing this, one achieves redundancy essentially as small as

Cn(�i) + (log 1=�i)=n. This method, however, requires a comparison between competing codes for all fig,

or an estimator for i (e.g., the minimum description length estimator [19]). It is not clear, however, whether

this yields the best achievable redundancy in general.

In view of the optimality of the Bayesian approach for a single class, a natural alternative is to use a code

that corresponds to a two-stage mixture, �rst over each �i and then over fig, which is obviously equivalent

to a certain mixture over the entire set �. This idea has been �rst proposed by Ryabko [23] for the hierarchy

of Markov sources. A simple observation is the following. Let wi denote a prior on �i and let � = f�ig

denote a prior on the integers 1 � i �Mn. Now, let

Pwi(x) =

Z
�i

wi(d�)P (xj�); (17)

P�(x) =

MnX
i=1

�iPwi(x); (18)

and

L�(x) = � logP�(x): (19)

Since P�(x) � �iPwi(x), then by choosing wi = w�i , the resulting redundancy would be essentially upper

bounded by that of the above described two-part code. In other words, the mixture approach is at least as

good as the two-part approach.

But as discussed in the beginning of Section 3, the optimality of the mixture approach follows from

deeper considerations, which are relevant to the hierarchical setting as well. Indeed, by a simple extension of

the proof of Theorem 2 above, we show that L�(x) for arbitrary weighting is essentially optimum for `most'
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sources of `most' classes w.r.t. this weighting.

Theorem 3 Let L(�) be the length function of an arbitrary UD encoder that does not depend on � or i, and

let f�ng be a positive sequence. Then for every i, except for a subset of f1; 2; :::;Mng whose total weight

w.r.t. � is less than 2�n�n , �i has the following property:

Rn(L; �) � Rn(L�; �)� 2�n (20)

for every � 2 �i except for points a subset Bi � �i where

wi(Bi) � 2�n�n : (21)

Proof. Similarly as in the proof of Theorem 2, we obtain

MnX
i=1

�i

Z
�i

wi(d�)P (xj�)2n[Rn(L�;�)�Rn(L;�)] � 1: (22)

Thus, by Markov's inequality,

Z
�i

wi(d�)P (xj�)2n[Rn(L�;�)�Rn(L;�)] � 2n�n (23)

for all i except for a subset of integers in f1; 2; :::;Mng whose total weight w.r.t. � is less than 2�n�n . Now,

for every non-exceptional i, we have by another application of Markov's inequality,

wif� 2 �i : Rn(L�; �) � Rn(L; �) + 2�ng � 2�n�n : (24)

Let us take a closer look at the redundancy of the two-stage mixture code Rn(L�; �).

nRn(L�; �) = E[� logP�(X)j�]�E[� logP (Xj�)j�]

= (E[� logPwi(X)j�]�E[� logP (Xj�)j�]) + (E[� logP�(X)j�] �E[� logPwi(X)j�])

= nRn(Lwi ; �) +E

�
log

Pwi(X)

P�(X)
j�
�
; (25)
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where Lwi is the length function of the Shannon code w.r.t. Pwi . Thus, the redundancy of L� is decomposed

into two terms. The �rst is Rn(Lwi ; �), the redundancy within �i, and the second is

rn(�)
4
=

1

n
E

�
log

Pwi(X)

P�(X)
j�
�
: (26)

As mentioned earlier, since P�(x) is never smaller than �iPwi(x), it is readily seen that sup�2�i rn(�) �

n�1 log(1=�i). In the next section, we show that if the classes are e�ciently distinguishable upon observing

x by a good estimator of i, then not only is this bound tight, but moreover, rn(�) � n�1 log(1=�i) for `most'

� w.r.t wi.

Returning to the general case, a natural question that arises at this point is how to choose the priors

fwig and �. There are two reasonable guidelines that we may suggest. The �rst is to put more mass on

sources and classes which are considered `more important' in the sense of Theorem 3. If all classes and all

sources in each class are equally important, use uniform distributions. A second reasonable choice (from the

same reasons as explained in [16]), is wi = w�i for all i, and � = ��, where �� achieves the capacity cn of the

`channel' from i to x, as de�ned by Pw�
i
(x). Note, that in this case, since the expectation of rn(�) w.r.t. w

�
i

is cn [12, Theorem 4.5.1], we have

sup
�2�i

Rn(L; �) � Cn(�i) + cn (27)

for all i with ��i > 0. Namely, the maximum redundancy is lower bounded by the sum of two capacity terms:

the intra-class capacity Cn(�i) associated with universality within each class, and the inter-class capacity

cn, which is the cost attributed to the lack of knowledge of i.

In Section 6, we provide the example of �nite-state (FS) arbitrarily varying sources (AVSs), where

inequality (27) becomes an equality for every source � in the class. This happens because in the special case

of the AVS, rn(�) turns out to be independent of � and so, rn(�) =
P

�02�i
wi(�

0)rn(�
0) = cn for all �.

5. Distinguishable Classes of Sources

It was mentioned earlier that sup�2�i rn(�) � n�1 log(1=�i). An interesting question is: under what condi-

tions exactly is this bound tight?
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To answer this question, we pause for a moment from our original problem and consider the problem

of universal coding for a class with a countable number of sources de�ned by arbitrary PMFs on Xn,

denoted Q(�ji), i = 1; 2; :::;Mn. In the next lemma, we provide bounds on the redundancy of the mixture

Q�(x) =
P

i �iQ(xji) w.r.t. every Q(�ji). Let g : Xn ! f1; 2; :::;Mng denote an arbitrary estimator of the

index i of Q(�ji), and let Q(eji) = Qfx : g(x) 6= ijig denote the error probability given i. Similarly, let

Q(cji) = 1�Q(eji), and Q(e) =
P

i �iQ(eji) for the given prior �. Then, we have the following result:

Lemma 1 For every estimator g and every 1 � i �Mn,

log

�
1

�i

�
� nD(Q(�ji)jjQ�) � Q(cji) log

�
Q(cji)

�i +Q(e)

�
+Q(eji) logQ(eji): (28)

The proof appears in Appendix A.

The lemma tells us that if there exists a consistent estimator g, i.e., Q(eji) for every i, and so Q(e), tend

to zero as n ! 1, then the right-most side tends to log(1=�i) and hence so does nD(Q(�ji)jjQ�). In other

words, for a discrete set of sources fQ(�ji)g that are distinguishable upon observing x by some decision rule

g, the redundancy of the mixture Q� w.r.t. Q(�ji) behaves like n�1 log(1=�i) for large n.

The relevance of this lemma to our problem becomes apparent by letting Q(xji) = Pwi(x), and then

Q(eji) is interpreted as the average error probability given �i w.r.t. wi. Speci�cally, for a given � 2 �i, let

us denote

P (ej�) =
X

x:g(x)6=i

P (xj�); (29)

�P (eji) = Q(eji) =
Z
�i

wi(d�)P (ej�); (30)

�P (cji) = Q(cji) = 1� �P (eji); (31)

and

�P (e) = Q(e) =

MnX
i=1

�i �P (eji): (32)

We also note that this substitution gives

Z
�i

wi(d�)rn(�) = D(Q(�ji)jjQ�); (33)
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and so, it immediately leads to the following corollary to Lemma 1.

Corollary 1 For every estimator g and every 1 � i �Mn,

log

�
1

�i

�
� n

Z
�2�i

wi(d�)rn(�) � �P (cji) log
� �P (cji)
�i + �P (e)

�
+ �P (eji) log �P (eji): (34)

The corollary tells us that if there exists an index estimator g that is consistent for `most' � 2 �i,

i = 1; 2; :::;Mn, in the sense that for every � > 0, wif� : P (ej�) � �g ! 0 as n !1, then the lower bound

will be essentially log(1=�i).

A common example is where �i is the class of all uni�lar �nite-state sources with i states. A uni�lar

�nite-state source is characterized by P (xj�) =
Qn

t=1 p(xijsi), where � = fp(xjs)g, s = (s1; :::; sn) is a

state sequence whose elements are taking values in f1; :::; ig, and st, t = 2; 3; :::, is given by a deterministic

function of xt�1 and st�1, while the initial state s1 is assumed �xed. In this example, there is a consistent

estimator [24] for i provided that Mn is �xed or grows su�ciently slowly with n. (See also Hannan and

Quinn [14], Kie�er [15], and Rudich [21] for earlier related work on model order selection). It should be

pointed out that in [24] it has not been established explicitly that �P (e)! 0 for the model estimator proposed

therein. Nevertheless, this can be easily deduced from the following consideration: For every � > 0, the set

f� 2 �i : P (ej�) � �g has a vanishingly small probability w.r.t. wi as n ! 1, provided that wi does not

put too much mass near the boundaries between �i and �i�1.

Let us denote the lower bound of Corollary 1 by [log(1=�i)� �n(i)], i.e.,

�n(i) = log
1

�i
� �P (cji) log

� �P (cji)
�i + �P (e)

�
� �P (eji) log �P (eji); (35)

keeping in mind that if the classes f�ig are distinguishable in the sense that such an estimator g exists,

then �n(i) ! 0 for every �xed i. There are two immediate conclusions from Corollary 1. First, it implies

that n sup�2�i rn(�) � log(1=�i) � �n(i), and since we have already seen that n sup�2�i � log(1=�i), we

conclude that n sup�2�i rn(�) � log(1=�i). Second, since the supremum is upper bounded by log(1=�i),

while the expectation is lower bounded by log(1=�i) � �n(i), then obviously, `most' points in �i must have
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nrn(�) � log(1=�i). More precisely, for � > 0, let

S =

�
� : nrn(�) < log

1

�i
��

�
: (36)

Then, we have

log
1

�i
� �n(i) �

Z
S

wi(d�)nrn(�) +

Z
Sc
wi(d�)nrn(�)

� wi(S)

�
log

1

�i
��

�
+ [1� wi(S)] log

1

�i
; (37)

which implies that

wi(S) � �n(i)

�
: (38)

By combining Theorem 3, where �n = �=n (� > 0), and eq. (38), both with wi = w�i for all i, we obtain

a lower bound on the redundancy of an arbitrary UD encoder with length function L. Speci�cally,

Rn(L; �) � Rn(Lw�
i
; �) + rn(�) � 2�

n

� Cn(�i) + rn(�)� 3�

n

� Cn(�i) +
1

n
(log

1

�i
��� 3�): (39)

The �rst inequality, which is a restatement of Theorem 3, applies to `most' sources w.r.t. w�i , of `most'

classes w.r.t. �. The second inequality, which follows from Theorem 1, and the third inequality, which we

have now established, both hold for `most' � 2 �i w.r.t. w
�
i .

Thus, we have just proved the following Theorem, which provides a lower bound for hierarchical universal

coding, for the case of distinguishable classes of sources.

Theorem 4 Let g be an estimator of the index of the class such that �P �(eji) = R
�i
w�i (d�)P (ej�) ! 0 as

n ! 1, uniformly for all 1 � i � Mn. Let L be the length function of an arbitrary UD encoder that does

not depend on � or i, and let � > 0 and � > 0 be arbitrary constants. Then, for every i, except for a subset

of f1; 2; :::;Mng whose total weight w.r.t. � is less than 2��, every class �i has the following property:

Rn(L; �) � Cn(�i) +
1

n
(log

1

�i
��� 3�); (40)
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for every � 2 �i except for points in a subset Bi � �i such that

w�i (Bi) � 2�(��1) +
��n(i)

�
; (41)

where ��n(i) is de�ned as in eq. (35), with average error probabilities being de�ned w.r.t. fw�i g.

Again, as mentioned after Theorem 1, it should be kept in mind that if necessary, each w�i can be

essentially replaced by a prior that is bounded away from zero, and at the same time, nearly achieves Cn(�i)

(see also [16]).

The second term of the lower bound might not be meaningful if log(1=�i) is of the same order of magnitude

as � + 3�, which in turn should be reasonably large so as to keep the mass of Bi small. However, if we �x

� and � so that w�i (Bi) would be fairly small, say 0:01, and if Mn is very large (Mn may tend to in�nity),

then for most classes (in the uniform counting sense), �i must be very small, and so log(1=�i) would be large

compared to � + 3�. Thus, the assertion of the theorem is meaningful if � is chosen such that for `most'

values of i w.r.t. �, log(1=�i) is large. This can happen only if � has a large entropy, i.e., it is close to

the uniform distribution in some sense. Of course, if � is exactly uniform then log(1=�i) = logMn for all i.

This interpretation of Theorem 4, however, should be taken carefully, because if i is allowed to grow with

n, and hence �i decays with n, then ��n(i) is small only if �P �(e) =
P

i �i
�P �(eji) is small compared to �i (see

Corollary 1). In other words, Theorem 4 is meaningful only for i that is su�ciently small compared to n.

This is guaranteed for all i when Mn grows su�ciently slowly.

Roughly speaking, the theorem tells us that if the classes f�ig are distinguishable in the sense that there

exists a good estimator g, then the minimum achievable redundancy is approximately

Cn(�i) +
1

n
log

1

�i
: (42)

Note that if, in addition, f�ig is a monotonically non-increasing sequence, then �i � 1=i, and so log(1=�i) is

further lower bounded by log i. This is still nearly achievable by assigning the universal prior on the integers

or �i / 1=i1+� where � > 0 if Mn =1. This means that

Cn(�i) +
log i

n
(43)
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is the minimum attainable redundancy w.r.t. any monotone weighting of the indices fig.

The minimum redundancy (42) is attained by a two-stage mixture where wi = w�i . The choice of �, in this

case, can be either based on the guidelines provided in the previous section or on the following consideration:

We would like the extra redundancy term log(1=�i) to be a small fraction of the �rst redundancy term Cn(�i)

that we must incur anyhow. Speci�cally, if possible, we would like to choose n�1 log(1=�i) � �Cn(�i), which

leads to

�i =
2��nCn(�i)

Kn(�)
; (44)

whereKn(�) is a normalizing factor. This means that the rich and complex classes are assigned a smaller prior

probability. The redundancy would then be (1+�)Cn(�i)+n
�1 logKn(�), where now the second term does not

depend on i. For example, if �i is the class of ith order Markov sources, then Cn(�i) � 0:5Ai(A� 1) logn=n

(see, e.g., [10], [20]), and so,

�i =
exp2[� 1

2�A
i(A� 1) logn]

Kn(�)
=

n�0:5�Ai(A�1)

Kn(�)
: (45)

As for the normalization factor,

Kn(�) �
1X
i=0

n�0:5�Ai(A�1)

�
1X
i=1

n�0:5�i

=
1

n0:5� � 1
! 0: (46)

and therefore the term n�1 logKn(�) has a negative contribution. Note that if Mn <1 and � is chosen very

small (so that the coe�cient in front of Cn(�i) would be close to unity), then � is close to uniform. This

agrees with the conclusion of our earlier discussion that � should be uniform or nearly uniform.

We have mentioned before the hierarchy of classes of uni�lar �nite-state sources as an example where

the classes are distinguishable. In the next section, we examine another example - FS AVSs, where the

natural hierarchical partition does not yield distinguishable classes, yet the universal coding redundancy can

be characterized quite explicitly.
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6. Arbitrarily Varying Sources

An FS AVS is a non-stationary memoryless source characterized by the PMF,

P (xjs) =
nY
i=1

p(xijsi); (47)

where x = (x1; : : : ; xn) is again the source sequence to be encoded, and s = (s1; : : : ; sn) is an unknown

arbitrary sequence of states corresponding to x, where each si takes on values in a �nite set S. We shall

assume, for the sake of simplicity, that the parameters of the AVS fp(xjs)gx2X ;s2S are known, and then only

universality w.r.t. the unknown state sequence will be studied. This is clearly a special case of our problem

with � = s and � = Sn.

Obviously, since Cn, for all n, is given by the capacity C of the memoryless channel p(xjs), it does not

vanish with n, and so, universal coding in the sense of approaching the entropy, is not feasible for this large

class of sources. Yet, universal coding in the sense of attaining the lower bound remains a desirable goal. The

capacity-achieving prior on Sn is the i.i.d. measure w� that achieves the capacity of the memoryless channel

(47). Therefore, most of the mass is assigned by w� to state sequences whose empirical distributions are

close to w�. Consequently, if � = Sn is treated as one big class of sources, Theorem 1 of [16] and Theorem

2 herein, tell us very little about the redundancy incurred at all other state sequences. We are then led to

treat separately each type class of state sequences with the same empirical distribution, in other words, to

use the hierarchical approach.

We, therefore, pause to provide a few de�nitions associated with type classes. For a given state sequence

s 2 Sn, the empirical PMF is the vector ws = fws(s); s 2 Sg where ws(s) = ns(s)=n, ns(s) being the

number of occurrences of the state s 2 S in the sequence s. The set of all empirical PMFs of sequences s in

Sn, i.e., rational PMFs with denominator n, will be denoted by Pn. The type class Ts of a state sequence

s is the set of all state sequences s0 2 Sn such that ws0 = ws. We shall also denote the type classes of state

sequences by fTig where the index i is w.r.t. some arbitrary but �xed ordering in Pn.

We will now consider � = Sn as the union of all type classes �i = Ti, i = 1; 2; :::;Mn = jPnj. Note that
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since the empirical PMF of s can be estimated with precision no better than O(1=
p
n), it is clear that in

this case, the assumption on a good estimator of the exact class �i = Ti, is not met. Therefore, we are led

to use one of the guidelines described in Section 4 regarding the choice of the priors. (We will elaborate on

this point at the end of this section.)

Let us focus on the two-stage mixture code L�, where wi = w�i attains the capacity within each type

class. Following [12, Theorem 4.5.2], it is readily seen that the intra-class capacity Cn(Ti) is attained by a

uniform distribution on Ti, i.e.,

w�i (s) = ui(s)
4
=

� 1
jTij

s 2 Ti
0 elsewhere

(48)

It is shown in Appendix B that if Ti corresponds to an empirical PMF on S that tends to a �xed PMF

w = fw(s); s 2 Sg, then Cn(Ti) tends to

Iw(S;X)
4
=
X
s2S

w(s)
X
x2X

p(xjs) log p(xjs)P
s02S w(s

0)p(xjs0) : (49)

The second redundancy term rn(s) = rn(�) associated with L�, is given by

rn(s) =
1

n
E

�
log

Pui(X)

P�(X)
js
�
; (50)

where

Pui(x) =
1

jTij
X
s2Ti

P (xjs): (51)

Observe that Pui(x), and hence also P�(x) (which is a mixture of fPui(x)g), are invariant to permutations

of x. Consequently, the expectation on the right-hand side of eq. (50) is the same for all s 2 Ti, and so, the

second order redundancy term rn(s) is exactly the normalized divergence between Pui and P�. If, in addition,

� = ��, the capacity-achieving prior of the channel from i to x de�ned by fPui(x)g, then this divergence

coincides with the capacity cn of this channel for every iwith �
�
i > 0. Clearly, cn � n�1 log jPnj = O(logn=n).

In summary, for AVSs it is natural to apply Theorem 3 with uniform weighting within each type. The

best attainable compression ratio (in the sense of Theorem 3) is given by H(Xjs)=n+ Cn(Ts) + cn, where

H(Xjs) = �n
X
s2S

ws(s)
X
x2X

p(xjs) log p(xjs): (52)
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While the third term cn decays at the rate of logn=n, the �rst two terms tend to constants if ws tends to a

�xed w. The sum of these constants is Hw(X), the entropy of a memoryless source with letter probabilities

given by

pw(x) =
X
s2S

w(s)p(xjs): (53)

This is di�erent from earlier results on source coding for the AVS due to Berger [4] and Csisz�ar and K�orner

[8], who considered �xed-length rate-distortion codes that satisfy an average distortion constraint for every

state sequence. In their setting, for the distortion-less case, the best achievable rate is maxwHw(X). Thus,

our results coincide with the earlier result only if the underlying state sequence happens to belong to the

type that corresponds to the worst empirical PMF that maximizes Hw(X). In other words, by using the

hierarchical approach and allowing variable-length codes, we enable \adaptation" to the unknown underlying

state sequence rather than using the worst case strategy.

We have then, both improved the main redundancy term and characterized the best attainable second

order performance in the sense of Theorem 3.

An interesting special case is where S = X and p(xjs) = 1 if x = s and zero otherwise, in other words, x

is always identical to s. In this case, H(Xjs) = 0. If, in addition, x is such that the relative frequencies of

all letters are bounded away from zero, then

Cn(Ts) =
log jTsj

n
� Hx(X)� (jX j � 1)

2n
logn; (54)

where Hx(X) is the entropy associated with the empirical PMF of x, and

cn =
log jPnj

n
� (jX j � 1)

logn

n
: (55)

Therefore, we conclude that the total minimum description length (MDL) is approximately

nHx(X) +
(jX j � 1)

2
logn (56)

in the deterministic sense. This coincides with a special case of one of the main results in [25], where optimum

length functions assigned by sequential �nite state machines for individual sequences were investigated, and

the above minimum length corresponds to a single-state machine.
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Finally, the following comment is in order. We mentioned earlier that the exact index i of Ti cannot be

estimated by observing x and hence Theorem 4 is inapplicable. Nevertheless, if jSj � jX j and the rank of

transition probability matrix fp(xjs)g is jSj, then the empirical PMF of s can be estimated with precision

O(1=
p
n). This can be done by solving the linear equations

P
s2S ws(s)p(ajs) = qx(a), a 2 X , where qx(a)

is the relative frequency of a in x. This means that if we de�ne �i as unions of all neighboring type classes

whose corresponding empirical PMFs di�er by O(1=
p
n), then the assumption about the existence of a good

estimator becomes valid. In this case, it is di�cult, however, to determine w�i and to assess the redundancy

term Cn(�i).

Appendix A

Proof of Lemma 1. The �rst inequality is obvious since Q�(x) � �iQ(xji) for every x and every i. As for

the second inequality, let us denote by 
j the set of all x 2 Xn for which g(x) = j, and let 
cj denote

the complementary set. Since data processing cannot increase the relative entropy, D(Q(�ji)jjQ�) is lower

bounded by

D(Q(�ji)jjQ�) � Q(
iji) log Q(
iji)
Q�(
i)

+Q(
ci ji) log
Q(
ci ji)
Q�(
ci )

: (A.1)

The proof is now completed by observing that Q(cji) = Q(
iji), Q(eji) = Q(
ci ji), Q�(

c
i ) � 1, and

Q�(
i) =
X
j

�jQ(
ijj)

� �i +
X
j 6=i

�jQ(
ijj)

� �i +
X
i

X
j 6=i

�jQ(
ijj)

= �i +Q(e): (A.2)

Appendix B

Asymptotic Behavior of Cn(Ts)

In this appendix, we prove that if ws tends to a �xed PMF w on S, then Cn(Ti) of the corresponding
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type Ti = Ts, tends to Iw(X ;S). The quantity Cn(Ti) is given by

Cn(Ti) =
1

n
[Hi(X)� 1

jTij
X
s2Ti

H(Xjs)]; (B.1)

where Hi(X) is the entropy associated with n-vectors governed by

Pui(x) =
1

jTij
X
s2Ti

P (xjs); (B.2)

and

H(Xjs) = �
X
x2Xn

P (xjs) logP (xjs) = �n
X
s2S

ws(s)
X
x2X

p(xjs) log p(xjs): (B.3)

Since H(Xjs)=n is the same for all s 2 Ti, and since it tends to

Hw(X jS) = �
X
s2S

w(s)
X
x2X

p(xjs) log p(xjs); (B.4)

so does the average of H(X js) over s 2 Ti. Therefore, it will be su�cient to show that Hi(X)=n tends to

the entropy of a memoryless source with letter probabilities given by pw(x) =
P

s2S w(s)p(xjs).

To this end, we shall introduce the following notation. Similarly as in the de�nition of type classes of

state sequences, the empirical PMF of the sequence x will be denoted by fqx(x); x 2 Xg, where qx(x) is

the relative frequency of x in x. The respective type will be denoted by Tx, and the associated empirical

entropy will be denoted by Hx(X). For a sequence pair (x; s) 2 Xn�Sn the joint empirical PMF is de�ned

by the joint empirical PMF of x and s, and the joint type Txs of (x; s) is the set of all pair sequences

(x0; s0) 2 Xn � Sn with the same empirical joint PMF as (x; s). The empirical joint entropy is denoted by

Hxs(X;S).

A conditional type Tsjx for a given x is the set of all sequences s0 in Sn for which (x; s0) 2 Txs. The

corresponding empirical conditional entropy is given by

Hsjx(SjX) = Hxs(X;S)�Hx(X): (B.5)

Similar de�nitions and notations apply when the roles of fx;X;x;Xg and fs; S; s;Sg are interchanged.

For two sequences fang and fbng, the notation an
�
= bn means that limn!1 n�1 log(an=bn) = 0. It is

well known [8] that jTsj �
= 2nHs(S) and jTsjxj �

= 2nHsjx(SjX). Using these facts together with the fact that
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P (xjs) � 2�nHxjs(XjS), we have

Pui(x) =
1

jTsj
X
s02Ts

P (xjs0)

� 1

jTsj
X

Tsjx�Ts

jTsjxj2�nHxjs(XjS)

�
= 2�nHs(S)

X
Tsjx�Ts

2nHsjx(SjX) � 2�nHxjs(XjS)

�
= 2�nHx(X); (B.6)

where in the last step we have used the fact that the number of conditional types classes is polynomial in n.

Therefore,

� logPui(x) � nHx(X) + o(n): (B.7)

If the empirical PMF of s tends to w, then by the strong law of large numbers, for every s0 2 Ts, qx(x) !

pw(x) with probability one, and so the expected value of Hx(X) given every s0 2 Ts, tends to the entropy

of fpw(x); x 2 Xg. A-fortiori, the overall expectation after averaging over Ts tends to the same entropy.

Thus, lim infnHi(X)=n � Hw(X).

For the converse inequality, note that the entropy Hi(X)=n of a vector X = (X1; :::; Xn) governed by

Pui is never larger than the average of the marginal entropies n�1
Pn

t=1H(Xt). Since Xt is governed by

p(�jst), then by the concavity of the entropy function, the latter expression in turn, is upper bounded by

the entropy of the i.i.d. measure n�1
Pn

t=1 p(xjst) =
P

s2S ws(s)p(xjs), which again tends to pw(x). Thus,

lim supnHi(X)=n � Hw(X), completing the proof of the claim.
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