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1 IntroductionConsider the following game: Bob draws a sample x from a random variable X. Then,Alice, who does not see x but wishes to learn it at least approximately, presents to Bob a(�xed) sequence of guesses x̂(1); x̂(2); : : :. Bob checks the guesses successively until a guessx̂(i) is found such that d(x; x̂(i)) � D for some distortion measure d and distortion level D.Bob informs Alice of x̂(i) and in return Alice pays Bob an amount G(x) = i equal to thenumber of guesses examined by Bob. What is the best Alice can do in designing a cleverguessing list fx̂(1); x̂(2); :::g so as to minimize the typical number of guesses G(X) in someprobabilistic sense? For the discrete distortionless case (D = 0), it is easy to see [2] thatif the probability distribution P of X is known to Alice, the best she can do is simply toorder her guesses according to decreasing probabilities. The extension to D > 0, however,seems to be more involved.This game may serve as a model for certain betting games in which a player places anumber of bets concerning the outcome of a chance event X, such as a horse race, andreceives a payo� for each bet that is close enough to the actual outcome. The expectednumber of guesses EG(X) may serve as a measure of the number of bets to be placed fora fair chance of winning a payo�. This model may also be useful for studying pattern-matching and database search algorithms. Another motivation in studying this problemis its natural relevance to rate-distortion coding. Suppose that the random variable X tobe guessed is a random N -vector X, drawn by an information source, and to be encodedby a rate-distortion codebook. The number of guesses G(X) is then interpreted as thenumber of candidate codebook vectors to be examined (and hence also the number of metriccomputations) before a satisfactory code word is found. It should be emphasized, however,that G(X) indeed measures the search complexity only for a simple search algorithm thatscans the codebook in a �xed order. In reality, the di�erence between the guessing problemand the search problem of lossy coding, is that in the latter, after each `guess', we know theexact distortion, and not only whether or not it is below the desired thresholdD. Therefore,in this context, the motivation of the guessing problem as a rate-distortion search problemshould be considered relevant only w.r.t. this class of simple search schemes. Nevertheless,it serves as a �rst step towards possible further extensions that include classes of moresophisticated search algorithms (see also Section 7 below).2



In an earlier related work, driven by a similar motivation among others, Merhav [14]has characterized the maximum achievable expectation of the number of code words thatare within distance D from a randomly chosen source vector X. The larger this numberis, the easier it is, typically, to �nd quickly a suitable code word. In a more closely relatedwork, Arikan [2] studied the guessing problem for discrete memoryless sources (DMS's) inthe lossless case (D = 0). In particular, Arikan developed a single-letter characterization ofthe smallest attainable exponential growth rate of the �th moment of the number of guessesEG(X)� (� being an arbitrary nonnegative real) as the vector dimension N tends to in�nity.This work is primarily aimed at extending Arikan's study [2] to the lossy case D > 0,which is more di�cult as mentioned above. In particular, our �rst result in Section 3 isthat for a �nite alphabet memoryless source P , the best attainable behavior of EG(X)� isof the exponential order of eNE(D;�), where E(D; �) is referred to as the �th order guessingexponent at distortion level D (or simply, the guessing exponent), and given byE(D; �) = maxQ [�R(D;Q)�D(QjjP )]; (1)where R(D;Q) is the rate-distortion function of a memoryless source Q on X and D(QjjP )is the relative entropy between Q and P . Thus for the special case D = 0, R(D;Q) becomesthe entropy H(Q) and the maximization above gives � times R�enyi's entropy [16] of order1=(1 + �) (see [2] for more detail). In view of this, E(D; �)=�, for D > 0, can be thoughtof as R�enyi's analog to the rate-distortion function (see also [5]). We also demonstrate theexistence of an asymptotically optimum guessing scheme that is universal both w.r.t. theunderlying memoryless source P , and the moment order �. It is interesting to note that if� = 1, for example, then the guessing exponent E(D; 1) is in general larger than R(D;P ), inspite of the well known fact that a codebook whose size is exponentially eNR(D;P ) is su�cientto keep the average distortion below D. In particular, E(D; �) is in general positive at acertain range of distortion levels for which R(D;P ) = 0. The roots of these phenomena liein the tail behavior of the distribution of G(X). We shall elaborate on this point later on.In this context, we also study the closely related large deviations performance criterion,PrfG(X) � eNRg for a given R > R(D;P ). Obviously, the exponential behavior of thisprobability is given by the source coding error exponent F (R;D) [12], [4] for memorylesssources. It turns out, indeed, that there is an intimate relation between the guessingexponent considered here and the well-known source coding error exponent. In particular,3



we show in Section 4 that for any �xed distortion level D, the �th order guessing exponentE(D; �) as a function of � is given by the one-sided Fenchel-Legendre transform (FLT) of thesource coding error exponent F (R;D) as a function of R. The inverse relation is that theFLT of E(D; �) in � gives the lower convex hull of F (R;D) in R. Moreover, since the abovementioned universal guessing scheme minimizes all moments of G(X) simultaneously it alsogives the best attainable large deviations performance, universally for every memorylesssource P and every R > R(D;P ). We also establish relations to two other exponents inlossy source coding.In Section 5, we study some basic properties of the function E(D; �), such as monotonic-ity, convexity in both arguments, continuity, asymptotics, and others. Since no closed-formexpression for E(D; �) has been found in general, we also provide upper and lower boundsto E(D; �), and a double maximum parametric representation, which might be suitable foriterative computation.In Section 6, we provide several extensions and related results, including the memory-less Gaussian case, the case of a source with memory, and the case of incorporating sideinformation.Finally, in Section 7, we summarize our conclusions and share with the reader relatedopen problems, some of which have resisted our best e�orts so far.2 De�nitions and Notation ConventionsConsider an information source emitting symbols in an alphabet X , and let X̂ denote areproduction alphabet. When X is continuous, so will be X̂ , and both will be assumed tobe the entire real line. Let d : X � X̂ ! [0;1) denote a single-letter distortion measure.Let XN and X̂N denote the Nth order Cartesian powers of X and X̂ , respectively. Thedistortion between a source vector x = (x1; :::; xN ) 2 XN and a reproduction vector x̂ =(x̂1; :::; x̂N ) 2 X̂N is de�ned as d(x; x̂) =PNi=1 d(xi; x̂i).Throughout the paper, scalar random variables will be denoted by capital letters whiletheir sample values will be denoted by the respective lower case letters. A similar conventionwill apply to random N -dimensional vectors and their sample values, which will be denotedby boldface letters. Thus, for example, X will denote a random N -vector (X1; :::;XN ) ,and x = (x1; :::; xN ) is a speci�c vector value in XN . Sources and channels will be denotedgenerically by capital letters, e.g., P , Q, and W . For memoryless sources and channels, the4



respective lower case letters will denote the one-dimensional marginal probability densityfunctions (PDF's) if the alphabet is continuous, or the one dimensional probability massfunctions (PMF's) if it is discrete. Thus, a memoryless source P can be thought of as avector (or a function) fp(x); x 2 Xg. For N -vectors, the probability of the event X = xwill be denoted by pN (x), which in the memoryless case is given by QNi=1 p(xi). Throughoutthis paper, P will denote the information source that generates the random variable X andthe random vector X unless speci�ed explicitly otherwise.Integration w.r.t. a probability measure (e.g., R p(dx)f(x), R qN (dx)f(x), etc.) willbe interpreted as expectation w.r.t. this measure, which in the discrete case should beunderstood as an appropriate summation. Similar conventions will apply to conditionalprobability measures associated with channels. The probability of an event A � XN will bedenoted by pNfAg, or by PrfAg if there is no room for ambiguity regarding the underlyingprobability measure. The operator Ef�g will denote expectation w.r.t. the underlying sourceP unless otherwise speci�ed.For a memoryless source Q, letH(Q) = � ZX q(dx) ln q(x): (2)For two given memoryless sources P and Q on X , letD(QjjP ) = ZX q(dx) ln q(x)p(x) (3)denote the relative entropy between Q and P . For a given memoryless source Q anda memoryless channel W = fw(x̂jx); x 2 X ; x̂ 2 X̂g, let I(Q;W ) denote the mutualinformation I(Q;W ) = ZX q(dx) ZX̂ w(dx̂jx) ln w(x̂jx)RX q(dx0)w(x̂jx0) : (4)The rate-distortion function R(D;Q) for a memoryless source Q w.r.t. distortion measured is de�ned as R(D;Q) = infW I(Q;W ); (5)where the in�mum is taken over all channels W such that�(Q;W ) 4= ZX q(dx) ZX̂ w(dx̂jx)d(x; x̂) � D: (6)Comment: Throughout this paper we will assume that for every x 2 X , there existsx̂ 2 X̂ with d(x; x̂) = 0, that is, dmin(x) 4= minx̂2X̂ d(x; x̂) = 0 for all x 2 X . For distortion5



measures that do not satisfy this condition, the parameter D should be henceforth thoughtof as the excess distortion beyond dmin(x).De�nition 1 A D-admissible guessing strategy w.r.t. a source P is a (possibly in�nite)ordered list GN = fx̂(1); x̂(2); :::g of vectors in X̂N , henceforth referred to as guessing codewords, such that pNfd(X; x̂(j)) � ND for some jg = 1: (7)De�nition 2 The guessing function GN (�) induced by a D-admissible guessing strategy forN -vectors GN , is the function that maps each x 2 XN into a positive integer, which is theindex j of the �rst guessing code word x̂(j) 2 GN such that d(x; x̂(j)) � ND. If no suchguessing code word exists in GN for a given x, then GN(x) 4=1.Thus, for a D-admissible guessing strategy, the induced guessing function takes on �nitevalues with probability one.De�nition 3 The optimum �th order guessing exponent theoretically attainable at distor-tion level D is de�ned, whenever the limit exists, asEX(D; �) 4= limN!1 1N infGN lnEfGN (X)�g; (8)where the in�mum is taken over all D-admissible guessing strategies.The subscriptX will be omitted whenever the source P , and hence also the random variableX associated with P , are clear from the context. Throughout the sequel, o(N) will serveas a generic notation for a quantity that tends to zero as N ! 1. For a �nite set A, thecardinality will be denoted by jAj.Another set of de�nitions and notation is associated with the method of types, whichwill be needed in some of the proofs for the �nite alphabet case.For a given source vector x 2 XN , the empirical probability mass function (EPMF)is the vector Qx = fqx(a); a 2 Xg, where qx(a) = Nx(a)=N , Nx(a) being the number ofoccurrences of the letter a in the vector x. The set of all EPMF's of vectors in XN , that is,rational PMF's with denominator N , will be denoted by QN . The type class Tx of a vectorx is the set of all vectors x0 2 XN such that Qx0 = Qx. When we need to attribute a typeclass to a certain rational PMF Q 2 QN rather than to a sequence in XN , we shall use thenotation TQ. 6



In the same manner, for sequence pairs (x;y) 2 XN � YN , the joint EPMF is thematrix Qxy = fqxy(a; b); a 2 X ; b 2 Yg, where qxy(a; b) = Nxy(a; b)=N , Nxy(a; b) being thenumber of joint occurrences of xi = a and yi = b. The joint type class Txy of (x;y) is theset of all pair sequences (x0;y0) 2 XN � YN for which Qx0y0 = Qxy.Finally, a conditional type Txjy for a given x and y, is the set of all sequences x0 in XNfor which (x0;y) 2 Txy.3 Guessing Exponents for Memoryless SourcesThe main result in this section is a single-letter characterization of a lower bound to E(D; �)for memoryless sources, that is shown to be tight at least for the �nite alphabet case.Speci�cally, for two given memoryless sources P and Q, and a given � � 0, letEX(D; �;Q) = �R(D;Q)�D(QjjP ); (9)and let EX(D; �) = supQ EX(D; �;Q); (10)where the supremum is taken over all PDFs Q of memoryless sources for which R(D;Q)and D(QjjP ) are well-de�ned and �nite. Again, the subscript X of these two functions willbe omitted whenever there is no room for ambiguity regarding the underlying source P thatgenerates X.We are now ready to state our main result in this section.Theorem 1 Let P be a memoryless source on X .(a) (Converse part): Let fGNgN�1 be an arbitrary sequence of D-admissible guessingstrategies, and let � be an arbitrary nonnegative real. Then,lim infN!1 1N lnEfGN (X)�g � E(D; �); (11)where GN is the guessing function induced by GN .(b) (Direct part): If X and X̂ are �nite alphabets, then for any D � 0, there exists asequence of D-admissible guessing strategies fG�NgN�1 such that for every memorylesssource P on X and every � � 0,lim supN!1 1N lnEfG�N (X)�g � E(D; �); (12)where G�N is the guessing function induced by G�N .7



Corollary 1 For a �nite alphabet memoryless source, E(D; �) exists and is given byE(D; �) = E(D; �): (13)Discussion: A few comments are in order in the context of this result.First, observe that Theorem 1 is asymmetric in that part (a) is general while part (b)applies to the �nite alphabet case only. This does not mean that part (b) is necessarily falsewhen it comes to a general memoryless source. Nevertheless, so far we were unable to provethat it applies in general. The reason is primarily the fact that the method of types, whichis used heavily in the proof below, does not lend itself easily to deal with the continuouscase except for certain exponential families, like the Gaussian case, as will be discussed inSection 6.1.Clearly, as one expects, in the �nite alphabet lossless case (D = 0), the result of [2] isobtained as a special case since maxQ[�H(Q)�D(QjjP )] gives �H1=(1+�)(P ), where H�(P )is R�enyi's entropy [16] of order �, de�ned asH�(P ) = 11� � lnXx2X p(x)�: (14)As another point of view, Theorem 1 and its proof below remain valid if instead of theguessing problem, we consider the exponential behavior of Efe�L(X)g, that is, the charac-teristic function of the length L(X) associated with variable length lossy coding subjectto maximum distortion D. In this context, Theorem 1 serves as a tool to extend earlierresults on the bu�er over
ow problem in lossless source coding (see, e.g., [10], [11], [15],[19]), where optimum performance is again characterized by R�enyi's entropy.It was mentioned brie
y in the Introduction and should be emphasized again thatE(D; �) is in general larger than �R(D;P ). The latter is the exponential behavior thatcould have been expected at a �rst glance on the problem, because exponentially eNR(D;P )code words are known to su�ce in order to keep the average distortion less than D. Theintuition behind the larger exponential order that we obtain is that, while in the classi-cal rate-distortion problem performance is judged on the basis of the coding rate, whichis roughly speaking, equivalent to E logGN(X), here the criterion is EGN (X)� or equiva-lently, logEGN (X)�, which assigns much more weight to large values of the random variableGN (X). To put this even more in focus, observe that while in the ordinary source codingsetting, the contribution of non-typical sequences can be ignored by using the asymptotic8



equipartition property (AEP), here the major contribution is provided by non-typical se-quences, in particular, sequences whose empirical PMF is close to Q�, the maximizer ofE(D; �;Q), which in general may di�er from P . Furthermore, while the above explanationis valid even in the lossless case D = 0, the fact that we are dealing here with the lossy caseD > 0 gives another aspect to the di�erence between the classical source coding problemand the guessing problem: In source coding, essentially eNR(D;P ) codewords su�ce in orderto guarantee average distortion within D, namely, if the rate is �xed, the distortion is arandom variable whose expectation can be made arbitrarily close to D. This is achievedessentially by covering only the set of typical sequences by spheres of radius D. However, ifwe insist on �xed (or maximum) distortion less than D for every realization of the source,like in the guessing problem discussed here, then we must cover the entire space by a numberof spheres that exponentially exceeds eNR(D;P ) in general. (For example, when the sourcehas unbounded support, it takes in�nitely many spheres to cover the space.) Even then, ifthe rate-distortion codewords are encoded by a suitable variable-length code (entropy cod-ing), then an average rate (approximately given by N�1E logGN (X)) that asymptoticallyattains the rate-distortion bound, can be achieved. In summary, the important point hereis the following: While the source coding problem is `insensitive' to whether we are dealingwith �xed distortion or average distortion (because this di�erence can be traded for averagerate as opposed to �xed rate), the guessing problem is sensitive to the di�erence betweenthe two cases. This is because the performance criterion (moments of GN(X)) is di�erentthan the one in source coding.Note that part (b) of the Theorem actually states that there exists a universal guessingscheme, because it tells us that there exists a single scheme that is asymptotically optimumfor every P and every �. Speci�cally, the proposed guessing scheme is composed fromordering codebooks that correspond to type classes Q in an increasing order of R(D;Q)(see proof of part (b) below). This can be viewed as an extension of [18] from the losslessto the lossy case, as universal ordering of sequences in decreasing probabilities was carriedout therein according to increasing empirical entropy H(Q).As an alternative proof to part (b), one can show the existence of an optimal source-speci�c guessing scheme using the classical random coding technique. Of course, oncewe have a universal scheme, there is no reason to bother about a source-speci�c schemefor the purpose of proving Theorem 1. The interesting point here, however, is that the9



optimal random coding distribution for guessing is, in general, di�erent than that of theordinary rate-distortion coding problem. While in the latter, we use the output distributioncorresponding to the test channel of R(D;P ), here it is best to use the one that correspondsto R(D;Q�), where Q� maximizes E(D; �;Q). Since optimum guessing codebooks havedi�erent statistics than optimum ordinary rate-distortion codebooks in general, it seems, at�rst glance, that guessing and source coding are con
icting goals. Nevertheless, it is possibleto enjoy the bene�ts of both by interlacing the code words of a good rate-distortion code anda good guessing list. Since the index of each code word is at most doubled by this interlacing,it essentially neither a�ects the behavior of E lnGN (X), nor that of lnEGN(X)�. Thus themain message to be conveyed at this point is that if one wishes not only to attain therate-distortion function, but also to minimize the expected number of candidate code wordsto be examined by the encoder, then good guessing code words must be included in thecodebook in addition to the usual rate-distortion code words. In this context, it shouldbe mentioned that the asymptotically optimum universal guessing scheme proposed in theproof of part (b) below attains also the rate-distortion function when used as a codebookfollowed by appropriate entropy coding.The remaining part of this section is devoted to the proof of Theorem 1.Proof of Theorem 1. We begin with part (a). Let GN be an arbitrary D-admissibleguessing strategy with guessing function GN . Then, for any memoryless source Q,E[GN (X)�] = ZXN pN (dx)GN (x)�= ZXN qN (dx) exp[� ln qN (x)pN (x)GN (x)� ]� exp[�ND(QjjP ) + � ZXN qN (dx) lnGN (x)]; (15)where we have used Jensen's inequality in the last step.The underlying idea behind the remaining part of the proof is that lnGN(x) is essentiallya length function associated with a certain entropy encoder that operates on the guessinglist, and therefore the combination of the guessing list and the entropy coder can be thoughtof as a rate-distortion code. Thus, by the converse to the rate-distortion coding theorem,the expectation of lnGN (X) w.r.t. a source Q essentially cannot be smaller than NR(D;Q).Speci�cally, if we de�ne �i = Zx:GN (x)=i qN (dx); (16)10



then we have Zx qN (dx) lnGN (x) =Xi �i ln i: (17)For a given � > 0, consider the following probability assignment on the positive integers:�i = C(�)i1+� ; i = 1; 2; :::; (18)where C(�) is a normalizing constant such that Pi �i = 1. Consider a lossless code for thepositive integers fig with length function d� log2 �ie bits, which when applied to the indexi = GN(x) of the guessing code word for x, gives a variable length rate-distortion codewith maximum per-letter distortion D. Thus, by the converse to the rate-distortion codingtheorem, NR(D;Q) log2 e � Xi �id� log2 �ie� 1 + (1 + �)Xi �i log2 i� log2C(�); (19)which then gives Xi �i ln i � NR(D;Q) + lnC(�) � ln 21 + � : (20)Combining this inequality with eqs. (15) and (17) yieldslnE[GN(X)�] � �ND(QjjP ) + �[NR(D;Q) + lnC(�)� ln 2]1 + � : (21)Dividing by N and taking the limit in�mum of both sides as N !1, we getlim infN!1 1N lnE[GN(X)�] � �R(D;Q)1 + � �D(QjjP ): (22)Since the left-hand side does not depend on �, we may now take the limit of the right-handside as � ! 0, and obtain lim infN!1 1N lnE[GN(X)�] � E(D; �;Q): (23)Finally, since the left-hand side does not depend on Q, we can take the supremum over allallowable PDF's Q, and thereby obtain E(D; �) as a lower bound. This completes the proofof part (a).To prove part (b), we shall invoke the type covering lemma due to Csisz�ar and K�orner [6,p. 181] (see also [20] for a re�ned version), stating that every type class TQ can be entirelycovered by exponentially eNR(D;Q) spheres of radius ND in the sense of the distortionmeasure d. More precisely, the type covering lemma is the following.11



Lemma 1 ([6], [20]): For any Q 2 QN and distortion level D � 0, there exists a codebookCQ � X̂N such that for every x 2 TQ,minx̂2CQ d(x; x̂) � ND; (24)and at the same time, 1N ln jCQj � R(D;Q) + o(N): (25)For every Q 2 QN , let CQ denote a certain codebook in X̂N that satis�es the typecovering lemma. Let us now order the rational PMF's in QN as fQ1; Q2; :::g accordingto increasing value of R(D;Q), that is, R(D;Qi) � R(D;Qi+1) for all i < jQN j. Ourguessing list G�N is composed of the ordered concatenation of the corresponding codebooksCQ1 ; CQ2 ; :::, where the order of guessing code words within each CQi is immaterial. We nowhave E[G�N (X)�] = Xx2XN pN(x)G�N (x)�= Xi Xx2TQi pN (x)G�N (x)�� Xi Xx2TQi pN (x)0@Xj�i jCQj j1A�� Xi exp[�ND(QijjP )]0@Xj�i jCQj j1A�� XQ2QN expf�ND(QjjP ) + �N [R(D;Q) + o(N)]g� expfN [E(D; �) + o(N)]g; (26)where we have used the facts [6] that pN (TQ) � exp[�ND(QjjP )] and that jQN j growspolynomially in N . Taking the logarithms of both sides, dividing by N , and passing to thelimit as N ! 1, give the assertion of part (b), and thus completes the proof of Theorem1. 24 Relations to Other Exponents in Lossy Source CodingIn this section, we demonstrate that the guessing exponent function E(D; �) is intimatelyrelated to optimum exponents associated with certain other problems in lossy source coding.These relations will help us to investigate the properties of E(D; �) in Section 5. Here and12



throughout the sequel, we con�ne our attention to �nite alphabet memoryless sources unlessspeci�ed otherwise.Intuitively, the moments of GN(X) are closely related to the cumulative distributionfunction of this random variable, and hence to the tail behavior, or equivalently, the largedeviations performance PrfGN (X) � eNRg, for R > R(D;P ). Obviously, the best attain-able exponential rate of this probability is given by the source coding error exponent [12],[4, Theorem 6.6.4], which is the best attainable exponential rate of the probability that acodebook of size eNR would fail to encode a randomly drawn source vector with distortionless than or equal to ND. The source coding error exponent at rate R and distortion levelD, F (R;D) is given by F (R;D) = minQ:R(D;Q)�RD(QjjP ): (27)Using the same technique as in the proof of Theorem 1(b), it is easy to see that the uni-versal guessing scheme proposed therein G�N attains the best attainable large deviationsperformance in Marton's sense [12], that is,F (R� 0;D) � lim infN!1 �� 1N lnPrfG�N (X) � eNRg�� lim supN!1 �� 1N lnPrfG�N (X) � eNRg�� F (R+ 0;D); (28)where F (R + 0;D) and F (R � 0;D) are limits of F (R + �;D) as � ! 0, along positivevalues of � and negative values of �, respectively.1 This follows from the simple fact thatby construction of G�N , the event fx : G�N (x) � eNRg is essentially equivalent to the eventfx : R(D;Qx) � Rg, where Qx is the empirical PMF associated with x. This result is notvery surprising if we recall that G�N asymptotically minimizes all nonnegative moments ofGN (X) simultaneously. The natural question that arises at this point is: what is the relationbetween the guessing exponent E(D; �) and the source coding error exponent F (R;D)?The following theorem tells that for a �xed distortion level D, the guessing exponentE(D; �), as a function of �, is the one-sided Fenchel-Legendre transform (FLT) of F (R;D)as a function of R. (See also [5, Theorem 1] for the lossless case). As for the inverse relation,the FLT of E(D; �) as a function of � is the lower convex hull of F (R;D) as a function of1The function F (R;D) may not be continuous in general (see Ahlswede [1]). However, monotonicityguarantees continuity everywhere except for countably many points. Su�cient conditions for everywherecontinuity are discussed in [1] and [12]. 13



D. Thus, if F (R;D) is itself convex in R, the inverse FLT relation holds as well. It is easyto show that F (R;D) is convex in R whenever R(D;Q) meets the Shannon lower bound forevery Q (e.g., binary source and Hamming distortion measure). This follows from the factthat F (R; 0) is always convex, and that in this case, F (R;D) = F (R + �(D); 0) for somefunction �.Theorem 2 For a given �nite alphabet memoryless source P and distortion level D,E(D; �) = supR�0[�R � F (R;D)]; for all � � 0, (29)and ~F (R;D) = sup��0[�R�E(D; �)]; for all R � 0, (30)where ~F (R;D) is the lower convex hull of F (R;D) in R.Proof. Eq. (29) is obtained as follows.supR�0[�R� F (R;D)] = supR�0 maxQ:R(D;Q)�R[�R�D(QjjP )]= maxQ max0�R�R(D;Q)[�R�D(QjjP )]= maxQ [�R(D;Q)�D(QjjP )]= E(D; �): (31)Eq. (30) is a version of the duality lemma of the FLT [7, p. 135, Theorem 4.5.10], [17,p. 104, Theorem 12.2 and the preceding discussion]. Although the duality lemma thereinrefers to the two-sided FLT (i.e., with suprema taken over the entire real line) as opposedto the one-sided FLT considered here, eq. (30) can be obtained as a special case since Fis monotone in R. Nevertheless, for the sake of convenience and completeness, we prove inthe Appendix the following duality lemma speci�cally for the one-sided FLT.Lemma 2 Let f(x) be an arbitrary nondecreasing function de�ned for x � 0, and letf�(y) = supx�0[xy � f(x)] (32)be the one-sided FLT of f . Let f�� be the one-sided FLT of f�, i.e., f��(x) = supy�0[xy �f�(y)]. Then, f�� equals the lower convex-hull of f .14



This competes the proof of Theorem 2. 2Another related problem in lossy source coding is the following: For a given N -vector xand a codebook CN of eNR code words in X̂N , let d(x; CN ) denote the minimum of d(x; x̂),over x̂ 2 CN . Suppose we would like to characterize the smallest attainable asymptoticexponential rate of the characteristic function of d(X; CN ), i.e.,J (R; s) = limN!1 1N minCN lnEfesd(X;CN )g; s > 0; (33)provided that the limit exists. By using the same techniques as above, it is easy to showthat for memoryless sources with �nite X and X̂ , J (R; s) exists and is given byJ (R; s) = J(R; s) = maxQ [sD(R;Q)�D(QjjP )]; (34)where Q is again a memoryless source on X , and D(R;Q) is its distortion-rate function.Thus, this problem can be thought of as being dual to the guessing problem in the sense thatJ(R; s) has the same form as E(D; �) except that the rate-distortion function is replacedby the distortion-rate function. Moreover, while E(D; �) and F (R;D) are a one-sided FLTpair provided that F is convex, it is easy to see that J(R; s) and F (R;D) are also a one-sided FLT pair under a similar condition on F (R;D) as a function of D. Thus, in this case,J(R; s) and E(D; �) can be thought of as a two-dimensional FLT pair.Finally, to complete the picture, let us consider now another related problem whichcorresponds to minimizing a linear combination of the rate and the distortion. Let CN denotea code book as before, and for a given source vector x, let V (x; CN ) = minx̂2CN [�L(x̂) +sd(x; x̂)], where L(x̂) is the coding length after entropy coding, and � and s are givennonnegative reals. It can be easily shown by using the same techniques that the bestattainable exponential behavior of EfeV (X;CN )g among all codebooks CN , is given byK(s; �) = maxQ minW [�I(Q;W ) + s�(Q;W )�D(QjjP )]: (35)Now, E(D; �) is given in terms of K(s; �) as follows.E(D; �) = maxQ [�R(D;Q)�D(QjjP )]= maxQ minfW :�(Q;W )�Dg[�I(Q;W )�D(QjjP )]= maxQ minW ( �I(Q;W )�D(QjjP ) if �(Q;W ) � D1 elsewhere= maxQ minW sups�0[�I(Q;W )�D(QjjP ) + s(�(Q;W )�D)]15



= sups�0 maxQ minW [�I(Q;W )�D(QjjP ) + s(�(Q;W )�D)]= sups�0[K(s; �)� sD]; (36)which means that E(D; �) can be thought of as the vertical axis intercept of the supportingline of slope D to the curve K(s; �) vs. s for �xed �. The signi�cance and the implicationsof this representation of E(D; �) will be further discussed in the next section. Also in thiscontext, an important property of K(s; �) is that it is monotonically increasing and concavein each argument, as will be restated and proved in the next section. Similarly as in theproof of eq. (30) in Theorem 2, monotonicity and concavity of K(s; �) in s for �xed � leadsto the inverse relation K(s; �) = infD�0[E(D; �) + sD]; (37)which means that K(s; �) can be also interpreted as the vertical axis intercept of the sup-porting line of slope �s to the curve E(D; �) vs. D for �xed �. Similar relations holdbetween K(s; �) and J(R; s) for �xed s, by replacing s and D with � and R, respectively.All the relations among the four bivariate functions E(D; �), F (R;D), J(R; s), and K(s; �)are summarized in Fig. 1. Again, it should be kept in mind that the transform relationsin the directions from E(D; �) to F (R;D) and from J(R; s) to F (R;D) hold subject toconvexity conditions.5 Properties of the Guessing Exponent FunctionIn this section, we study some more basic properties of the guessing exponent functionE(D; �) for �nite alphabet memoryless sources and �nite reproduction alphabets. We beginby listing a few simple facts about E(D; �), some of which follow directly from knownproperties of the rate-distortion function.Proposition 1 The guessing exponent E(D; �) has the following properties:(a) E(D; �) is nonnegative; E(0; �) = �H1=(1+�)(P ); E(D; 0) = 0; the smallest distortionlevel D0(�) beyond which E(D; �) = 0 is given byD0(�) = supfD : a(D) < �g; (38)where a(D) 4= infR�0 F (R;D)=R.(b) E(D; �) is a strictly decreasing, convex function of D in [0;D0(�)), for any �xed � > 0.16



(c) For �xed D, E(D; �) is a strictly increasing, convex function of � in the range of �where E(D; �) > 0.(d) E(D; �) is continuous in D � 0 and in � � 0.(e) E(D; �) � �R(D;P ); lim�!0E(D; �)=� = R(D;P ).(f) E(D; �) � �Rmax(D), where Rmax(D) = maxQR(D;Q); lim�!1E(D; �)=� = Rmax(D).The proof appears in the Appendix.We are not aware of the existence of a closed-form expression for E(D; �) in general.Parts (e) and (f) of Proposition 1 suggest a lower and an upper bound, respectively. Anothersimple and useful lower bound, which is sometimes tight and then gives a closed-formexpression to E(D; �), is induced from the Shannon lower bound to R(D;Q) [3, Sect. 4.3.1].The Shannon lower bound applies to di�erence distortion measures, i.e., distortion measuresd(x; x̂) that depend only on the di�erence x� x̂ (for a suitable de�nition of subtraction ofelements in X̂ from elements in X ).Theorem 3 For a di�erence distortion measure,E(D; �) � maxf0; �H1=(1+�)(P )� ��(D)g; (39)where �(D) is the maximum entropy of the random variable (X�X̂) subject to the constraintEd(X � X̂) � D. Equality is attained if the distortion measure is such that the Shannonlower bound R(D;Q) � maxf0;H(Q) � �(D)g is met with equality for every Q.Proof. E(D; �) = maxQ [�R(D;Q)�D(QjjP )]� maxQ [�maxf0;H(Q) � �(D)g �D(QjjP )]= maxQ maxf�D(QjjP ); �[H(Q) � �(D)]�D(QjjP )g= maxfmaxQ [�D(QjjP )];maxQ [�[H(Q)� �(D)]�D(QjjP )]g= maxf0; �H1=(1+�)(P )� ��(D)g: (40)2
17



Note, that if the distortion measure d is such that the Shannon lower bound is tightfor all Q, e.g., binary sources and the Hamming distortion measure (see also the Gaussiancase, Sect. 6.1), we have a closed-form expression for E(D; �), and hence also for D0(�) asD0(�) = ��1(H1=(1+�)(P )): (41)Moreover, the PMF Q� that attains E(D; �) does not depend on D. Fig. 2 illustratescurves of E(D; �) vs. D for a binary source with letter probabilities 0:4 and 0:6 and theHamming distortion measure. As can be seen, E(D; �) becomes zero at di�erent distortionlevels D0(�) depending on �. Since E(D; �) � �R(D;P ), then D0(�) is never smaller thanDmax, the smallest distortion at which R(D;P ) = 0.As mentioned earlier, E(D; �) does not always have a known closed-form expression.To obtain an alternative characterization of E(D; �), which may be more suitable than thesaddle-point form (35) for determining E(D; �), we cite without proof the following resultfrom Gallager [9, Theorem 9.4.1, p. 459].Lemma 3 For any Q and r � 0,minW [I(Q;W ) + r�(Q;W )] = maxf2Fr "H(Q) +Xx q(x) ln f(x)# (42)where Fr is the set of all vectors f = ff(x); x 2 Xg with nonnegative components suchthat Px2X f(x)e�rd(x;x̂) � 1 for all x̂ 2 X̂ . Any feasible W and f achieve, respectively, theminimum and the maximum in (42) i� they satisfy for all x; x̂,w(x̂jx)q(x) = m(x̂)f(x)e�rd(x;x̂); (43)where m(x̂) 4=Px q(x)w(x̂jx):Substituting (42) in (35) with r = s=�, we obtain a characterization of K(S; �) as a double-maximum, K(s; �) = maxQ maxf2Fs=� "�H(Q) + �Xx q(x) ln f(x)�D(QjjP )# ;� (44)which appears amenable to iterative numerical computation. (It is noteworthy for compu-tational purposes that the maximum here is achieved by a unique pair (Q; f), as will bediscussed later in this section.) Once K(s; �) is determined, E(D; �) can be found by linesearch over s � 0 using the right-most side of eq. (36).18



A straightforward calculation shows that, for �xed f , the maximum over Q in (44) isachieved by q(x) = cp(x)1=(1+�)f(x)�=(1+�); (45)where c is a normalizing constant so that Px2X q(x) = 1. Substituting this into (44) andusing (36), we obtain the following expression for E(D; �).Theorem 4 For all D � 0 and � > 0, the guessing exponent is given byE(D; �) = sups�0 maxf2Fs=� "(1 + �) lnXx2X p(x)1=(1+�)f(x)�=(1+�) � sD# : (46)Necessary and su�cient conditions for f 2 Fs=� to achieve the maximum are that thereexist a W satisfying the condition (43) with r = s=� and Q given by (45).Theorem 4 can be used also to obtain lower bounds to E(D; �) by selecting an arbitraryfeasible f . In certain simple cases, as explored in the following examples, the optimal f canbe guessed.Example 1: The lossless case. Let X = X̂ , d(x; x̂) = 0 for x = x̂, and d(x; x̂) = 1for x 6= x̂. Here, the only interesting distortion level for guessing is D = 0. It is easy toverify that K(s; �) is achieved by f(x) = 1 for all s � 0. For D = 0, we obtain from (46)that E(0; �) = (1 + �) ln "Xx P (x)1=(1+�)# ; (47)which agrees with the result in [2].Comment: In the above example, if the distortion measure is modi�ed so that it is �nitebut non-trivial in the sense that 0 < d(x; x̂) < 1 for x 6= x̂, then E(0; �) is still given bythe above form.Example 2: The Hamming distortion measure. Let X = X̂ be �nite alphabetswith size K � 2, d(x; x̂) = 0 if x = x̂, and d(x; x̂) = 1 if x 6= x̂. For � > 0 �xed and s � 0arbitrary, the f with uniform components given byf(x) = fs 4= 11 + (K � 1)e�s=� ; all x 2 X (48)is feasible, and for this choice eq. (46) is maximized over s � 0 bys� = � ln (K � 1)(1 �D)D ; (49)19



for D in the range 0 � D � (K � 1)=K. (At D = 0, we interpret s� to be 1.) Using s�and f(x) = fs� in (46), we have for any � � 0, and 0 � D � (K � 1)=K,E(D; �) � �[H1=(1+�)(P )� h(D)�D ln(K � 1)]; (50)where h(D) = �D ln(D)� (1�D) ln(1�D). It is easy to see that the condition for equalityin (50) will be satis�ed if and only ifq�(x) � 1es�=� + (K � 1) = DK � 1 ; all x 2 X , (51)where q�(x) is as de�ned in (45). Thus, equality holds in (50) for allD � 0 su�ciently small.In particular, for P the uniform distribution, equality holds for all 0 � D � (K � 1)=K.Note also that eq. (50) coincides with the Shannon lower bound, as for the Hammingdistortion measure, �(D) = h(D) +D ln(K � 1). 2As already pointed out in the previous section, K(s; �) can be given a geometric inter-pretation, in view of (37), as the vertical axis intercept of supporting line of slope �s to thecurve E(D; �) vs. D for �xed � � 0. The proof of the inverse relation (37) as well as theone between J(R; s) and K(s; �) rely on the following properties of K(s; �).Lemma 4 The function K(s; �) is monotonically increasing and concave in each argument.The proof appears in the Appendix.The next result establishes the uniqueness of the PMF Q that achieves E(D; �) in itsvarious possible representations. This signi�es, e.g., that the maximum in maxQE(D; �;Q)is achieved by a unique type class, with clear coding implications.Proposition 2 For any �xed distortion level in the range 0 � D < D0(�), there exists aunique Q� that achieves the maximum in E(D; �) = maxQE(D; �;Q). The PMF Q� alsoachieves uniquely the maximum in (35) and in (44) for each s 2 S(D) 4= fs � 0 : E(D; �) =K(s; �)� sDg. Furthermore, the maximum in (44) is achieved by a unique pair (Q�; fs) foreach s 2 S(D).The proof is given in the Appendix.By using the uniqueness of Q�, it can be shown also that for bounded distortion mea-sures, E(D; �) is di�erentiable w.r.t. both arguments. The derivative w.r.t. D is given by�@R(D;Q�)=@D, and the derivative w.r.t. � is given by R(D;Q�). In view of parts (c), (e),20



and (f) of Proposition 1, this means that the slope of the curve E(D; �) vs. � for �xed Dgrows monotonically and continuously from R(D;P ) to Rmax(D) as � grows from zero toin�nity.The following example shows that, similarly as the rate-distortion function, E(D; �) maynot be di�erentiable w.r.t. D if the distortion measure is unbounded. Strictly speaking, inExample 1 above the distortion measure is unbounded as well. The di�erence, however, isthat in Example 1 we have examined only the point D = 0 as there was no other point of�nite distortion level.Example 3: Unbounded distortion measure. (cf. [9, Prob. 9.4, p. 567]). LetX = f1; 2; 3; 4g, X̂ = f1; 2; 3; 4; 5; 6; 7g, and let the distortion matrix fd(x; x̂)g be given by26664 0 1 1 1 1 1 31 0 1 1 1 1 31 1 0 1 1 1 31 1 1 0 1 1 3 37775 : (52)It is easy to verify that K(s; �) is achieved by an f with equal components, f(x) = fs,where fs = 8><>: 0:25e(3s=�) if 0 � s � �2 ln(2),0:5e(s=�) if �2 ln(2) < s � � ln(2),1 if s > � ln(2). (53)Substituting the resulting K(s; �) in (36), we obtainE(D; �) = 8><>: �(2�D) ln(2) if 0 � D � 1,12�(3�D) ln(2) if 1 < D � 3,0 if D > 3: (54)6 Related Results and ExtensionsIn this section we provide several extensions and variations on our previous results for othersituations of theoretical and practical interest.6.1 Memoryless Gaussian SourcesWe mentioned in the Discussion after Theorem 1 that we do not have an extension of thedirect part to general continuous alphabet memoryless sources. However, for the specialcase of a Gaussian memoryless source and the mean squared error distortion measure, thiscan still be done relatively easily by applying a continuous alphabet analog to the methodof types. 21



Theorem 5 If X = X̂ = IR, P is a memoryless, zero-mean Gaussian source, and d(x; x̂) =(x� x̂)2, then E(D; �) exists and is given byE(D; �) = E(D; �); (55)where the supremum in the de�nition of E(D; �) is now taken over all memoryless, zero-mean Gaussian sources Q.Comment: For two zero-mean, Gaussian memoryless sources P and Q with variances �2pand �2q , respectively, D(QjjP ) is given byD(QjjP ) = 12  �2q�2p � ln �2q�2p � 1! : (56)Since R(D;Q) = max(0; 12 ln �2qD ) (57)agrees with the Shannon lower bound, then by Theorem 3, we obtain the closed-formexpression E(D; �) = max(0; 12 "� ln �2pD + (1 + �) ln(1 + �)� �#) : (58)Note that the slope of E(D; �) as a function of � for �xed D, grows without bound as�!1. This happens because Rmax(D) =1 in this case (see Proposition 1(f)).The remaining part of this subsection is devoted to the proof of Theorem 5.Proof of Theorem 5. Since the converse part of Theorem 1 applies to memoryless sourcesin general, it su�ces to prove the direct part. This in turn will be obtained as a simpleextension of the proof of Theorem 1(b), provided that we have a suitable version of thetype covering lemma for Gaussian sources. Another slight complication is that, unlike inthe �nite alphabet case, here we have in�nitely many (rather than polynomially many) suchtype classes to take into account.Let us �rst de�ne the notion of a Gaussian type class. For a given value of �2 > 0 and0 < � < 1, a Gaussian type class T �(�2) is de�ned as the set of all N -vectors x with theproperty jxtx�N�2j � N��2, where x is understood as a column vector and the superscriptt denotes vector transposition. It is easy to show (see Appendix) that the volume of T �(�2)is upper bounded by VolfT �(�2)g � [2�e�2(1 + �)]N=2: (59)22



Consider next, the forward test channel W of R(D;Q), de�ned byX̂ = ( (1� D�2q )X + V if D < �2q0 if D � �2q ; (60)where X � N (0; �2q ), V � N (0;D �D2=�2q ) and V ? X. For �2q > D and 0 < � < 1, wenext de�ne the conditional type of an N -vector x̂ given an N -vector x w.r.t. W asT �x(W ) = (x̂ : x̂ = (1� D�2q )x+ v; jvtv �N(D � D2�2q )j � N�(D � D2�2q );jvtxj � �sN(D � D2�2q )xtx) : (61)It is shown in the Appendix thatVolfT �x(W )g � �1� 3N�2�"2�e1��  D � D2�2q !#N=2 : (62)We now want to prove that T �(�2q ) can be covered by exponentially expfNR(D;Q)g codevectors fx̂(i)g within Euclidean distance essentially as small as pND. For �2q � D, this istrivial as the vector x̂ = 0 represents any x 2 T �(�2q ) within distortion D+ �. Assume next,that �2q > D and let 0 < � < 1. Let us construct a grid S of all vectors in the Euclideanspace RN whose components are integer multiples of 2� for some small 0 < � << pD.Consider the N -dimenional cubes of size �, centered at the grid points. For a given codeC = fx̂(1); : : : ; x̂(M)g, let U(D) denote the subset of cubes in T �(�2q ) for which the cubecenter x0 satis�es jjx0 � x̂(i)jj2 > N(D + �) for all i = 1; :::;M , where � is a small positivereal which will be speci�ed later. This means that U(D) is the set of cubes in T �(�2q ) whosecenters are not covered by C within distortion D + �.Consider the following random coding argument. Let X̂(1); : : : ; X̂(M) denote i.i.d.vectors drawn uniformly in T �(�2q �D), where � = �(1 + 4qD=(�2q �D)). If we show thatEjU(D)j < 1, then there must exist a code for which U(D) is empty, which means that allcube centers are covered within distortion D + �, and therefore, by the triangle inequality,T �(�2q ) is entirely covered by M spheres within distortion (pD + �+ �)2. Now,EjU(D)j = E8<: Xx02S\T �(�2q ) MYi=1 1fjjx0 � X̂(i)jj2 > N(D + �)g9=;= Xx02S\T �(�2q ) h1� Prnjjx0 � X̂(1)jj2 � N(D + �)oiM : (63)It is easy to verify that T �x0(W ) is a subset of T �(�2q �D) for the above de�ned value of �and for x0 2 T �(�2q ). In a similar manner, it is easy to check that for a given x0, the set23



T �x0(W ) has only x̂-vectors with jjx0� x̂jj2 � N(D+�), where � = �D(1+4qD=�2q ). Sincethe codewords are selected randomly w.r.t. a uniform distribution within T �(�2q �D), thenPrfjjx0 � X̂(1)jj2 � N(D + �)g � VolfT �x0(W )gVolfT �(�2q �D)g� �1� 3N�2� exp(�N  12 ln �2qD + �!) (64)where � = �+ ln(1 + �), and where we have used the above bounds on the volumes. Thus,EjU(D)j � jS \ T �(�2q )j � "1� �1� 3N�2� exp(�N  12 ln �2qD + �!)#M� (2�)�N [2�e�2q (1 + �)]N=2 �exp "�M �1� 3N�2� exp(�N  12 ln �2qD + �!)# ; (65)where we have used the facts that 1 � u � e�u and that the number of cubes in T �(�2q )cannot exceed the ratio between the volume of T �(�2q ) and the volume of a cube (2�)N . Itis readily seen that for EjU(D)j ! 0 as N ! 1, it is su�cient that M would be of theexponential order of expfN [0:5 ln(�2q=D) + 2�)]g.Thus, we have proved that, given the fact that x 2 T �(�2q ), � < � + �2, there exists a(pD + �+ �)2-admissible guessing strategy such that GN (x) = 1 if �2q � D and GN (x) �expfN [0:5 ln(�2q=D) + 2�]g for �2q > D. Equivalently, for D > (p� + �)2 there is a D-admissible guessing stategy with GN (x) � expfN [maxf0; 0:5 ln(�2q=((pD��)2��))g+2�]g.Thus, by letting � and � (and hence also � and �) be arbitrary small, we can make theexponential order of GN (x) arbitrarily close to exp[NR(D;Q)], where Q is a zero-meanmemoryless Gaussian source with variance �2q .For a given 0 < � < D, consider now the grid �2q(i) = D + �i, i = 1; 2; :::. Clearly,the sphere fx : xtx � NDg together with the sets Ti 4= T�=D(�2q (i)), i = 1; 2; :::, entirelycover the space RN . With this choice, we have � = �=D and �2q �D � �, and so, � and �are uniformly upper bounded by �=D + 4p�=D and 5�, respectively, independently of i.Therefore, similarly as in the proof of eq. (59), it is easy to see that the probability of Tidecays exponentially at the rate of D(QijjP ) (within a term that tends to zero as � ! 0independently of i), where Qi is a zero-mean Gaussian source with variance �2q (i) (see eq.(56)). Consider now a guessing list whose �rst guess is x̂ = 0, followed by code vectors of acode C1 that covers T1 within distortion D, then a code C2 that covers T2, and so on. Since24



the codes are in the order of increasing exponential size, we have GN(x) = 1 for xtx � ND,and GN(x) � 1 +Pij=1 jCjj � 1 + ijCij for x 2 Ti. Therefore,EfGN(X)�g � 1 + 1Xi=1 PrfTig(ijCij)�: (66)From the above considerations, it follows that the product PrfTigjCij� is upper bounded byexpfN [�R(D;Qi)�D(QijjP ) + �(�)]g where �(�)! 0 as �! 0, and so,EfGN (X)�g � 1 + 1Xi=1 expfN [�R(D;Qi)�D(QijjP ) + �(�) + � ln i=N ]g: (67)Note that the exponential rate of each term of the last expression, as a function of i, is of theform Ui = ln(Ai+B)�Ci�D, where A, B, and C are positive reals and D is immaterialsince it represents multiplication by a constant factor. It is shown in the Appendix thatlimN!1 1N ln( 1Xi=1 exp[N(ln(Ai+B)� Ci)]) = maxi�1 [ln(Ai+B)� Ci] (68)Finally, from the continuity of the function �R(D;Q)�D(QjjP ) as a function of �2q in theGaussian case, it follows that in the limit N !1, followed by the limit of dense grids (�!0), the maximum of �R(D;Qi)�D(QijjP )+� ln i=N over i (which is maxi[ln(Ai+B)�Ci])tends to the maximum of �R(D;Q)�D(QjjP ) over the continuum. 26.2 Sources with MemoryA natural extension of Theorem 1 is to certain classes of stationary sources with memory.It is easy to extend Theorem 1 to stationary �nite alphabet sources with the followingproperty: There exists a �nite positive number B such that for all m, n, u 2 Xm, andv 2 X n, j lnP (Xn1 = vjX0�m+1 = u)� lnP (Xn1 = v)j � B; (69)where Xji , for i � j, denotes (Xi; :::;Xj). This assumption is clearly met, e.g., for Markovprocesses.Theorem 6 Let P be a �nite alphabet stationary source with the above property for a givenB. Then, E(D; �) exists and is given byE(D; �) = limk!1Ek(D; �); (70)where Ek(D; �) = 1k maxQ [�Rk(D;Q)�Dk(QjjP )]; (71)25



Q is a probability measure on X k, Dk(QjjP ) is the unnormalized divergence between Qand the kth order marginal of P , the maximum is over all kth order marginal PMF's,and Rk(D;Q) is the rate-distortion function associated with a k-block memoryless source Qw.r.t. the alphabet X k and the distortion measure induced by d additively over a k-block.Proof. Assume, without essential loss of generality, that k divides N , and parse x into N=knon-overlapping blocks of length k, denoted xik+kik+1 , i = 0; 1; :::; N=k�1. Then, by the aboveproperty of P , we have pN (x) � e�NB=k N=k�1Yi=0 pk(xik+kik+1); (72)and so, by invoking the converse part of Theorem 1 to block memoryless sources, we getlim infN!1 1N infGN lnEfGN (X)�g � Ek(D; �)� Bk : (73)Since this is true for every positive integer k, thenlim infN!1 1N infGN lnEfGN (X)�g � lim supk!1 Ek(D; �): (74)On the other hand, since pN (x) � eNB=k N=k�1Yi=0 pk(xik+kik+1); (75)then if we apply the universal guessing strategy G�N w.r.t. a superalphabet of k-blocks, thenby invoking the direct part of Theorem 1 w.r.t. X k, we getlim supN!1 1N infGN lnEfGN (X)�g � Ek(D; �) + Bk ; (76)which then leads to lim supN!1 1N infGN lnEfGN(X)�g � lim infk!1 Ek(D; �): (77)Combining eqs. (74) and (77), we conclude that bothN�1 infGN lnEfGN (X)�g andEk(D; �)converge, and to the same limit. This completes the proof of Theorem 6. 2Finally, it should be pointed out that a similar result can be further extended to abroader class of mixing sources by creating \gaps" between successive k-blocks. The lengthof each such gap should grow with k in order to make the successive blocks asymptoticallyindependent, but at the same time should be kept small relative to k so that the distortionincurred therein would be negligibly small. 26



6.3 Guessing with Side InformationAnother direction of extending our basic results for DMS's is in exploring the most e�cientway of using side information. Consider a source that emits a sequence of i.i.d. pairs ofsymbols (Xi; Yi) in X �Y w.r.t. to some joint probability measure p(x; y). The guesser nowhas to guess X 2 XN within distortion level D upon observing the statistically related sideinformation Y 2 YN .De�nition 4 A D-admissible guessing strategy with side information GN is a set fGN (y);y 2YNg, such that for every y 2 YN with positive probability, GN (y) = fx̂y(1); x̂y(2); :::g, is aD-admissible guessing strategy w.r.t. pN (�jY = y).De�nition 5 The guessing function GN (xjy) induced by a D-admissible guessing strategywith side information GN maps (x;y) 2 XN � YN into a positive integer j, which is theindex of the �rst guessing code word x̂y(j) 2 GN (y) such that d(x; x̂y(j)) � ND. If no suchcode word exists in GN (y), then GN (xjy) 4=1.Similarly as in Section 3, let us de�neEXjY (D; �) = limN!1 1N infGN lnEfGN (XjY)�g; (78)provided that the limit exists, and where the in�mum is over all D-admissible guessingstrategies with side information. By using the same techniques as before, it can be eas-ily shown that for a memoryless source P , if X , X̂ , and Y are all �nite alphabets, thenEXjY (D; �) exists and is given byEXjY (D; �) = EXjY (D; �) 4= supQ [�RXjY (D;Q)�D(QjjP )]; (79)where Q = fq(x; y); x 2 X ; y 2 Yg is a joint PMF on X � Y, D(QjjP ) is de�ned as therelative entropy between the joint PMF's, and RXjY (D;Q) is the rate-distortion functionof X given Y de�ned asRXjY (D;Q) = infW Xx2X Xy2Y X̂x2X̂ q(x; y)w(x̂jx; y) ln w(x̂jx; y)Px02X q(x0; y)w(x̂jx0; y) ; (80)where the in�mum is over all channels W such thatXx2X Xy2Y X̂x2X̂ q(x; y)w(x̂jx; y)d(x; x̂) � D: (81)27



It is straightforward to see that EXjY (D; �) � EX(D; �) with equality when X and Y areindependent under P .For the proof of the direct part, we need the following version of the type coveringlemma.Lemma 5 Let Txjy be a conditional type where x and y have a given empirical joint PMFQxy. There exists a set C(y) � X̂N such that for any x0 2 Txjy and D � 0,minx̂2C(y) d(x0; x̂) � ND; (82)and at the same time 1N ln jC(y)j � RXjY (D;Qxy) + o(N): (83)The proof is a straightforward extension of the proof of the ordinary type coveringlemma and hence omitted.Analogously to Theorem 4, we also have the following parametric form for the rate-distortion guessing exponent with side information:EXjY (D; �) = sups�0maxf 8<:lnXy2Y "Xx2X p(x; y)1=(1+�)f(xjy)�=(1+�)#1+� � sD9=; ; (84)where f = ff(xjy)g are nonnegative numbers satisfyingPx2X f(xjy)e�sd(x;x̂)=� � 1 for eachx̂; y. Necessary and su�cient conditions for a given f to achieve the maximum in (84) arethat there exists a set of nonnegative numbers w(x̂jx; y) satisfying Px̂w(x̂jx; y) = 1 suchthat w(x̂jx; y)q(xjy) = m(x̂jy)f(xjy)e�sd(x;x̂)=� (85)for all x 2 X , y 2 Y, wherem(x̂jy) =Pxw(x̂jx; y) and q(xjy) = cp(xjy)1=(1+�)f(xjy)�=(1+�);with c chosen so that Px q(xjy) = 1:The large deviations exponent is given by minD(QjjP ), where both Q and P are jointPMFs on X � Y, and the minimum is over all Q such that RXjY (D;Q) � R.7 Conclusion and Future WorkWe have provided a single-letter characterization to the optimum �th order guessing expo-nent theoretically attainable for memoryless sources at a given distortion level. We havethen studied the basic properties of this exponent as a function of the distortion level D and28



the moment order �, along with its relation to the source coding error exponent. Finally,we gave a few extensions of our basic results to other cases of interest.A few problems that remain open and require further work are the following.General continuous-alphabet memoryless sources. Our �rst comment in the discussionthat follows Theorem 1, naturally suggests to extend part (b) of this theorem to the contin-uous alphabet case. Obviously, if the source has bounded support, then after a su�ciently�ne quantization, we are back in the situation of a �nite alphabet source, and so everyD-admissible guessing strategy for the quantized source is also (D + �)-admissible for theoriginal source, where � is controlled by the quantization. Thus, the proof of the directpart of Theorem 1 for the case of continuous alphabet with bounded support may rely onthe �nite alphabet case provided that the sequence of guessing exponents, corresponding tothe sequence of quantized sources and their induced distortion measures, tends, in the highresolution limit, to the corresponding function E(D; �) of the continuous source. However,the interesting and di�cult case is that of unbounded support for which in�nite guessinglists are always required. Moreover, in this case, quantization cannot be made uniformly�ne unless the alphabet is countably in�nite, but then the method of types is not directlyapplicable.Hierarchical structures of guessing strategies. We mentioned in the Introduction thatthe guessing exponent serves as a measure of the search e�ort associated with lossy sourcecoding, for a simple class of search schemes that is based on a �xed order of trials. A naturalinteresting extension would include classes of more sophisticated search schemes that takegreater advantage of the distortion information obtained at each step. For example, ifwe revisit the Bob-and-Alice guessing game described in the Introduction, then what willhappen if in order to achieve a target distortion level D, Alice is now allowed to �rst makeguesses w.r.t. a larger distortion D0, and then after her �rst success, to direct her guesses tothe desired distortion level D? Thus, the next step is to extend the scope to that of multi-stage guessing strategies. In the limit of many stages corresponding to many distortion levelthresholds, we are eventually taking full advantage of the exact distortion level informationafter each trial.Joint source-channel guessing. It would be interesting to extend the guessing problem tothe more complete setting of a communication system, that is, joint source-channel guessing.Here the problem is to jointly design a source-channel encoder at the transmitter side and a29



guessing scheme at the receiver side, so as to minimize EG(X)� for a prescribed end-to-enddistortion level D. Besides the natural question of characterizing the guessing exponent fora given source and channel, it would be interesting to determine whether the separationprinciple of information theory applies in this context as well.These issues among some others are currently under investigation.AppendixProof of Lemma 2First, we prove that f�� � f .f��(x) = supy�0[xy � f�(y)] (A.1)= supy�0 infx0�0[y(x� x0) + f(x0)] (A.2)� infx0�0 supy�0[y(x� x0) + f(x0)] (A.3)= infx0�0( 1 if x > x0;f(x0) if x � x0 (A.4)= f(x): (A.5)By the saddle-point theorem, we have equality in (A.3) if f(x) is convex. Equality (A.5) isdue to the nondecreasing property of f .Since f�� is the FLT of f�, it is convex. So, to prove that f�� is equal to the lowerconvex hull of f , denoted f̂ , it su�ces to prove the inequality f�� � f̂ . By rewriting theabove equations for the convex function f̂ , we have f̂�� = f̂ . Next, note that f̂ � f impliesf̂� � f�, which in turn implies f̂�� � f��. Thus, we havef̂ = f̂�� � f�� � f; (A.6)and the proof is complete.Proof of Proposition 1(a): Nonnegativity follows by the fact that GN (x) � 1 for every x. The expression ofE(0; �) is obtained from standard maximization of [�H(Q) � D(QjjP )] w.r.t. Q (see also[2]). E(D; 0) = 0 since GN (x)0 = 1, P -almost everywhere for every D-admissible strategy.As for the expression ofD0(�), we seek the supremum ofD such that E(D; �) = supR�0[�R�F (R;D)] > 0. This means that there is R � 0 such �R � F (R;D) > 0, or equivalently,30



F (R;D)=R < �. But the existence of such R in turn means that infR�0 F (R;D)=R, whichis de�ned as a(D), must be less than �.(b): Both monotonicity and convexity w.r.t. D follow immediately from the same propertiesof the rate-distortion function. Convexity and monotonicity also imply strict monotonicityin the indicated range.(c): Nondecreasing monotonicity w.r.t. � follows from the monotonicity of E(D; �;Q) w.r.t.� for every �xed D and Q. Convexity follows from the fact the E(D; �) is the maximumover a family of a�ne functions fE(D; �;Q)g w.r.t. �. Again, strict monotonicity followsfrom monotonicity and convexity.(d): Continuity w.r.t. each one of the variables at strictly positive values follows fromconvexity. Continuity w.r.t. D at D = 0 follows from continuity of R(D;Q) both w.r.t. Dand Q and continuity of D(QjjP ) w.r.t. Q. Continuity w.r.t. � at � = 0 is immediate (seealso part (e) below).(e): By de�nition of E(D; �), we have E(D; �) � E(D; �; P ) = �R(D;P ), which provesthe �rst part, and the fact that lim inf�!0E(D; �)=� � R(D;P ). To complete the proofof the second part, it su�ces to establish the fact that lim sup�!0E(D; �)=� � R(D;P ).This in turn follows from the following consideration. Let f�ngn�1 be an arbitrary positivesequence that tends to zero, and let fQ�ngn�1 be a corresponding sequence of maximizers ofE(D; �n; Q)=�n = R(D;Q) �D(QjjP )=�n. Now, obviously, Q�n must tend to P , otherwiseE(D; �n; Q�n)=�n would have a subsequence that tends to �1, contradicting the fact thatE(D; �)=� � R(D;Q) for all � � 0. Therefore,lim supn!1 E(D; �n)�n = lim supn!1 �R(D;Q�n)� D(Q�njjP )�n �� lim supn!1 R(D;Q�n)= R(D;P ): (A.7)(f): The upper bound follows immediately by the fact that E(D; �;Q) � �R(D;Q), and bytaking the maximum w.r.t. Q. It then also implies that lim sup�!1E(D; �)=� � Rmax(D).The converse inequality, lim inf�!1E(D; �)=� � Rmax(D), follows from the following con-sideration. Without loss of generality, pmin 4= minx2X p(x) > 0, as if this was not the case,the alphabet X could have been reduced in the �rst place. Therefore, maxQD(QjjP ) �ln(1=pmin), and so, E(D; �) = maxQ [�R(D;Q)�D(QjjP )]31



� maxQ ��R(D;Q)� ln( 1pmin )�= �Rmax(D)� ln( 1pmin ): (A.8)Dividing by � and passing to the limit as �!1, gives the desired result.Proof of Lemma 4Monotonicity in each argument is obvious from (35). Concavity in s � 0 for �xed � � 0:We shall use the geometric interpretation of E(D; �) as the vertical axis intercept of thesupporting line of slope D to the curve K(s; �) vs. s. For a proof by contradiction, supposeK(s; �) is not concave in s. Then, there exists D1, 0 � s1 < s2, 0 < � < 1 such that thesupporting line of slope D1 is tangential to K(s; �) at s1; s2 and lies strictly above it ats� 4= �s1 + (1� �)s2, i.e.,K(si; �) = E(D1; �) + siD1; for i = 1; 2, (A.9)and K(s�; �) < E(D1; �) + s�D1: (A.10)Observe that, from (A.9), E(D1; �) is upper bounded by K(s2; �)=s2. It is easy to seethat K(s; �)=s is a decreasing function of s and approaches D0(�) as s ! 0. So, we haveK(s2; �)=s2 � D0(�) since by assumption s2 > 0. Now, let (Q1;W1) achieve E(D1; �),i.e., E(D1; �) = �I(Q1;W1) � D(Q1jjP ). Since 0 � D1 � D0(�), we must also have�(Q1;W1) = D1. >From (A.9), the pair (Q1;W1) is a saddle-point of (35) for s = s1; s2.Then, it is easy to see that (Q1;W1) must be a saddle-point of (35) for s = s� as well,which implies K(s�; �) = �K(s1; �) + (1 � �)K(s2; �) = E(D1; �) � s��D1, contradicting(A.10). Proof of concavity in � � 0 for �xed s � 0 is similar, with J(R; s) playing the roleof E(D; �), and will be omitted.Proof of Proposition 2.We �rst prove uniqueness of the PMF that achieves the maximum in (35). Let s � 0be �xed. Note that the function g(Q;W ) 4= �I(Q;W ) + s�(Q;W ) � D(QjjP ) is concavein Q and convex in W . So, any (Q0;W0) achieving K(s; �) in (35) is a saddle-point of g,i.e., g(Q;W0) � g(Q0;W0) � g(Q0;W ) for all Q and W . Assume there exist two saddle-points (Q0;W0) and (Q1;W1) both achieving K(s; �) with Q0 6= Q1. Then, g(Q0;W0) �g(Q0;W1) � g(Q1;W1), hence g(Q0;W1) = K(s; �). By the strict concavity of g in Q,for any 0 < � < 1, we have g(�Q0 + (1 � �)Q1;W1) > �g(Q0;W1) + (1 � �)g(Q1;W1) =32



K(s; �) = g(Q1;W1). This contradicts the assumption that (Q1;W1) is a saddle-point, andestablishes the uniqueness of the PMF achieving (35), denoted in the rest of the proof asQs.Next, �x 0 � D < D0(�), and let Q� be a PMF achieving maxQ[�R(D;Q)�D(QjjP )].Since E(D; �) > 0, R(D;Q�) > 0 and there exists W � such that R(D;Q�) = I(Q�;W �) and�(Q�;W �) = D. For any s0 2 S(D), we have K(s0; �) = E(D; �) + s0D = �I(Q�;W �) �D(Q�jjP ) + s0�(Q�;W �): Thus, Q� solves the maximization problem (35) for s = s0, andhence, is uniquely determined as Qs0 . Since s0 is an arbitrary point in S(D), Qs = Q� forall s 2 S(D), as claimed.Next, �x s � 0 and consider the equality (42) with r = s=�. Multiply each side by �,and subtract the term D(QsjjP ). The resulting expression on the left side equals K(s; �)i� Q = Qs. We deduce that Qs is the unique PMF that achieves the maximum in (44). Itfollows that Q� achieves (44) for every s 2 S(D).Finally, to see that the maximum in (44) is achieved by a unique fs, substitute theunique Qs that maximizes the right side (which equals Q� = Q�(D) for any D such thats 2 S(D)) and note that the resulting function of f is strictly concave in f .Proof of eq. (59).Consider an auxiliary zero-mean Gaussian memoryless source with variance �2(1 + �).Then, 1 � Zjxtx�N�2j�N��2 [2��2(1 + �)]�N=2 exp "� xtx2�2(1 + �)# dx� Zjxtx�N�2j�N��2 [2��2(1 + �)]�N=2 exp "�N�2(1 + �)2�2(1 + �) # dx= [2�e�2(1 + �)]�N=2VolfT �(�2)g (A.11)which completes the proof of eq. (59).Proof of eq. (62).First observe that eq. (61) de�nes a set of vectors x̂, which for a given x, are just shiftedversions of vectors v. Therefore, the volume of T �x(W ) is identical to the volume of the set~T �x(W ) of vectors v that satisfy the indicated constraints on vtv and vtx. To lower boundthe volume of this set, consider an auxiliary Gaussian random N -vector V with zero-meanuncorrelated components of variance (D � D2=�2q ). The probability that V would fall in33



~T �x(W ) is upper bounded byPrf ~T �x(W )g = Z ~T �x(W )[2�(D �D2=�2q )]�N=2 exp "� vtv2(D �D2=�2q )# dv� Z ~T �x(W )[2�(D �D2=�2q )]�N=2e�N(1��)=2dv= [2�e1��(D �D2=�2q )]�N=2Volf ~T �x(W )g: (A.12)On the other hand, this probability is lower bounded by the union bound and Chebychev'sinequality as follows.1� Prn ~T �x(W )o � PrnjVtV �N(D �D2=�2q )j > N�(D �D2=�2q )o+PrnjVtxj > �qN(D �D2=�2q )xtxo� E[VtV�N(D �D2=�2q )]2N2�2(D �D2=�2q )2 + E(Vtx)2N�2(D �D2=�2q )xtx= 2N(D �D2=�2q )2N2�2(D �D2=�2q )2 + (D �D2=�2q )xtxN�2(D �D2=�2q )xtx= 3N�2 : (A.13)Combining now eqs. (A.12) and (A.13) gives eq. (62).Proof of eq. (68).First observe that since the the function U(x) = ln(Ax + B) � Cx is monotonicallydecreasing beyond a certain value of x, the maximum over real x, and hence also over theintegers x = i, must exist. Let then Umax be the maximum of U(i), and let I be the smallestinteger such that for all i � I, we have ln(Ai + B)=i � C=2. Also, let J be the smallestinteger i for which �iC=2 < Umax, and let K = maxfI; Jg. Clearly, Umax must be achievedfor i < K, and so,1Xi=1 eN [ln(Ai+B)�Ci] = KXi=1 eN [ln(Ai+B)�Ci] + Xi>K eNi[ln(Ai+B)=i�C]� KeNUmax + Xi�K e�NiC=2= KeNUmax + e�NKC=21� e�NC=2� KeNUmax + eNUmax1� e�NC=2 (A.14)which is clearly of exponential order of eNUmax . On the other hand, the series in question istrivially lower bounded by its maximum term eNUmax . This completes the proof of eq. (68).34
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Figure 2: Curves of E(D; �) vs. D for a binary source with letter probabilities p(0) =1�p(1) = 0:4, and the Hamming distortion measure. The solid line corresponds to � = 0:5,the dashed line to � = 1, and the dotted line to � = 2.
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