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within a prescribed per-letter distortion D w.r.t. some distortion measure d. The sourcegenerates a random vector U = (U1; : : : ; UN ) which is encoded into a channel input vectorX = (X1; : : : ;XK) and sent over the channel. The decoder observes the channel outputY = (Y1; : : : ; YK) and generates successive `guesses' (reconstruction vectors), Û1; Û2; andso on, until a guess Ûi is produced such that d(U; Ûi) � ND. At each step, the decoderis informed by a genie whether the present guess Ûj satis�es d(U; Ûj) � ND, but receivesno other information about the value of d(U; Ûj). We shall refer to this type of decoder asa guessing decoder and denote the number of guesses until successful reconstruction (whichis a random variable) by GN(UjY) in the sequel.The main aim of this paper is to determine the best attainable performance of theabove system under the performance goal of minimizing the average decoding complexity, asmeasured by the moments E[GN (UjY)�], � > 0. We also study the closely related problemof �nding tight bounds on the probability Pr[GN (UjY) > eNL] that an exponentially largenumber of guesses will be required until successful reconstruction. We have two motivationsfor studying these problems. First, the present model extends the basic search model treatedin [2], where the problem was to guess the output of a source in the absence of any codedinformation supplied via a channel. Second, and on the more applied side, the guessingdecoder model is suitable for studying the computational complexity of sequential decoding,which is a decoding algorithm of practical interest. Indeed, through this method, we areable to solve a previously open converse problem relating to the cuto� rate of sequentialdecoding in joint source-channel coding systems. We anticipate that the theoretical resultshere may have applications to concatenated and hierarchical coding systems as well. Wewill now discuss more fully the results of this paper.In [2], we considered a guessing problem which is equivalent to a special case of the2



joint source-channel coding problem where there was no channel (i.e., the decoder receivedno coded information about U before guessing began). There, the number of guesses wasdenoted by GN(U) and an asymptotic quantity called the guessing exponent was de�nedas E(D; �) = limN!1 1N minGN lnE[GN(U)�] (1)for � � 0, provided that the limit exists. It was shown that, for any discrete memorylesssource (DMS) P and additive (single-letter) distortion measure d,E(D; �) = maxQ [�R(D;Q)�D(QjjP )]; (2)where Q ranges over all probability mass functions (PMFs) on the source alphabet, R(D;Q)is the rate-distortion function of a source with PMF Q, and D(QjjP ) is the relative entropyfunction.The asymptotic quantity of interest in this paper is the joint source-channel guessingexponent de�ned, whenever the limit exists, asEsc(D; �) = limN!1 1N mineN ; GN lnE[GN (UjY)�]; (3)where eN denotes an encoding function that maps source sequences of length N into channelsequences of length K. In letting N ! 1, we set K = d�Ne where � is the ratio of thechannel signaling rate to source symbol rate. The main result of this paper is that for anyDMS P , discrete memoryless channel (DMC) W , and single-letter distortion measure d, thejoint source-channel guessing exponent has a single-letter form given byEsc(D; �) = [E(D; �)� �E0(�)]+ (4)where E0(�) is the Gallager function for W [9] and [x]+ �= maxf0; xg.3



Thus, the exponent Esc(D; �) is determined by the di�erence of a source-related term,E(D; �), and a channel-related term, �E0(�); the channel term �E0(�) represents the poten-tial bene�t of having a channel. This result indicates that the �th moment of GN (UjY) forany such system must grow exponentially in the source block length N if E(D; �) > �E0(�).Conversely, for E(D; �) < �E0(�), the �th moment can be kept from growing exponentiallyin N by suitable design of the encoder and the decoder.We prove (4) in Sections 3 and 4. The proof exhibits a separation principle for suchsystems in the sense that an optimal encoder can be built as a two-stage device: the �rststage maps the source output vector to a rate-distortion codeword, independently of thechannel characteristics; while the second stage encodes the rate-distortion codeword into achannel codeword, independently of the source statistics. The guesser then essentially aimsto recover the rate-distortion codeword in a lossless manner [Fig. 2].To provide a better perspective on the joint source-channel guessing problem, it is usefulto contrast it with another problem considered in [2], namely, guessing with uncoded side-information (as opposed to coded side-information of the present context). In the case ofuncoded side-information, the pair (U;Y) has a �xed joint PMF, which is known to theguesser. The guesser observes Y and tries to �nd a D-admissible reconstruction of U. Withcoded side-information, the joint PMF of (U;Y) is a�ected by the choice of the encodereN ; thus, it is subject to design, at least partially.To relate the guessing decoder model to more conventional joint source-channel codingmodels, we note the following relationship between guessing decoders and list decoders.Recall that a list decoder generates a �xed number, ` � 1, of guesses (estimates) anda decoding failure is said to occur if none of the guesses approximates the source outputwithin the desired distortion level. On the other hand, a guessing decoder is fully determined4



by the sequence of guesses GN (Y) = fÛ1; Û2; : : :g that it would generate if at each stageof guessing the desired distortion criterion remained unmet. So, a guessing decoder may beviewed conceptually as a list decoder, whose output is the possibly in�nite list GN (Y). Alist-` decoder can be obtained from a guessing decoder by truncating the list GN (Y) to its�rst ` elements. For ` = 1, we have ordinary decoding and the usual performance criterionis to have the average distortion satisfy E[d(U; Û1)] � ND. This is the original setting forthe joint source-channel coding problem and Shannon's joint source-channel coding theorem(see, e.g., [9, Theorem 9.2.2, p. 449]) addresses the conditions under which this requirementcan be met. For ` � 1, a common performance criterion is the probability Pr[GN (UjY) > `]that none of the �rst ` guesses meet the desired distortion threshold. The best attainableperformance under this criterion has been studied by Csisz�ar [4] for ` = 1 as N ! 1;however, the exact asymptotic performance remains unknown.In this paper, we are interested in the performance of list decoders with exponentiallist sizes, ` = eNL, L > 0, for which we obtain an exact asymptotic result. Speci�cally, wede�ne the source-channel list-error exponent asFsc(L;D) = limN!1 infeN ; GN � 1N lnPr[GN (UjY) > eNL] (5)whenever the limit exists. (In taking the limit, we set K = d�Ne.) In Section 5, we provethat for any DMS P , DMC W , additive distortion measure d, and L > 0,Fsc(L;D) = minR�L[F (R;D) + �Esp[(R� L)=�]] (6)where F (R;D) is Marton's source coding exponent [15], and Esp(�) is the sphere-packingexponent [9, p. 157] for W .List decoders with exponential list sizes are not practical; however, bounds on the prob-ability of error for such decoders prove useful in obtaining similar bounds on the distribution5



of computation in sequential decoding, as we show in Section 6. As already mentioned, theseprobability of error bounds may also have applications to the analysis of concatenated andhierarchical coding systems.Finally, in this introduction, we summarize our results with regard to sequential decod-ing, which is a decoding algorithm for tree codes invented by Wozencraft [18]. The use ofsequential decoding in joint source-channel coding systems was proposed by Koshelev [14]and Hellman [12]. The attractive feature of sequential decoding in this context is the possi-bility of generating a D-admissible reconstruction sequence, with an average computationalcomplexity that grows only linearly with N , the length of the source sequence. To be moreprecise, let CN denote the amount of computation by the sequential decoder to reconstructthe �rst N source symbols within distortion level ND. Then, CN is a random variable,which depends on the level of channel noise, as well as the speci�c tree code that is usedand also the source and channel parameters. For practical applications, it is desirable tohave E[CN ]=N , the average complexity per reconstructed source digit, bounded indepen-dently of N . Koshelev [14] studied this problem for the lossless case (D = 0) and gave asu�cient condition; in our notation, he showed that if Esc(0; 1) < �E0(1) then it is possibleto have E[CN ]=N bounded (independently of N). Our interest in this paper is in converseresults, i.e., necessary conditions for the possibility of having a bounded E[CN ]=N .In Section 6, we point out a close connection between guessing and sequential decoding,and prove, as a simple corollary to (4), that for any DMS P , DMCW , and additive distortionmeasure d, E[C�N ] must grow exponentially with N (thus E[C�N ]=N cannot be bounded) ifE(D; �) > �E0(�): (7)For the special case D = 0 and � = 1, this result complements Koshelev's result, showingthat his su�cient condition is also necessary. This result also generalizes the converse result6



in [1], where lossless guessing (D = 0) was considered for an equiprobable message ensemble.These issues are discussed further in Section 6.The remainder of this paper is organized as follows. In Section 2, we de�ne the notationand give a more formal de�nition of the guessing problem. The single-letter form (4) isproved in Section 3 for the lossless case D = 0, and in Section 4 for the lossy case D > 0. InSection 5, we prove the single-letter form (6) for the source-channel list-error exponent. InSection 6, we apply the results about guessing to sequential decoding. Section 7 concludesthe paper by summarizing the results.2 Problem Statement, Notation, and De�nitionsWe assume, unless otherwise speci�ed, that the system in Fig. 1 has the following properties.The source is a DMS with a PMF P over a �nite alphabet U . The channel is a DMC with�nite input alphabet X , �nite output alphabet Y, and transition probability matrix W .The reconstruction alphabet Û is �nite as well. The distortion measure d is a single-lettermeasure, i.e., it is a function d : U � Û ! [0;1), which is extended to UN � ÛN by settingd(u; û) = PNn=1 d(un; ûn), u = (u1; : : : ; uN ), û = (û1; : : : ; ûN ). Also, for each u 2 U , thereexists some û 2 Û such that d(u; û) = 0.Throughout, scalar random variables will be denoted by capital letters and their realiza-tions by the respective lower case letters. Random vectors will be denoted by boldface capi-tal letters and their realizations by lower case boldface letters. Thus, e.g., U = (U1; : : : ; UN )will denote a random vector, while u = (u1; : : : ; uN ) a realization of U. PMFs of scalarrandom variables will be denoted by upper case letters, e.g., P , P 0, Q, S. For randomvectors, we will denote the PMFs by upper case letters indexed by the length of the vector,e.g., PN , P 0N , etc. We will omit the index N for product-form PMFs; e.g., we write P (u)7



instead of PN (u) when PN is a product-form PMF. The probability of an event A w.r.t. aprobability measure P 0 will be denoted by P 0(A). When the underlying probability measureis speci�ed unambiguously, we also use a notation such as Pr(u;y) to denote the joint PMFof U and Y, or Pr(û; A) to denote the probability of joint occurrence of Û = û and anevent A. The expectation operation is denoted by E[�].For a given vector x 2 AN , the empirical PMF is de�ned as Qx = fQx(x);x 2 Ag,where Qx(x) = Nx(x)=N , Nx(x) being the number of occurrences of the letter x in thevector x. The type class Tx of x is the set of all vectors x0 2 AN such that Qx0 = Qx.When we need to attribute a type class to a certain PMF Q rather than to a vector, weshall use the notation TQ.In the same manner, for sequence pairs (x;y) 2 AN � BN , the joint empirical PMF isthe matrix Qxy = fQxy(x; y);x 2 A; y 2 Bg, where Qxy(x; y) = Nxy(x; y)=N , Nxy(x; y)being the number of joint occurrences of xi = x and yi = y. For a stochastic matrixfV (yjx) : x 2 A; y 2 Bg, the V -shell TV (x) of a sequence x 2 AN is the set of sequencesy 2 BN such that Qxy(x; y) = Qx(x)V (yjx) for all x and y.Next, we recall the de�nitions of some information-theoretic functions that appear inthe paper. For a PMF Q over an alphabet A, the entropy of Q is de�ned asH(Q) = �Xx2AQ(x) lnQ(x); (8)and its R�enyi entropy of order � > 0, � 6= 1, as [16]H�(Q) = 11� � lnXx2AQ(x)�: (9)Sometimes we writeH(X) andH�(X) to denote the entropy functions for a random variableX. For two PMFs Q and Q0 on a common alphabet A, the relative entropy function isD(QjjQ0) = Xx2AQ(x) ln[Q(x)=Q0(x)]: (10)8



For a stochastic matrix fV (yjx);x 2 A; y 2 Bg, and a PMF Q on A, the mutualinformation function is de�ned asI(Q;V ) = Xy2B Xx2AQ(x)V (yjx) ln[V (yjx)=V 0(y)]; (11)where V 0(y) =Px2AQ(x)V (yjx).The rate-distortion function R(D;Q) for a DMS Q on U , w.r.t. a single-letter distortionmeasure d on U � Û , is de�ned asR(D;Q) = minV I(Q;V ); (12)where the minimum is taken over all stochastic matrices V such thatXu2U X̂u2ÛQ(u)V (ûju)d(u; û) � D: (13)Marton's source coding exponent F (R;D) for a DMS P is given byF (R;D) = minQ:R(D;Q)�RD(QjjP ): (14)For a DMC W , we recall the following de�nitions. The channel capacity is de�ned asC = maxQ I(Q;W ), where the maximum is over all PMFs on the channel input alphabet.Gallager's auxiliary functions are de�ned asE0(�;Q) = � lnXy "Xx Q(x)W (yjx)1=(1+�)#1+� ; (15)for any PMF Q on the channel input alphabet and any � � 0; and,E0(�) = maxQ E0(�;Q): (16)The sphere-packing exponent function is de�ned asEsp(R) = sup��0[�R�E0(�)]: (17)Now, we de�ne the guessing problem more precisely. For û 2 ÛN , let B(û;D) 4= fu 2UN : d(u; û) � NDg. 9



De�nition 1 A D-admissible guessing strategy for the set of sequences UN is an orderedlist GN = fû1; û2; :::g of vectors in ÛN such that[i B(ûi;D) = UN : (18)In other words, GN is an ordered covering of the set UN by the `D-spheres' B(ûi;D).De�nition 2 The guessing function GN (�) induced by a D-admissible guessing strategy GN ,is the function that maps each u 2 UN into a positive integer, which is the index j of the�rst guessing word ûj 2 GN such that d(u; ûj) � ND.We now extend these de�nitions to the case where some side information vector y 2 YKis provided.De�nition 3 A D-admissible guessing strategy for UN with side information space YK isa collection fGN (y)g such that for each y 2 YK , GN (y) is a guessing strategy for UN in thesense of De�nition 1.De�nition 4 The guessing function GN(�j�) induced by a D-admissible guessing strategywith side information, fGN (y)g, is the function that maps each u 2 UN and y 2 YK into apositive integer, GN (ujy), which is the index j of the �rst guessing word ûj 2 GN (y) suchthat d(u; ûj) � ND.We shall omit the subscript N from the guessing functions and simply write G(�j�), etc.,when there is no room for ambiguity.Notice that the above de�nitions make no reference to a probability measure. In thecontext of joint source-channel guessing, we regard UN as the sample space for the sourcevector U, and YK as that for the channel output vector Y. The joint PMF for U, Y isgiven by Pr(u;y) = P (u)W (yjeN (u)) where eN : UN ! XK is the encoding function. The10



decoder observes the channel output realization y and employs a guessing strategy GN (y)to �nd a D-admissible reconstruction of the source realization u. Under such a strategyGN (UjY) equals the random number of guesses until a D-admissible reconstruction Û ofU is found.Throughout, o(N) will denote a positive quantity that goes to zero as N goes to in�nity.3 The Lossless Source-Channel Guessing ExponentIn this section, we consider the source-channel guessing problem for the lossless case D = 0.This case is of interest in its own right. Also, the general lossy guessing problem (D > 0)is reduced to a lossless one by an argument given in the next section.The single-letter form for the lossless joint source-channel guessing exponent Esc(�) �=Esc(0; �), which is the main result of this section, is given by the followingTheorem 1 For any DMS P and DMC W , the lossless joint source-channel guessing ex-ponent is given by Esc(�) = [�H1=(1+�)(P )� �E0(�)]+: (19)Since the proof of (19) is rather lengthy, it is deferred to the Appendix. In fact, in theAppendix we prove a stronger form of Theorem 1, which applies to sources with memory aswell. Since the proofs for lossy guessing require the treatment of sources with memory (asthe coded channel input may not be memoryless), we state this stronger result for futurereference as aProposition 1 For any discrete source with a possibly non-memoryless PMF PN for the�rst N source letters, and any �xed � � 0, there exists a lossless guessing function G(UjY)such that E[G(UjY)�] � c(�) expfN [�H1=(1+�)(PN )=N � �E0(�)]+g (20)11



where c(�) is a constant, independent of the source and channel. Conversely, for any guess-ing function G(UjY), and � � 0,E[G(UjY)�] � expfN [�H1=(1+�)(PN )=N � �E0(�)� o(N)]+g: (21)Proposition 1 implies, in particular, that, for a memoryless source P , the �th momentof G(UjY) can be kept below the constant c(�) for all N � 1 ifH1=(1+�)(P ) < �E0(�)=�: (22)(This cannot be deduced from (19) since it leaves open the possibility of subexponentialgrowth of the moment.) Conversely, it follows directly from (19) that ifH1=(1+�)(P ) > �E0(�)=�; (23)then Esc(�) > 0 and the �th moment of G(UjY) must go to in�nity exponentially in N .Since H1=(1+�)(P ) is increasing and E0(�)=� is decreasing as functions of � > 0, the termH1=(1+�)(P )� �E0(�)=� is minimized in the limit as �! 0 (this is proved formally below),with the limiting value H(P ) � �C, where C is the capacity of W . Thus, we concludethat if H(P ) > �C, then E[G(UjY)�] must go to in�nity exponentially in N for all � > 0.Conversely, if H(P ) < �C, then there exists a � > 0 such that, for any given N , it is possibleto have E[G(UjY)�] � c(�) by a suitable choice of the encoder and the guessing strategy.It is interesting that the conditions H(P ) < �C and H(P ) > �C are also the conditionsfor the validity of the direct and converse parts, respectively, of Shannon's joint source-channel coding theorem for the lossless case [3, p. 216]. This suggests an underlying strongrelationship between the problems of (i) being able to keep E[G(UjY)�] bounded asN !1,for some � > 0, and (ii) being able to make the probability of error Pr[G(UjY) > 1]arbitrarily small as N ! 1. However, we have found no simple argument that would12



explain why the conditions for the two problems are identical. We propose this as a topicfor further consideration.For lossless guessing, a guessing strategy fG(y)g which generates its guesses in decreasingorder of a-posteriori probabilities Pr[U = ujY = y] is optimal in the sense of minimizingthe moments E[G(UjY)�] of the associated guessing function. This is easily seen by simplywriting E[G(UjY)�] =Xy Pr[Y = y]Xu Pr[U = ujY = u]G(ujy)�: (24)Note that the optimal order of guesses depends on the encoder eN since the joint PMF isgiven by Pr[U = u;Y = y] = P (u)W (yjeN (u)). The proof of Proposition 1 uses such anoptimal guessing strategy.It is clear from the de�nition that Esc(�) must be a non-decreasing function of � �0. This, and further properties of Esc(�), can be obtained by considering the form (19).For this, we refer to Lemma 1 (see Appendix), which states that, for any �xed PMF S,f(�; S) 4= �H1=(1+�)(P )� �E0(�; S) is a convex function, which is strictly increasing in therange of � > 0 where f(�; S) > 0. We have Esc(�) = [minS f(�; S)]+ = minS [f(�; S)]+.Since the minimum of a family of increasing functions is increasing, it follows that Esc(�)is increasing in the range where it is positive.As for convexity, Esc(�) is convex whenever E0(�) = minS E0(�; S) is concave; this istrue in particular for those channels where the minimum is achieved by the same S forall � � 0, such as the binary symmetric channel. There are channels, however, for whichE0(�) is not concave [9], and hence it is possible to construct examples for which Esc(�)is not convex. (E.g., take P as the uniform distribution on a binary alphabet so that�H1=(1+�)(P ) = � ln(2). Let E0(�) be non-concave. Then, for � large enough, Esc(�) willbe non-convex.) 13



4 The Lossy Source-Channel Guessing ExponentWe are now in a position to prove the main result of this paper.Theorem 2 For any DMS P , DMC W , and single-letter distortion measure d, the jointsource-channel guessing exponent Esc(D; �) has a single-letter form given byEsc(D; �) = [E(D; �) � �E0(�)]+: (25)Proof. Direct part (Esc(D; �) � [E(D; �) � �E0(�)]+): To obtain an upper bound onthe minimum attainable E[G(UjY)�], we consider a two-stage source-channel coding scheme[Fig. 2]. In the �rst stage, the source output U is encoded into a rate-distortion codewordÛ such that d(U; Û) � ND. In the second stage, a joint source-channel guessing scheme isemployed, aiming for lossless recovery of Û. The details are as follows.The encoding of U into a channel input block X is dependent on the type of U. Let fQ :TQ ! CQ be a rate-distortion encoder for the type class TQ � UN such that d(u; fQ(u)) �ND for each u 2 TQ and the codebook CQ has size eN(R(D;Q)+o(N)). Such an encoder existsby the type-covering lemma [5, p. 150]. Let gQ : CQ ! XK denote a channel encoder thatmaps the codebook CQ into channel codewords. The two-stage encoder �rst checks the typeof U, and if U 2 TQ, then the encoding functions fQ and gQ are applied to generate thechannel input block X = gQ(fQ(U)).The guesser in the system does not know in advance the type of U. To overcomethis di�culty, we employ a D-admissible guessing strategy fG(y); y 2 YKg for UN whichinterlaces the guesses by a family of D-admissible guessing strategies fGQ(y);y 2 YKgfor UN , indexed by types Q over UN . To be precise, let Q1; : : : ; Qv be an enumerationof the types. For any �xed y 2 YK , the interlaced guessing strategy fG(y)g generates itsguesses in rounds. In the �rst round, the �rst guesses by GQi(y), i = 1; : : : ; v, are generated,14



respectively; in the second round, the second guesses are generated, and so on. (If at someround, there are no more guesses by some GQ(y), dummy guesses are inserted.) Let G(ujy),GQ(ujy) be the guessing functions for G(y), GQ(y), respectively. Due to interlacing, we haveG(ujy) � vGQ(ujy) for all u, y, and Q, henceE[G(UjY)�] = XQ Pr[U 2 TQ]E[G(UjY)�jU 2 TQ] (26)� XQ Pr[U 2 TQ]v�E[GQ(UjY)�jU 2 TQ] (27)� v�+1maxQ [P (TQ)E[GQ(UjY)�jU 2 TQ]]: (28)Next, we specify GQ(y) so that it is an \e�cient" guesser when U 2 TQ. For this, wesuppose that the �rst jCQj guesses by GQ(y) consist of an enumeration of the elementsof CQ in descending order of the conditional probabilities Pr[Û = ûjU 2 TQ;Y = y];the remaining guesses are immaterial so long as they are chosen to ensure the validity ofthe hypothesis that GQ(y) is D-admissible for UN . Observe that GQ(y) is also a losslessguessing strategy for CQ; furthermore, due to the way it has been speci�ed, it is optimalas a lossless guessing strategy for CQ, in the sense of minimizing the conditional momentsE[GQ(ÛjY)�jU 2 TQ], for all � � 0. (It is important to note that GQ(ÛjY) denotes theguessing function associated with GQ(y), when the latter is regarded as a lossless guessingstrategy for CQ. Whereas, GQ(UjY) denotes the guessing function when GQ(y) is regardedas a D-admissible guessing strategy for UN .)Now, we observe thatGQ(ujy) � GQ(fQ(u)jy); for all u 2 TQ; (29)where we may have strict inequality if d(u; û0) � ND for some û0 2 CQ such that GQ(û0jy) <GQ(fQ(u)jy) (i.e., when u falls in the D-sphere of a codeword û0 that precedes fQ(u) inthe order they are generated by GQ(y)). Taking expectations of both sides of (29) w.r.t.15



the conditional probability measure Pr[U = u; Û = û;Y = yjU 2 TQ] (note that thisconditional PMF equals zero unless û = fQ(u)), we obtainE[GQ(UjY)�jU 2 TQ] � E[GQ(ÛjY)�jU 2 TQ] (30)By Proposition 1, we know that the channel encoder gQ can be chosen so thatE[GQ(ÛjY)�jU 2 TQ] � c(�) exp hN [�H1=(1+�)(PN )=N � �E0(�)]+i (31)where PN is the conditional PMF of Û given U 2 TQ, i.e., PN is a PMF on CQ withPN (û) = Pr[Û = ûjU 2 TQ] = Xu2TQ:fQ(u)=ûP (u)=P (TQ): (32)The R�enyi entropy H1=(1+�)(PN ) is upper-bounded by ln jCQj = N [R(D;Q) + o(N)], soE[GQ(ÛjY)�jU 2 TQ] � c(�) exp �N [�R(D;Q)� �E0(�) + o(N)]+� : (33)Now recalling that P (TQ) � exp[�ND(QjjP )] [5, p. 32], we havemaxQ [P (TQ)E[GQ(ÛjY)�jU 2 TQ]] (34)� c(�) exp �N maxQ [�D(QjjP ) + �R(D;Q)� �E0(�) + o(N)]+� (35)= c(�) exp �N [E(D; �) � �E0(�) + o(N)]+� (36)where the last line follows by (2), proved in [2]. Substituting this into (28) and noting thatv � (1 +N)jUj, we have the proof that Esc(D; �) � [E(D; �)� �E0(�)]+:Converse part (Esc(D; �) � [E(D; �) � �E0(�)]+): Consider an arbitrary D-admissiblejoint source-channel guessing strategy fG(y) : y 2 YKg for UN , with associated guessingfunction G(ujy). Let UQ, YQ denote the random variables whose joint PMF equals theconditional PMF of U, Y given U 2 TQ; i.e., UQ has a PMF which is uniform on TQ, andYQ is the channel output random variable when the channel codeword forUQ is transmitted.16



Then, E[G(UjY)�] = XQ P (TQ)E[G(UjY)�jU 2 TQ] (37)= XQ P (TQ)E[G(UQjYQ)�]: (38)Next we lower-bound the moments of G(UQjYQ). For any �xed y, let G0;Q(y) be a guessingstrategy for TQ which is obtained from G(y) as follows. For each guess û produced by G(y),G0;Q(y) produces, successively, the elements of the set B(û;D) = fu 2 TQ : d(u; û) � NDg.Clearly, G0;Q(y) is lossless for TQ, and has an associated guessing function that satis�es thebound G0;Q(ujy) � BmaxG(ujy); for each u 2 TQ; (39)where Bmax 4= maxû2ÛN jB(û;D)j. It is known [4] and also shown in the Appendix thatBmax � expfN [H(Q)�R(D;Q) + o(N)]g: (40)Now, by Proposition 1, and since H1=(1+�)(UQ) = (1=N) ln jTQj � H(Q) � o(N) (for theinequality, see, e.g., [5, p. 30]), we haveE[G0;Q(UQjYQ)�] � expfN [�H(Q)� �E0(�)� o(N)]+g: (41)Combining (38)-(41), and using the bound P (TQ) � exp[�N(D(QjjP ) + o(N))] [5, p. 32],we obtainE[G(UjY)�] � XQ expfN [�D(QjjP ) + �R(D;Q)� �E0(�)� o(N)]+g (42)� maxQ expfN [�D(QjjP ) + �R(D;Q)� �E0(�)� o(N)]+g (43)= expfN [E(D; �) � �E0(�)� o(N)]+g: (44)This completes the proof of the converse part.17



Inspection of the proof shows that, for the direct part, we have in fact proved morethan claimed in the theorem. We have shown that E[G(UjY)�] can be kept bounded bya constant independent of N whenever Esc(D; �) = 0. Whereas, all that can be deducedfrom Theorem 2 is that E[G(UjY)�] cannot grow exponentially in N when Esc(D; �) = 0(which does not rule out the possibility of, say, polynomial growth in N).As mentioned in the Introduction, the special case of Theorem 2 for � = 0, whichcorresponds to having no channel, was proved in [2].Further insight into Theorem 2 can be gained by studying the properties of the functionEsc(D; �).Proposition 2 The joint source-channel guessing exponent function Esc(D; �) has the fol-lowing properties.(a) For �xed � > 0, Esc(D; �) is a convex function of D � 0, which is strictly decreasing inthe range where it is positive. At D = 0, we have Esc(0; �) = [�H1=(1+�)(P )��E0(�)]+.There is a �nite D0, given by the solution of E(D0; �) = �E0(�), such that Esc(D; �) =0 for D � D0.(b) For �xed D � 0, Esc(D; �) is a continuous function of � � 0, which is strictly increas-ing in the range where it is positive. We have Esc(D; �) > 0 for all � > 0 if and onlyif R(D;P ) > �C, where C is the channel capacity. The function Esc(D; �) is convexin � whenever E0(�) is concave.Proof. For the most part, this proposition is straightforward and we omit the full proof.We only mention that in part (a), the convexity and monotone decreasing property ofEsc(D; �) as a function of D follow from the fact, proved in [2], that for �xed � > 0, E(D; �)is a strictly decreasing, convex function of D in the range where it is positive.18



For part (b), we recall the fact, shown in [2], that E(D; �) is a convex function of � � 0(for �xed D). Since E0(�; S) is a concave function of � � 0 for any �xed PMF S [9, p. 142],e(�; S) 4= E(D; �)��E0(�; S) is a convex function of � � 0. By convexity and the fact thate(0; S) = 0, the function e(�; S) is strictly increasing in the range of � where e(�; S) > 0.(This last statement is proved in the same manner as in the proof of Lemma 1.) SinceEsc(D; �) is given by minS [e(�; S)]+, it is also strictly increasing where it is positive (theminimum of a family of increasing functions is increasing).We have Esc(D; �) > 0 for all � > 0 if e(�; S) > 0 for all � > 0 and all S. Sincee(�; S) is a convex function of � with e(0; S) = 0, e(�; S) > 0 for all � > 0 if and only ife0(0; S) > 0. But, e0(0; S) = lim�!0[E(D; �) � �E0(�)]=� = R(D;P )� �I(S;W ). It followsthat E(D; �) > 0 for all � > 0 if and only if R(D;P ) > �C = �maxS I(S;W ). SinceE(D; �) is convex, it is clear that Esc(D; �) is convex whenever E0(�) is concave. (However,Esc(D; �) is in general non-convex, as shown for the lossless case D = 0 in the previoussection.) This completes the proof.It is interesting that, as we have just proved, if R(D;P ) > �C, then Esc(D; �) > 0for all � > 0, and hence, E[G(UjY)�] must go to in�nity as N goes to in�nity for all� > 0. Conversely, if R(D;P ) < �C, then there exists a � > 0 such that it is possibleto keep E[G(UjY)�] bounded even as N goes to in�nity. The conditions R(D;P ) < �Cand R(D;P ) > �C are also the conditions for the validity of the direct and converse parts,respectively, of Shannon's joint source-channel coding theorem [9, p. 449] for the lossy case.This is analogous to the problem already mentioned in the lossless case, and the same typeof remarks apply.
19



5 Source-Channel List Decoding ExponentThe aim of this section is to prove the following result.Theorem 3 For any DMS P , DMC W , L > 0, and D � 0, the source-channel list-errorexponent is given by Fsc(L;D) = minR�L[F (R;D) + �Esp[(R� L)=�]]: (45)Before we give the proof, we wish to comment on some aspects of this theorem. Weremark that for the special case � = 0, determining Fsc(L;D) is equivalent to determiningthe \error exponent in source coding with a �delity criterion," a problem solved by Marton[15]. In this problem, one is interested in the probability that a rate-distortion codebookC � ÛN of size eNL contains no code word which is within distance ND of the randomvector U 2 UN produced by a DMS P . Marton's exponent F (L;D) is the best attainableexponential rate of decay of this probability as N ! 1. Indeed, for � = 0, we haveFsc(L;D) = F (L;D), in agreement with Marton's result.It will be noted that the case L = 0 is excluded from the theorem. For L = 0, we have alist of size 1, independent of N . As mentioned in the Introduction, list-of-1 decoding in jointsource-channel coding systems was considered by Csisz�ar; and the error exponent remainsonly partially known. We also note that if L = 0 is interpreted as the list size going toin�nity at a subexponential rate, then the theorem holds also for L = 0. We do not provethis statement, since subexponential list sizes are not of interest in the present work.Finally, we wish to iterate that though list-decoders with exponential list sizes are notviable in applications, the above theorem serves as a tool to �nd bounds on the distributionof computation in sequential decoding, as shown in the next section.20



Proof of Theorem 3. Direct part (Fsc(L;D) � minR�L[F (R;D) + �Esp[(R � L)=�]]):To obtain an upper bound on the minimum attainable probability of list decoding error,we consider a two-stage encoding scheme and an interlaced guessing strategy, just as in theproof of Theorem 2. Then, for any �xed y, among the �rst eNL guesses by G(y), there areat least bv�1eNLc guesses by each GQ(y). So, we have (writing v�1eNL in place of bv�1eNLcfor notational convenience)Pr[G(UjY) > eNL] � XQ P (TQ)Pr[GQ(UjY) > v�1eNLjU 2 TQ] (46)= XQ P (TQ)Pr[GQ(UQjYQ) > v�1eNL] (47)� XQ P (TQ)Pr[GQ(ÛQjYQ) > v�1eNL]; (48)where UQ, ÛQ, YQ are random variables whose joint PMF equals the conditional jointPMF of U, Û, Y, given U 2 TQ. To be precise,Pr[UQ = u; ÛQ = û;YQ = y] = Pr[U = u; Û = û;Y = yjU 2 TQ] (49)= ( P (u)W (yjgQ(û))=P (TQ); u 2 TQ, û = fQ(u);0; otherwise. (50)Note, in particular, that ÛQ is a random variable over the rate-distortion code CQ. The eventG(ÛQjYQ) > v�1eNL may be interpreted as an error event in a communication system witha message ensemble ÛQ of rate H(ÛQ)=K � (1=K) ln jCQj � [R(D;Q)+o(N)]=� and with alist-decoder of list-rate (1=K) ln[v�1eNL] = [L� o(N)]=�. By a well-known random-codingbound on the best attainable probability of error for list-decoders [7], [17], the channelencoder gQ can be chosen so thatPr[G(ÛQjYQ) > v�1eNL] � exp[�N [�Esp[(R(D;Q)� L)=�]� o(N)]]: (51)By (48) and (51), and using the fact that P (TQ) � exp[�N(D(QjjP )], we now havePr[G(UjY) > eNL] � XQ expf�N [D(QjjP ) + �Esp[(R(D;Q)� L)=�]� o(N)]g (52)21



� v expf�N minQ [D(QjjP ) + �Esp[(R(D;Q)� L)=�]� o(N)]g(53)= expf�N minR [F (R;D) + �Esp[(R � L)=�]� o(N)]g; (54)where in the last line, the term v was absorbed by o(N), and we used the following equality.minR [F (R;D) + �Esp[(R� L)=�]] = minR minQ:R(D;Q)�R[D(QjjP ) + �Esp[(R� L)=�]](55)= minQ minR�R(D;Q)[D(QjjP ) + �Esp[(R � L)=�]] (56)= minQ [D(QjjP ) + �Esp[(R(D;Q) � L)=�]]: (57)In (57), we made use of the monotone decreasing property of Esp. Note that since Esp(�) isin�nite for negative arguments and F (R;D) is in�nite for R > Rmax(D) 4= maxQR(D;Q),the minimum over R in (54) can be restricted to the range [L;Rmax(D)], provided, of course,that L < Rmax(D). This justi�es the use of min rather than inf in the minimization over R.(For L � Rmax(D), the probability of failure can be trivially made zero). This completesthe proof of the direct part.Converse part (Fsc(L;D) � minR�L[F (R;D)+�Esp[(R�L)=�]]): We follow the methodCsisz�ar [4] used in lower-bounding Pr[G(UjY) > 1]. Let fG(y)g be an arbitrary D-admissible guessing strategy for UN , and G(ujy) the associated guessing function. Asproved in Appendix C, each guess û 2 ÛN by G(y) covers, within distortion level ND,at most exp[N(H(Q) � R(D;Q) + o(N)] elements of TQ. Thus, eNL guesses cover atmost exp[N(L +H(Q) � R(D;Q) + o(N)] elements of TQ. Thus, conditional on U 2 TQ,G(UjY) > eNL corresponds to making an error with a list size of at most exp[N(L+H(Q)�R(D;Q) + o(N))]. So, by the sphere-packing lower bound for list decoding [17], we havePr[G(UjY) > eNLjU 2 TQ] � exp[�N [�Esp[(R(D;Q)� L)=�] + o(N)]] (58)(Note that the argument of Esp is obtained as the di�erence of the source rate H(Q)=�and the list rate [L+H(Q)�R(D;Q)]=�.) Since P (TQ) � exp[�N(D(QjjP ) + o(N))], we22



obtainPr[G(UjY) > eNL] � exp[�N minQ [D(QjjP ) + �Esp[(R(D;Q)� L)=�] + o(N)]]; (59)which completes the proof in view of eqs. (55)-(57).6 Application to Sequential DecodingSequential decoding is a search algorithm introduced by Wozencraft [18] for �nding thetransmitted path through a tree code. Well-known versions of sequential decoding are dueto Fano [6], Zigangirov [19], and Jelinek [10]. The computational e�ort in sequential decod-ing is a random variable, depending on the transmitted sequence, the received sequence,and the exact search algorithm. Our aim in this section is to exploit the relationship be-tween guessing and sequential decoding to obtain converse (unachievability) results on theperformance of sequential decoders.Koshelev [14] and Hellman [12] considered using a convolutional encoder for joint source-channel encoding and a sequential decoder at the receiver for lossless recovery (D = 0) ofthe source output sequence. For the class of Markov sources, Koshelev showed that theexpected computation per correctly decoded digit in such a system can be kept bounded ifthe R�enyi entropy of order 1/2 for the source, limN!1H1=2(PN )=N , is smaller than �E0(1).Here, PN denotes the joint probability distribution for the �rst N source letters. In thissection, we �rst prove a converse result which complements Koshelev's achievability result.Subsequently, we prove a converse for the lossy case.Consider an arbitrary discrete source (not necessarily Markovian) with distribution PNfor the �rst N source letters. Consider an arbitrary tree code that maps source sequencesinto channel input sequences so that at each step the encoder receives n source symbolsand emits k = �n channel input symbols. Thus, each node of the tree has jUjn branches23



emanating from it, and each branch is labeled with k channel symbols. Consider the set ofnodes at a �xed level, N source symbols (or, K = �N channel symbols) into the tree code.Each node at this level is associated in a one-to-one manner with a sequence u of length Nin the source ensemble. Only one of these nodes lies on the channel sequence that actuallygets transmitted in response to the source output realization; we call this node the correctnode. The correct node at level N is a random variable, which we identify and denote byU, the �rst N symbols of the source. We let X denote the channel input sequence of lengthK corresponding to the correct node U, and Y the channel output sequence of length Kthat is received when X is transmitted.Now we use an idea due to Jacobs and Berlekamp [13] to relate guessing to sequentialdecoding. Any sequential decoder, applied to the above tree code, begins its search at theorigin and extends it branch by branch eventually to examine a node u0 at level N , possiblygoing on to explore nodes beyond u0. We assume that if U 6= u0, i.e., if u0 is not the correctnode at level N , then the decoder eventually retraces its steps back to below level N andproceeds to examine a second node u00 at level N . If U 6= u00, then eventually a third nodeat level N is examined, and so on. Thus, for any given realization y of Y, we have anordering of the nodes at level N , in which a node u is preceded by those nodes that thesequential decoder examines before u, when u is the correct node. We let G(ujy) denotethe position of u in this ordering when Y = y. (By de�nition of sequential decoding, thevalue G(ujy) is well-de�ned in the sense that, for any �xed sequential decoder and �xedtree code, the order in which nodes at level N are examined does not depend on the portionof the channel output sequence beyond level K; it depends only on y.)Clearly, G(ujy) is a lower bound to the number of computational steps performed bythe sequential decoder in decoding the �rst N symbols of the transmitted sequence, when24



U = u and Y = y. Let CN denote the (random) number of steps by the sequentialdecoder to correctly decode the �rst N source symbols. Then, lower bounds to the momentsE[G(UjY)�] constitute lower bounds to E[C�N ]. By Proposition 1,E[G(UjY)�] � exp[N [�H1=(1+�)(PN )=N � �E0(�)� o(N)]+]: (60)So, if lim supN!1 �H1=(1+�)(PN )=N > �E0(�), then E[G(UjY)�] grows exponentially withN (for some subsequence), and so does E[C�N ]. In particular, if lim supN!1H1=2(PN )=N >�E0(1), then the average computation per correctly decoded digit is unbounded and se-quential decoding cannot be used in practice.We summarize this converse result as follows.Proposition 3 Suppose a discrete source, with distribution PN for the �rst N source let-ters, is encoded, using a tree code, into the input of a DMC W at a rate of � channelsymbols per source symbol, and a sequential decoder is used at the receiver. Let CN bethe amount of computation by the sequential decoder to correctly decode the �rst N sourcesymbols. Then, the �th moment of CN grows exponentially with N if the `source rate'lim supN!1H1=(1+�)(PN )=N exceeds � times the channel `cuto� rate' E0(�)=�.This result complements Koshelev's result [14], mentioned above. Note that it appliesfor any � � 0, while Koshelev was concerned only with � = 1. We also note that thisresult generalizes the converse in [1], where the source was restricted to be a DMS withequiprobable letters.Next we consider the lossy case. First, we need to make precise what successful guessingmeans in this case, since we are dealing here with piecemeal generation of a reconstructionsequence of inde�nite length. We shall insist that for any realization u1; u2; : : : of the sourcesequence, the system eventually produce a reconstruction sequence û1; û2; : : : such that25



d(u1; : : : ; uN ; û1; : : : ; ûN ) � ND for all N � N0, where N0 is a constant independent of thesource and reconstruction sequences. This means that we desire to have a reconstructionsequence that stays close to the source sequence, with the possible exception of a �niteinitial segment.As in the lossless case, the tree encoder receives successive blocks of n symbols from thesource and for each such block emits k = �n channel input symbols. The sequential decoderworks in the usual manner, generating a guess at each node it visits. The guess associatedwith a node at level N is a reconstruction block û = (û1; : : : ûN ) of length N , which stays�xed throughout. We assume a pre�x property for the guesses in the sense that the guessat a node is the pre�x of the guesses at its descendants.Fix N � N0. For any source block u = (u1; : : : ; uN ) and channel output block y =(y1; : : : ; yN ), let G(ujy) denote the number of nodes at level N visited by the sequentialdecoder before it �rst generates a guess û = (û1; : : : ; ûN ) satisfying d(u; û) � ND. It ispossible that the sequential decoder subsequently revises its �rst D-admissible guess û atlevel N , but eventually it must settle for some D-admissible guess if it ever produces aD-admissible reconstruction of the entire source sequence. In any case, G(ujy) is a lowerbound to the number of computational steps by the sequential decoder until it settles forits �nal D-admissible guess about the source block u, when y is the channel output block.Now assuming that the source in the system is a DMS, we have by Theorem 2E[G(UjY)�] � exp[N [E(D; �) � �E0(�)� o(N)]]: (61)We thus obtain the following converse result on the computational complexity of sequentialdecoding.Proposition 4 Suppose a DMS P is encoded, using a tree code, into the input of a DMC26



W , at a rate of � channel symbols per source symbol, and a sequential decoder is used atthe receiver. Let CN be the amount of computation by the sequential decoder to generate aD-admissible reconstruction of the �rst N source letters. Then, for any � > 0, the momentE[C�N ] must grow exponentially with N if E(D; �) > �E0(�).This result exhibits the operational signi�cance of the functions E(D; �)=� and E0(�)=�.Note that as � ! 0, E(D; �)=� ! R(D;P ) and E0(�)=� ! C, leading to the expectedconclusion that if R(D;P ) > �C, then E[C�N ]=N must go to in�nity as N increases for all� > 0.We conjecture that a direct result complementing Proposition 4 can be proved. Inother words, we conjecture that there exists a system, employing tree coding and sequentialdecoding, for which E[C�N ]=N is bounded independently of N , for any given � > 0 satisfyingE(D; �) < �E0(�). The proof of such a direct result would be lengthy and will not bepursued here.As a �nal remark, we note that the lower bound in Section 5 on the probability of listdecoding error directly yields the following lower bound on the distribution of computationin sequential decoding. Pr[CN � eNL] � exp[�N [Fsc(L;D) + o(N)] (62)This is a generalization of the result in [13] about the Paretian behavior of the distributionof computation in sequential decoding.7 ConclusionsWe considered the joint source-channel coding and guessing problem, and gave single-lettercharacterizations for the guessing exponent Esc(D; �) and the list-error exponent Fsc(L;D)for the case where the source and channel are �nite and memoryless. We applied the results27



to sequential decoding and gave a tight lower bound to moments of computation, which, inthe lossless case, established the tightness of Koshelev's achievability result.The results suggest that, as far as the �th moment of the guessing e�ort is concerned,the quantity E(D; �)=� can be interpreted as the e�ective rate of a DMS, and E0(�)=� as thee�ective capacity (cuto� rate) of a DMC. The operational signi�cance of these informationmeasures has emerged in connection with sequential decoding.A topic left unexplored here is whether there exist universal guessing schemes, for whichthe encoder and the guessing strategy are designed without knowledge of the source statisticsand yet achieve the best possible performance. Other topics that may be studied furtherare the problems mentioned at the end of Section 3 and also Section 4, and the conjecturestated at the end of Section 6.AcknowledgementWe are grateful to I. Csisz�ar and V. Balakirsky for enlightening discussions.AppendixA. Proof of Proposition 1We carry out the proof for an arbitrary �nite-alphabet source with distribution PN forthe �rst N source letters. Note that this proof also covers Theorem 1 by taking PN as aproduct-form distribution.Direct part: Fix an arbitrary encoder eN . Let Pr(u;y) denote the joint probabilityassignment Pr(u;y) = PN (u)W (yjeN (u)): (A.1)We use a guessing strategy fGN (y)g such that GN (y) generates its guesses in descendingorder of the probabilities Pr(u;y). We let G(UjY) denote the associated guessing function.28



By Gallager's method [8], we have for any � � 0,G(ujy) �Xu0 �Pr(u0;y)Pr(u;y) �1=(1+�) : (A.2)Thus, E[G(UjY)�] � Xu;y Pr(u;y)(Xu0 �Pr(u0;y)Pr(u;y) �1=(1+�))�= Xy "Xu Pr(u;y)1=(1+�)#1+� : (A.3)Now, we employ a technique used in the sequential decoding literature to upper-boundthe moments of computation [11]. Fix � > 0 and let n be the integer satisfying n�1 < � � n.Then,"Xu Pr(u;y)1=(1+�)#1+� = 24Xu1 � � � Xun+1 Pr(u1;y)1=(1+�) � � �Pr(un+1;y)1=(1+�)35(1+�)=(1+n)(A.4)= 24XS Xu1 Xu2 6=u1 � � � XujSj 6=u1;:::;ujSj�1 jSjYi=1Pr(ui;y)mi=(1+�)35(1+�)=(1+n)(A.5)= "XS �S(y)#(1+�)=(1+n) (A.6)� XS �S(y)(1+�)=(1+n) (A.7)In (A.5), we rewrote the summation in terms of partitions S = fS1; : : : ; SjSjg of the setf1; : : : ; n+ 1g. Each element Si of a partition denotes the group of sums on the right sideof (A.4) whose indexes uj , j 2 Si, are restricted to remain identical (as they range throughthe set of all possible source blocks). In (A.5), mi denotes the cardinality of Si. Note thatsince sums belonging to di�erent Si's must assume distinct ui values, we have the restrictionui 6= u1; : : : ;ui�1 in (A.5). Eq. (A.6) de�nes the notation �S(y), and (A.7) follows by avariant of Jensen's inequality [9, ineq. (f), p. 523].Before we proceed, we illustrate the above partitioning by an example. Suppose n = 2.Then, there are �ve partitions: S0 = ff1; 2; 3gg, S1 = ff1; 2g; f3gg, S2 = ff1; 3g; f2gg,29



S3 = ff2; 3g; f1gg, S4 = ff1g; f2g; f3gg; and, any sum of the form PiPjPk aiajaj ,with indexes running through a common set, can be written as the sum of the sumsPiPj 6=iPk 6=i;j aiajak, PiPj 6=i a2i aj (repeated three times), and Pi a3i .To continue with the proof, let S0 denote the trivial partition which has only one element,i.e., jS0j = 1 and m1 = n+1. We shall treat this partition separately. By the same variantof Jensen's inequality mentioned above, we haveXy �S0(y)(1+�)=(1+n) = Xy "Xu Pr(u;y)(1+n)=(1+�)#(1+�)=(1+n) (A.8)� Xy Xu Pr(u;y) (A.9)= 1: (A.10)Combining (A.3), (A.7), and (A.10), we obtainE[G(UjY)�] � 1 + XS6=S0Xy �S(y)(1+�)=(1+n) : (A.11)We shall now consider choosing the encoder eN at random. Speci�cally, we suppose thateach source block u is assigned the codeword x with probability S(x), independently of allother codeword assignments. The PMF S is of product form with single-letter distributionS chosen so as to achieve the maximum in (16). Denoting expectation w.r.t. the randomcode ensemble by an overline, we haveE[G(UjY)�] � 1 + XS6=S0Xy �S(y)(1+�)=(1+n) (A.12)� 1 + XS6=S0Xy �S(y)(1+�)=(1+n) (A.13)where (A.13) is by Jensen's inequality. Now,�S(y) = Xu1 Xu2 6=u1 � � � XujSj 6=u1;:::;ujSj�1 jSjYi=1Pr(ui;y)mi=(1+�) (A.14)= Xu1 Xu2 6=u1 � � � XujSj 6=u1;:::;ujSj�1 jSjYi=1Pr(ui;y)mi=(1+�) (A.15)30



� Xu1 Xu2 � � � � � �XujSj jSjYi=1Pr(ui;y)mi=(1+�) (A.16)= jSjYi=1Xu Pr(u;y)mi=(1+�) (A.17)where (A.15) is by the independence of codeword assignments to distinct messages, and(A.16) is simply by removing the restriction ui 6= u1; : : : ;ui�1.Now de�ne �i(y) = "Xu Pr(u;y)i=(1+�)#(1+�)=(1+n) ; (A.18)and use (A.13), (A.17) to writeE[G(UjY)�] � 1 + XS6=S0Xy jSjYi=1 �mi(y) (A.19)� 1 + XS6=S0 jSjYi=1 "Xy �mi(y)(1+n)=mi#mi=(1+n) (A.20)where (A.20) is by H�older's inequality (note that Pimi = n+ 1). Now,Xy �i(y)(1+n)=i =Xy "Xu Pr(u;y)i=(1+�)#(1+�)=i (A.21)= Xy "Xu Xx S(x)PN (u)i=(1+�)W (yjx)i=(1+�)#(1+�)=i (A.22)= "Xu PN (u)i=(1+�)#(1+�)=iXy "Xx S(x)W (yjx)i=(1+�)#(1+�)=i (A.23)= expfN [�iH1=(1+�i)(PN )=N � �E0(�i; S)]g (A.24)where we have de�ned �i = (1 + �� i)=i. Note that for 1 � i � n, we have 0 < �i � �.For shorthand, let us writef(r) = rH1=(1+r)(PN )=N � �E0(r; S): (A.25)To continue we need the following fact which is proved in part B of this Appendix.Lemma 1 f(r) is a convex function of r � 0; f(0) = 0; and f(r) is increasing in the rangewhere it is positive. 31



Now we consider two cases. Case f(�) � 0: Then, for all i = 1; : : : ; n, we have f(�i) � 0,and by (A.24), Py �i(y)(1+n)=i � 1. Using this in (A.20) (note that 1 � mi � n for S 6= S0),we obtain E[G(UjY)�] � 1 + XS6=S0 jSjYi=1 "Xy �mi(y)(1+n)=mi#mi=(1+n) (A.26)� 1 + XS6=S0 jSjYi=1 1 (A.27)= c(�) (A.28)where c(�) has been de�ned as the number of partitions S.Case f(�) > 0: Now, for all i = 1; : : : ; n, f(�) � f(�i), and by (A.24), Py �i(y)(1+n)=i �exp[Nf(�)]. Using this in (A.20), and recalling that Pimi = n+ 1, we obtainE[G(UjY)�] � 1 + XS6=S0 jSjYi=1 "Xy �mi(y)(1+n)=mi#mi=(1+n) (A.29)� 1 + XS6=S0 jSjYi=1 exp[Nf(�)mi=(1 + n)] (A.30)� c(�) exp[Nf(�)] (A.31)Combining (A.28) and (A.31), we conclude that E[G(UjY)�] � c(�) exp[N [f(�)]+].Thus, there must be an encoder such that the resulting joint source-channel guessing schemesatis�es E[G(UjY)�] � c(�) exp[N [f(�)]+]. This completes the proof of the direct part.Converse: Fix an arbitrary encoder eN and an arbitrary guessing scheme G(UjY). LetPr(u;y) = PN (u)W (yjeN (u)). By Theorem 1 of [1],E[G(UjY)�] � (1 +N ln jUj)��Xy "Xu Pr(u;y)1=(1+�)#1+� : (A.32)Now, Xy "Xu Pr(u;y)1=(1+�)#1+� 32



=  Xu PN (u)1=(1+�)!1+�Xy "Xu P 0N (u)W (yjeN (u))1=(1+�)#1+� (A.33)= exp[�H1=(1+�)(PN )]Xy "Xx P 00N (x)W (yjx)1=(1+�)#1+� (A.34)� exp[N(�H1=(1+�)(PN )=N � �E0(�))] (A.35)where P 0N (u) = PN (u)1=(1+�)Pu0 PN (u0)1=(1+�) (A.36)and P 00N (x) = Xu2UN :eN (u)=xP 0N (u): (A.37)Ineq. (A.35) follows by the parallel channels theorem [8, Theorem 5]. Thus,E[G(UjY)]�] � expfN [�H1=(1+�)(PN )=N � �E0(�)� o(N)]g: (A.38)This, together with the obvious fact that E[G(UjY)�] � 1, completes the proof.B. Proof of Lemma 1First, rH1=(1+r)(P 0) is convex in r > 0 for any distributionP 0 since g(r) 4= [Pu P (u)1=(1+r)]1+rsatis�es, by H�older's inequality [9, ineq. (b), p. 522], g(r1)�g(r2)1�� � g(�r1 + (1 � �)r2)for any r1 > 0, r2 > 0, and 0 < � < 1. Since it is also known that E0(�; S) is a concavefunction of � � 0 [9, p. 142], the convexity of f(r) follows.That f(0) = 0 is due to E0(0; S) = 0 [9, p. 142]. Thus, the function f(r) starts at 0 andmay dip to negative values initially; then, it will become positive (excluding trivial cases)for r large enough. To see that f(r) is increasing in the range where it is positive, considerany 0 < r1 < r2 such that f(r1) > 0, f(r2) > 0. Let � = r1=r2. Then, by convexity,(1� �)f(0) + �f(r2) � f(r1). But f(0) = 0, so we have f(r2) � (r2=r1)f(r1) > f(r1).
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C. Upper Bound on BmaxWe wish to upper-bound the size of B(û;D) = fu 2 TQ : d(u; û) � NDg for arbitraryû 2 ÛN . Let Q̂ denote the type of û, i.e, suppose û 2 TQ̂ � ÛN . Consider the setsSV (û;D) 4= B(û;D) \ TV (û): TV (û) is empty unless the shell V is consistent with themarginal compositions, i.e., Q(x) = Pû Q̂(û)V (xjû). Assume henceforth that V is consis-tent in this sense. We have [5, p. 31]jTV (û)j � expfN [H(Q)� I(Q̂; V )]g: (A.39)Now, note that SV (û;D) is empty unless d(Q̂; V ) 4=Pû;x Q̂(û)V (xjû)d(x; û) � D. However,if d(Q̂; V ) � D, then we have by de�nition, R(D;Q) � I(Q̂; V ), and hence by (A.39)jTV (û)j � expfN [H(Q) �R(D;Q)]g: (A.40)The proof is now completed as follows.jB(û;D)j = XV jSV (û;D)j (A.41)� XV :d(Q̂;V )�D jTV (û)j (A.42)� XV :d(Q̂;V )�D expfN [H(Q) �R(D;Q)]g (A.43)= expfN [H(Q)�R(D;Q) + o(N)]g; (A.44)where in the last line we made use of the fact that the number of shells V grows polynomiallyin N .References[1] E. Arikan, \An inequality on guessing and its application to sequential decoding,"IEEE Trans. Inform. Theory, vol. IT-42, no. 1, pp. 99-105, January 1996.34
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