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Abstract

We extend our earlier work on guessing subject to distortion to the joint source-
channel coding context. We consider a system in which there is a source connected
to a destination via a channel and the goal is to reconstruct the source output at the
destination within a prescribed distortion level w.r.t. some distortion measure. The
decoder is a guessing decoder in the sense that it is allowed to generate successive
estimates of the source output until the distortion criterion is met. The problem is to
design the encoder and the decoder so as to minimize the average number of estimates
until successful reconstruction. We derive estimates on nonnegative moments of the
number of guesses, which are asymptotically tight as the length of the source block goes
to infinity. Using the close relationship between guessing and sequential decoding, we
give a tight lower bound to the complexity of sequential decoding in joint source-channel
coding systems, complementing earlier works by Koshelev and Hellman. Another topic
explored here is the probability of error for list decoders with exponential list sizes for
joint source-channel coding systems, for which we obtain tight bounds as well. It is
noteworthy that optimal performance w.r.t. the performance measures considered here
can be achieved in a manner that separates source coding and channel coding.

Index Terms: Guessing, joint source-channel coding, rate-distortion, sequential decoding,

list-decoding.

1 Introduction

Consider the joint source-channel coding system in Fig. 1 where a source is connected to a

destination via a channel and the goal is to reconstruct the source output at the destination
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within a prescribed per-letter distortion D w.r.t. some distortion measure d. The source

generates a random vector U = (Uy,...,Uy) which is encoded into a channel input vector
X = (X1,...,Xk) and sent over the channel. The decoder observes the channel output
Y = (Y1,...,Yk) and generates successive ‘guesses’ (reconstruction vectors), Uy, Uy, and

so on, until a guess U, is produced such that d(U,ﬂi) < ND. At each step, the decoder
is informed by a genie whether the present guess ﬂj satisfies d(U, ﬂ]) < ND, but receives
no other information about the value of d(U, fJ'J) We shall refer to this type of decoder as
a guessing decoder and denote the number of guesses until successful reconstruction (which
is a random variable) by Gy (U|Y) in the sequel.

The main aim of this paper is to determine the best attainable performance of the
above system under the performance goal of minimizing the average decoding complexity, as
measured by the moments E[G n(U|Y)?], p > 0. We also study the closely related problem
of finding tight bounds on the probability Pr[Gn(U|Y) > eVL] that an exponentially large
number of guesses will be required until successful reconstruction. We have two motivations
for studying these problems. First, the present model extends the basic search model treated
in [2], where the problem was to guess the output of a source in the absence of any coded
information supplied via a channel. Second, and on the more applied side, the guessing
decoder model is suitable for studying the computational complexity of sequential decoding,
which is a decoding algorithm of practical interest. Indeed, through this method, we are
able to solve a previously open converse problem relating to the cutoff rate of sequential
decoding in joint source-channel coding systems. We anticipate that the theoretical results
here may have applications to concatenated and hierarchical coding systems as well. We
will now discuss more fully the results of this paper.

In [2], we considered a guessing problem which is equivalent to a special case of the



joint source-channel coding problem where there was no channel (i.e., the decoder received
no coded information about U before guessing began). There, the number of guesses was
denoted by Gxn(U) and an asymptotic quantity called the guessing exponent was defined
as

E(D,p) = lim %minlnE[GN(U)"] (1)

N—oo GnN
for p > 0, provided that the limit exists. It was shown that, for any discrete memoryless

source (DMS) P and additive (single-letter) distortion measure d,
E(D, p) = max[pR(D, Q) — D(Q[|P)], (2)

where @) ranges over all probability mass functions (PMFs) on the source alphabet, R(D, Q)
is the rate-distortion function of a source with PMF @, and D(Q||P) is the relative entropy
function.

The asymptotic quantity of interest in this paper is the joint source-channel guessing

exponent defined, whenever the limit exists, as

im ~ min InE[Gy(U[Y)], (3)
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where e denotes an encoding function that maps source sequences of length NV into channel
sequences of length K. In letting N — oo, we set K = [AN] where A is the ratio of the
channel signaling rate to source symbol rate. The main result of this paper is that for any
DMS P, discrete memoryless channel (DMC) W, and single-letter distortion measure d, the

joint source-channel guessing exponent has a single-letter form given by
Eye(D,p) = [E(D,p) — AEo(p)]" (4)

where Fy(p) is the Gallager function for W [9] and [z]* 4 max{0, z}.



Thus, the exponent F.(D, p) is determined by the difference of a source-related term,
E(D, p), and a channel-related term, AEy(p); the channel term AEy(p) represents the poten-
tial benefit of having a channel. This result indicates that the pth moment of Gy (U|Y) for
any such system must grow exponentially in the source block length N if E(D, p) > AEy(p).
Conversely, for E(D, p) < AEy(p), the pth moment can be kept from growing exponentially
in N by suitable design of the encoder and the decoder.

We prove (4) in Sections 3 and 4. The proof exhibits a separation principle for such
systems in the sense that an optimal encoder can be built as a two-stage device: the first
stage maps the source output vector to a rate-distortion codeword, independently of the
channel characteristics; while the second stage encodes the rate-distortion codeword into a
channel codeword, independently of the source statistics. The guesser then essentially aims
to recover the rate-distortion codeword in a lossless manner [Fig. 2].

To provide a better perspective on the joint source-channel guessing problem, it is useful
to contrast it with another problem considered in [2], namely, guessing with uncoded side-
information (as opposed to coded side-information of the present context). In the case of
uncoded side-information, the pair (U,Y) has a fized joint PMF, which is known to the
guesser. The guesser observes Y and tries to find a D-admissible reconstruction of U. With
coded side-information, the joint PMF of (U,Y) is affected by the choice of the encoder
en; thus, it is subject to design, at least partially.

To relate the guessing decoder model to more conventional joint source-channel coding
models, we note the following relationship between guessing decoders and list decoders.
Recall that a list decoder generates a fixed number, ¢ > 1, of guesses (estimates) and
a decoding failure is said to occur if none of the guesses approximates the source output

within the desired distortion level. On the other hand, a guessing decoder is fully determined



by the sequence of guesses Gy (Y) = {Uy, Us,,...} that it would generate if at each stage
of guessing the desired distortion criterion remained unmet. So, a guessing decoder may be
viewed conceptually as a list decoder, whose output is the possibly infinite list Gn(Y). A
list-¢ decoder can be obtained from a guessing decoder by truncating the list Gy (Y) to its
first £ elements. For £ = 1, we have ordinary decoding and the usual performance criterion
is to have the average distortion satisfy E[d(U,U;)] < ND. This is the original setting for
the joint source-channel coding problem and Shannon’s joint source-channel coding theorem
(see, e.g., [9, Theorem 9.2.2, p. 449]) addresses the conditions under which this requirement
can be met. For £ > 1, a common performance criterion is the probability Pr[Gn(U|Y) > /]
that none of the first £ guesses meet the desired distortion threshold. The best attainable
performance under this criterion has been studied by Csiszér [4] for £ = 1 as N — oo;
however, the exact asymptotic performance remains unknown.

In this paper, we are interested in the performance of list decoders with exponential
list sizes, £ = N L > 0, for which we obtain an exact asymptotic result. Specifically, we

define the source-channel list-error exponent as

1
Fy(L,D) = lim inf —NlnPr[GN(U\Y)>eNL] (5)

N—o00 en, GN

whenever the limit exists. (In taking the limit, we set K = [AN].) In Section 5, we prove

that for any DMS P, DMC W, additive distortion measure d, and L > 0,
Fy(L,D) = gl>irL1[F(R, D)+ AEg[(R—L)/)] (6)

where F'(R, D) is Marton’s source coding exponent [15], and Egp(-) is the sphere-packing
exponent [9, p. 157] for W.
List decoders with exponential list sizes are not practical; however, bounds on the prob-

ability of error for such decoders prove useful in obtaining similar bounds on the distribution



of computation in sequential decoding, as we show in Section 6. As already mentioned, these
probability of error bounds may also have applications to the analysis of concatenated and
hierarchical coding systems.

Finally, in this introduction, we summarize our results with regard to sequential decod-
ing, which is a decoding algorithm for tree codes invented by Wozencraft [18]. The use of
sequential decoding in joint source-channel coding systems was proposed by Koshelev [14]
and Hellman [12]. The attractive feature of sequential decoding in this context is the possi-
bility of generating a D-admissible reconstruction sequence, with an average computational
complexity that grows only linearly with IV, the length of the source sequence. To be more
precise, let C'y denote the amount of computation by the sequential decoder to reconstruct
the first IV source symbols within distortion level ND. Then, Cy is a random variable,
which depends on the level of channel noise, as well as the specific tree code that is used
and also the source and channel parameters. For practical applications, it is desirable to
have E[CN]/N, the average complexity per reconstructed source digit, bounded indepen-
dently of N. Koshelev [14] studied this problem for the lossless case (D = 0) and gave a
sufficient condition; in our notation, he showed that if Es.(0,1) < AEy(1) then it is possible
to have E[Cy]/N bounded (independently of N). Our interest in this paper is in converse
results, i.e., necessary conditions for the possibility of having a bounded E[Cx]/N.

In Section 6, we point out a close connection between guessing and sequential decoding,
and prove, as a simple corollary to (4), that for any DMS P, DMC W, and additive distortion

measure d, E[C};] must grow exponentially with N (thus E[CX/]/N cannot be bounded) if
E(D, p) > AEo(p). (7)

For the special case D = 0 and p = 1, this result complements Koshelev’s result, showing

that his sufficient condition is also necessary. This result also generalizes the converse result



in [1], where lossless guessing (D = 0) was considered for an equiprobable message ensemble.
These issues are discussed further in Section 6.

The remainder of this paper is organized as follows. In Section 2, we define the notation
and give a more formal definition of the guessing problem. The single-letter form (4) is
proved in Section 3 for the lossless case D = 0, and in Section 4 for the lossy case D > 0. In
Section 5, we prove the single-letter form (6) for the source-channel list-error exponent. In
Section 6, we apply the results about guessing to sequential decoding. Section 7 concludes

the paper by summarizing the results.

2 Problem Statement, Notation, and Definitions

We assume, unless otherwise specified, that the system in Fig. 1 has the following properties.
The source is a DMS with a PMF P over a finite alphabet ¢/. The channel is a DMC with
finite input alphabet X, finite output alphabet )/, and transition probability matrix W.
The reconstruction alphabet ¢/ is finite as well. The distortion measure d is a single-letter
measure, i.e., it is a function d : U x U — [0, 00), which is extended to UM x UN by setting
d(u,a) = 7]:]:1 d(up, ty), u = (u1,...,un), @ = (41,...,ay). Also, for each u € U, there
exists some @ € U such that d(u, @) = 0.

Throughout, scalar random variables will be denoted by capital letters and their realiza-
tions by the respective lower case letters. Random vectors will be denoted by boldface capi-
tal letters and their realizations by lower case boldface letters. Thus, e.g., U = (Uy,...,Uyn)
will denote a random vector, while u = (uy,...,uy) a realization of U. PMFs of scalar
random variables will be denoted by upper case letters, e.g., P, P', Q, S. For random

vectors, we will denote the PMF's by upper case letters indexed by the length of the vector,

e.g., Py, Py, etc. We will omit the index N for product-form PMFs; e.g., we write P(u)



instead of Py(u) when Py is a product-form PMF. The probability of an event A w.r.t. a
probability measure P’ will be denoted by P’'(A). When the underlying probability measure
is specified unambiguously, we also use a notation such as Pr(u,y) to denote the joint PMF
of U and Y, or Pr(u, A) to denote the probability of joint occurrence of U = 1 and an
event A. The expectation operation is denoted by E[-].

For a given vector x € AV, the empirical PMF is defined as Qx = {Qx(z);z € A},
where Qx(z) = Nx(z)/N, Nx(z) being the number of occurrences of the letter x in the
vector x. The type class Tyx of x is the set of all vectors x' € AN such that Qu = Qx.
When we need to attribute a type class to a certain PMF @ rather than to a vector, we
shall use the notation Tj.

In the same manner, for sequence pairs (x,y) € AN x BV, the joint empirical PMF is
the matrix Qxy = {Qxy(z,y);z € A,y € B}, where Qxy(z,y) = Nxy(z,y)/N, Nxy(z,y)
being the number of joint occurrences of z; = = and y; = y. For a stochastic matrix
{V(y|lz) : x € A,y € B}, the V-shell Ty, (x) of a sequence x € A" is the set of sequences
y € BY such that Qxy(z,y) = Qx(z)V (y|z) for all z and y.

Next, we recall the definitions of some information-theoretic functions that appear in

the paper. For a PMF @ over an alphabet A, the entropy of @ is defined as

~ > Qz)InQ(), (8)

€A

and its Rényi entropy of order a > 0, a # 1, as [16]

Ha(Q) =

ln > Q(z (9)

€A

Sometimes we write H(X) and H,(X) to denote the entropy functions for a random variable

X. For two PMFs @ and Q' on a common alphabet A, the relative entropy function is

D(QIIQ) = )_ Q) z)/Q'(w)]- (10)

€A



For a stochastic matrix {V (y|z);z € A,y € B}, and a PMF @ on A, the mutual

information function is defined as

= > Q@)V(yle) [V (ylz)/V'(y)], (11)

yeBzc A
where V'(y) = > ,c4 Q(z)V (y|z).

The rate-distortion function R(D, Q) for a DMS Q on U, w.r.t. a single-letter distortion

measure d on U X L?, is defined as
R(D,Q) = minI(Q,V), (12)

where the minimum is taken over all stochastic matrices V such that

>3 Q)V(alu)d(u, @) < D. (13)

uel ey

Marton’s source coding exponent F(R, D) for a DMS P is given by

F(R.D) = min  D(Q|P) (14)

For a DMC W, we recall the following definitions. The channel capacity is defined as
C = maxg I(Q, W), where the maximum is over all PMFs on the channel input alphabet.

Gallager’s auxiliary functions are defined as

1+p

Q)= - T |Te@wiy= ) (15)

for any PMF @ on the channel input alphabet and any p > 0; and,

Eo(p) = max Eo(p, Q)- (16)

The sphere-packing exponent function is defined as

Eyp(R) = Sl;IO)[PR — Ey(p)]- (17)

Now, we define the guessing problem more precisely. For & € UV, let B(ua, D) 2 {ue

UN : d(u,a) < ND}.



Definition 1 A D-admissible guessing strategy for the set of sequences UN is an ordered

list Gy = {1y, 01y, ...} of vectors in UN such that
JB(a;, D) =u". (18)
i

In other words, Gy is an ordered covering of the set "V by the ‘D-spheres’ B(i;, D).

Definition 2 The guessing function Gn(-) induced by a D-admissible guessing strategy Gn,
is the function that maps each u € UN into a positive integer, which is the index j of the

rst gquessing word 0; € Gy such that d(u,u;) < ND.
J J

We now extend these definitions to the case where some side information vector y € YK

is provided.

Definition 3 A D-admissible guessing strategy for UN with side information space YX is
a collection {Gn (y)} such that for eachy € Y5, Gn(y) is a guessing strategy for UN in the

sense of Definition 1.

Definition 4 The guessing function Gy(-|-) induced by a D-admissible guessing strategy
with side information, {Gn(y)}, is the function that maps each u € UN and y € YX into a
positive integer, Gn(uly), which is the index j of the first guessing word 0; € Gn(y) such

that d(u,u;) < ND.

We shall omit the subscript N from the guessing functions and simply write G(+|-), etc.,
when there is no room for ambiguity.

Notice that the above definitions make no reference to a probability measure. In the
context of joint source-channel guessing, we regard U™ as the sample space for the source
vector U, and VX as that for the channel output vector Y. The joint PMF for U, Y is

given by Pr(u,y) = P(u)W (ylex(u)) where ey : UN — XK is the encoding function. The

10



decoder observes the channel output realization y and employs a guessing strategy Gy (y)
to find a D-admissible reconstruction of the source realization u. Under such a strategy
Gn(U|Y) equals the random number of guesses until a D-admissible reconstruction U of

U is found.

Throughout, o(N) will denote a positive quantity that goes to zero as N goes to infinity.

3 The Lossless Source-Channel Guessing Exponent

In this section, we consider the source-channel guessing problem for the lossless case D = 0.
This case is of interest in its own right. Also, the general lossy guessing problem (D > 0)
is reduced to a lossless one by an argument given in the next section.

The single-letter form for the lossless joint source-channel guessing exponent Fg.(p) 2

E,.(0, p), which is the main result of this section, is given by the following

Theorem 1 For any DMS P and DMC W, the lossless joint source-channel guessing ex-

ponent is given by
Esc(p) = [pHi/114)(P) — AEo(p)] ™" (19)

Since the proof of (19) is rather lengthy, it is deferred to the Appendix. In fact, in the
Appendix we prove a stronger form of Theorem 1, which applies to sources with memory as
well. Since the proofs for lossy guessing require the treatment of sources with memory (as
the coded channel input may not be memoryless), we state this stronger result for future

reference as a

Proposition 1 For any discrete source with a possibly non-memoryless PMF Py for the
first N source letters, and any fized p > 0, there exists a lossless guessing function G(U|Y)
such that

E[G(U[Y)?] < c(p) exp{N[pHy (1) (Pn)/N — MEo(p)]*} (20)

11



where c¢(p) is a constant, independent of the source and channel. Conversely, for any guess-

ing function G(U|Y), and p > 0,
E(G(U[Y)”] > exp{N[pHy 14, (Pn)/N = XEy(p) — o(N)]"}. (21)

Proposition 1 implies, in particular, that, for a memoryless source P, the pth moment

of G(U|Y) can be kept below the constant ¢(p) for all N > 1 if

Hyj145)(P) < AEo(p)/p- (22)

(This cannot be deduced from (19) since it leaves open the possibility of subexponential

growth of the moment.) Conversely, it follows directly from (19) that if

Hij11p)(P) > AEo(p)/p, (23)

then F.(p) > 0 and the pth moment of G(U|Y) must go to infinity exponentially in N.
Since Hy(14,)(P) is increasing and Eq(p)/p is decreasing as functions of p > 0, the term
Hy (145 (P) — AEy(p)/p is minimized in the limit as p — 0 (this is proved formally below),
with the limiting value H(P) — AC, where C is the capacity of W. Thus, we conclude
that if H(P) > AC, then E[G(U|Y)?] must go to infinity exponentially in N for all p > 0.
Conversely, if H(P) < AC, then there exists a p > 0 such that, for any given N, it is possible
to have E[G(U|Y)?] < ¢(p) by a suitable choice of the encoder and the guessing strategy.
It is interesting that the conditions H(P) < AC and H(P) > AC are also the conditions
for the validity of the direct and converse parts, respectively, of Shannon’s joint source-
channel coding theorem for the lossless case [3, p. 216]. This suggests an underlying strong
relationship between the problems of (i) being able to keep E[G(U|Y )?] bounded as N — oo,
for some p > 0, and (ii) being able to make the probability of error Pr[G(U|Y) > 1]

arbitrarily small as N — oo. However, we have found no simple argument that would

12



explain why the conditions for the two problems are identical. We propose this as a topic
for further consideration.

For lossless guessing, a guessing strategy {G(y)} which generates its guesses in decreasing
order of a-posteriori probabilities Pr[U = u|Y = y] is optimal in the sense of minimizing
the moments E[G(U|Y)”] of the associated guessing function. This is easily seen by simply
writing

E[G(U[Y)?] =) Pr[Y =y]> Pr[U=u|Y = u|G(uly)’. (24)

u

Note that the optimal order of guesses depends on the encoder ey since the joint PMF is
given by Pr[U = u,Y = y| = P(u)W(y|en(u)). The proof of Proposition 1 uses such an
optimal guessing strategy.

It is clear from the definition that Ey.(p) must be a non-decreasing function of p >
0. This, and further properties of E,.(p), can be obtained by considering the form (19).
For this, we refer to Lemma 1 (see Appendix), which states that, for any fixed PMF S,
f(p,S) 2 PH1/(14p)(P) — AEg(p, S) is a convex function, which is strictly increasing in the
range of p > 0 where f(p,S) > 0. We have Fy.(p) = [ming f(p,S)]" = ming[f(p, S)]*.
Since the minimum of a family of increasing functions is increasing, it follows that E.(p)
is increasing in the range where it is positive.

As for convexity, Fy.(p) is convex whenever Fy(p) = ming Fy(p, S) is concave; this is
true in particular for those channels where the minimum is achieved by the same S for
all p > 0, such as the binary symmetric channel. There are channels, however, for which
Ey(p) is not concave [9], and hence it is possible to construct examples for which E.(p)
is not convex. (E.g., take P as the uniform distribution on a binary alphabet so that
pH1/(14p)(P) = pln(2). Let Eg(p) be non-concave. Then, for A large enough, E.(p) will

be non-convex.)

13



4 The Lossy Source-Channel Guessing Exponent

We are now in a position to prove the main result of this paper.

Theorem 2 For any DMS P, DMC W, and single-letter distortion measure d, the joint

source-channel guessing exponent Es.(D,p) has a single-letter form given by
Es(D,p) = [E(D, p) — AEo(p)]". (25)

Proof. Direct part (Es.(D,p) < [E(D,p) — AEs(p)]"): To obtain an upper bound on
the minimum attainable E[G(U|Y )], we consider a two-stage source-channel coding scheme
[Fig. 2]. In the first stage, the source output U is encoded into a rate-distortion codeword
U such that d(U, Ij) < ND. In the second stage, a joint source-channel guessing scheme is
employed, aiming for lossless recovery of U. The details are as follows.

The encoding of U into a channel input block X is dependent on the type of U. Let fq :
To — Cg be a rate-distortion encoder for the type class Tg C U such that d(u, fo(u)) <
ND for each u € T and the codebook Cg has size eN(E(D,Q)+0(N) " Sych an encoder exists
by the type-covering lemma [5, p. 150]. Let gg : Cg — XX denote a channel encoder that
maps the codebook Cg into channel codewords. The two-stage encoder first checks the type
of U, and if U € Ty, then the encoding functions fg and gg are applied to generate the
channel input block X = gg(fo(U)).

The guesser in the system does not know in advance the type of U. To overcome
this difficulty, we employ a D-admissible guessing strategy {G(y); y € YX} for UV which
interlaces the guesses by a family of D-admissible guessing strategies {Go(y);y € Y&}
for UV, indexed by types @ over UV. To be precise, let Q1,...,Q, be an enumeration
of the types. For any fixed y € X, the interlaced guessing strategy {G(y)} generates its

guesses in rounds. In the first round, the first guesses by Gg,(y), ¢ = 1,...,v, are generated,

14



respectively; in the second round, the second guesses are generated, and so on. (If at some
round, there are no more guesses by some Gg(y), dummy guesses are inserted.) Let G(uly),
G¢(uly) be the guessing functions for G(y), Go(y), respectively. Due to interlacing, we have

G(uly) <vGg(uly) for all u, y, and @, hence

E[G(UY)’] = > Pr[U e T,E[G(U[Y)’|U € Tg] (26)
Q

< Y Pr[U e THv"E[Gq(U[Y)?|U € Tg)] (27)
Q

< ot mgX[P(TQ)E[GQ(UIY)”\U € Tql]. (28)

Next, we specify Gg(y) so that it is an “efficient” guesser when U € Tgy. For this, we
suppose that the first |Cg| guesses by Go(y) consist of an enumeration of the elements
of Cg in descending order of the conditional probabilities Pr[fJ =u/U € Ty, Y = y];
the remaining guesses are immaterial so long as they are chosen to ensure the validity of
the hypothesis that Gg(y) is D-admissible for V. Observe that Go(y) is also a lossless
guessing strategy for Cg; furthermore, due to the way it has been specified, it is optimal
as a lossless guessing strategy for Cg, in the sense of minimizing the conditional moments
E[Go(U[Y)?|U € Ty, for all p > 0. (It is important to note that Gg(U|Y) denotes the
guessing function associated with Gg(y), when the latter is regarded as a lossless guessing
strategy for Cg. Whereas, Go(U|Y) denotes the guessing function when Gg(y) is regarded

as a D-admissible guessing strategy for ")

Now, we observe that
Go(uly) < Go(fo(u)ly), forallu e Tg, (29)

where we may have strict inequality if d(u,@’) < ND for some 0’ € Cg such that Gg(i'|y) <
Go(fo(u)ly) (i-e., when u falls in the D-sphere of a codeword ' that precedes fg(u) in

the order they are generated by Go(y)). Taking expectations of both sides of (29) w.r.t.

15



the conditional probability measure Pr[U = u,U = @, Y = y|U € Ty] (note that this

conditional PMF equals zero unless i = fg(u)), we obtain
E[Go(U|Y)’|U € Tg] < E[Go(U|Y)*|U € Tg] (30)
By Proposition 1, we know that the channel encoder gg can be chosen so that
E[Go(UIY)|U € Tg) < clp) exp [NlpHy 1 (Px)/N ~AE(o)F]  (31)
where Py is the conditional PMF of U given U € Ty, i.e., Py is a PMF on Cg with
Py(0) =Pr[U =a|U e Ty = > P(u)/P(Tg). (32)
ucTq:fo(u)=0
The Rényi entropy Hy/(14,)(Pn) is upper-bounded by In |Cq| = N[R(D, Q) + o(N)], so

E[Go(U|Y)’|U € Tg] < ¢(p) exp [N[pR(D, Q) — AEy(p) + o(N)]*]. (33)

Now recalling that P(Tg) < exp[-ND(Q||P)] [5, p. 32], we have

mgX[P(TQ)E[GQ(fJ\Y)”IU € Tg] (34)
< clp)exp [N max(-D(@QIIP) + pR(D, @) = AE(p) + o(N)]* (35)
= c(p)exp [N[E(D, p) — XEo(p) + o(N)]"] (36)

where the last line follows by (2), proved in [2]. Substituting this into (28) and noting that
v < (14 N)UI we have the proof that E,.(D,p) < [E(D, p) — AEo(p)]*.

Converse part (Es.(D,p) > [E(D, p) — AEg(p)]T): Consider an arbitrary D-admissible
joint source-channel guessing strategy {G(y) : y € YX} for U¥, with associated guessing
function G(uly). Let Ug, Y denote the random variables whose joint PMF equals the
conditional PMF of U, Y given U € Tg; i.e., Ug has a PMF which is uniform on Tg, and

Y is the channel output random variable when the channel codeword for Ug is transmitted.
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Then,

EGUY)"] = G(UY)"U € Tq] (37)

>_P(TQ)E
Q
= ) P(TQ)E[G(Uq|Yo)"). (38)
Q
Next we lower-bound the moments of G(Ug|Y ). For any fixed y, let Go o(y) be a guessing
strategy for Ty which is obtained from G(y) as follows. For each guess i produced by G(y),
Go,0(y) produces, successively, the elements of the set B(a, D) = {u € T : d(u,a) < ND}.
Clearly, Go o(y) is lossless for T, and has an associated guessing function that satisfies the

bound

Go,0(uly) < BpazG(uly), for each u € Tg, (39)
where Bz 2 max, v |B(@, D)|. Tt is known [4] and also shown in the Appendix that
Bmaz < eXp{N[H(Q) - R(Da Q) + O(N)]} (40)

Now, by Proposition 1, and since Hy/(14,)(Ug) = (1/N)In|Tg| > H(Q) — o(N) (for the

inequality, see, e.g., [5, p. 30]), we have
E[Go,0(Uql|YqQ)?] > exp{N[pH(Q) — AEos(p) —o(N)]*}. (41)

Combining (38)-(41), and using the bound P(Tg) > exp[—N(D(Q||P) + o(N))] [5, p. 32],

we obtain

E[GUY)?] > Y exp{N[-D(Q|IP) + pR(D,Q) — AEqy(p) — o(N)]*} (42)
= maxexp{N[-D(Q||P) + pR(D, Q) — AEo(p) — o(N)IT}  (43)

— exp{N[E(D, p) — AEy(p) — o(N)]*}. (44)

This completes the proof of the converse part.
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Inspection of the proof shows that, for the direct part, we have in fact proved more
than claimed in the theorem. We have shown that E[G(U|Y)”] can be kept bounded by
a constant independent of N whenever E.(D,p) = 0. Whereas, all that can be deduced
from Theorem 2 is that E[G(U|Y)”] cannot grow exponentially in N when E,.(D, p) = 0
(which does not rule out the possibility of, say, polynomial growth in N).

As mentioned in the Introduction, the special case of Theorem 2 for A = 0, which
corresponds to having no channel, was proved in [2].

Further insight into Theorem 2 can be gained by studying the properties of the function

E..(D,p).

Proposition 2 The joint source-channel guessing exponent function Es.(D, p) has the fol-

lowing properties.

(a) For fized p > 0, Es.(D, p) is a convez function of D > 0, which is strictly decreasing in
the range where it is positive. At D =0, we have Ey(0, p) = [pHy/(14p)(P)—AEo(p)]".
There is a finite Dy, given by the solution of E(Dy, p) = AEy(p), such that Es.(D, p) =

0 for D > Dy.

(b) For fized D > 0, Es.(D, p) is a continuous function of p > 0, which is strictly increas-
ing in the range where it is positive. We have Es.(D,p) > 0 for all p > 0 if and only
if R(D,P) > AC, where C is the channel capacity. The function Es.(D,p) is convex

in p whenever Ey(p) is concave.

Proof. For the most part, this proposition is straightforward and we omit the full proof.
We only mention that in part (a), the convexity and monotone decreasing property of
E.(D, p) as a function of D follow from the fact, proved in [2], that for fixed p > 0, E(D, p)

is a strictly decreasing, convex function of D in the range where it is positive.
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For part (b), we recall the fact, shown in [2], that E(D, p) is a convex function of p > 0
(for fixed D). Since Ey(p, S) is a concave function of p > 0 for any fixed PMF S [9, p. 142],
e(p, S) 2 E(D,p)— AEy(p, S) is a convex function of p > 0. By convexity and the fact that
e(0,S) = 0, the function e(p, S) is strictly increasing in the range of p where e(p,S) > 0.
(This last statement is proved in the same manner as in the proof of Lemma 1.) Since
E¢(D,p) is given by mingle(p, S)]*, it is also strictly increasing where it is positive (the
minimum of a family of increasing functions is increasing).

We have E,.(D,p) > 0 for all p > 0 if e(p,S) > 0 for all p > 0 and all S. Since
e(p, S) is a convex function of p with ¢(0,S) = 0, e(p,S) > 0 for all p > 0 if and only if
€'(0,S) > 0. But, €'(0,S) = lim,_,o[E(D, p) — AEy(p)]/p = R(D, P) — XI(S,W). Tt follows
that E(D,p) > 0 for all p > 0 if and only if R(D,P) > AC = Amaxg I(S,W). Since
E(D, p) is convex, it is clear that F,.(D, p) is convex whenever Ey(p) is concave. (However,
Es.(D,p) is in general non-convex, as shown for the lossless case D = 0 in the previous
section.) This completes the proof.

It is interesting that, as we have just proved, if R(D,P) > AC, then Es.(D,p) > 0
for all p > 0, and hence, E[G(U|Y)”] must go to infinity as N goes to infinity for all
p > 0. Conversely, if R(D,P) < AC, then there exists a p > 0 such that it is possible
to keep E[G(U|Y)?] bounded even as N goes to infinity. The conditions R(D,P) < AC
and R(D, P) > AC are also the conditions for the validity of the direct and converse parts,
respectively, of Shannon’s joint source-channel coding theorem [9, p. 449] for the lossy case.
This is analogous to the problem already mentioned in the lossless case, and the same type

of remarks apply.
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5 Source-Channel List Decoding Exponent

The aim of this section is to prove the following result.

Theorem 3 For any DMS P, DMC W, L > 0, and D > 0, the source-channel list-error

exponent is given by

Fye(L, D) = min[F(R, D) + AEy[(R — L)/A]]. (45)

Before we give the proof, we wish to comment on some aspects of this theorem. We
remark that for the special case A = 0, determining Fi.(L, D) is equivalent to determining

i

the “error exponent in source coding with a fidelity criterion,” a problem solved by Marton
[15]. In this problem, one is interested in the probability that a rate-distortion codebook
C C UV of size eNT contains no code word which is within distance ND of the random
vector U € UV produced by a DMS P. Marton’s exponent F(L, D) is the best attainable
exponential rate of decay of this probability as N — oo. Indeed, for A = 0, we have
Fs.(L,D) = F(L, D), in agreement with Marton’s result.

It will be noted that the case L = 0 is excluded from the theorem. For L = 0, we have a
list of size 1, independent of V. As mentioned in the Introduction, list-of-1 decoding in joint
source-channel coding systems was considered by Csiszar; and the error exponent remains
only partially known. We also note that if L = 0 is interpreted as the list size going to
infinity at a subexponential rate, then the theorem holds also for L = 0. We do not prove
this statement, since subexponential list sizes are not of interest in the present work.

Finally, we wish to iterate that though list-decoders with exponential list sizes are not

viable in applications, the above theorem serves as a tool to find bounds on the distribution

of computation in sequential decoding, as shown in the next section.

20



Proof of Theorem 3. Direct part (Fs.(L,D) < ming>y[F(R,D) + AEgp[(R — L)/)]]):
To obtain an upper bound on the minimum attainable probability of list decoding error,
we consider a two-stage encoding scheme and an interlaced guessing strategy, just as in the

proof of Theorem 2. Then, for any fixed y, among the first eN’ guesses by G(y), there are

at least v~ 1eNl| guesses by each Go(y). So, we have (writing v~ 'eNL in place of [v~eNT |
for notational convenience)
Pr(G(U[Y) > e < Y P(To)Pr[Go(U[Y) > v 'eVHU € Ty (46)
Q
= Y P(Ty)Pr[Go(Ug|Yq) > v et (47)
Q
< D P(TQ)Pr[Go(Uq|Yq) > v e, (48)
Q

where Ug, fJ'Q, Y are random variables whose joint PMF equals the conditional joint

PMF of U, U, Y, given U € Ty. To be precise,

PrlUg=u,Ug=1u,Yg=y] = PrflU=u,U=14,Y =y|U € Tg] (49)
_ J P(u)W(ylge(n))/P(Ty), ue Ty, u= fo(u)
{ 0, o ¢ othervcgise. ¢ (50)

Note, in particular, that ﬂQ is a random variable over the rate-distortion code Cg. The event
G(fJQ 'Yg) > v 'eVT may be interpreted as an error event in a communication system with
a message ensemble U of rate H(Ug)/K < (1/K)In|Cq| < [R(D, Q)+0(N)]/A and with a
list-decoder of list-rate (1/K)In[v"1eNt] = [L — o(N)]/). By a well-known random-coding
bound on the best attainable probability of error for list-decoders [7], [17], the channel
encoder gg can be chosen so that

Pr[G(Uq|Yq) > v 'eM] < exp[- NAE,[(R(D, Q) — L)/A] — o(N)]]. (51)
By (48) and (51), and using the fact that P(Tg) < exp[—N(D(Q||P)], we now have

PrlG(UJY) > €] < ) exp{-NID(Q|IP) + AEy[(R(D,Q) — L)/A] — o(N)]} (52)
Q
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< vexp{=Nmin[D(Q[|P) + AEy[(R(D, Q) — L)/A] — o(N)]¥53)

= exp{—N m&n[F(R, D)+ AEg[(R—L)/A] — o(N)]}, (54)
where in the last line, the term v was absorbed by o(N), and we used the following equality.

minlF (R, D) + \Ey[(R—L)/N]] = min_min [D(Q|P) +Myp[(R - L)/A](55)

= min Rggl(ig’Q)[D(QHP) +AEsp[(R — L)/All (56)

= min[D(Q|P) + AByp[(R(D, Q) = L)/A]l. - (57)
In (57), we made use of the monotone decreasing property of E;,. Note that since Egp(-) is
infinite for negative arguments and F(R, D) is infinite for R > Rpaz(D) 2 maxg R(D, Q),
the minimum over R in (54) can be restricted to the range [L, R4, (D)], provided, of course,
that L < Ryyqz(D). This justifies the use of min rather than infin the minimization over R.
(For L > Ryae(D), the probability of failure can be trivially made zero). This completes
the proof of the direct part.

Converse part (Fy(L, D) > ming>[F(R, D)+ AEz[(R—L)/)]]): We follow the method
Csiszar [4] used in lower-bounding Pr[G(U|Y) > 1]. Let {G(y)} be an arbitrary D-
admissible guessing strategy for 4V, and G(uly) the associated guessing function. As
proved in Appendix C, each guess u € UV by G(y) covers, within distortion level ND,
at most exp[N(H(Q) — R(D,Q) + o(N)] elements of Tp. Thus, eV guesses cover at
most exp[N(L + H(Q) — R(D, Q) + o(N)] elements of Tg. Thus, conditional on U € Tgy,
G(U|Y) > NI corresponds to making an error with a list size of at most exp[N(L+H(Q) —

R(D,Q) + o(N))]. So, by the sphere-packing lower bound for list decoding [17], we have
Pr[G(U[Y) > e"*|U € Tg] > exp[- N[AEg[(R(D, Q) — L)/A] + o(N)]] (58)

(Note that the argument of E, is obtained as the difference of the source rate H(Q)/A

and the list rate [L + H(Q) — R(D, Q)]/\.) Since P(Tg) > exp[—N(D(Q||P) + o(N))], we
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obtain
Pr(G(UY) > eM'] > exp[-N Hgn[D(QHP) + AER[(R(D,Q) — L)/Al +o(N)]],  (59)

which completes the proof in view of egs. (55)-(57).

6 Application to Sequential Decoding

Sequential decoding is a search algorithm introduced by Wozencraft [18] for finding the
transmitted path through a tree code. Well-known versions of sequential decoding are due
to Fano [6], Zigangirov [19], and Jelinek [10]. The computational effort in sequential decod-
ing is a random variable, depending on the transmitted sequence, the received sequence,
and the exact search algorithm. Our aim in this section is to exploit the relationship be-
tween guessing and sequential decoding to obtain converse (unachievability) results on the
performance of sequential decoders.

Koshelev [14] and Hellman [12] considered using a convolutional encoder for joint source-
channel encoding and a sequential decoder at the receiver for lossless recovery (D = 0) of
the source output sequence. For the class of Markov sources, Koshelev showed that the
expected computation per correctly decoded digit in such a system can be kept bounded if
the Rényi entropy of order 1/2 for the source, limy oo Hy/2(Pn)/N, is smaller than AFy(1).
Here, Py denotes the joint probability distribution for the first NV source letters. In this
section, we first prove a converse result which complements Koshelev’s achievability result.
Subsequently, we prove a converse for the lossy case.

Consider an arbitrary discrete source (not necessarily Markovian) with distribution Py
for the first N source letters. Consider an arbitrary tree code that maps source sequences
into channel input sequences so that at each step the encoder receives n source symbols

and emits k& = An channel input symbols. Thus, each node of the tree has [/|” branches

23



emanating from it, and each branch is labeled with k£ channel symbols. Consider the set of
nodes at a fixed level, N source symbols (or, K = AN channel symbols) into the tree code.
Each node at this level is associated in a one-to-one manner with a sequence u of length NV
in the source ensemble. Only one of these nodes lies on the channel sequence that actually
gets transmitted in response to the source output realization; we call this node the correct
node. The correct node at level N is a random variable, which we identify and denote by
U, the first N symbols of the source. We let X denote the channel input sequence of length
K corresponding to the correct node U, and Y the channel output sequence of length K
that is received when X is transmitted.

Now we use an idea due to Jacobs and Berlekamp [13] to relate guessing to sequential
decoding. Any sequential decoder, applied to the above tree code, begins its search at the
origin and extends it branch by branch eventually to examine a node u’ at level N, possibly
going on to explore nodes beyond u'. We assume that if U # u/, i.e., if u’ is not the correct
node at level N, then the decoder eventually retraces its steps back to below level N and
proceeds to examine a second node u” at level N. If U # u”, then eventually a third node
at level NV is examined, and so on. Thus, for any given realization y of Y, we have an
ordering of the nodes at level N, in which a node u is preceded by those nodes that the
sequential decoder examines before u, when u is the correct node. We let G(u|y) denote
the position of u in this ordering when Y = y. (By definition of sequential decoding, the
value G(uly) is well-defined in the sense that, for any fixed sequential decoder and fixed
tree code, the order in which nodes at level N are examined does not depend on the portion
of the channel output sequence beyond level K; it depends only on y.)

Clearly, G(u]y) is a lower bound to the number of computational steps performed by

the sequential decoder in decoding the first N symbols of the transmitted sequence, when
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U =uand Y = y. Let Cn denote the (random) number of steps by the sequential
decoder to correctly decode the first IV source symbols. Then, lower bounds to the moments

E[G(U|Y)”] constitute lower bounds to E[C%,]. By Proposition 1,
E[G(U[Y)*] > exp[N[pHy/(14,)(Pn)/N — AEo(p) — o(N)]"]. (60)

So, if limsupy _, o pH1 /(14p) (PN)/N > AEg(p), then E[G(U|Y)”] grows exponentially with
N (for some subsequence), and so does E[C}]. In particular, if lim supy _, o, Hy/2(Pn)/N >
AEj(1), then the average computation per correctly decoded digit is unbounded and se-
quential decoding cannot be used in practice.

We summarize this converse result as follows.

Proposition 3 Suppose a discrete source, with distribution Py for the first N source let-
ters, is encoded, using a tree code, into the input of a DMC W at a rate of A channel
symbols per source symbol, and a sequential decoder is used at the receiver. Let Cy be
the amount of computation by the sequential decoder to correctly decode the first N source
symbols. Then, the pth moment of Cn grows exponentially with N if the ‘source rate’

limsupy_, o0 Hi/(14p)(PN)/N exceeds X times the channel ‘cutoff rate’ Eo(p)/p.

This result complements Koshelev’s result [14], mentioned above. Note that it applies
for any p > 0, while Koshelev was concerned only with p = 1. We also note that this
result generalizes the converse in [1], where the source was restricted to be a DMS with
equiprobable letters.

Next we consider the lossy case. First, we need to make precise what successful guessing
means in this case, since we are dealing here with piecemeal generation of a reconstruction
sequence of indefinite length. We shall insist that for any realization uq, us, . .. of the source

sequence, the system eventually produce a reconstruction sequence 1, o, ... such that
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d(uy,...,un;81,...,4n) < ND for all N > Ny, where Ny is a constant independent of the
source and reconstruction sequences. This means that we desire to have a reconstruction
sequence that stays close to the source sequence, with the possible exception of a finite
initial segment.

As in the lossless case, the tree encoder receives successive blocks of n symbols from the
source and for each such block emits & = An channel input symbols. The sequential decoder
works in the usual manner, generating a guess at each node it visits. The guess associated
with a node at level N is a reconstruction block @ = (41,...ax) of length N, which stays
fixed throughout. We assume a prefix property for the guesses in the sense that the guess
at a node is the prefix of the guesses at its descendants.

Fix N > Ny. For any source block u = (u,...,uy) and channel output block y =
(y1,--.-,yn), let G(u]y) denote the number of nodes at level N visited by the sequential
decoder before it first generates a guess i = (uq,...,uy) satisfying d(u,) < ND. It is
possible that the sequential decoder subsequently revises its first D-admissible guess u at
level N, but eventually it must settle for some D-admissible guess if it ever produces a
D-admissible reconstruction of the entire source sequence. In any case, G(uly) is a lower
bound to the number of computational steps by the sequential decoder until it settles for
its final D-admissible guess about the source block u, when y is the channel output block.

Now assuming that the source in the system is a DMS, we have by Theorem 2

E[G(U[Y)*] > exp[N[E(D, p) — \Eo(p) — o(N)]] (61)

We thus obtain the following converse result on the computational complexity of sequential

decoding.

Proposition 4 Suppose a DMS P is encoded, using a tree code, into the input of a DMC
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W, at a rate of X channel symbols per source symbol, and a sequential decoder is used at
the receiver. Let Cn be the amount of computation by the sequential decoder to generate a
D-admissible reconstruction of the first N source letters. Then, for any p > 0, the moment

E[C%/] must grow ezponentially with N if E(D,p) > AEo(p).

This result exhibits the operational significance of the functions E(D, p)/p and Ey(p)/p.
Note that as p — 0, E(D,p)/p — R(D,P) and Ey(p)/p — C, leading to the expected
conclusion that if R(D, P) > AC, then E[C%]/N must go to infinity as N increases for all
p>0.

We conjecture that a direct result complementing Proposition 4 can be proved. In
other words, we conjecture that there exists a system, employing tree coding and sequential
decoding, for which E[CX/]/N is bounded independently of N, for any given p > 0 satisfying
E(D,p) < AEy(p). The proof of such a direct result would be lengthy and will not be
pursued here.

As a final remark, we note that the lower bound in Section 5 on the probability of list
decoding error directly yields the following lower bound on the distribution of computation

in sequential decoding.

Pr[On > eM] > exp[~N[Fye(L, D) + o(N)] (62)
This is a generalization of the result in [13] about the Paretian behavior of the distribution
of computation in sequential decoding.
7 Conclusions
We considered the joint source-channel coding and guessing problem, and gave single-letter

characterizations for the guessing exponent E.(D, p) and the list-error exponent Fy.(L, D)

for the case where the source and channel are finite and memoryless. We applied the results
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to sequential decoding and gave a tight lower bound to moments of computation, which, in
the lossless case, established the tightness of Koshelev’s achievability result.

The results suggest that, as far as the pth moment of the guessing effort is concerned,
the quantity E(D, p)/p can be interpreted as the effective rate of a DMS, and Ey(p)/p as the
effective capacity (cutoff rate) of a DMC. The operational significance of these information
measures has emerged in connection with sequential decoding.

A topic left unexplored here is whether there exist universal guessing schemes, for which
the encoder and the guessing strategy are designed without knowledge of the source statistics
and yet achieve the best possible performance. Other topics that may be studied further
are the problems mentioned at the end of Section 3 and also Section 4, and the conjecture

stated at the end of Section 6.
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Appendix

A. Proof of Proposition 1

We carry out the proof for an arbitrary finite-alphabet source with distribution Py for
the first IV source letters. Note that this proof also covers Theorem 1 by taking Py as a
product-form distribution.

Direct part: Fix an arbitrary encoder ey. Let Pr(u,y) denote the joint probability

assignment

Pr(u,y) = Pn(u)W(ylen(u)). (A.1)

We use a guessing strategy {Gn(y)} such that Gn(y) generates its guesses in descending

order of the probabilities Pr(u,y). We let G(U|Y) denote the associated guessing function.
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By Gallager’s method [8], we have for any p > 0,

r(u’ 1/(1+p)
Gy <3 [y e
Thus,
p Pr(u,y) 109
E[GU|Y)] < %Pr(“»”{g[m] }
1+p

Now, we employ a technique used in the sequential decoding literature to upper-bound

the moments of computation [11]. Fix p > 0 and let n be the integer satisfyingn—1 < p < n.

Then,
1+p [ (1+p)/(1+n)
[Z Pr(u,yW““’)] = 22 X Pr(u )V --Pr(unﬂ,y)l/(l“)] (A4)
u _ul Up41
i S| '| (1+p)/(1+n)
S>>0 SEENED SIS | (TR B
| S wm u27£u1 U‘S‘#ul,...,u‘s‘71i21 J
r (1+p)/(14n)
= [ oas(y) (A.6)
L s
< Y ag(y)tte/0En (A.7)
S
In (A.5), we rewrote the summation in terms of partitions § = {S1,...,S|s/} of the set

{1,...,n+ 1}. Each element S; of a partition denotes the group of sums on the right side
of (A.4) whose indexes u;, j € S;, are restricted to remain identical (as they range through
the set of all possible source blocks). In (A.5), m; denotes the cardinality of S;. Note that
since sums belonging to different S;’s must assume distinct u; values, we have the restriction
u; # ug,...,u;_;1 in (A.5). Eq. (A.6) defines the notation as(y), and (A.7) follows by a
variant of Jensen’s inequality [9, ineq. (f), p. 523].

Before we proceed, we illustrate the above partitioning by an example. Suppose n = 2.
Then, there are five partitions: Sy = {{1,2,3}}, & = {{1,2},{3}}, S2 = {{1,3},{2}},
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= {{2,3},{1}}, S« = {{1},{2},{3}}; and, any sum of the form 3>, 3.3} a;a;ay,
with indexes running through a common set, can be written as the sum of the sums
S it Dok Giljk, i Yz aia; (repeated three times), and ;a3

To continue with the proof, let Sy denote the trivial partition which has only one element,
ie., |So| =1 and m; = n+ 1. We shall treat this partition separately. By the same variant

of Jensen’s inequality mentioned above, we have

(14p)/(1+n)
3o (/0 = 53 a0 04 (A9
y u
< D) Pr(uy) (A.9)
y u
= 1 (A.10)
Combining (A.3), (A.7), and (A.10), we obtain
EGUIY) <1+ Y Y as(y) /0, (A.11)

S#8y ¥

We shall now consider choosing the encoder ey at random. Specifically, we suppose that
each source block u is assigned the codeword x with probability S(x), independently of all
other codeword assignments. The PMF S is of product form with single-letter distribution
S chosen so as to achieve the maximum in (16). Denoting expectation w.r.t. the random

code ensemble by an overline, we have

E[GUY)?] < 14 Y > as(y)t+e/1+n) (A.12)
S+8y ¥

< 1+ 3 Sasmt e (A.13)
S+8y ¥

where (A.13) is by Jensen’s inequality. Now,

S|
as(y) = > > >[I Pr(ug,y)m/@ee) (A.14)
u1 uzF#uy u|5| AU, s i=1
S|
= Z Z Z HPr(ui’y)mi/(l‘H’) (A.15)
u; upFu u) 5| Au,..,us 1 =1
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< Z Z ...... Z H Pr(ui, y)mi/(1+p) (A].G)
u; uo us|i=1
S|

— H Z Pr(u,y)m:/(1+s) (A.17)
i=1 u

where (A.15) is by the independence of codeword assignments to distinct messages, and

(A.16) is simply by removing the restriction u; # uy,...,u; 1.
Now define
(1+p)/(14n)
ZPr u,y) 1+p] , (A.18)
and use (A.13), (A.17) to write
S|
EGUY)] < 1+ > > []8m(y) (A.19)
S#S0 ¥ i=1
|S| m; /(1+n)
SRS b 1 (IR (A.20
S#SOZ 1
where (A.20) is by Holder’s inequality (note that >, m; = n + 1). Now,
(1+p)/i
Zﬂz 1+n Ji _ Z [Z Pr(u,y) 1+p] (A.21)
' (1+p)/i
= 5[ S stpatw W oyt A
(1+p)/i (1+p)/i
= [ZP e ] 2 [ZS W ()" 1“)] (A.23)
— exp{NIpiHu /(1) (Pn)/N — MEolpi, S)]} (4.24)

where we have defined p; = (14 p —i)/i. Note that for 1 <i < n, we have 0 < p; < p.

For shorthand, let us write
f(r) =rHy a4 (PN)/N = AEy(r, S). (A.25)
To continue we need the following fact which is proved in part B of this Appendix.

Lemma 1 f(r) is a convez function of r > 0; f(0) = 0; and f(r) is increasing in the range
where it is positive.
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Now we consider two cases. Case f(p) < 0: Then, for alli =1,...,n, we have f(p;) <0,

and by (A.24), 3=, Bi(y )(47)/t < 1. Using this in (A.20) (note that 1 < m; < n for S # Sy),

we obtain
|S] m;/(1+n)

EGUY)] < 1+ > ]I [Zﬁ )(+n) /mz] (A.26)

S#Sp i=1

S|
< 1+ IIt (A.27)

S§+#8i=1
= <(p) (A.28)

where ¢(p) has been defined as the number of partitions S.

Case f(p) > 0: Now, foralli =1,...,n, f(p) > f(pi), and by (A.24), 3=, Bi(y y(+n)/i <

exp[N f(p)]. Using this in (A.20), and recalling that >, m; = n + 1, we obtain

|S]| m;/(14n)
EGUY)] < 1+ > ] [Zﬁ )(+m) /mz] (A.29)
S#Sp i=1
5|
< 1+ > [[expNf(p)mi/(1+n)] (A.30)
S#S8pi=1
< c(p) exp[N f(p)] (A.31)

Combining (A.28) and (A.31), we conclude that E[G(U[Y)?] < ¢(p)exp[N[f(p)]T].
Thus, there must be an encoder such that the resulting joint source-channel guessing scheme
satisfies E[G(U|Y)?] < ¢(p) exp[N[f(p)]T]. This completes the proof of the direct part.

Converse: Fix an arbitrary encoder ey and an arbitrary guessing scheme G(U|Y). Let

Pr(u,y) = Pn(u)W(ylen(u)). By Theorem 1 of [1],

1+p
E[GU[Y)] > (1+Nhu) "> ZPr(u,y)l/(lJ“p)] . (A.32)

Now,

>

y

1+p
it 0]
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I+p 14p
= (ZP 1/ 1+p)) Z [Z PN (ylen(u ))1/(1+p)] (A.33)

1+p
= exp[pH (14+5)(PN)] D [Z Py(x)W (y[x)"/( “p)] (A.34)
y x
> exp[N(pHy)(11,)(Pn)/N — AEo(p))] (A.35)
where
, B Py (u)/(1+0)
Pr(w) = =5 a7 (A36)
and
Py(x) = S Pi(uw). (A.37)
uclN:en(u)=x
Ineq. (A.35) follows by the parallel channels theorem [8, Theorem 5]. Thus,
E[G(U|Y))’] = exp{N[pH1(1+,)(Pn)/N — AEy(p) — o(N)]}. (A.38)

This, together with the obvious fact that E[G(U|Y)?] > 1, completes the proof.

B. Proof of Lemma 1

First, 7Hy /(14,)(P') is convex in r > 0 for any distribution P’ since g(r) = [Z P(u)/(tr)]ttr
satisfies, by Holder’s inequality [9, ineq. (b), p. 522, g(r1)%g(r2)' ™ > g(ar; + (1 — a)ry)
for any r; > 0, 7o > 0, and 0 < a < 1. Since it is also known that Ey(p, S) is a concave
function of p > 0 [9, p. 142], the convexity of f(r) follows.

That f(0) = 0 is due to Ey(0,S) = 0 [9, p. 142]. Thus, the function f(r) starts at 0 and
may dip to negative values initially; then, it will become positive (excluding trivial cases)
for r large enough. To see that f(r) is increasing in the range where it is positive, consider

any 0 < r1 < rg such that f(r;) > 0, f(r2) > 0. Let a = 71/re. Then, by convexity,

(1 —a)f(0) 4+ af(ra) > f(r1). But f(0) =0, so we have f(rq2) > (r2/r1)f(r1) > f(r1).
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C. Upper Bound on B,,,;

We wish to upper-bound the size of B(a,D) = {u € Tg : d(u,u) < ND} for arbitrary
0 € UN. Let Q denote the type of 1, i.e, suppose 4 € TQ C UVN. Consider the sets

SV(ﬁaD) é

B(t,D) N Ty (). Ty(t) is empty unless the shell V' is consistent with the
marginal compositions, i.e., Q(z) = Y3 Q(@)V (z|d). Assume henceforth that V is consis-

tent in this sense. We have [5, p. 31]

Ty ()] < exp{N[H(Q) — I(Q,V)]}. (A.39)

Now, note that Sy (11, D) is empty unless d(Q, V) 2 Yoz Q)V(z|t)d(z,a) < D. However,

U,z

if d(Q,V) < D, then we have by definition, R(D, Q) < I(Q, V), and hence by (A.39)
Tv ()| < exp{N[H(Q) — R(D,Q)]}. (A.40)

The proof is now completed as follows.

|B(a,D)| = Y [Sv(a,D) (A.41)
v
< > |Tv(a) (A.42)
V:d(Q,V)<D
< Y. exp{N[H(Q) — R(D,Q)]} (A.43)
V:d(Q,V)<D
= exp{N[H(Q) — R(D,Q) + o(N)]}, (A.44)

where in the last line we made use of the fact that the number of shells V' grows polynomially

in N.
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Figure 2: Separation of source coding and channel coding.
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