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Abstrat

We onsider the problem of lossy joint soure{hannel oding in a ommuniation

system where the enoder has aess to hannel state information (CSI) and the de-

oder has aess to side information that is orrelated to the soure. This on�guration

ombines the Wyner{Ziv model of pure lossy soure oding with side information at

the deoder and the Shannon/Gel'fand{Pinsker model of pure hannel oding with CSI

at the enoder. We prove a separation theorem for this ommuniation system, whih

asserts that there is no loss in asymptoti optimality in applying �rst, an optimal Wyner-

Ziv soure ode and then, an optimal Gel'fand{Pinsker hannel ode. We then derive

onditions for the optimality of a symbol{by{symbol (salar) soure{hannel ode, and

demonstrate situations where these onditions are met. Finally, we disuss a few prati-

al appliations, inluding of overlaid ommuniation where the model under disussion

is useful.

Index Terms: Wyner{Ziv oding, Gel'fand{Pinsker oding, side information, hannel

state information, separation theorem, joint soure{hannel oding.
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1 Introdution

The Wyner{Ziv (W{Z) model of soure oding with side information at the deoder (see,

e.g., [21℄, [27℄, [29℄, [36℄, [37℄, [39℄) and the Gel'fand{Pinsker (G{P) model for hannel oding

with hannel state information at the enoder (see, e.g., [1℄, [2℄, [5℄, [11℄, [15℄, [16℄, [18℄, [19℄,

[20℄, [22℄, [28℄, [32℄, [33℄, [34℄, [35℄, [38℄) as well as the duality between them (see, e.g., [3℄,

[4℄, [7℄, [24℄, [30℄, [31℄) have attrated onsiderable attention of information theorists over

the years.

In this paper, we make one more step in this avenue of the relation and the duality

between the two models by ombining them, and studying a lossy joint soure{hannel

oding system whose enoder has the hannel state information (CSI) available (either

ausally or non-ausally) and whose deoder has aess to side information that is orrelated

to the soure (see Fig. 1). This model generalizes also to the setting where both the enoder

and deoder have aess to di�erent versions of side informations on both the hannel state

and the soure input (see Fig. 2).

Besides this theoretial motivation of enhaning the relation and duality between W{Z

soure oding and G{P hannel oding, it turns out that it has pratial appliations. One of

them is the possible use of systemati odes for writing into a memory devie with defets

[19℄,[20℄,[34℄, where the systemati part of the ode orresponds to unoded (noisy) side

information at the deoder [27℄. Another appliation is related to overlaid bak{ompatible

ommuniation, whih will be elaborated on in Setion 5, along with a few other examples

of appliations.

Our main result is a separation theorem for this ommuniation system, whih asserts

that there is no loss in asymptoti optimality if one applies �rst, an optimal W{Z soure

ode regardless of the hannel, and then, an optimal Shannon/G{P hannel ode (depend-

ing on whether the CSI is ausal or not) regardless of the soure. It should be noted that

the existene of a separation theorem for this system is not a{priori obvious sine the in-

formation streams along the main ommuniation link (soure ! hannel input ! hannel

output! destination) do not admit a standard Markov struture that lends itself to the

data proessing theorem, like in the lassial ase. It should be pointed out that for the

speial ase where the main hannel (i.e., the upper hannel in Fig. 1) is a simple disrete

memoryless hannel (DMC), a separation theorem was already stated and proved in [27,
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Theorem 2.1℄, but the fat that the G{P hannel also obeys a separation theorem has not

been established before, to the best of our knowledge, even for the ordinary disrete mem-

oryless soure (DMS), let alone the DMS with orrelated side information at the deoder

onsidered here.

Following the tehniques of Gastpar, Rimoldi, and Vetterli [17℄, we then furnish ondi-

tions under whih a simple, symbol{by{symbol joint soure{hannel ode is optimal in the

sense of attaining the joint soure{hannel distortion bound. We also onstrut some exam-

ples of suh systems. This is a point where yet another aspet of the duality between W{Z

soure oding and G{P hannel oding plays a role: one of the onditions for optimality of

a joint soure{hannel ode is that the random variable (RV) that represents the soure is

the optimal auxiliary RV that attains the apaity of the G{P hannel, and that the G{P

hannel output is an optimal auxiliary RV that attains the W{Z rate{distortion funtion.

In other words, the W{Z soure and the G{P hannel are mathed and the auxiliary RV's

of both play an operative role.

Finally, as mentioned earlier, we desribe, in some detail, a few partiular appliations

that demonstrate the usefulness of ombining W{Z oding with G{P oding. These ex-

amples inlude, the binary symmetri hannel (BSC) with the error state available at the

transmitter, systemati oding for defetive memories, and overlaid bak{ompatible om-

muniation systems over the binary and the Gaussian hannels.

2 Notation and Problem Formulation

Throughout this paper, salar RVs will be denoted by apital letters, their sample values will

be denoted by the respetive lower ase letters, and their alphabets will be denoted by the

respetive alligraphi letters. A similar onvention will apply to random vetors and their

sample values, whih will be denoted with same symbols supersripted by the dimension.

Thus, for example, W

k

will denote a random k-vetor (W

1

; :::;W

k

), and w

k

= (w

1

; :::; w

k

)

is a spei� vetor value in W

k

, the k-th Cartesian power of W. The notations w

j

i

and W

j

i

,

where i and j are integers and i � j, will designate segments (w

i

; : : : ; w

j

) and (W

i

; : : : ;W

j

),

respetively, where for i = 1, the subsript will be omitted (as above). For i > j, w

j

i

(or

W

j

i

) will be understood as the null string. Sequenes without speifying indies are denoted

by f�g.

Soures and hannels will be denoted generially by the letter P subsripted by the
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name of the RV and its onditioning, if appliable, e.g., P

U

(u) is the probability funtion

of U at the point U = u, P

ZjS

(zjs) is the onditional probability of Z = z given S = s,

and so on. Whenever lear from the ontext, these subsripts will be omitted. Information

theoreti quantities like entropies, divergenes, and mutual informations will be denoted fol-

lowing the usual onventions of the information theory literature, e.g., H(U

N

), I(Z

n

;W

k

),

D(P

Y jXS

kP

Y

), and so on.

Consider the ommuniation system depited in Fig. 1: A soure P

UV

, heneforth re-

ferred to as the W{Z soure, generates independent opies, f(U

i

; V

i

)g

1

i=1

, of a pair of de-

pendent, �nite{alphabet RV's (U; V ) 2 U � V, and operates at the rate of �

s

symbol pairs

per seond. Let N = �

s

T be a positive integer, where T is the duration of the blok in

seonds. The blok U

N

= (U

1

; : : : ; U

N

), of the �rst omponent of the soure, is fed into

a joint soure{hannel enoder, whereas the orresponding blok of the other omponent,

V

N

= (V

1

; : : : ; V

N

), is fed, as side information, into the deoder whose aim is to provide

an estimate of U

N

, denoted

^

U

N

= (

^

U

1

; : : : ;

^

U

N

), whose omponents take values in a �nite

reprodution alphabet

^

U . The quality of deoder output,

^

U

N

, is judged with respet to

(w.r.t.) the �delity riterion whih is the expetation of

d(U

N

;

^

U

N

) =

N

X

i=1

d(U

i

;

^

U

i

); (1)

where d(u; û) � 0, u 2 U , û 2

^

U , is a given single{letter distortion funtion. The onditional

probability of V

N

given U

N

,

P

V

N

jU

N

(v

N

ju

N

) =

N

Y

i=1

P

V jU

(v

i

ju

i

); (2)

will be referred to as the W{Z hannel (see Fig. 1).

At the same time duration of T seonds, a memoryless hannel, heneforth referred to as

the G{P hannel, whih operates at the rate of �



hannel uses per seond, works as follows:

The hannel input is a vetor pair (X

n

; S

n

) = ((X

1

; S

1

); : : : ; (X

n

; S

n

)), where n = �



T is a

positive integer, and where eah X

i

and S

i

take values in �nite sets, X and S, respetively.

The hannel output is a vetor Y

n

= (Y

1

; : : : ; Y

n

), whose omponents take values in a �nite

set Y, and the onditional probability of Y

n

given (X

n

; S

n

) is haraterized by

P

Y

n

jX

n

S

n(y

n

jx

n

; s

n

) =

n

Y

i=1

P

Y jXS

(y

i

jx

i

; s

i

): (3)
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The vetorX

n

= (X

1

; : : : ;X

n

) is referred to as the hannel input, whereas S

n

= (S

1

; : : : ; S

n

)

is referred to as the hannel state sequene, whih is governed by another disrete memo-

ryless proess:

P

S

n

(s

n

) =

n

Y

i=1

P

S

(s

i

); (4)

independently of (U

N

; V

N

). It is also assumed that V

N

! U

N

! Y

n

is a Markov hain,

guaranteeing independene between the W{Z hannel and the G{P hannel (see Fig. 1).

The hannel input may be subjeted to a transmission{ost onstraint

E

(

n

X

i=1

�(X

i

)

)

� n�; (5)

where � is a given funtion from X to IR

+

and � � 0 is a presribed value. In the absene

of suh a onstraint, one may simply set � =1.

The joint soure{hannel enoder implements a (possibly randomized

1

) funtion x

n

=

f(u

N

; s

n

). In the ase of ausal state information, eah x

i

depends only on u

N

, x

i�1

, and

s

i

. The deoder is de�ned by a deterministi funtion û

N

= g(v

N

; y

n

).

De�nition 1 A distortion level D is said to be ahievable if for every � > 0, there exist

suÆiently large n and N , with n=N = �



=�

s

, an enoder f : U

N

�S

n

! X

n

, and a deoder

g : V

N

� Y

n

!

^

U

N

suh that eq. (5) is satis�ed and

E

(

N

X

i=1

d(U

i

;

^

U

i

)

)

� N(D + �): (6)

The main problem we address, in this paper, is the haraterization of the minimum

ahievable distortion level of this system.

Comment: One might also onsider a seemingly more general model where the CSI is

partially available at the deoder as well. Spei�ally, the deoder has additional aess

to

~

S

n

, whih is generated by yet another DMC fed by S

n

. However, this falls within the

framework of the urrent model where the pair (Y

n

;

~

S

n

) is rede�ned as the hannel output

~

Y

n

. To symmetrize the model, the enoder may also be assumed to aess only a noisy

version of the CSI

^

S

n

: Again, this falls again within the framework of our model if the

1

Due to the transmission onstraint, it is not a{priori lear that the optimum enoder would be deter-

ministi in general.
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original hannel is replaed by

P

~

Y jX

^

S

(~yjx; ŝ) =

X

s

P

Sj

^

S

(sjŝ)P

~

Y jXS

(~yjx; s): (7)

By the same token, our model is also general enough to inlude a situation where the enoder

has aess to a noisy version

~

V

N

of the side information V

N

seen by the deoder (reated

by another, memoryless feedbak hannel). This is done simply by rede�ning the soure

as (U

N

;

~

V

N

), yet the distortion measure ontinues to depend only on the �rst omponent,

i.e., d

0

((u; ~v); û) = d(u; û). In summary, our model atually overs a symmetri situation,

depited in Fig. 2, where both enoder and deoder have aess to (possibly di�erent) noisy

versions of both soure{state information and hannel{state information.

3 Separation Theorem

In order to state the separation theorem of lossy joint soure{hannel oding for the W{Z

soure and the G{P hannel de�ned in Setion 2, we will de�ne the following funtional of

a joint distribution P

UA

for a generi RV A:

�(U jA) = min

g:A!

^

U

Efd(U; g(A))g; (8)

and reall that the W{Z rate{distortion funtion [37℄ of P

UV

w.r.t. distortion measure d(�; �),

is given by

R

WZ

(D) = min[I(U ;Z)� I(V ;Z)℄ � min I(U ;ZjV ) (9)

where the minimum is over all auxiliary RV's Z suh that Z ! U ! V is a Markov hain

and �(U jV;Z) � D.

As for the hannel, we reall that the apaity formula (see, [3℄

2

and [18℄) for the G{P

hannel fP

Y jXS

; P

S

g, under the transmission{ost onstraint, is given by

C

GP

(�) = max[I(W ;Y )� I(W ;S)℄; (10)

where the maximization is over all pairs of RV's (W;X) suh that W ! (X;S) ! Y is a

Markov hain and E�(X) � �. Clearly, as P

S

and P

Y jXS

are given, the degrees of freedom

are in the optimal hoie of P

XW jS

= P

W jS

� P

XjWS

= P

W jS

� 1

fX=f(W;S)g

subjet to the

2

In [3℄, a somewhat more general result is proved in the ontext of information embedding, where the

enoder is subjeted to a distortion onstraint Ef

P

n

i=1

d(S

i

; X

i

)g � nD. For our purposes, we set d(s; x) =

�(x).
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transmission{ost onstraint.

3

The apaity for the ase where the state sequene S

n

is

revealed to the enoder ausally [28℄ an be obtained [9℄,[13℄ from eq. (10) by imposing the

additional onstraint that W is independent of S, namely, P

XW jS

= P

W

� 1

fX=f(W;S)g

. In

this ase, (10) will be denoted by C

S

(�), where the subsript S stands for \Shannon." Note

that the term I(W ;S) on the right{hand side of (10) vanishes in this ase.

Our main result is the following separation theorem for the ase where the enoder is

nonausal w.r.t. the state sequene. For the ausal ase, C

GP

should be replaed by C

S

.

Theorem 1 Under the assumptions desribed in Setion 2, a neessary and suÆient on-

dition for D being an ahievable distortion level is

�

s

R

WZ

(D) � �



C

GP

(�):

Proof. The proof of the suÆieny part omes, like in the lassial ase, from onsidering

an asymptotially optimal soure ode (independent of the hannel) followed by a reliable

transmission ode for the hannel (independent of the soure) whose rate is lose to apaity:

If the distortion level of the W-Z soure ode is hosen suh that �

s

R

WZ

(D) < �



C

GP

(�),

one may selet two onstants R

s

and R



suh that NR

WZ

(D) < NR

s

= nR



< nG

GP

(�),

ompress the soure into R

s

bits per{symbol within distortionD, and then map the resulting

NR

s

{bit odeword into a hannel odeword of the same number of bits, nR



. Sine R



<

C

GP

(�), there exists a reliable G{P hannel ode whih auses asymptotially negligible

additional distortion. Sine D an be hosen, in this way, suh that �

s

R

WZ

(D) is arbitrarily

lose to �



C

GP

(�), every distortion level for whih �

s

R

WZ

(D) � �



C

GP

(�) is ahievable.

Obviously, in the ausal ase, all the above ontinues to hold provided that C

GP

is replaed

by C

S

.

The proof of the neessity part is by a simple fusion of the proofs of the onverse theorems

in [18℄ and in [37℄ (or, more simply, in [27℄) with some minor modi�ations. The idea is

to upper bound I(U

N

;Y

n

) by nC

GP

(�) and to lower bound it by NR

WZ

(D). Clearly, the

ombined inequality, NR

WZ

(D) � nC

GP

(�), with both sides divided by T , is the assertion

of Theorem 1.

3

Here, 1

fX=f(W;S)g

means a degenerate onditional distribution that puts all its mass on the point

X = f(W;S) for some deterministi funtion f . In [8, Lemma B.1℄, it is shown that even in the presene of

a transmission{ost onstraint, the optimal enoder is deterministi.
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As for the upper bound to I(U

N

;Y

n

), we have:

I(U

N

;Y

n

) = I(U

N

;Y

n

)� I(U

N

;S

n

) �

n

X

i=1

[I(W

i

;Y

i

)� I(W

i

;S

i

)℄; (11)

where the equality is due to the independene between U

N

and S

n

, and where the inequality

is proved exatly as in [18℄ withW

i

being de�ned as (U

N

; Y

i�1

; S

n

i+1

). Thus, the message V ,

of the proof of the onverse theorem of [18℄, is simply replaed by U

N

. Sine the remaining

part of the proof in [18℄ uses only the the fat that S

n

is drawn by a DMS, and general

hain rules of the mutual information, it is general enough to ontinue to hold in our ase.

It should be pointed out that the inequality in (11) beomes an equality if and only if

the omponents of Y

n

are statistially independent. Now, sine W

i

! (X

i

; S

i

) ! Y

i

is

a Markov hain, the right{most side of eq. (11) is in turn upper bounded by nC

GP

(�),

similarly as in [3℄ and [18℄. In the ausal ase, it should be noted that W

i

is independent of

S

i

. Therefore, the maximization over W is arried out with the additional onstraint that

W is independent of S, resulting in nC

S

(�).

As for the lower bound to I(U

N

;Y

n

), we follow the proof of Theorem 2.1 of [27℄, starting

from the seond line of the hain of inequalities (2.7) therein. Spei�ally, de�ning Z

i

�

=

(U

i�1

; V

i�1

; V

N

i+1

; Y

n

), we have the following:

I(U

N

;Y

n

)

(a)

= I(U

N

; V

N

;Y

n

)

(b)

� I(U

N

;Y

n

jV

N

)

()

=

N

X

i=1

I(U

i

;Y

n

jU

i�1

; V

N

)

(d)

=

N

X

i=1

[I(U

i

;Y

n

; U

i�1

; V

i�1

; V

N

i+1

jV

i

)� I(U

i

;U

i�1

; V

i�1

; V

N

i+1

jV

i

)℄

(e)

=

N

X

i=1

I(U

i

;Z

i

jV

i

)

(f)

�

N

X

i=1

R

WZ

(�(U

i

jV

i

; Z

i

))

(g)

�

N

X

i=1

R

WZ

(�(U

i

jV

N

; Y

n

))

(h)

�

N

X

i=1

R

WZ

(Ed(U

i

;

^

U

i

))

(i)

� NR

WZ

(D + �); (12)
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where (a) follows from the Markovity of V

N

! U

N

! Y

n

, (b),(), and (d) { from the

hain rule of the mutual information, (e) { from the memorylessness of P

UV

, (f) { from the

fat that Z

i

! U

i

! V

i

is a Markov hain and from eq. (9), (g) { from the monotoniity

of R

WZ

(�) and eq. (8), (h) { from eq. (8) and the fat that

^

U

i

is a funtion of (Y

n

; V

N

),

and (i) { from the onvexity and monotoniity of R

WZ

(�) [37℄, and the assumption that

D is ahievable. Sine � > 0 an be hosen arbitrarily small, the result follows from the

ontinuity of R

WZ

(�) (whih in turn, follows again by onvexity). �

Comment 1: Note that in the above hain, (b) beomes equality if Y

n

is independent of

V

N

, and the remaining inequalities beome equalities if eah Z

i

is an optimal auxiliary RV

for R

WZ

(�). The former ondition is intuitively appealing beause it means that a neessary

ondition for optimality is that the two information streams that the deoder reeives are

independent, for otherwise there would be some waste on redundant information.

Comment 2: Though formally we on�ne attention to �nite alphabets and �nite sets of

(U; S;X; Y; V ), sine the basi W{Z rate distortion funtion and the G{P hannel apaity

extend, under minor regularity onditions, to general alphabets and sets (see [40℄ and refer-

enes therein) and sine our proof relies essentially on the very same arguments, Theorem

1 applies to those general settings as well.

4 Symbol{by{Symbol Joint Soure{Channel Codes

Even in the lassial model, without side information, it is well known that the ost of

keeping the optimality of separate soure and hannel oding is, in general, assoiated with

long bloks, whih mean high omplexity and long delay. On the other hand, there are also

well{known examples of soure{hannel pairs, operating at the same rate (�



= �

s

), whih

math eah other so well, that the joint soure{hannel distortion bound an be obtained

by diret onnetion of the soure to the hannel, with no oding at all, or with very simple

oding on a salar, symbol-by-symbol basis (n = N = 1). The two lassial examples are:

(i) the binary memoryless soure, with the Hamming distortion measure, and the binary

symmetri hannel (BSC), where the distortion level equals the rossover probability, and

(ii) the Gaussian memoryless soure, with the mean{square distortion measure, and the

Gaussian power{restrited memoryless hannel.

In [17℄, this issue of perfet mathing between the soure and the hannel has been

9



studied, and onditions have been furnished for the optimality of a given symbol{by{symbol

oding system w.r.t. a given distortion measure and a given transmission{ost funtion.

In this setion, we extend the main results of [17℄ from the lassial model, without

side information, to our model of a W{Z soure and a G{P hannel. It should be noted

that whenever C

GP

(�) is stritly larger

4

than C

S

(�), no salar enoder X

i

= f(U

i

; S

i

) an

ahieve the former and the only hope is to ahieve C

S

(�). Moreover, even if this enoder

is allowed to have a nonausal aess the entire state sequene aross some blok, i.e.,

X

i

= f

i

(U

i

; S

n

), 1 � i � n, still C

S

(�) annot be exeeded sine the soure is assumed

independent of the hannel state proess, and so, the aess to past and future states

annot improve performane. (Another way to see this is to observe that for any realization

of (S

i�1

; S

n

i+1

), X

i

is given by a partiular funtion of (U

i

; S

i

), whereas the ation of the

hannel at time instant i is insensitive to (S

i�1

; S

n

i+1

)).

Consider again the system depited in Fig. 1, now for the salar ase of blok{length

n = N = 1. The enoder implements a funtion x = f(u; s) and the deoder is given by

û = g(v; y). We say that an enoder{deoder pair (f; g) is optimal w.r.t. d if it satis�es

the transmission{ost onstraint, E�(X) � �, and it meets the joint soure{hannel bound

with equality, i.e.,

R

WZ

(Ed(U; g(V; Y ))) = C

S

(�): (13)

Throughout this setion, we will always assume the enoder implements an optimal

5

fun-

tion x = f

�

(u; s) that ahieves C

S

(�) subjet to the onstraint E�(X) � � beause this is

obviously a neessary ondition for optimality. In the next theorem, we give the additional

onditions, whih together with the ondition x = f

�

(u; s), are suÆient for optimality.

Theorem 2 If all of the following onditions are satis�ed, then (f

�

; g) is optimal w.r.t. d:

(a) The alphabet U is large enough to ahieve C

S

(�).

(b) Either: (i) I(U ;Y ) = C

S

(1) yet E�(X) � �, or, (ii) I(U ;Y ) < C

S

(1) and there

exist a positive real � and a onstant � suh that for every u 2 U ,

D(P

Y jU=u

kP

Y

) = �Ef�(X)jU = ug+ �:

4

See [15℄ for examples where C

GP

(�) = C

S

(�).

5

There is no guarantee that C

S

(�) is attained uniquely by one pair of input distribution and enoding

funtion.
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() Y and V are statistially independent.

(d) Either: (i) I(U ;Y jV ) = 0 and g attains �(U jV ), or, (ii) I(U ;Y jV ) > 0, g attains

�(U jV; Y ), and there exist a positive real  and a funtion Æ(u; v) suh that for all

(u; v; y) 2 U � V �Y:

d(u; g(v; y)) = � logP

U jY

(ujy) + Æ(u; v):

Proof. Consider the hains of equalities/inequalities (11) and (12) in the proof of the

neessity part of Theorem 1, and on�ne attention to the degenerate ase n = N = 1. For

a salar system to be optimal, all inequalities should beome equalities. Let us begin with

eq. (11). The inequality in eq. (11) boils down to a trivial identity sine W

1

, in this ase, is

idential to U . For the right{most side of eq. (11) to ahieve C

S

(�), U must be an optimal

auxiliary RV for this apaity, whih means, �rst of all, that (a) should be satis�ed. Sine

the onstraint of independene between U and S is automatially satis�ed by the model

assumption, it remains to show that ondition (b) guarantees that U maximizes I(U ;Y )

subjet to onstraint E�(X) � �. If I(U ;Y ) = C

S

(1) (yet the transmission onstraint is

not violated), this is obviously the ase. If I(U ;Y ) < C

S

(1), the alternative ondition in

(b) an be proved to be suÆient by a straightforward extension of [17, Theorem 3℄, whih

for the sake of ompleteness, will be rederived here. Let P

Y jU

be the hannel from U to Y

that is indued by P

S

, f

�

and P

Y jXS

. Let

I

P

(u) = D(P

Y jU=u

kP

Y

); (14)

and let

~

P =

~

P

U

denote an alternative distribution on U . Denoting by I

~

P

(U ;Y ) the mutual

information between U and Y , where U is distributed aording to

~

P , we have:

X

u

~

P

U

(u)I

P

(u)� I

~

P

(U ;Y ) =

X

u

~

P

U

(u)[I

P

(u)� I

~

P

(u)℄

=

X

u

~

P

U

(u)[D(P

Y jU=u

kP

Y

)�D(P

Y jU=u

k

~

P

Y

)

= D(

~

P

Y

kP

Y

) � 0; (15)

where

~

P

Y

denotes the hannel output marginal indued by

~

P

U

. Sine equality is obviously

attained when

~

P

U

= P

U

, it follows that

I

~

P

(U ;Y )� I

P

(U ;Y ) �

X

u

[

~

P

U

(u)� P

U

(u)℄I

P

(u): (16)

11



Next, assume that

~

P

U

is suh that

E

~

P

�(X) � E

P

�(X); (17)

where E

P

and E

~

P

are expetations indued by P and

~

P , respetively. Then,

I

P

(U ;Y )� I

~

P

(U ;Y )

�

X

u

[P

U

(u)�

~

P

U

(u)℄I

P

(u)

�

X

u;s

P

S

(s)[P

U

(u)�

~

P

U

(u)℄[I

P

(u)� ��(f

�

(u; s))℄

=

X

u

[P

U

(u)�

~

P

U

(u)℄[I

P

(u)� �Ef�(X)jU = ug℄

= �

X

u

[P

U

(u)�

~

P

U

(u)℄ = 0; (18)

where the �rst inequality is (16), the seond inequality is (17) and the seond equality

follows from ondition (b). This proves that P

U

maximizes I(U ;Y ) given the transmission

onstraint.

Consider next the hain of inequalities (12) with n = N = 1 and � = 0. For inequality

(12-b) to beome an equality, Y and V must be independent (f. the ending omment of

Setion 3), whih is ondition (), (12-f) beomes an equality if Z = Y is an optimal auxiliary

RV for the W{Z rate{distortion funtion,

6

(12-g) is an identity in the ase n = N = 1,

and (12-h) is an equality if the deoder g ahieves �(U jV; Y ). In the degenerate ase of

I(U ;Y jV ) = 0, Y trivially minimizes I(U ;Y jZ) under this Markovity onstraint. In this

ase, Y is irrelevant to deoding, and the best deoding based on V is, by de�nition, the

one that ahieves �(U jV ), whih is the smallest distortion level at whih R

WZ

(D) = 0.

For the ase I(U ;Y jV ) > 0, we next prove, using the same tehnique as in [17℄, that Y is

optimal if ondition (d) holds. Let P

ZjU

and

~

P

ZjU

be two hannels from U to Z and let

6

Notably, V ! U ! Y is always a Markov hain.

12



I

P

(U ;ZjV ) and I

~

P

(U ;ZjV ) the orresponding indued mutual informations. Then,

I

~

P

(U ;ZjV )�

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju) log

P

ZjU

(zju)

P

ZjV

(zjv)

=

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju)

"

log

~

P

ZjU

(zju)

~

P

ZjV

(zjv)

� log

P

ZjU

(zju)

P

ZjV

(zjv)

#

=

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju)

"

log

~

P

U jV Z

(ujv; z)

P

U jV

(ujv)

� log

P

U jV Z

(ujv; z)

P

U jV

(ujv)

#

=

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju) log

~

P

U jV Z

(ujv; z)

P

U jV Z

(ujv; z)

=

X

v;z

~

P

V Z

(v; z)

X

u

~

P

U jV Z

(ujv; z) log

~

P

U jV Z

(ujv; z)

P

U jV Z

(ujv; z)

� 0; (19)

with equality whenever

~

P = P . Now, let

~

P

ZjU

be a hannel for whih

E

~

P

fd(U; g(V;Z))g � E

P

fd(U; g(V;Z))g; (20)

where E

P

and E

~

P

are expetations indued by P and

~

P , respetively. For any  > 0, we

have:

[I

~

P

(U ;ZjV )� I

P

(U ;ZjV )℄

� 

X

u;v;z

P

UV

(u; v)[

~

P

ZjU

(zju) � P

ZjU

(zju)℄ log

P

ZjU

(zju)

P

ZjV

(zjv)

�

X

u;v;z

P

UV

(u; v)[

~

P

ZjU

(zju)� P

ZjU

(zju)℄

�

 log

P

ZjU

(zju)

P

ZjV

(zjv)

+ d(u; g(v; z))

�

(21)

where the �rst inequality follows from (19) and the seond inequality follows from (20). A

hannel P

ZjU

is then optimal if the last expression is non{negative. In partiular, letting

Z = Y and hoosing  and Æ(u; v) so as to satisfy ondition (d), we have:

[I

~

P

(U ;Y jV )� I

P

(U ;Y jV )℄

�

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[ log

P

Y jU

(yju)

P

Y jV

(yjv)

+ d(u; g(v; y))℄

=

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[ log

P

Y jU

(yju)

P

Y

(y)

+ d(u; g(v; y))℄

=

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[ log P

U jY

(ujy)�  logP

U

(u) + d(u; g(v; y))℄

=

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[Æ(u; v) �  logP

U

(u)℄ = 0; (22)
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where the �rst equality is due to ondition (), the seond to the last equality is due to

ondition (d), and the last equality is due to the fat that both P

Y jU

(�ju) and

~

P

Y jU

(�ju) are

probability mass funtions for every u. This ompletes the proof of Theorem 2. �

We onlude this setion with two examples of simple ommuniation systems and show

how their optimality is veri�ed using Theorem 2.

Example 1. Let U = (U

1

; U

2

) be a pair

7

of independent binary symmetri RV's taking

values in f0; 1g with a distortion measure

d(u; û) = d

H

(u

1

; û

1

) + �d

H

(u

2

; û

2

);

where � > 0 and d

H

designates the Hamming distane. The W{Z hannel is given by

V = U

1

�W (23)

where W is a binary f0; 1g RV, independent of U , with P

W

(1) = D, 0 < D < 1=2. The

G{P hannel is given by

Y = X � S �W

0

; (24)

where X, S and W

0

are binary RV's, W

0

being independent of S, X, U , and W , and we

have P

S

(1) = 1=2, P

W

0

(1) = D, where D is as before. The transmission ost funtion is

�(x) = x and its allowable level is � = 1=2.

Consider the enoder X = U

2

� S (whih satis�es the transmission onstraint) and the

deoder

^

U = (V; Y ). To see that this enoder ahieves apaity, we observe that in this

ase,

I(U ;Y ) = I(U

2

;Y ) = I(U

2

;U

2

�W

0

) = 1�H

2

(D); (25)

H

2

(�) being the binary entropy funtion, whereas the apaity annot exeed this value

beause it orresponds also to the ase where the CSI is available to the deoder as well.

As for the onditions stated in Theorem 2, we have the following: Condition (a) is satis-

�ed beause when the hannel output is binary, the input alphabet U need not be riher

than binary in order to maximize the mutual information. Condition (b) is satis�ed sine

I(U ;Y ) = 1�H

2

(D) = C

S

(1). Note also that due to the symmetry, both D(P

Y jU=u

kP

Y

)

7

This pair may represent the binary expansion of a uniformly distributed, four-valued RV, i.e., U =

2U

1

+ U

2

.
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and Ef�(X)jU = ug are independent of u, and so, there exist in�nitely many pairs (�; �)

that satisfy D(P

Y jU=u

kP

Y

) = �Ef�(X)jU = ug+ �, inluding the one where � = 0, whih

orresponds to the ase where the power onstraint is not ative [17℄, i.e., C

S

(�) = C

S

(1).

Condition () is satis�ed beause U

1

and U

2

are independent, and hene so are V and Y .

As for ondition (d), we have

d(u; (v; y)) = d

H

(u

1

; v) + �d

H

(u

2

; y): (26)

As for the right{hand side of the equation given in ondition (d), �rst observe that P

U jY

=

P

U

1

� P

U

2

jY

. Now, sine U

2

is symmetri and Y = U

2

�W

0

is a BSC, the reverse hannel

P

U

2

jY

is also a BSC with rossover probability D, and so,

P

U

2

jY

(u

2

jy) = D

d

H

(u

2

;y)

(1�D)

1�d

H

(u

2

;y)

: (27)

It then follows that ondition (d) is satis�ed by the hoie

 = 

0

�

=

�

log[(1�D)=D℄

; (28)

and

Æ(u; v) = d

H

(u

1

; v) + 

0

log[P

U

1

(u

1

)(1�D)℄: (29)

It is also easy to see that g(v; y) = (v; y) ahieves �(U jV; Y ) in this ase, sine U

1

and U

2

are independent, they are both symmetri, and D < 1=2.

To summarize this example, we have shown that the distortion obtained by this simple

ommuniation system,

Efd(U;

^

U )g = (1 + �)D; (30)

annot be improved by any other (more ompliated) oding sheme. This example an be

extended to allow for (symmetri) soures, G{P hannels, W{Z hannels of larger alphabets

provided that the � operation is more generally understood as addition/subtration modulo

the alphabet size.

Example 2. Let U be uniformly distributed over the interval [�2; 2℄. The W{Z hannel

aepts an input f(U), where f is subjeted to design, and generates

V = Q(f(U) +W )�W (31)
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where Q(�) is a uniform quantizer of stepsize � (with in�nitely many levels) and W is an

arbitrary RV, independent of U . The Shannon/G{P hannel is given by

Y = S �X +W

0

(32)

where X is a ontinuous{valued RV, whose support is limited to [�1; 1℄ (i.e., �(x) =1 for

jxj > 1), S 2 f�1;+1g, and W

0

is uniform over [�1; 1℄, independently of all other RV's.

The distortion measure is

d(u; û) =

�

0 ju� ûj � �=2

1 ju� ûj > �=2

(33)

Let U

1

�

= f(U) = U � sgn(U)

�

= U � U

2

and onsider the enoder X = S � U

2

(whih

satis�es the hannel input onstraint) and deoder

^

U = V + sgn(Y ). Sine sgn(Y ) = U

2

and jU

1

� V j � �=2 with probability one, the distortion is zero, and so, this ommuniation

system is trivially optimal. We would like to demonstrate, nevertheless, that Theorem 2

indeed tells that as well.

As for ondition (a), we have

I(U

2

;Y ) = I(U

2

;U

2

+W

0

) = h(U

2

+W

0

)� h(W

0

) = log 4� log 2 = 1; (34)

where h denotes the di�erential entropy. Obviously, no input an ahieve larger mutual

information sine Y is binary. This also implies that ondition (b) is satis�ed. Condition

() is satis�ed sine U

1

and U

2

are independent. To see why this is true, note that U

1

is

uniform over [�1; 1℄ regardless of whether U

2

= 1 or U

2

= �1. As for ondition (d), we

note that the distortion measure (33) an be formally deomposed as

d(u; g(v; y)) = d(u

1

+ u

2

; v + sgn(y)) = d(u

1

; v) + d

0

(u

2

; sgn(y)) (35)

where d(u

1

; v) is as in (33) and d

0

(a; b) is 0 if its binary arguments are equal and in�nite

otherwise. The rationale behind this deomposition is that the distortion between the soure

and the reprodution is zero if and only if both ju

1

� vj � �=2 and u

2

= sgn(y), and if at

least one of the onditions is violated, the distortion is in�nite. Now, the �rst term on the

r.h.s. of eq. (35) is absorbed in Æ(u; v) of ondition (d) and the seond term is proportional

to � log P (u

2

jy) beause P (u

2

jy) = 1fu

2

= sgn(y)g. The overall distortion, in this example,

is always zero as mentioned earlier, thus g trivially ahieves �(U jV; Y ).
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5 Appliations

In this setion, we outline several appliations of our theory where a G{P, or a Shannon,

hannel emerges naturally in ombination with a W{Z hannel. In subsetion 5.1, we exam-

ine a BSC with the error state available to the transmitter, who is subjeted to a Hamming

weight onstraint �. We proeed to disuss defeted memory hannels, and lose this se-

tion with two models of an overlaid, bak{ompatible ommuniation system. The general

setting motivated by the underlying framework here failitates quantative assessment of the

degradation in ombining raw data (that is, systemati transmission) in the ommuniation

system and in that respet, this setion extends the treatment of [27℄ and enhanes the

insight into this ommuniations setting, of pratial importane.

5.1 The BSC with CSI at the Transmitter

Consider a binary symmetri soure (BSS) fU

i

g, operating at the rate of �

s

bits per seond,

whih is to be transmitted, within a presribed Hamming distortion D, through a BSC with

rossover probability � = 1=2, whih operates at the rate of �



hannel uses per seond. More

expliitly, the hannel output is given by

Y

i

= X

i

� S

i

; (36)

where �, as before, designates the XOR operation, fS

i

g { the noise sequene, is drawn by

a BSS, independent of fU

i

g, and fX

i

g is the binary hannel input. We onsider here the

ase where fS

i

g is available to the transmitter either in a ausal or a non{ausal manner,

orresponding to the Shannon and the G{P settings, respetively. The hannel input fX

i

g

is subjeted to a weight onstraint:

E

(

1

n

n

X

i=1

X

i

)

� �: (37)

We enquire, what is the maximal soure rate, �

s

, that an be onveyed subjet to these

onstraints.

Theorem 1 tells us that for the G{P hannel:

�

s

�

�



�H

2

(�)

1�H

2

(D)

(38)

and, for the Shannon hannel:

�

s

�

�



� 2�

1�H

2

(D)

; (39)
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where we have used the fats that C

GP

(�) = H

2

(�), C

S

(�) = 2� [4℄,[40℄ and R(D) =

1�H

2

(D) [12℄ in this ase.

Next, onsider systemati oding. Sine the systemati part has an average weight 1=2,

it annot endure for more than a fration of 2� of the hannel uses as to onform with

the weight onstraint (37). Now, observe that in this ase, still the weight onstraint is

satis�ed if X

i

= U

i

� S

i

, whih is also of average weight 1=2. This yields a lean output

Y

i

= U

i

for those systemati bits that an be aommodated. Note that the transmitted

bits are perfetly reovered whereas those that ould not be transmitted are fully distorted

(D = 1=2), so for D � 1=2, a fration of 1�2D of the systemati bits should be transmitted.

Thus, the systemati option yields:

�

s

�

�



� 2�

1� 2D

: (40)

Comparing to (39), we see that the systemati approah is optimal in the lossless ase

(D = 0) of the Shannon ausal setting. Note that this optimality is also ahieved in the

sense of Setion 4, that is, symbol{by{symbol enoding.

The atual oding over these G{P and Shannon hannels, in terms of random jointly

typial odes or onstrutive algebrai binning, are explained in [40℄ and referenes therein.

5.2 Defeted Memory

Consider the defetive memory hannel model desribed in [20℄. Aording to this model,

the hannel output is, with probability p

s

=2 { stuk at `0', with probability p

s

=2 { stuk at

`1', and with probability (1 � p

s

) { behaves like a BSC with rossover probability �. The

apaity of this hannel, with the stuk ells known non{ausally at the transmitter (the

G{P model), has been determined to be

C

GP

= (1� p

s

)[1�H

2

(�)℄ bits/memory-ell. (41)

If we wish to reord a BSS of N bits (N !1) within Hamming distortion D, Theorem 1

guarantees that this is possible provided that

1�H

2

(D) �

n

N

(1� p

s

)[1�H

2

(�)℄: (42)

We now envisage a pratial senario where the data is reorded unaltered (that is,

systematially). This is done to failitate either simple reading or, alternatively, fast mem-

ory aess, tolerating no delay, whih otherwise is inherently assoiated with deoding.
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Evidently, the distortion assoiated with this simple proedure is

D

u

= �(1� p

s

) +

p

s

2

; (43)

where the subsript u stands for \unoded." Yet, the remaining n�N memory ells are used

to reord optimally oded information in an e�ort to redue the distortion (as ompared

with D

u

) and that is at a ost of a more ompliated, and hene slower, reader whih

performs the deoding.

To determine the optimal distortion in this ase, designated by D



, where subsript

 stands for \oded," we interpret the unoded reorded data as a W{Z hannel. This

W{Z hannel is, in fat, a BSC with rossover probability D

u

. The assoiated W{Z rate{

distortion funtion R

WZ

(D;D

u

) (where the seond argument, with a slight abuse of nota-

tion, designates the rossover probability of this W{Z hannel), has been established in [37℄

and it equals

R

WZ

(D;D

u

) =

(

g(D); 0 � D � D

t

g(D



)

�

1�

D�D

t

D

u

�D

t

�

; D

t

< D � D

u

(44)

where

g(D) =

�

H

2

(D

u

�D)�H

2

(D); 0 � D � D

u

0; D = D

u

(45)

where � designates the binary onvolution operation: ��� = �(1��)+�(1��), 0 � �; � � 1,

and where the threshold distortion D

t

is the solution to the equation

g(D

t

)

D

t

�D

u

= g

0

(D

t

): (46)

Evidently, by Theorem 1, whih involves here the W{Z and G{P omponents, the redued

distortion assoiated with the addition of the oded part, D



is given by the solution to the

equation

R

WZ

(D



;D

u

) =

�

n

N

� 1

�

(1� p

s

)[1�H

2

(�)℄: (47)

This expression desribes the best possible trade-o� between the exess memory (n � N)

versus distortion redution (from D

u

to D



). Note that due to the general suboptimality

of the W{Z oding as ompared to the ase where the W{Z side information is available

to the enoder in this binary regime [27℄,[37℄, there is a ost assoiated with imposing the

reording of raw data. This ost, in general, manifests itself in D



� D, f. (47) and (42),

respetively.
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5.3 Overlaid Bak{Compatible Communiation

Within this framework of overlaid bak{ompatible ommuniation, we shall onsider the

binary ase and the Gaussian ase. Both ases invoke the model where ommon information

is transmitted to users who employ standard (old) equipment. New users, who may use

more advaned equipment, are interested in better performane. However, servie to old

users must be maintained, with a presribed level of allowed degradation. We investigate

the trade{o� between improvement in performane of the new users and the degradation

inited on the old ones.

These models an be ast also within the general framework of lossy transmission over

broadast hannels, see [23℄,[25℄ and referenes therein, and the tehnique here might be use-

ful in devising ahievable regions for other ommuniations on�gurations. We emphasize

that the theory developed in the previous setions is merely used to motivate the ommu-

niation shemes disussed below, but by no means, these shemes will be laimed to be

optimal.

For simpliity, we shall use, in this subsetion and in the �gures involved, salar nota-

tion, onforming with the single{letter expressions of the assoiated information{theoreti

expressions.

5.3.1 The Binary Case

Consider a BSC with rossover probability p

b

over whih the ommon data is transmitted.

Evidently, this BSC may model a full{edged ommuniation system, where p

b

haraterizes

its error probability. Thus, p

b

is the Hamming distortion, or the bit{error rate (BER) of

the raw information transmitted over this hannel. The new user, who employs advaned

detetion methods, enjoys a BSC with rossover probability p

g

� p

b

. We then have a

degraded broadast hannel, whih is omposed of the two BSCs, as is desribed in Fig. 3.

Notably, with no modi�ation whatsoever, the new user already enjoys better performane

in terms of the BER, whih is now p

g

.

The problem is not trivial even if p

b

= p

g

, that is, both users are exposed to the

very same hannel harateristis.

8

In this ase, the upgrade of the new users is due to

the more involved oded ommuniation tehnique they may use, taking advantage of the

superimposed oded part.

8

Whether these hannels are orrelated, or not, is immaterial in this broadast{like setting.
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We would like then to provide a quantitative assessment of the trade{o� between the

BER redution of the new user and the performane degradation of the old user. Let the

degraded performane of the old user be represented as

D

b

= p

b

� e (48)

where 0 � e � 1=2 is thought of as a parameter. Our enoding system, desribed in Figure

3, produes then the hannel input

X

0

= U �X; (49)

where U stands for the symmetri f0; 1g raw data and X the enoded part. The reeived

signals at the old and the new user reeivers, designated by Y

b

and Y

g

, respetively, are

given by

Y

b

= X

0

�W

b

Y

g

= X

0

�W

g

; (50)

where W

b

and W

g

stand for the binary noise omponents with P

W

b

(1) = PrfW

b

= 1g = p

b

and P

W

g

(1) = p

g

. Clearly, the additional transmitted part X should be onstrained suh

that the ombined binary noise X �W

b

= Y

b

� U , viewed by the old user who uses Y

b

as

the deteted output, does not init more degradation than allowed. In other words, this

imposes the onstraint P

X

(1) � e (i.e., � = e). The enoded message is onstruted by

onatenating a W{Z enoder whih aounts for the side information hannel between U

and Y

g

, where

EfU � Y

g

g = EfX �W

g

g = p

g

� e : (51)

The assoiated rate is given by R

WZ

(D

g

; p

g

� e) (f. eq. (44)). Now, the hannel from X to

Y

g

is viewed as a G{P hannel where U plays the role of a state sequene given non{ausally

to the transmitter,

9

whose apaity [4℄ is given by

C

GP

(e) = u..e fH

2

(e)�H

2

(p

g

); (0; 0)g ; (52)

where u..ef�g denotes the upper onave envelope as a funtion of e, whih inludes the

origin (0; 0). Theorem 1 haraterizes then the trade-o� between D

g

, the distortion assoi-

ated with the new user and D

b

, the distortion assoiated with the old user in a parametri

9

This is implemented by delaying the raw data before transmission.

21



set of equations. Namely, the solution for D

g

of the equation

R

WZ

(D

g

; p

g

� e) = C

GP

(e); (53)

together with (48), where 0 � e � 1=2 is the parameter. Note that G{P enoding [4℄

guarantees that X is independent of U , yielding that X �W

b

and X �W

g

in (49),(50), are

noises that are independent of U . Conepts of G{P and W{Z oding within the ontext of

either random or nested linear odes are reviewed in [40℄.

5.3.2 The Gaussian Case

Here, we address the setting introdued �rst in [27℄, and is depited in Fig. 4. Here U is

the binary memoryless soure transmitted unodedly and antipodally, with values �

p

P

I

.

Evidently, the Hamming distortion assoiated with this transmission is

p

b

= Q

 

r

P

I

�

2

!

=

1

p

2�

Z

1

p

P

I

=�

2

e

�x

2

=2

dx; (54)

where Q(�) designates the omplementary error funtion and where we have assumed an

additive Gaussian noise with variane EW

2

= �

2

. Again, in order to enhane performane

for new users, a ertain fration of the power P

D

(0 � P

D

� P

I

) is taken away and assigned

to the oded transmission X as shown in Fig. 4. The ahievable distortion D

u

for the

unoded user is

10

then

D

u

= EfU �

^

U

u

g = Q

 

r

P

I

� P

D

�

2

+ P

D

!

; (55)

where

^

U

u

stands for the unoded demodulated information based on the hannel output Y .

The strategy introdued here an be viewed as omplementary to Strategy 1 desribed in

[27℄, and is uniformly advantageous over Strategy 2 therein, as is shown next.

The model in Fig. 4 an readily be generalized to the ase where the two deoders,

produing

^

U

u

and

^

U



, have di�erent ambient Gaussian noise onditions, in parallel to the

binary setting as desribed in Fig. 3. For the sake of simpliity and omparison w ith the

strategies in [27℄, we adhere to the speial ase as desribed in Fig. 4.

The enoding proedure is motivated by Theorem 1, ombining W{Z soure oding

and G{P hannel oding. First, observe that the W{Z hannel, as seen from U to Y , is

equivalent to a binary input Gaussian hannel with input power P

I

� P

D

and additive

10

It will be argued that the oded part X is Gaussian and independent of U .

22



Gaussian

10

noise of power P

D

+ �

2

. The W{Z rate{distortion funtion of a BSS with

Hamming distortion D and a Gaussian W{Z hannel having signal{to{noise ratio SNR,

designated by R

WZ

(D;SNR), is given [27℄ by

R

WZ

(D;SNR) = l..efF (D;SNR)g; (56)

where l..ef�g stands for a lower onvex envelope as a funtion of D, and where F (D;SNR),

is given parametrially by two funtions, D(q) and F (q), of in independent parameter

0 � q � 1=2, whih for a given SNR are de�ned as follows:

D(q) = qQ

�

p

SNR�

1

2

p

SNR

log

1� q

q

�

+(1� q)Q

�

p

SNR+

1

2

p

SNR

log

1� q

q

�

; (57)

F (q) =

Z

1

�1

du

p

2�

e

�u

2

=2

H

2

 

(1� q) + qe

�2(u

p

SNR+SNR)

1 + e

�2(u

p

SNR+SNR)

!

�H

2

(q): (58)

Now, for the G{P part, the unoded antipodal signaling (of power P

I

� P

D

) serves as a

state known in advane to the transmitter

9

. Invoking the generalization

11

[10℄,[14℄ of the

lassial setting of Costa [11℄, the apaity of this hannel yields

C

GP

(P

D

) =

1

2

log

�

1 +

P

D

�

2

�

; (59)

eliminating absolutely the state inited interferene. The trade{o� between the unoded

distortion D

u

= EfU �

^

U

u

g and the distortion for the oded part D



= EfU �

^

U



g, is then

given by the pair of equations, namely, (55) and the solution D



to the equation

R

WZ

�

D



;

P

I

� P

D

�

2

+ P

D

�

= C

GP

(P

D

): (60)

Note that also in the generalized Costa setting

10

[10℄, X is independent of U and is Gaussian

with variane P

D

. Hene, the overall noise X +W w.r.t. the unoded part is also viewed

as Gaussian, whose power is P

D

+ �

2

, thus giving rise to equation (55), as well as to the

Gaussian W{Z side information hannel.

Observe that the overlaid ommuniation strategy proposed here favors the oded part

in the sense that it su�ers no interferene from the unoded part via the G{P setting. In this

11

The state sequene here is binary and memoryless, whih di�ers from the Gaussian memoryless state in

Costa's setting [11℄.
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respet, our strategy is uniformly better than Strategy 2 of [27℄ opting for the same goal,

namely, reduing the interferene to the oded part. This an be veri�ed by noting that

the performane here equals to that of [27℄ eq. (53) with q therein (ommensurates with the

residual interferenes of the unoded part to the oded one) set to zero. The omplement

Strategy 1 of [27℄, whih favors the W{Z hannel, while absorbing the full interferene of

the unoded part to the oded signal, exhibits the trade-o� haraterized by eq. (55) and

equation

R

WZ

�

D



;

P

I

� P

D

�

2

�

=

1

2

log

�

1 +

P

D

�

2

+ P

I

� P

D

�

; (61)

solved for D



.

Note that an analogue of Strategy 1 of [27℄ is useless in the binary setting disussed in

subsetion 5.3.1, as the systemati part whih is a symmetri DMC, yields an absolutely

useless oded hannel (a BSC with rossover probability 1/2).

In both models of the overlaid ommuniation system, the very same hannel output

is used to produe the W{Z and the G{P hannels, whih are evidently orrelated being

a�eted by the very same noise omponent (available neither to the transmitter nor to the

reeiver). No use of this feature was attempted and hene no optimality is laimed. Note,

however, that in both examples here the oded overlaid part is independent of the unoded

part, where the latter is interpreted as the known state sequene in the G{P hannel model.

Spei� oding strategies either random or strutured (based on nested lattie for the

W{Z and G{P problems as speialized here) are overviewed in [40℄. Further note that

no look{ahead tehniques are needed in the preferred strategy of Fig. 4 as ompared to

Strategy 2 of [27℄, but a simple delay

9

.

6 Conlusions

We have addressed a ommuniation framework whih ombines two basi ingredients of

side information, namely, side information about the soure provided to the deoder, whih

give rise to the W{Z rate distortion [37℄ and side information about a ommuniation han-

nel provided to the transmitter only whih mathes the Gel'fand{Pinsker [18℄ or Shannon

[28℄ models. A separation theorem is shown to exist also in this general ommuniation

framework where the standard Markov struture, neessary for the appliation of the lassi-

al data proessing theorem [12℄, is not maintained. Within this framework, the onditions
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that guarantee the optimality of salar unoded ommuniation are determined extending

the results of [17℄ to this setting.

Various appliation of ommuniations systems where the W{Z and G{P models emerge

in a natural way are disussed. In partiular, this setting failitates quantitive assessment of

the degradation assoiated with systemati oding, where the W{Z hannel is strutured by

those hannel outputs that orrespond to the systemati transmitted part (raw data). This

treatment extends previous analyses [26℄, [27℄, whih have onsidered standard hannels

with no side information. Motivated by the theory here, we have advoated a ombined

W{Z and G{P approah to overlaid, bak ompatible, ommuniation systems. In these

settings, as demonstrated in Fig. 3 and Fig. 4, both the W{Z and G{P hannel are orrelated

in terms of the ambient noise, and hene no optimality laims of our overlaid ommuniation

strutures are made. Yet, as demonstrated, the urrent approah is uniformly better than

previous treatments of similar models [27, Setion V, Strategy 2℄. This ombination of the

W{Z and G{P models an also be used as to gain further insight to the general problem of

lossy transmission over a broadast hannel [23℄.

The overall setting of our model, as depited in Fig. 2 is general enough to allow dis-

torted versions of side information about the soure and hannel to be available to both

transmitter and reeiver, though we do demand that the G{P and W{Z hannels are statis-

tially independent given the soure input. As mentioned, extension to general alphabets

and sets follows diretly by lassial extensions of the W{Z and G{P stand alone results,

and failitate the appliation of the results here to a wide lasses of soures and hannels

with side information.
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