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Abstra
t

We 
onsider the problem of lossy joint sour
e{
hannel 
oding in a 
ommuni
ation

system where the en
oder has a

ess to 
hannel state information (CSI) and the de-


oder has a

ess to side information that is 
orrelated to the sour
e. This 
on�guration


ombines the Wyner{Ziv model of pure lossy sour
e 
oding with side information at

the de
oder and the Shannon/Gel'fand{Pinsker model of pure 
hannel 
oding with CSI

at the en
oder. We prove a separation theorem for this 
ommuni
ation system, whi
h

asserts that there is no loss in asymptoti
 optimality in applying �rst, an optimal Wyner-

Ziv sour
e 
ode and then, an optimal Gel'fand{Pinsker 
hannel 
ode. We then derive


onditions for the optimality of a symbol{by{symbol (s
alar) sour
e{
hannel 
ode, and

demonstrate situations where these 
onditions are met. Finally, we dis
uss a few pra
ti-


al appli
ations, in
luding of overlaid 
ommuni
ation where the model under dis
ussion

is useful.

Index Terms: Wyner{Ziv 
oding, Gel'fand{Pinsker 
oding, side information, 
hannel

state information, separation theorem, joint sour
e{
hannel 
oding.
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1 Introdu
tion

The Wyner{Ziv (W{Z) model of sour
e 
oding with side information at the de
oder (see,

e.g., [21℄, [27℄, [29℄, [36℄, [37℄, [39℄) and the Gel'fand{Pinsker (G{P) model for 
hannel 
oding

with 
hannel state information at the en
oder (see, e.g., [1℄, [2℄, [5℄, [11℄, [15℄, [16℄, [18℄, [19℄,

[20℄, [22℄, [28℄, [32℄, [33℄, [34℄, [35℄, [38℄) as well as the duality between them (see, e.g., [3℄,

[4℄, [7℄, [24℄, [30℄, [31℄) have attra
ted 
onsiderable attention of information theorists over

the years.

In this paper, we make one more step in this avenue of the relation and the duality

between the two models by 
ombining them, and studying a lossy joint sour
e{
hannel


oding system whose en
oder has the 
hannel state information (CSI) available (either


ausally or non-
ausally) and whose de
oder has a

ess to side information that is 
orrelated

to the sour
e (see Fig. 1). This model generalizes also to the setting where both the en
oder

and de
oder have a

ess to di�erent versions of side informations on both the 
hannel state

and the sour
e input (see Fig. 2).

Besides this theoreti
al motivation of enhan
ing the relation and duality between W{Z

sour
e 
oding and G{P 
hannel 
oding, it turns out that it has pra
ti
al appli
ations. One of

them is the possible use of systemati
 
odes for writing into a memory devi
e with defe
ts

[19℄,[20℄,[34℄, where the systemati
 part of the 
ode 
orresponds to un
oded (noisy) side

information at the de
oder [27℄. Another appli
ation is related to overlaid ba
k{
ompatible


ommuni
ation, whi
h will be elaborated on in Se
tion 5, along with a few other examples

of appli
ations.

Our main result is a separation theorem for this 
ommuni
ation system, whi
h asserts

that there is no loss in asymptoti
 optimality if one applies �rst, an optimal W{Z sour
e


ode regardless of the 
hannel, and then, an optimal Shannon/G{P 
hannel 
ode (depend-

ing on whether the CSI is 
ausal or not) regardless of the sour
e. It should be noted that

the existen
e of a separation theorem for this system is not a{priori obvious sin
e the in-

formation streams along the main 
ommuni
ation link (sour
e ! 
hannel input ! 
hannel

output! destination) do not admit a standard Markov stru
ture that lends itself to the

data pro
essing theorem, like in the 
lassi
al 
ase. It should be pointed out that for the

spe
ial 
ase where the main 
hannel (i.e., the upper 
hannel in Fig. 1) is a simple dis
rete

memoryless 
hannel (DMC), a separation theorem was already stated and proved in [27,
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Theorem 2.1℄, but the fa
t that the G{P 
hannel also obeys a separation theorem has not

been established before, to the best of our knowledge, even for the ordinary dis
rete mem-

oryless sour
e (DMS), let alone the DMS with 
orrelated side information at the de
oder


onsidered here.

Following the te
hniques of Gastpar, Rimoldi, and Vetterli [17℄, we then furnish 
ondi-

tions under whi
h a simple, symbol{by{symbol joint sour
e{
hannel 
ode is optimal in the

sense of attaining the joint sour
e{
hannel distortion bound. We also 
onstru
t some exam-

ples of su
h systems. This is a point where yet another aspe
t of the duality between W{Z

sour
e 
oding and G{P 
hannel 
oding plays a role: one of the 
onditions for optimality of

a joint sour
e{
hannel 
ode is that the random variable (RV) that represents the sour
e is

the optimal auxiliary RV that attains the 
apa
ity of the G{P 
hannel, and that the G{P


hannel output is an optimal auxiliary RV that attains the W{Z rate{distortion fun
tion.

In other words, the W{Z sour
e and the G{P 
hannel are mat
hed and the auxiliary RV's

of both play an operative role.

Finally, as mentioned earlier, we des
ribe, in some detail, a few parti
ular appli
ations

that demonstrate the usefulness of 
ombining W{Z 
oding with G{P 
oding. These ex-

amples in
lude, the binary symmetri
 
hannel (BSC) with the error state available at the

transmitter, systemati
 
oding for defe
tive memories, and overlaid ba
k{
ompatible 
om-

muni
ation systems over the binary and the Gaussian 
hannels.

2 Notation and Problem Formulation

Throughout this paper, s
alar RVs will be denoted by 
apital letters, their sample values will

be denoted by the respe
tive lower 
ase letters, and their alphabets will be denoted by the

respe
tive 
alligraphi
 letters. A similar 
onvention will apply to random ve
tors and their

sample values, whi
h will be denoted with same symbols supers
ripted by the dimension.

Thus, for example, W

k

will denote a random k-ve
tor (W

1

; :::;W

k

), and w

k

= (w

1

; :::; w

k

)

is a spe
i�
 ve
tor value in W

k

, the k-th Cartesian power of W. The notations w

j

i

and W

j

i

,

where i and j are integers and i � j, will designate segments (w

i

; : : : ; w

j

) and (W

i

; : : : ;W

j

),

respe
tively, where for i = 1, the subs
ript will be omitted (as above). For i > j, w

j

i

(or

W

j

i

) will be understood as the null string. Sequen
es without spe
ifying indi
es are denoted

by f�g.

Sour
es and 
hannels will be denoted generi
ally by the letter P subs
ripted by the
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name of the RV and its 
onditioning, if appli
able, e.g., P

U

(u) is the probability fun
tion

of U at the point U = u, P

ZjS

(zjs) is the 
onditional probability of Z = z given S = s,

and so on. Whenever 
lear from the 
ontext, these subs
ripts will be omitted. Information

theoreti
 quantities like entropies, divergen
es, and mutual informations will be denoted fol-

lowing the usual 
onventions of the information theory literature, e.g., H(U

N

), I(Z

n

;W

k

),

D(P

Y jXS

kP

Y

), and so on.

Consider the 
ommuni
ation system depi
ted in Fig. 1: A sour
e P

UV

, hen
eforth re-

ferred to as the W{Z sour
e, generates independent 
opies, f(U

i

; V

i

)g

1

i=1

, of a pair of de-

pendent, �nite{alphabet RV's (U; V ) 2 U � V, and operates at the rate of �

s

symbol pairs

per se
ond. Let N = �

s

T be a positive integer, where T is the duration of the blo
k in

se
onds. The blo
k U

N

= (U

1

; : : : ; U

N

), of the �rst 
omponent of the sour
e, is fed into

a joint sour
e{
hannel en
oder, whereas the 
orresponding blo
k of the other 
omponent,

V

N

= (V

1

; : : : ; V

N

), is fed, as side information, into the de
oder whose aim is to provide

an estimate of U

N

, denoted

^

U

N

= (

^

U

1

; : : : ;

^

U

N

), whose 
omponents take values in a �nite

reprodu
tion alphabet

^

U . The quality of de
oder output,

^

U

N

, is judged with respe
t to

(w.r.t.) the �delity 
riterion whi
h is the expe
tation of

d(U

N

;

^

U

N

) =

N

X

i=1

d(U

i

;

^

U

i

); (1)

where d(u; û) � 0, u 2 U , û 2

^

U , is a given single{letter distortion fun
tion. The 
onditional

probability of V

N

given U

N

,

P

V

N

jU

N

(v

N

ju

N

) =

N

Y

i=1

P

V jU

(v

i

ju

i

); (2)

will be referred to as the W{Z 
hannel (see Fig. 1).

At the same time duration of T se
onds, a memoryless 
hannel, hen
eforth referred to as

the G{P 
hannel, whi
h operates at the rate of �





hannel uses per se
ond, works as follows:

The 
hannel input is a ve
tor pair (X

n

; S

n

) = ((X

1

; S

1

); : : : ; (X

n

; S

n

)), where n = �




T is a

positive integer, and where ea
h X

i

and S

i

take values in �nite sets, X and S, respe
tively.

The 
hannel output is a ve
tor Y

n

= (Y

1

; : : : ; Y

n

), whose 
omponents take values in a �nite

set Y, and the 
onditional probability of Y

n

given (X

n

; S

n

) is 
hara
terized by

P

Y

n

jX

n

S

n(y

n

jx

n

; s

n

) =

n

Y

i=1

P

Y jXS

(y

i

jx

i

; s

i

): (3)
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The ve
torX

n

= (X

1

; : : : ;X

n

) is referred to as the 
hannel input, whereas S

n

= (S

1

; : : : ; S

n

)

is referred to as the 
hannel state sequen
e, whi
h is governed by another dis
rete memo-

ryless pro
ess:

P

S

n

(s

n

) =

n

Y

i=1

P

S

(s

i

); (4)

independently of (U

N

; V

N

). It is also assumed that V

N

! U

N

! Y

n

is a Markov 
hain,

guaranteeing independen
e between the W{Z 
hannel and the G{P 
hannel (see Fig. 1).

The 
hannel input may be subje
ted to a transmission{
ost 
onstraint

E

(

n

X

i=1

�(X

i

)

)

� n�; (5)

where � is a given fun
tion from X to IR

+

and � � 0 is a pres
ribed value. In the absen
e

of su
h a 
onstraint, one may simply set � =1.

The joint sour
e{
hannel en
oder implements a (possibly randomized

1

) fun
tion x

n

=

f(u

N

; s

n

). In the 
ase of 
ausal state information, ea
h x

i

depends only on u

N

, x

i�1

, and

s

i

. The de
oder is de�ned by a deterministi
 fun
tion û

N

= g(v

N

; y

n

).

De�nition 1 A distortion level D is said to be a
hievable if for every � > 0, there exist

suÆ
iently large n and N , with n=N = �




=�

s

, an en
oder f : U

N

�S

n

! X

n

, and a de
oder

g : V

N

� Y

n

!

^

U

N

su
h that eq. (5) is satis�ed and

E

(

N

X

i=1

d(U

i

;

^

U

i

)

)

� N(D + �): (6)

The main problem we address, in this paper, is the 
hara
terization of the minimum

a
hievable distortion level of this system.

Comment: One might also 
onsider a seemingly more general model where the CSI is

partially available at the de
oder as well. Spe
i�
ally, the de
oder has additional a

ess

to

~

S

n

, whi
h is generated by yet another DMC fed by S

n

. However, this falls within the

framework of the 
urrent model where the pair (Y

n

;

~

S

n

) is rede�ned as the 
hannel output

~

Y

n

. To symmetrize the model, the en
oder may also be assumed to a

ess only a noisy

version of the CSI

^

S

n

: Again, this falls again within the framework of our model if the

1

Due to the transmission 
onstraint, it is not a{priori 
lear that the optimum en
oder would be deter-

ministi
 in general.
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original 
hannel is repla
ed by

P

~

Y jX

^

S

(~yjx; ŝ) =

X

s

P

Sj

^

S

(sjŝ)P

~

Y jXS

(~yjx; s): (7)

By the same token, our model is also general enough to in
lude a situation where the en
oder

has a

ess to a noisy version

~

V

N

of the side information V

N

seen by the de
oder (
reated

by another, memoryless feedba
k 
hannel). This is done simply by rede�ning the sour
e

as (U

N

;

~

V

N

), yet the distortion measure 
ontinues to depend only on the �rst 
omponent,

i.e., d

0

((u; ~v); û) = d(u; û). In summary, our model a
tually 
overs a symmetri
 situation,

depi
ted in Fig. 2, where both en
oder and de
oder have a

ess to (possibly di�erent) noisy

versions of both sour
e{state information and 
hannel{state information.

3 Separation Theorem

In order to state the separation theorem of lossy joint sour
e{
hannel 
oding for the W{Z

sour
e and the G{P 
hannel de�ned in Se
tion 2, we will de�ne the following fun
tional of

a joint distribution P

UA

for a generi
 RV A:

�(U jA) = min

g:A!

^

U

Efd(U; g(A))g; (8)

and re
all that the W{Z rate{distortion fun
tion [37℄ of P

UV

w.r.t. distortion measure d(�; �),

is given by

R

WZ

(D) = min[I(U ;Z)� I(V ;Z)℄ � min I(U ;ZjV ) (9)

where the minimum is over all auxiliary RV's Z su
h that Z ! U ! V is a Markov 
hain

and �(U jV;Z) � D.

As for the 
hannel, we re
all that the 
apa
ity formula (see, [3℄

2

and [18℄) for the G{P


hannel fP

Y jXS

; P

S

g, under the transmission{
ost 
onstraint, is given by

C

GP

(�) = max[I(W ;Y )� I(W ;S)℄; (10)

where the maximization is over all pairs of RV's (W;X) su
h that W ! (X;S) ! Y is a

Markov 
hain and E�(X) � �. Clearly, as P

S

and P

Y jXS

are given, the degrees of freedom

are in the optimal 
hoi
e of P

XW jS

= P

W jS

� P

XjWS

= P

W jS

� 1

fX=f(W;S)g

subje
t to the

2

In [3℄, a somewhat more general result is proved in the 
ontext of information embedding, where the

en
oder is subje
ted to a distortion 
onstraint Ef

P

n

i=1

d(S

i

; X

i

)g � nD. For our purposes, we set d(s; x) =

�(x).
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transmission{
ost 
onstraint.

3

The 
apa
ity for the 
ase where the state sequen
e S

n

is

revealed to the en
oder 
ausally [28℄ 
an be obtained [9℄,[13℄ from eq. (10) by imposing the

additional 
onstraint that W is independent of S, namely, P

XW jS

= P

W

� 1

fX=f(W;S)g

. In

this 
ase, (10) will be denoted by C

S

(�), where the subs
ript S stands for \Shannon." Note

that the term I(W ;S) on the right{hand side of (10) vanishes in this 
ase.

Our main result is the following separation theorem for the 
ase where the en
oder is

non
ausal w.r.t. the state sequen
e. For the 
ausal 
ase, C

GP

should be repla
ed by C

S

.

Theorem 1 Under the assumptions des
ribed in Se
tion 2, a ne
essary and suÆ
ient 
on-

dition for D being an a
hievable distortion level is

�

s

R

WZ

(D) � �




C

GP

(�):

Proof. The proof of the suÆ
ien
y part 
omes, like in the 
lassi
al 
ase, from 
onsidering

an asymptoti
ally optimal sour
e 
ode (independent of the 
hannel) followed by a reliable

transmission 
ode for the 
hannel (independent of the sour
e) whose rate is 
lose to 
apa
ity:

If the distortion level of the W-Z sour
e 
ode is 
hosen su
h that �

s

R

WZ

(D) < �




C

GP

(�),

one may sele
t two 
onstants R

s

and R




su
h that NR

WZ

(D) < NR

s

= nR




< nG

GP

(�),


ompress the sour
e into R

s

bits per{symbol within distortionD, and then map the resulting

NR

s

{bit 
odeword into a 
hannel 
odeword of the same number of bits, nR




. Sin
e R




<

C

GP

(�), there exists a reliable G{P 
hannel 
ode whi
h 
auses asymptoti
ally negligible

additional distortion. Sin
e D 
an be 
hosen, in this way, su
h that �

s

R

WZ

(D) is arbitrarily


lose to �




C

GP

(�), every distortion level for whi
h �

s

R

WZ

(D) � �




C

GP

(�) is a
hievable.

Obviously, in the 
ausal 
ase, all the above 
ontinues to hold provided that C

GP

is repla
ed

by C

S

.

The proof of the ne
essity part is by a simple fusion of the proofs of the 
onverse theorems

in [18℄ and in [37℄ (or, more simply, in [27℄) with some minor modi�
ations. The idea is

to upper bound I(U

N

;Y

n

) by nC

GP

(�) and to lower bound it by NR

WZ

(D). Clearly, the


ombined inequality, NR

WZ

(D) � nC

GP

(�), with both sides divided by T , is the assertion

of Theorem 1.

3

Here, 1

fX=f(W;S)g

means a degenerate 
onditional distribution that puts all its mass on the point

X = f(W;S) for some deterministi
 fun
tion f . In [8, Lemma B.1℄, it is shown that even in the presen
e of

a transmission{
ost 
onstraint, the optimal en
oder is deterministi
.
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As for the upper bound to I(U

N

;Y

n

), we have:

I(U

N

;Y

n

) = I(U

N

;Y

n

)� I(U

N

;S

n

) �

n

X

i=1

[I(W

i

;Y

i

)� I(W

i

;S

i

)℄; (11)

where the equality is due to the independen
e between U

N

and S

n

, and where the inequality

is proved exa
tly as in [18℄ withW

i

being de�ned as (U

N

; Y

i�1

; S

n

i+1

). Thus, the message V ,

of the proof of the 
onverse theorem of [18℄, is simply repla
ed by U

N

. Sin
e the remaining

part of the proof in [18℄ uses only the the fa
t that S

n

is drawn by a DMS, and general


hain rules of the mutual information, it is general enough to 
ontinue to hold in our 
ase.

It should be pointed out that the inequality in (11) be
omes an equality if and only if

the 
omponents of Y

n

are statisti
ally independent. Now, sin
e W

i

! (X

i

; S

i

) ! Y

i

is

a Markov 
hain, the right{most side of eq. (11) is in turn upper bounded by nC

GP

(�),

similarly as in [3℄ and [18℄. In the 
ausal 
ase, it should be noted that W

i

is independent of

S

i

. Therefore, the maximization over W is 
arried out with the additional 
onstraint that

W is independent of S, resulting in nC

S

(�).

As for the lower bound to I(U

N

;Y

n

), we follow the proof of Theorem 2.1 of [27℄, starting

from the se
ond line of the 
hain of inequalities (2.7) therein. Spe
i�
ally, de�ning Z

i

�

=

(U

i�1

; V

i�1

; V

N

i+1

; Y

n

), we have the following:

I(U

N

;Y

n

)

(a)

= I(U

N

; V

N

;Y

n

)

(b)

� I(U

N

;Y

n

jV

N

)

(
)

=

N

X

i=1

I(U

i

;Y

n

jU

i�1

; V

N

)

(d)

=

N

X

i=1

[I(U

i

;Y

n

; U

i�1

; V

i�1

; V

N

i+1

jV

i

)� I(U

i

;U

i�1

; V

i�1

; V

N

i+1

jV

i

)℄

(e)

=

N

X

i=1

I(U

i

;Z

i

jV

i

)

(f)

�

N

X

i=1

R

WZ

(�(U

i

jV

i

; Z

i

))

(g)

�

N

X

i=1

R

WZ

(�(U

i

jV

N

; Y

n

))

(h)

�

N

X

i=1

R

WZ

(Ed(U

i

;

^

U

i

))

(i)

� NR

WZ

(D + �); (12)
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where (a) follows from the Markovity of V

N

! U

N

! Y

n

, (b),(
), and (d) { from the


hain rule of the mutual information, (e) { from the memorylessness of P

UV

, (f) { from the

fa
t that Z

i

! U

i

! V

i

is a Markov 
hain and from eq. (9), (g) { from the monotoni
ity

of R

WZ

(�) and eq. (8), (h) { from eq. (8) and the fa
t that

^

U

i

is a fun
tion of (Y

n

; V

N

),

and (i) { from the 
onvexity and monotoni
ity of R

WZ

(�) [37℄, and the assumption that

D is a
hievable. Sin
e � > 0 
an be 
hosen arbitrarily small, the result follows from the


ontinuity of R

WZ

(�) (whi
h in turn, follows again by 
onvexity). �

Comment 1: Note that in the above 
hain, (b) be
omes equality if Y

n

is independent of

V

N

, and the remaining inequalities be
ome equalities if ea
h Z

i

is an optimal auxiliary RV

for R

WZ

(�). The former 
ondition is intuitively appealing be
ause it means that a ne
essary


ondition for optimality is that the two information streams that the de
oder re
eives are

independent, for otherwise there would be some waste on redundant information.

Comment 2: Though formally we 
on�ne attention to �nite alphabets and �nite sets of

(U; S;X; Y; V ), sin
e the basi
 W{Z rate distortion fun
tion and the G{P 
hannel 
apa
ity

extend, under minor regularity 
onditions, to general alphabets and sets (see [40℄ and refer-

en
es therein) and sin
e our proof relies essentially on the very same arguments, Theorem

1 applies to those general settings as well.

4 Symbol{by{Symbol Joint Sour
e{Channel Codes

Even in the 
lassi
al model, without side information, it is well known that the 
ost of

keeping the optimality of separate sour
e and 
hannel 
oding is, in general, asso
iated with

long blo
ks, whi
h mean high 
omplexity and long delay. On the other hand, there are also

well{known examples of sour
e{
hannel pairs, operating at the same rate (�




= �

s

), whi
h

mat
h ea
h other so well, that the joint sour
e{
hannel distortion bound 
an be obtained

by dire
t 
onne
tion of the sour
e to the 
hannel, with no 
oding at all, or with very simple


oding on a s
alar, symbol-by-symbol basis (n = N = 1). The two 
lassi
al examples are:

(i) the binary memoryless sour
e, with the Hamming distortion measure, and the binary

symmetri
 
hannel (BSC), where the distortion level equals the 
rossover probability, and

(ii) the Gaussian memoryless sour
e, with the mean{square distortion measure, and the

Gaussian power{restri
ted memoryless 
hannel.

In [17℄, this issue of perfe
t mat
hing between the sour
e and the 
hannel has been

9



studied, and 
onditions have been furnished for the optimality of a given symbol{by{symbol


oding system w.r.t. a given distortion measure and a given transmission{
ost fun
tion.

In this se
tion, we extend the main results of [17℄ from the 
lassi
al model, without

side information, to our model of a W{Z sour
e and a G{P 
hannel. It should be noted

that whenever C

GP

(�) is stri
tly larger

4

than C

S

(�), no s
alar en
oder X

i

= f(U

i

; S

i

) 
an

a
hieve the former and the only hope is to a
hieve C

S

(�). Moreover, even if this en
oder

is allowed to have a non
ausal a

ess the entire state sequen
e a
ross some blo
k, i.e.,

X

i

= f

i

(U

i

; S

n

), 1 � i � n, still C

S

(�) 
annot be ex
eeded sin
e the sour
e is assumed

independent of the 
hannel state pro
ess, and so, the a

ess to past and future states


annot improve performan
e. (Another way to see this is to observe that for any realization

of (S

i�1

; S

n

i+1

), X

i

is given by a parti
ular fun
tion of (U

i

; S

i

), whereas the a
tion of the


hannel at time instant i is insensitive to (S

i�1

; S

n

i+1

)).

Consider again the system depi
ted in Fig. 1, now for the s
alar 
ase of blo
k{length

n = N = 1. The en
oder implements a fun
tion x = f(u; s) and the de
oder is given by

û = g(v; y). We say that an en
oder{de
oder pair (f; g) is optimal w.r.t. d if it satis�es

the transmission{
ost 
onstraint, E�(X) � �, and it meets the joint sour
e{
hannel bound

with equality, i.e.,

R

WZ

(Ed(U; g(V; Y ))) = C

S

(�): (13)

Throughout this se
tion, we will always assume the en
oder implements an optimal

5

fun
-

tion x = f

�

(u; s) that a
hieves C

S

(�) subje
t to the 
onstraint E�(X) � � be
ause this is

obviously a ne
essary 
ondition for optimality. In the next theorem, we give the additional


onditions, whi
h together with the 
ondition x = f

�

(u; s), are suÆ
ient for optimality.

Theorem 2 If all of the following 
onditions are satis�ed, then (f

�

; g) is optimal w.r.t. d:

(a) The alphabet U is large enough to a
hieve C

S

(�).

(b) Either: (i) I(U ;Y ) = C

S

(1) yet E�(X) � �, or, (ii) I(U ;Y ) < C

S

(1) and there

exist a positive real � and a 
onstant � su
h that for every u 2 U ,

D(P

Y jU=u

kP

Y

) = �Ef�(X)jU = ug+ �:

4

See [15℄ for examples where C

GP

(�) = C

S

(�).

5

There is no guarantee that C

S

(�) is attained uniquely by one pair of input distribution and en
oding

fun
tion.

10



(
) Y and V are statisti
ally independent.

(d) Either: (i) I(U ;Y jV ) = 0 and g attains �(U jV ), or, (ii) I(U ;Y jV ) > 0, g attains

�(U jV; Y ), and there exist a positive real 
 and a fun
tion Æ(u; v) su
h that for all

(u; v; y) 2 U � V �Y:

d(u; g(v; y)) = �
 logP

U jY

(ujy) + Æ(u; v):

Proof. Consider the 
hains of equalities/inequalities (11) and (12) in the proof of the

ne
essity part of Theorem 1, and 
on�ne attention to the degenerate 
ase n = N = 1. For

a s
alar system to be optimal, all inequalities should be
ome equalities. Let us begin with

eq. (11). The inequality in eq. (11) boils down to a trivial identity sin
e W

1

, in this 
ase, is

identi
al to U . For the right{most side of eq. (11) to a
hieve C

S

(�), U must be an optimal

auxiliary RV for this 
apa
ity, whi
h means, �rst of all, that (a) should be satis�ed. Sin
e

the 
onstraint of independen
e between U and S is automati
ally satis�ed by the model

assumption, it remains to show that 
ondition (b) guarantees that U maximizes I(U ;Y )

subje
t to 
onstraint E�(X) � �. If I(U ;Y ) = C

S

(1) (yet the transmission 
onstraint is

not violated), this is obviously the 
ase. If I(U ;Y ) < C

S

(1), the alternative 
ondition in

(b) 
an be proved to be suÆ
ient by a straightforward extension of [17, Theorem 3℄, whi
h

for the sake of 
ompleteness, will be rederived here. Let P

Y jU

be the 
hannel from U to Y

that is indu
ed by P

S

, f

�

and P

Y jXS

. Let

I

P

(u) = D(P

Y jU=u

kP

Y

); (14)

and let

~

P =

~

P

U

denote an alternative distribution on U . Denoting by I

~

P

(U ;Y ) the mutual

information between U and Y , where U is distributed a

ording to

~

P , we have:

X

u

~

P

U

(u)I

P

(u)� I

~

P

(U ;Y ) =

X

u

~

P

U

(u)[I

P

(u)� I

~

P

(u)℄

=

X

u

~

P

U

(u)[D(P

Y jU=u

kP

Y

)�D(P

Y jU=u

k

~

P

Y

)

= D(

~

P

Y

kP

Y

) � 0; (15)

where

~

P

Y

denotes the 
hannel output marginal indu
ed by

~

P

U

. Sin
e equality is obviously

attained when

~

P

U

= P

U

, it follows that

I

~

P

(U ;Y )� I

P

(U ;Y ) �

X

u

[

~

P

U

(u)� P

U

(u)℄I

P

(u): (16)

11



Next, assume that

~

P

U

is su
h that

E

~

P

�(X) � E

P

�(X); (17)

where E

P

and E

~

P

are expe
tations indu
ed by P and

~

P , respe
tively. Then,

I

P

(U ;Y )� I

~

P

(U ;Y )

�

X

u

[P

U

(u)�

~

P

U

(u)℄I

P

(u)

�

X

u;s

P

S

(s)[P

U

(u)�

~

P

U

(u)℄[I

P

(u)� ��(f

�

(u; s))℄

=

X

u

[P

U

(u)�

~

P

U

(u)℄[I

P

(u)� �Ef�(X)jU = ug℄

= �

X

u

[P

U

(u)�

~

P

U

(u)℄ = 0; (18)

where the �rst inequality is (16), the se
ond inequality is (17) and the se
ond equality

follows from 
ondition (b). This proves that P

U

maximizes I(U ;Y ) given the transmission


onstraint.

Consider next the 
hain of inequalities (12) with n = N = 1 and � = 0. For inequality

(12-b) to be
ome an equality, Y and V must be independent (
f. the ending 
omment of

Se
tion 3), whi
h is 
ondition (
), (12-f) be
omes an equality if Z = Y is an optimal auxiliary

RV for the W{Z rate{distortion fun
tion,

6

(12-g) is an identity in the 
ase n = N = 1,

and (12-h) is an equality if the de
oder g a
hieves �(U jV; Y ). In the degenerate 
ase of

I(U ;Y jV ) = 0, Y trivially minimizes I(U ;Y jZ) under this Markovity 
onstraint. In this


ase, Y is irrelevant to de
oding, and the best de
oding based on V is, by de�nition, the

one that a
hieves �(U jV ), whi
h is the smallest distortion level at whi
h R

WZ

(D) = 0.

For the 
ase I(U ;Y jV ) > 0, we next prove, using the same te
hnique as in [17℄, that Y is

optimal if 
ondition (d) holds. Let P

ZjU

and

~

P

ZjU

be two 
hannels from U to Z and let

6

Notably, V ! U ! Y is always a Markov 
hain.

12



I

P

(U ;ZjV ) and I

~

P

(U ;ZjV ) the 
orresponding indu
ed mutual informations. Then,

I

~

P

(U ;ZjV )�

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju) log

P

ZjU

(zju)

P

ZjV

(zjv)

=

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju)

"

log

~

P

ZjU

(zju)

~

P

ZjV

(zjv)

� log

P

ZjU

(zju)

P

ZjV

(zjv)

#

=

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju)

"

log

~

P

U jV Z

(ujv; z)

P

U jV

(ujv)

� log

P

U jV Z

(ujv; z)

P

U jV

(ujv)

#

=

X

u;v;z

P

UV

(u; v)

~

P

ZjU

(zju) log

~

P

U jV Z

(ujv; z)

P

U jV Z

(ujv; z)

=

X

v;z

~

P

V Z

(v; z)

X

u

~

P

U jV Z

(ujv; z) log

~

P

U jV Z

(ujv; z)

P

U jV Z

(ujv; z)

� 0; (19)

with equality whenever

~

P = P . Now, let

~

P

ZjU

be a 
hannel for whi
h

E

~

P

fd(U; g(V;Z))g � E

P

fd(U; g(V;Z))g; (20)

where E

P

and E

~

P

are expe
tations indu
ed by P and

~

P , respe
tively. For any 
 > 0, we

have:


[I

~

P

(U ;ZjV )� I

P

(U ;ZjV )℄

� 


X

u;v;z

P

UV

(u; v)[

~

P

ZjU

(zju) � P

ZjU

(zju)℄ log

P

ZjU

(zju)

P

ZjV

(zjv)

�

X

u;v;z

P

UV

(u; v)[

~

P

ZjU

(zju)� P

ZjU

(zju)℄

�


 log

P

ZjU

(zju)

P

ZjV

(zjv)

+ d(u; g(v; z))

�

(21)

where the �rst inequality follows from (19) and the se
ond inequality follows from (20). A


hannel P

ZjU

is then optimal if the last expression is non{negative. In parti
ular, letting

Z = Y and 
hoosing 
 and Æ(u; v) so as to satisfy 
ondition (d), we have:


[I

~

P

(U ;Y jV )� I

P

(U ;Y jV )℄

�

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[
 log

P

Y jU

(yju)

P

Y jV

(yjv)

+ d(u; g(v; y))℄

=

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[
 log

P

Y jU

(yju)

P

Y

(y)

+ d(u; g(v; y))℄

=

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[
 log P

U jY

(ujy)� 
 logP

U

(u) + d(u; g(v; y))℄

=

X

u;v;y

P

UV

(u; v)[

~

P

Y jU

(yju)� P

Y jU

(yju)℄[Æ(u; v) � 
 logP

U

(u)℄ = 0; (22)
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where the �rst equality is due to 
ondition (
), the se
ond to the last equality is due to


ondition (d), and the last equality is due to the fa
t that both P

Y jU

(�ju) and

~

P

Y jU

(�ju) are

probability mass fun
tions for every u. This 
ompletes the proof of Theorem 2. �

We 
on
lude this se
tion with two examples of simple 
ommuni
ation systems and show

how their optimality is veri�ed using Theorem 2.

Example 1. Let U = (U

1

; U

2

) be a pair

7

of independent binary symmetri
 RV's taking

values in f0; 1g with a distortion measure

d(u; û) = d

H

(u

1

; û

1

) + �d

H

(u

2

; û

2

);

where � > 0 and d

H

designates the Hamming distan
e. The W{Z 
hannel is given by

V = U

1

�W (23)

where W is a binary f0; 1g RV, independent of U , with P

W

(1) = D, 0 < D < 1=2. The

G{P 
hannel is given by

Y = X � S �W

0

; (24)

where X, S and W

0

are binary RV's, W

0

being independent of S, X, U , and W , and we

have P

S

(1) = 1=2, P

W

0

(1) = D, where D is as before. The transmission 
ost fun
tion is

�(x) = x and its allowable level is � = 1=2.

Consider the en
oder X = U

2

� S (whi
h satis�es the transmission 
onstraint) and the

de
oder

^

U = (V; Y ). To see that this en
oder a
hieves 
apa
ity, we observe that in this


ase,

I(U ;Y ) = I(U

2

;Y ) = I(U

2

;U

2

�W

0

) = 1�H

2

(D); (25)

H

2

(�) being the binary entropy fun
tion, whereas the 
apa
ity 
annot ex
eed this value

be
ause it 
orresponds also to the 
ase where the CSI is available to the de
oder as well.

As for the 
onditions stated in Theorem 2, we have the following: Condition (a) is satis-

�ed be
ause when the 
hannel output is binary, the input alphabet U need not be ri
her

than binary in order to maximize the mutual information. Condition (b) is satis�ed sin
e

I(U ;Y ) = 1�H

2

(D) = C

S

(1). Note also that due to the symmetry, both D(P

Y jU=u

kP

Y

)

7

This pair may represent the binary expansion of a uniformly distributed, four-valued RV, i.e., U =

2U

1

+ U

2

.

14



and Ef�(X)jU = ug are independent of u, and so, there exist in�nitely many pairs (�; �)

that satisfy D(P

Y jU=u

kP

Y

) = �Ef�(X)jU = ug+ �, in
luding the one where � = 0, whi
h


orresponds to the 
ase where the power 
onstraint is not a
tive [17℄, i.e., C

S

(�) = C

S

(1).

Condition (
) is satis�ed be
ause U

1

and U

2

are independent, and hen
e so are V and Y .

As for 
ondition (d), we have

d(u; (v; y)) = d

H

(u

1

; v) + �d

H

(u

2

; y): (26)

As for the right{hand side of the equation given in 
ondition (d), �rst observe that P

U jY

=

P

U

1

� P

U

2

jY

. Now, sin
e U

2

is symmetri
 and Y = U

2

�W

0

is a BSC, the reverse 
hannel

P

U

2

jY

is also a BSC with 
rossover probability D, and so,

P

U

2

jY

(u

2

jy) = D

d

H

(u

2

;y)

(1�D)

1�d

H

(u

2

;y)

: (27)

It then follows that 
ondition (d) is satis�ed by the 
hoi
e


 = 


0

�

=

�

log[(1�D)=D℄

; (28)

and

Æ(u; v) = d

H

(u

1

; v) + 


0

log[P

U

1

(u

1

)(1�D)℄: (29)

It is also easy to see that g(v; y) = (v; y) a
hieves �(U jV; Y ) in this 
ase, sin
e U

1

and U

2

are independent, they are both symmetri
, and D < 1=2.

To summarize this example, we have shown that the distortion obtained by this simple


ommuni
ation system,

Efd(U;

^

U )g = (1 + �)D; (30)


annot be improved by any other (more 
ompli
ated) 
oding s
heme. This example 
an be

extended to allow for (symmetri
) sour
es, G{P 
hannels, W{Z 
hannels of larger alphabets

provided that the � operation is more generally understood as addition/subtra
tion modulo

the alphabet size.

Example 2. Let U be uniformly distributed over the interval [�2; 2℄. The W{Z 
hannel

a

epts an input f(U), where f is subje
ted to design, and generates

V = Q(f(U) +W )�W (31)
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where Q(�) is a uniform quantizer of stepsize � (with in�nitely many levels) and W is an

arbitrary RV, independent of U . The Shannon/G{P 
hannel is given by

Y = S �X +W

0

(32)

where X is a 
ontinuous{valued RV, whose support is limited to [�1; 1℄ (i.e., �(x) =1 for

jxj > 1), S 2 f�1;+1g, and W

0

is uniform over [�1; 1℄, independently of all other RV's.

The distortion measure is

d(u; û) =

�

0 ju� ûj � �=2

1 ju� ûj > �=2

(33)

Let U

1

�

= f(U) = U � sgn(U)

�

= U � U

2

and 
onsider the en
oder X = S � U

2

(whi
h

satis�es the 
hannel input 
onstraint) and de
oder

^

U = V + sgn(Y ). Sin
e sgn(Y ) = U

2

and jU

1

� V j � �=2 with probability one, the distortion is zero, and so, this 
ommuni
ation

system is trivially optimal. We would like to demonstrate, nevertheless, that Theorem 2

indeed tells that as well.

As for 
ondition (a), we have

I(U

2

;Y ) = I(U

2

;U

2

+W

0

) = h(U

2

+W

0

)� h(W

0

) = log 4� log 2 = 1; (34)

where h denotes the di�erential entropy. Obviously, no input 
an a
hieve larger mutual

information sin
e Y is binary. This also implies that 
ondition (b) is satis�ed. Condition

(
) is satis�ed sin
e U

1

and U

2

are independent. To see why this is true, note that U

1

is

uniform over [�1; 1℄ regardless of whether U

2

= 1 or U

2

= �1. As for 
ondition (d), we

note that the distortion measure (33) 
an be formally de
omposed as

d(u; g(v; y)) = d(u

1

+ u

2

; v + sgn(y)) = d(u

1

; v) + d

0

(u

2

; sgn(y)) (35)

where d(u

1

; v) is as in (33) and d

0

(a; b) is 0 if its binary arguments are equal and in�nite

otherwise. The rationale behind this de
omposition is that the distortion between the sour
e

and the reprodu
tion is zero if and only if both ju

1

� vj � �=2 and u

2

= sgn(y), and if at

least one of the 
onditions is violated, the distortion is in�nite. Now, the �rst term on the

r.h.s. of eq. (35) is absorbed in Æ(u; v) of 
ondition (d) and the se
ond term is proportional

to � log P (u

2

jy) be
ause P (u

2

jy) = 1fu

2

= sgn(y)g. The overall distortion, in this example,

is always zero as mentioned earlier, thus g trivially a
hieves �(U jV; Y ).
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5 Appli
ations

In this se
tion, we outline several appli
ations of our theory where a G{P, or a Shannon,


hannel emerges naturally in 
ombination with a W{Z 
hannel. In subse
tion 5.1, we exam-

ine a BSC with the error state available to the transmitter, who is subje
ted to a Hamming

weight 
onstraint �. We pro
eed to dis
uss defe
ted memory 
hannels, and 
lose this se
-

tion with two models of an overlaid, ba
k{
ompatible 
ommuni
ation system. The general

setting motivated by the underlying framework here fa
ilitates quantative assessment of the

degradation in 
ombining raw data (that is, systemati
 transmission) in the 
ommuni
ation

system and in that respe
t, this se
tion extends the treatment of [27℄ and enhan
es the

insight into this 
ommuni
ations setting, of pra
ti
al importan
e.

5.1 The BSC with CSI at the Transmitter

Consider a binary symmetri
 sour
e (BSS) fU

i

g, operating at the rate of �

s

bits per se
ond,

whi
h is to be transmitted, within a pres
ribed Hamming distortion D, through a BSC with


rossover probability � = 1=2, whi
h operates at the rate of �





hannel uses per se
ond. More

expli
itly, the 
hannel output is given by

Y

i

= X

i

� S

i

; (36)

where �, as before, designates the XOR operation, fS

i

g { the noise sequen
e, is drawn by

a BSS, independent of fU

i

g, and fX

i

g is the binary 
hannel input. We 
onsider here the


ase where fS

i

g is available to the transmitter either in a 
ausal or a non{
ausal manner,


orresponding to the Shannon and the G{P settings, respe
tively. The 
hannel input fX

i

g

is subje
ted to a weight 
onstraint:

E

(

1

n

n

X

i=1

X

i

)

� �: (37)

We enquire, what is the maximal sour
e rate, �

s

, that 
an be 
onveyed subje
t to these


onstraints.

Theorem 1 tells us that for the G{P 
hannel:

�

s

�

�




�H

2

(�)

1�H

2

(D)

(38)

and, for the Shannon 
hannel:

�

s

�

�




� 2�

1�H

2

(D)

; (39)
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where we have used the fa
ts that C

GP

(�) = H

2

(�), C

S

(�) = 2� [4℄,[40℄ and R(D) =

1�H

2

(D) [12℄ in this 
ase.

Next, 
onsider systemati
 
oding. Sin
e the systemati
 part has an average weight 1=2,

it 
annot endure for more than a fra
tion of 2� of the 
hannel uses as to 
onform with

the weight 
onstraint (37). Now, observe that in this 
ase, still the weight 
onstraint is

satis�ed if X

i

= U

i

� S

i

, whi
h is also of average weight 1=2. This yields a 
lean output

Y

i

= U

i

for those systemati
 bits that 
an be a

ommodated. Note that the transmitted

bits are perfe
tly re
overed whereas those that 
ould not be transmitted are fully distorted

(D = 1=2), so for D � 1=2, a fra
tion of 1�2D of the systemati
 bits should be transmitted.

Thus, the systemati
 option yields:

�

s

�

�




� 2�

1� 2D

: (40)

Comparing to (39), we see that the systemati
 approa
h is optimal in the lossless 
ase

(D = 0) of the Shannon 
ausal setting. Note that this optimality is also a
hieved in the

sense of Se
tion 4, that is, symbol{by{symbol en
oding.

The a
tual 
oding over these G{P and Shannon 
hannels, in terms of random jointly

typi
al 
odes or 
onstru
tive algebrai
 binning, are explained in [40℄ and referen
es therein.

5.2 Defe
ted Memory

Consider the defe
tive memory 
hannel model des
ribed in [20℄. A

ording to this model,

the 
hannel output is, with probability p

s

=2 { stu
k at `0', with probability p

s

=2 { stu
k at

`1', and with probability (1 � p

s

) { behaves like a BSC with 
rossover probability �. The


apa
ity of this 
hannel, with the stu
k 
ells known non{
ausally at the transmitter (the

G{P model), has been determined to be

C

GP

= (1� p

s

)[1�H

2

(�)℄ bits/memory-
ell. (41)

If we wish to re
ord a BSS of N bits (N !1) within Hamming distortion D, Theorem 1

guarantees that this is possible provided that

1�H

2

(D) �

n

N

(1� p

s

)[1�H

2

(�)℄: (42)

We now envisage a pra
ti
al s
enario where the data is re
orded unaltered (that is,

systemati
ally). This is done to fa
ilitate either simple reading or, alternatively, fast mem-

ory a

ess, tolerating no delay, whi
h otherwise is inherently asso
iated with de
oding.
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Evidently, the distortion asso
iated with this simple pro
edure is

D

u

= �(1� p

s

) +

p

s

2

; (43)

where the subs
ript u stands for \un
oded." Yet, the remaining n�N memory 
ells are used

to re
ord optimally 
oded information in an e�ort to redu
e the distortion (as 
ompared

with D

u

) and that is at a 
ost of a more 
ompli
ated, and hen
e slower, reader whi
h

performs the de
oding.

To determine the optimal distortion in this 
ase, designated by D




, where subs
ript


 stands for \
oded," we interpret the un
oded re
orded data as a W{Z 
hannel. This

W{Z 
hannel is, in fa
t, a BSC with 
rossover probability D

u

. The asso
iated W{Z rate{

distortion fun
tion R

WZ

(D;D

u

) (where the se
ond argument, with a slight abuse of nota-

tion, designates the 
rossover probability of this W{Z 
hannel), has been established in [37℄

and it equals

R

WZ

(D;D

u

) =

(

g(D); 0 � D � D

t

g(D




)

�

1�

D�D

t

D

u

�D

t

�

; D

t

< D � D

u

(44)

where

g(D) =

�

H

2

(D

u

�D)�H

2

(D); 0 � D � D

u

0; D = D

u

(45)

where � designates the binary 
onvolution operation: ��� = �(1��)+�(1��), 0 � �; � � 1,

and where the threshold distortion D

t

is the solution to the equation

g(D

t

)

D

t

�D

u

= g

0

(D

t

): (46)

Evidently, by Theorem 1, whi
h involves here the W{Z and G{P 
omponents, the redu
ed

distortion asso
iated with the addition of the 
oded part, D




is given by the solution to the

equation

R

WZ

(D




;D

u

) =

�

n

N

� 1

�

(1� p

s

)[1�H

2

(�)℄: (47)

This expression des
ribes the best possible trade-o� between the ex
ess memory (n � N)

versus distortion redu
tion (from D

u

to D




). Note that due to the general suboptimality

of the W{Z 
oding as 
ompared to the 
ase where the W{Z side information is available

to the en
oder in this binary regime [27℄,[37℄, there is a 
ost asso
iated with imposing the

re
ording of raw data. This 
ost, in general, manifests itself in D




� D, 
f. (47) and (42),

respe
tively.
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5.3 Overlaid Ba
k{Compatible Communi
ation

Within this framework of overlaid ba
k{
ompatible 
ommuni
ation, we shall 
onsider the

binary 
ase and the Gaussian 
ase. Both 
ases invoke the model where 
ommon information

is transmitted to users who employ standard (old) equipment. New users, who may use

more advan
ed equipment, are interested in better performan
e. However, servi
e to old

users must be maintained, with a pres
ribed level of allowed degradation. We investigate

the trade{o� between improvement in performan
e of the new users and the degradation

in
i
ted on the old ones.

These models 
an be 
ast also within the general framework of lossy transmission over

broad
ast 
hannels, see [23℄,[25℄ and referen
es therein, and the te
hnique here might be use-

ful in devising a
hievable regions for other 
ommuni
ations 
on�gurations. We emphasize

that the theory developed in the previous se
tions is merely used to motivate the 
ommu-

ni
ation s
hemes dis
ussed below, but by no means, these s
hemes will be 
laimed to be

optimal.

For simpli
ity, we shall use, in this subse
tion and in the �gures involved, s
alar nota-

tion, 
onforming with the single{letter expressions of the asso
iated information{theoreti


expressions.

5.3.1 The Binary Case

Consider a BSC with 
rossover probability p

b

over whi
h the 
ommon data is transmitted.

Evidently, this BSC may model a full{
edged 
ommuni
ation system, where p

b


hara
terizes

its error probability. Thus, p

b

is the Hamming distortion, or the bit{error rate (BER) of

the raw information transmitted over this 
hannel. The new user, who employs advan
ed

dete
tion methods, enjoys a BSC with 
rossover probability p

g

� p

b

. We then have a

degraded broad
ast 
hannel, whi
h is 
omposed of the two BSCs, as is des
ribed in Fig. 3.

Notably, with no modi�
ation whatsoever, the new user already enjoys better performan
e

in terms of the BER, whi
h is now p

g

.

The problem is not trivial even if p

b

= p

g

, that is, both users are exposed to the

very same 
hannel 
hara
teristi
s.

8

In this 
ase, the upgrade of the new users is due to

the more involved 
oded 
ommuni
ation te
hnique they may use, taking advantage of the

superimposed 
oded part.

8

Whether these 
hannels are 
orrelated, or not, is immaterial in this broad
ast{like setting.
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We would like then to provide a quantitative assessment of the trade{o� between the

BER redu
tion of the new user and the performan
e degradation of the old user. Let the

degraded performan
e of the old user be represented as

D

b

= p

b

� e (48)

where 0 � e � 1=2 is thought of as a parameter. Our en
oding system, des
ribed in Figure

3, produ
es then the 
hannel input

X

0

= U �X; (49)

where U stands for the symmetri
 f0; 1g raw data and X the en
oded part. The re
eived

signals at the old and the new user re
eivers, designated by Y

b

and Y

g

, respe
tively, are

given by

Y

b

= X

0

�W

b

Y

g

= X

0

�W

g

; (50)

where W

b

and W

g

stand for the binary noise 
omponents with P

W

b

(1) = PrfW

b

= 1g = p

b

and P

W

g

(1) = p

g

. Clearly, the additional transmitted part X should be 
onstrained su
h

that the 
ombined binary noise X �W

b

= Y

b

� U , viewed by the old user who uses Y

b

as

the dete
ted output, does not in
i
t more degradation than allowed. In other words, this

imposes the 
onstraint P

X

(1) � e (i.e., � = e). The en
oded message is 
onstru
ted by


on
atenating a W{Z en
oder whi
h a

ounts for the side information 
hannel between U

and Y

g

, where

EfU � Y

g

g = EfX �W

g

g = p

g

� e : (51)

The asso
iated rate is given by R

WZ

(D

g

; p

g

� e) (
f. eq. (44)). Now, the 
hannel from X to

Y

g

is viewed as a G{P 
hannel where U plays the role of a state sequen
e given non{
ausally

to the transmitter,

9

whose 
apa
ity [4℄ is given by

C

GP

(e) = u.
.e fH

2

(e)�H

2

(p

g

); (0; 0)g ; (52)

where u.
.ef�g denotes the upper 
on
ave envelope as a fun
tion of e, whi
h in
ludes the

origin (0; 0). Theorem 1 
hara
terizes then the trade-o� between D

g

, the distortion asso
i-

ated with the new user and D

b

, the distortion asso
iated with the old user in a parametri


9

This is implemented by delaying the raw data before transmission.
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set of equations. Namely, the solution for D

g

of the equation

R

WZ

(D

g

; p

g

� e) = C

GP

(e); (53)

together with (48), where 0 � e � 1=2 is the parameter. Note that G{P en
oding [4℄

guarantees that X is independent of U , yielding that X �W

b

and X �W

g

in (49),(50), are

noises that are independent of U . Con
epts of G{P and W{Z 
oding within the 
ontext of

either random or nested linear 
odes are reviewed in [40℄.

5.3.2 The Gaussian Case

Here, we address the setting introdu
ed �rst in [27℄, and is depi
ted in Fig. 4. Here U is

the binary memoryless sour
e transmitted un
odedly and antipodally, with values �

p

P

I

.

Evidently, the Hamming distortion asso
iated with this transmission is

p

b

= Q

 

r

P

I

�

2

!

=

1

p

2�

Z

1

p

P

I

=�

2

e

�x

2

=2

dx; (54)

where Q(�) designates the 
omplementary error fun
tion and where we have assumed an

additive Gaussian noise with varian
e EW

2

= �

2

. Again, in order to enhan
e performan
e

for new users, a 
ertain fra
tion of the power P

D

(0 � P

D

� P

I

) is taken away and assigned

to the 
oded transmission X as shown in Fig. 4. The a
hievable distortion D

u

for the

un
oded user is

10

then

D

u

= EfU �

^

U

u

g = Q

 

r

P

I

� P

D

�

2

+ P

D

!

; (55)

where

^

U

u

stands for the un
oded demodulated information based on the 
hannel output Y .

The strategy introdu
ed here 
an be viewed as 
omplementary to Strategy 1 des
ribed in

[27℄, and is uniformly advantageous over Strategy 2 therein, as is shown next.

The model in Fig. 4 
an readily be generalized to the 
ase where the two de
oders,

produ
ing

^

U

u

and

^

U




, have di�erent ambient Gaussian noise 
onditions, in parallel to the

binary setting as des
ribed in Fig. 3. For the sake of simpli
ity and 
omparison w ith the

strategies in [27℄, we adhere to the spe
ial 
ase as des
ribed in Fig. 4.

The en
oding pro
edure is motivated by Theorem 1, 
ombining W{Z sour
e 
oding

and G{P 
hannel 
oding. First, observe that the W{Z 
hannel, as seen from U to Y , is

equivalent to a binary input Gaussian 
hannel with input power P

I

� P

D

and additive

10

It will be argued that the 
oded part X is Gaussian and independent of U .
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Gaussian

10

noise of power P

D

+ �

2

. The W{Z rate{distortion fun
tion of a BSS with

Hamming distortion D and a Gaussian W{Z 
hannel having signal{to{noise ratio SNR,

designated by R

WZ

(D;SNR), is given [27℄ by

R

WZ

(D;SNR) = l.
.efF (D;SNR)g; (56)

where l.
.ef�g stands for a lower 
onvex envelope as a fun
tion of D, and where F (D;SNR),

is given parametri
ally by two fun
tions, D(q) and F (q), of in independent parameter

0 � q � 1=2, whi
h for a given SNR are de�ned as follows:

D(q) = qQ

�

p

SNR�

1

2

p

SNR

log

1� q

q

�

+(1� q)Q

�

p

SNR+

1

2

p

SNR

log

1� q

q

�

; (57)

F (q) =

Z

1

�1

du

p

2�

e

�u

2

=2

H

2

 

(1� q) + qe

�2(u

p

SNR+SNR)

1 + e

�2(u

p

SNR+SNR)

!

�H

2

(q): (58)

Now, for the G{P part, the un
oded antipodal signaling (of power P

I

� P

D

) serves as a

state known in advan
e to the transmitter

9

. Invoking the generalization

11

[10℄,[14℄ of the


lassi
al setting of Costa [11℄, the 
apa
ity of this 
hannel yields

C

GP

(P

D

) =

1

2

log

�

1 +

P

D

�

2

�

; (59)

eliminating absolutely the state in
i
ted interferen
e. The trade{o� between the un
oded

distortion D

u

= EfU �

^

U

u

g and the distortion for the 
oded part D




= EfU �

^

U




g, is then

given by the pair of equations, namely, (55) and the solution D




to the equation

R

WZ

�

D




;

P

I

� P

D

�

2

+ P

D

�

= C

GP

(P

D

): (60)

Note that also in the generalized Costa setting

10

[10℄, X is independent of U and is Gaussian

with varian
e P

D

. Hen
e, the overall noise X +W w.r.t. the un
oded part is also viewed

as Gaussian, whose power is P

D

+ �

2

, thus giving rise to equation (55), as well as to the

Gaussian W{Z side information 
hannel.

Observe that the overlaid 
ommuni
ation strategy proposed here favors the 
oded part

in the sense that it su�ers no interferen
e from the un
oded part via the G{P setting. In this

11

The state sequen
e here is binary and memoryless, whi
h di�ers from the Gaussian memoryless state in

Costa's setting [11℄.
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respe
t, our strategy is uniformly better than Strategy 2 of [27℄ opting for the same goal,

namely, redu
ing the interferen
e to the 
oded part. This 
an be veri�ed by noting that

the performan
e here equals to that of [27℄ eq. (53) with q therein (
ommensurates with the

residual interferen
es of the un
oded part to the 
oded one) set to zero. The 
omplement

Strategy 1 of [27℄, whi
h favors the W{Z 
hannel, while absorbing the full interferen
e of

the un
oded part to the 
oded signal, exhibits the trade-o� 
hara
terized by eq. (55) and

equation

R

WZ

�

D




;

P

I

� P

D

�

2

�

=

1

2

log

�

1 +

P

D

�

2

+ P

I

� P

D

�

; (61)

solved for D




.

Note that an analogue of Strategy 1 of [27℄ is useless in the binary setting dis
ussed in

subse
tion 5.3.1, as the systemati
 part whi
h is a symmetri
 DMC, yields an absolutely

useless 
oded 
hannel (a BSC with 
rossover probability 1/2).

In both models of the overlaid 
ommuni
ation system, the very same 
hannel output

is used to produ
e the W{Z and the G{P 
hannels, whi
h are evidently 
orrelated being

a�e
ted by the very same noise 
omponent (available neither to the transmitter nor to the

re
eiver). No use of this feature was attempted and hen
e no optimality is 
laimed. Note,

however, that in both examples here the 
oded overlaid part is independent of the un
oded

part, where the latter is interpreted as the known state sequen
e in the G{P 
hannel model.

Spe
i�
 
oding strategies either random or stru
tured (based on nested latti
e for the

W{Z and G{P problems as spe
ialized here) are overviewed in [40℄. Further note that

no look{ahead te
hniques are needed in the preferred strategy of Fig. 4 as 
ompared to

Strategy 2 of [27℄, but a simple delay

9

.

6 Con
lusions

We have addressed a 
ommuni
ation framework whi
h 
ombines two basi
 ingredients of

side information, namely, side information about the sour
e provided to the de
oder, whi
h

give rise to the W{Z rate distortion [37℄ and side information about a 
ommuni
ation 
han-

nel provided to the transmitter only whi
h mat
hes the Gel'fand{Pinsker [18℄ or Shannon

[28℄ models. A separation theorem is shown to exist also in this general 
ommuni
ation

framework where the standard Markov stru
ture, ne
essary for the appli
ation of the 
lassi-


al data pro
essing theorem [12℄, is not maintained. Within this framework, the 
onditions
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that guarantee the optimality of s
alar un
oded 
ommuni
ation are determined extending

the results of [17℄ to this setting.

Various appli
ation of 
ommuni
ations systems where the W{Z and G{P models emerge

in a natural way are dis
ussed. In parti
ular, this setting fa
ilitates quantitive assessment of

the degradation asso
iated with systemati
 
oding, where the W{Z 
hannel is stru
tured by

those 
hannel outputs that 
orrespond to the systemati
 transmitted part (raw data). This

treatment extends previous analyses [26℄, [27℄, whi
h have 
onsidered standard 
hannels

with no side information. Motivated by the theory here, we have advo
ated a 
ombined

W{Z and G{P approa
h to overlaid, ba
k 
ompatible, 
ommuni
ation systems. In these

settings, as demonstrated in Fig. 3 and Fig. 4, both the W{Z and G{P 
hannel are 
orrelated

in terms of the ambient noise, and hen
e no optimality 
laims of our overlaid 
ommuni
ation

stru
tures are made. Yet, as demonstrated, the 
urrent approa
h is uniformly better than

previous treatments of similar models [27, Se
tion V, Strategy 2℄. This 
ombination of the

W{Z and G{P models 
an also be used as to gain further insight to the general problem of

lossy transmission over a broad
ast 
hannel [23℄.

The overall setting of our model, as depi
ted in Fig. 2 is general enough to allow dis-

torted versions of side information about the sour
e and 
hannel to be available to both

transmitter and re
eiver, though we do demand that the G{P and W{Z 
hannels are statis-

ti
ally independent given the sour
e input. As mentioned, extension to general alphabets

and sets follows dire
tly by 
lassi
al extensions of the W{Z and G{P stand alone results,

and fa
ilitate the appli
ation of the results here to a wide 
lasses of sour
es and 
hannels

with side information.
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