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Abstract

We consider the problem of lossy joint source—channel coding in a communication
system where the encoder has access to channel state information (CSI) and the de-
coder has access to side information that is correlated to the source. This configuration
combines the Wyner—Ziv model of pure lossy source coding with side information at
the decoder and the Shannon/Gel’fand—Pinsker model of pure channel coding with CSI
at the encoder. We prove a separation theorem for this communication system, which
asserts that there is no loss in asymptotic optimality in applying first, an optimal Wyner-
Ziv source code and then, an optimal Gel’fand—Pinsker channel code. We then derive
conditions for the optimality of a symbol-by—symbol (scalar) source-channel code, and
demonstrate situations where these conditions are met. Finally, we discuss a few practi-
cal applications, including of overlaid communication where the model under discussion
is useful.

Index Terms: Wyner—Ziv coding, Gel’fand—Pinsker coding, side information, channel
state information, separation theorem, joint source—channel coding.



1 Introduction

The Wyner—Ziv (W-Z) model of source coding with side information at the decoder (see,
e.g., [21], [27], [29], [36], [37], [39]) and the Gel’fand-Pinsker (G-P) model for channel coding
with channel state information at the encoder (see, e.g., [1], [2], [5], [L1], [15], [16], [18], [19],
[20], [22], [28], [32], [33], [34], [35], [38]) as well as the duality between them (see, e.g., [3],
[4], 7], [24], [30], [31]) have attracted considerable attention of information theorists over
the years.

In this paper, we make one more step in this avenue of the relation and the duality
between the two models by combining them, and studying a lossy joint source—channel
coding system whose encoder has the channel state information (CSI) available (either
causally or non-causally) and whose decoder has access to side information that is correlated
to the source (see Fig. 1). This model generalizes also to the setting where both the encoder
and decoder have access to different versions of side informations on both the channel state
and the source input (see Fig. 2).

Besides this theoretical motivation of enhancing the relation and duality between W—Z
source coding and G—P channel coding, it turns out that it has practical applications. One of
them is the possible use of systematic codes for writing into a memory device with defects
[19],]20],[34], where the systematic part of the code corresponds to uncoded (noisy) side
information at the decoder [27]. Another application is related to overlaid back—compatible
communication, which will be elaborated on in Section 5, along with a few other examples
of applications.

Our main result is a separation theorem for this communication system, which asserts
that there is no loss in asymptotic optimality if one applies first, an optimal W-Z source
code regardless of the channel, and then, an optimal Shannon/G-P channel code (depend-
ing on whether the CSI is causal or not) regardless of the source. It should be noted that
the existence of a separation theorem for this system is not a—priori obvious since the in-
formation streams along the main communication link (source — channel input — channel
output— destination) do not admit a standard Markov structure that lends itself to the
data processing theorem, like in the classical case. It should be pointed out that for the
special case where the main channel (i.e., the upper channel in Fig. 1) is a simple discrete

memoryless channel (DMC), a separation theorem was already stated and proved in [27,



Theorem 2.1], but the fact that the G-P channel also obeys a separation theorem has not
been established before, to the best of our knowledge, even for the ordinary discrete mem-
oryless source (DMS), let alone the DMS with correlated side information at the decoder
considered here.

Following the techniques of Gastpar, Rimoldi, and Vetterli [17], we then furnish condi-
tions under which a simple, symbol-by—symbol joint source—channel code is optimal in the
sense of attaining the joint source—channel distortion bound. We also construct some exam-
ples of such systems. This is a point where yet another aspect of the duality between W—7
source coding and G-P channel coding plays a role: one of the conditions for optimality of
a joint source-channel code is that the random variable (RV) that represents the source is
the optimal auxiliary RV that attains the capacity of the G—P channel, and that the G-P
channel output is an optimal auxiliary RV that attains the W—Z rate—distortion function.
In other words, the W-Z source and the G-P channel are matched and the auxiliary RV’s
of both play an operative role.

Finally, as mentioned earlier, we describe, in some detail, a few particular applications
that demonstrate the usefulness of combining W-Z coding with G-P coding. These ex-
amples include, the binary symmetric channel (BSC) with the error state available at the
transmitter, systematic coding for defective memories, and overlaid back—compatible com-

munication systems over the binary and the Gaussian channels.

2 Notation and Problem Formulation

Throughout this paper, scalar RVs will be denoted by capital letters, their sample values will
be denoted by the respective lower case letters, and their alphabets will be denoted by the
respective calligraphic letters. A similar convention will apply to random vectors and their
sample values, which will be denoted with same symbols superscripted by the dimension.
Thus, for example, W* will denote a random k-vector (W7, ..., W}), and w* = (wq, ..., wy)
is a specific vector value in W¥, the k-th Cartesian power of W. The notations wf and VVZJ ,
where i and j are integers and 7 < j, will designate segments (w;, ... ,w;) and (W;,... , W),
J

respectively, where for ¢ = 1, the subscript will be omitted (as above). For i > j, w]

7 (or

VVZJ ) will be understood as the null string. Sequences without specifying indices are denoted
by {-}.

Sources and channels will be denoted generically by the letter P subscripted by the



name of the RV and its conditioning, if applicable, e.g., Py(u) is the probability function
of U at the point U = u, Py 5(z|s) is the conditional probability of Z = z given S = s,
and so on. Whenever clear from the context, these subscripts will be omitted. Information
theoretic quantities like entropies, divergences, and mutual informations will be denoted fol-
lowing the usual conventions of the information theory literature, e.g., H(UN), I(Z™; W),
D(Pyxs|Py), and so on.

Consider the communication system depicted in Fig. 1: A source Pyy, henceforth re-

o0
=1

ferred to as the W-Z source, generates independent copies, {(U;, V;)} of a pair of de-
pendent, finite—alphabet RV’s (U, V) € U x V, and operates at the rate of ps symbol pairs
per second. Let N = p,T be a positive integer, where T is the duration of the block in
seconds. The block UN = (Uy,...,Uy), of the first component of the source, is fed into

a joint source—channel encoder, whereas the corresponding block of the other component,

VN = (V1,...,Vy), is fed, as side information, into the decoder whose aim is to provide
an estimate of UV, denoted UvN = ((71, ... ,UN), whose components take values in a finite

reproduction alphabet U. The quality of decoder output, U~ , is judged with respect to
(w.r.t.) the fidelity criterion which is the expectation of
N
d(UNvUN) = Zd(UzaU’L)a (1)
i=1
where d(u,4) > 0,u € U, 4 € U, is a given single-letter distortion function. The conditional

probability of V'V given UV,

N
Py w0V [u) = T Py (vilws), (2)
i=1

will be referred to as the W-Z channel (see Fig. 1).

At the same time duration of T seconds, a memoryless channel, henceforth referred to as
the G-P channel, which operates at the rate of p. channel uses per second, works as follows:
The channel input is a vector pair (X", S™) = ((X1,51),...,(Xn,Sn)), where n = p.T is a
positive integer, and where each X; and S; take values in finite sets, X and S, respectively.
The channel output is a vector Y™ = (Y1, ... ,Y},), whose components take values in a finite

set ), and the conditional probability of Y™ given (X", S™) is characterized by

n
Pyn|xngn(y”|z", ") = H Py xs(yilzi, si)- (3)
i=1



The vector X" = (X1, ... ,X,) is referred to as the channel input, whereas S™ = (S1,... ,Sn)
is referred to as the channel state sequence, which is governed by another discrete memo-

ryless process:

n

Psa(s™) = T Ps(si), (4)

i=1
independently of (U N yN ). It is also assumed that VN - UN = Y™ is a Markov chain,
guaranteeing independence between the W—Z channel and the G-P channel (see Fig. 1).

The channel input may be subjected to a transmission—cost constraint

E {Z ¢<X¢)} <nl, (5)
=1

where ¢ is a given function from X to IR* and I’ > 0 is a prescribed value. In the absence
of such a constraint, one may simply set I" = oco.

The joint source-channel encoder implements a (possibly randomized!) function 2" =
f(u™,s). In the case of causal state information, each z; depends only on u, 2'~!, and

s'. The decoder is defined by a deterministic function @V = g(vV,y").

Definition 1 A distortion level D is said to be achievable if for every e > 0, there exist
sufficiently large n and N, with n/N = p./ps, an encoder f : UN x S* — X™, and a decoder
g : VN x Y S UN such that eq. (5) is satisfied and

N
E{Zd(Ui,Ui)} < N(D+e). (6)
=1

The main problem we address, in this paper, is the characterization of the minimum

achievable distortion level of this system.

Comment: One might also consider a seemingly more general model where the CSI is
partially available at the decoder as well. Specifically, the decoder has additional access
to S™, which is generated by yet another DMC fed by S™. However, this falls within the
framework of the current model where the pair (Y, 5”) is redefined as the channel output
Y". To symmetrize the model, the encoder may also be assumed to access only a noisy

version of the CSI §”: Again, this falls again within the framework of our model if the

'Due to the transmission constraint, it is not a—priori clear that the optimum encoder would be deter-
ministic in general.



original channel is replaced by

Y\XS (Ylz, 3) Z s|5 y|X5(y|$ s). (7)

By the same token, our model is also general enough to include a situation where the encoder
has access to a noisy version VN of the side information V" seen by the decoder (created
by another, memoryless feedback channel). This is done simply by redefining the source
as (UN, VN ), yet the distortion measure continues to depend only on the first component,
ie., d((u,0),4) = d(u,d). In summary, our model actually covers a symmetric situation,
depicted in Fig. 2, where both encoder and decoder have access to (possibly different) noisy

versions of both source—state information and channel-state information.

3 Separation Theorem

In order to state the separation theorem of lossy joint source—channel coding for the W—7
source and the G-P channel defined in Section 2, we will define the following functional of
a joint distribution Py 4 for a generic RV A:
AUJA) = min_E{d(U,g(A))}, (8)
g AU
and recall that the W-Z rate-distortion function [37] of Py w.r.t. distortion measure d(, -),

is given by
Rwz(D)=min[I(U;Z) — I(V; Z)] = min I(U; Z|V) (9)

where the minimum is over all auxiliary RV’s Z such that Z — U — V is a Markov chain
and A(U|V, Z) < D.
As for the channel, we recall that the capacity formula (see, [3]? and [18]) for the G-P

channel {PY‘ x5, Ps}, under the transmission—cost constraint, is given by
Cp(T) = max[I(W3Y) — I(W; S)], (10)

where the maximization is over all pairs of RV’s (W, X)) such that W — (X,S) — Y is a
Markov chain and E¢(X) < T. Clearly, as Ps and Py|xg are given, the degrees of freedom

are in the optimal choice of Pxyw s = Py (s X Pxyws = Pw|s X Lix=sw,s)} subject to the

’In [3], a somewhat more general result is proved in the context of information embedding, where the
encoder is subjected to a distortion constraint E{> ", d(Si, X;)} < nD. For our purposes, we set d(s,z) =

b ().



transmission—cost constraint.? The capacity for the case where the state sequence S™ is
revealed to the encoder causally [28] can be obtained [9],[13] from eq. (10) by imposing the
additional constraint that W is independent of S, namely, Pxyw s = Pw X Lix—yw,s)}- In
this case, (10) will be denoted by C¢(I"), where the subscript S stands for “Shannon.” Note
that the term I(W;S) on the right-hand side of (10) vanishes in this case.

Our main result is the following separation theorem for the case where the encoder is

noncausal w.r.t. the state sequence. For the causal case, Cgp should be replaced by Cg.

Theorem 1 Under the assumptions described in Section 2, a necessary and sufficient con-

dition for D being an achievable distortion level is
psRwz(D) < p.Cap(T).

Proof. The proof of the sufficiency part comes, like in the classical case, from considering
an asymptotically optimal source code (independent of the channel) followed by a reliable
transmission code for the channel (independent of the source) whose rate is close to capacity:
If the distortion level of the W-Z source code is chosen such that ps Ry z(D) < p.Cap(T),
one may select two constants Rs; and R, such that NRy z(D) < NRs = nR. < nGgp(T),
compress the source into R bits per—symbol within distortion D, and then map the resulting
N Ry—bit codeword into a channel codeword of the same number of bits, nR.. Since R, <
Cap(T), there exists a reliable G-P channel code which causes asymptotically negligible
additional distortion. Since D can be chosen, in this way, such that ps Ry z(D) is arbitrarily
close to p.Cap(T), every distortion level for which psRwz(D) < p.Cep(T') is achievable.
Obviously, in the causal case, all the above continues to hold provided that Cgp is replaced
by Cg.

The proof of the necessity part is by a simple fusion of the proofs of the converse theorems
in [18] and in [37] (or, more simply, in [27]) with some minor modifications. The idea is
to upper bound I(UY;Y™) by nCgp(T') and to lower bound it by N Ry z(D). Clearly, the
combined inequality, N Ry z(D) < nCgp(I'), with both sides divided by T', is the assertion

of Theorem 1.

3Here, 1{x=fw,s)} means a degenerate conditional distribution that puts all its mass on the point
X = f(W,S) for some deterministic function f. In [8, Lemma B.1], it is shown that even in the presence of
a transmission—cost constraint, the optimal encoder is deterministic.



As for the upper bound to I(UY;Y™), we have:
HUYY™) = YY) - I8 < SOV - TS, (1)
i=1
where the equality is due to the independence between U and S™, and where the inequality
is proved exactly as in [18] with W; being defined as (UN, Y"1, S 1). Thus, the message V/,
of the proof of the converse theorem of [18], is simply replaced by U . Since the remaining
part of the proof in [18] uses only the the fact that S™ is drawn by a DMS, and general
chain rules of the mutual information, it is general enough to continue to hold in our case.
It should be pointed out that the inequality in (11) becomes an equality if and only if
the components of Y are statistically independent. Now, since W; — (X;,S;) — V; is
a Markov chain, the right—most side of eq. (11) is in turn upper bounded by nCgp(T),
similarly as in [3] and [18]. In the causal case, it should be noted that Wj is independent of
S;. Therefore, the maximization over W is carried out with the additional constraint that
W is independent of S, resulting in nCg(T).
As for the lower bound to I(U";Y™), we follow the proof of Theorem 2.1 of [27], starting
from the second line of the chain of inequalities (2.7) therein. Specifically, defining Z; =

(Ui-1, Vi1, Vifl, Y"), we have the following:
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where (a) follows from the Markovity of V¥ — UY — Y™ (b),(c), and (d) — from the
chain rule of the mutual information, (e) — from the memorylessness of Pyy, (f) — from the
fact that Z; — U; — V; is a Markov chain and from eq. (9), (g) — from the monotonicity
of Ry z(-) and eq. (8), (h) — from eq. (8) and the fact that U; is a function of (Y, VN),
and (i) — from the convexity and monotonicity of Ry z(+) [37], and the assumption that
D is achievable. Since € > 0 can be chosen arbitrarily small, the result follows from the

continuity of Ry z(:) (which in turn, follows again by convexity). O

Comment 1: Note that in the above chain, (b) becomes equality if Y™ is independent of
VN, and the remaining inequalities become equalities if each Z; is an optimal auxiliary RV
for Ry z(+). The former condition is intuitively appealing because it means that a necessary
condition for optimality is that the two information streams that the decoder receives are

independent, for otherwise there would be some waste on redundant information.

Comment 2: Though formally we confine attention to finite alphabets and finite sets of
(U,S,X,Y,V), since the basic W-Z rate distortion function and the G-P channel capacity
extend, under minor regularity conditions, to general alphabets and sets (see [40] and refer-
ences therein) and since our proof relies essentially on the very same arguments, Theorem

1 applies to those general settings as well.

4 Symbol-by—Symbol Joint Source—Channel Codes

Even in the classical model, without side information, it is well known that the cost of
keeping the optimality of separate source and channel coding is, in general, associated with
long blocks, which mean high complexity and long delay. On the other hand, there are also
well-known examples of source-channel pairs, operating at the same rate (p. = ps), which
match each other so well, that the joint source-channel distortion bound can be obtained
by direct connection of the source to the channel, with no coding at all, or with very simple
coding on a scalar, symbol-by-symbol basis (n = N = 1). The two classical examples are:
(i) the binary memoryless source, with the Hamming distortion measure, and the binary
symmetric channel (BSC), where the distortion level equals the crossover probability, and
(ii) the Gaussian memoryless source, with the mean—square distortion measure, and the
Gaussian power—restricted memoryless channel.

In [17], this issue of perfect matching between the source and the channel has been



studied, and conditions have been furnished for the optimality of a given symbol-by—symbol
coding system w.r.t. a given distortion measure and a given transmission—cost function.

In this section, we extend the main results of [17] from the classical model, without
side information, to our model of a W-Z source and a G-P channel. It should be noted
that whenever Cp(T) is strictly larger? than C(T'), no scalar encoder X; = f(U;, S;) can
achieve the former and the only hope is to achieve Cs(I"). Moreover, even if this encoder
is allowed to have a moncausal access the entire state sequence across some block, i.e.,
X; = fi(U;, S™), 1 < i < n, still Cg(I") cannot be exceeded since the source is assumed
independent of the channel state process, and so, the access to past and future states
cannot improve performance. (Another way to see this is to observe that for any realization
of (S*1, T.1), Xi is given by a particular function of (U;, S;), whereas the action of the
channel at time instant ¢ is insensitive to (S, S%, ;)).

Consider again the system depicted in Fig. 1, now for the scalar case of block-length
n = N = 1. The encoder implements a function z = f(u,s) and the decoder is given by
@ = g(v,y). We say that an encoder—decoder pair (f,g) is optimal w.r.t. d if it satisfies
the transmission—cost constraint, E¢(X) < T, and it meets the joint source-channel bound

with equality, i.e.,
Rwz(Ed(U,g(V,Y))) = Cs(I). (13)

Throughout this section, we will always assume the encoder implements an optimal® func-
tion x = f*(u, s) that achieves Cs(I") subject to the constraint E¢(X) < I' because this is
obviously a necessary condition for optimality. In the next theorem, we give the additional

conditions, which together with the condition z = f*(u, s), are sufficient for optimality.

Theorem 2 If all of the following conditions are satisfied, then (f*,g) is optimal w.r.t. d:
(a) The alphabet U is large enough to achieve Cg(T).

(b) Either: (i) I(U;Y) = Cg(o0) yet E¢(X) < T, or, (i1) I(U;Y) < Cg(c0) and there

exist a positive real o and a constant B such that for every uw € U,

D(Pyjy—ullPy) = aE{¢(X)|U = u} + f.

“See [15] for examples where Cap (') = Cs(T).
®There is no guarantee that Cs(T") is attained uniquely by one pair of input distribution and encoding
function.
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(¢) Y and V are statistically independent.

(d) Either: (i) I(U;Y|V) = 0 and g attains A(U|V), or, (it) I(U;Y|V) > 0, g attains
A(U|V,Y), and there ezxist a positive real v and a function 6(u,v) such that for all
(u,v,y) EU XV X Y:

d(u, g(v,y)) = —vlog Pyjy (uly) + d(u,v).

Proof. Consider the chains of equalities/inequalities (11) and (12) in the proof of the
necessity part of Theorem 1, and confine attention to the degenerate case n = N = 1. For
a scalar system to be optimal, all inequalities should become equalities. Let us begin with
eq. (11). The inequality in eq. (11) boils down to a trivial identity since W7, in this case, is
identical to U. For the right-most side of eq. (11) to achieve Cg(I"), U must be an optimal
auxiliary RV for this capacity, which means, first of all, that (a) should be satisfied. Since
the constraint of independence between U and S is automatically satisfied by the model
assumption, it remains to show that condition (b) guarantees that U maximizes I(U;Y")
subject to constraint F¢(X) <T'. If I(U;Y) = Cg(c0) (yet the transmission constraint is
not violated), this is obviously the case. If I(U;Y) < Cg(00), the alternative condition in
(b) can be proved to be sufficient by a straightforward extension of [17, Theorem 3], which
for the sake of completeness, will be rederived here. Let Py iy be the channel from U to YV’

that is induced by Ps, f* and Py |xg. Let
Ip(u) = D(Pyjy—ullFy), (14)

and let P = Py denote an alternative distribution on U. Denoting by I 5(U;Y) the mutual

information between U and Y, where U is distributed according to P, we have:
> Po(u)p(u) = I5(UsY) = Y Py(u)[lp(u) = Ip(u)]
u u
= ZPU(U)[D(PY\U:uHPY) — D(Pyy—|| Py)
u
= D(Py||Py) >0, (15)

where Py denotes the channel output marginal induced by Py. Since equality is obviously

attained when IBU = Py, it follows that

Is(U;Y) = Ip(U;Y) < [Py (u) — Py(u)|Tp(u). (16)

11



Next, assume that Py is such that
Epé(X) < Epo(X), (17)
where Ep and E5 are expectations induced by P and P, respectively. Then,

Ip(U;Y) = Ip(U;Y)

> S [Py (u) — Pr(w)Ip(u)

Y

> Ps(s)[Pu(u) — Py (w)][Ip(u) — ad(f*(u, s))]
= > [Pu(u) = Pu(u)][Tp(v) — aE{¢(X)|U = u}]
= B> [Py(u)— Py(u)] =0, (18)

where the first inequality is (16), the second inequality is (17) and the second equality
follows from condition (b). This proves that Py maximizes I(U;Y’) given the transmission
constraint.

Consider next the chain of inequalities (12) with n = N =1 and € = 0. For inequality
(12-b) to become an equality, Y and V must be independent (cf. the ending comment of
Section 3), which is condition (c), (12-f) becomes an equality if Z = Y is an optimal auxiliary
RV for the W-Z rate-distortion function,® (12-g) is an identity in the case n = N = 1,
and (12-h) is an equality if the decoder g achieves A(U|V,Y). In the degenerate case of
I(U;Y|V) =0, Y trivially minimizes I(U;Y|Z) under this Markovity constraint. In this
case, Y is irrelevant to decoding, and the best decoding based on V is, by definition, the
one that achieves A(U|V'), which is the smallest distortion level at which Ry z(D) = 0.
For the case I(U;Y|V) > 0, we next prove, using the same technique as in [17], that Y is

optimal if condition (d) holds. Let Py and ]5Z|U be two channels from U to Z and let

SNotably, V — U — Y is always a Markov chain.

12



Ip(U; Z|V) and I5(U; Z|V) the corresponding induced mutual informations. Then,

I5(U: ZIV) = ) Puv(u,v) Py (2]u) log JJZ?ZE;:'IZ;
= u,v 2lu) 1o P zlu (2]u) o Py (z|u)
_ z;ZPUV )Pz (2] )[1 gﬁzw(zlv) 1gPZ|V(Z|U)]

= > Pyv(u,v) Py (z|u)

U, 2

log — log
Pyjv (ulv) Pyjv (ulv)

IBU\VZ(UWZ)
Py z(ulv, z)

Py z(ulv, 2) 1 PUVZ(U|U72)]

= > Pyv(u,0) Py (2[u)log

U, 2

ZPVZ v, 2 ZPUIVZ u|v, z) log

vV,2

Py z(ulv, 2)

>0
Py z(ulv, z)

)

with equality whenever P = P. Now, let ]52|U be a channel for which

E{d(U,g(V,2))} < Ep{d(U,g(V, 2))},

(20)

where EFp and E are expectations induced by P and P, respectively. For any v > 0, we

have:

WpU; Z|V) = Ip(U; Z|V)]

5 Pry(zlu
> 7 Y Pov(u,v)[Pru (zlu) = Pzi(z|u)] log #ﬁ“
5 Prr(z|lu
> > Pov(u,0)[Pyy(zlu) — Py (=|u)] | vlog #EH + d(u, g(v, 2))

(21)

where the first inequality follows from (19) and the second inequality follows from (20). A

channel Pz;; is then optimal if the last expression is non—negative. In particular, letting

7 =Y and choosing v and §(u, v) so as to satisfy condition (d), we have:

Y

YIp(U;YV) = Ip(U; Y|V)]

S~ P ) Proale) = Py ol o B2+ o)
u,v,Yy
> Povluo)lByotui) — Friot)iylos S + dta,g(o,)
u,v,Yy

> Pyv(u,v) [Py (ylu) — Py (y|w)][ylog Pryy (uly) — vlog Py (u) + d(u, g(v,y))]

u’v’y

>~ Pov(u,v)[Pyju(ylu) = Pyjo (ylu)][6(u, v) — ylog Py (u)] =0,

u’v’y

13
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where the first equality is due to condition (c), the second to the last equality is due to
condition (d), and the last equality is due to the fact that both Py (+|u) and ]By‘U('|U) are
probability mass functions for every w. This completes the proof of Theorem 2. [J

We conclude this section with two examples of simple communication systems and show

how their optimality is verified using Theorem 2.

Ezample 1. Let U = (Uy,Uz) be a pair’ of independent binary symmetric RV’s taking

values in {0, 1} with a distortion measure
d(u, @) = dg(ui, 1) + 0dg (uz, 02),
where 6 > 0 and dpy designates the Hamming distance. The W-Z channel is given by
V=UeW (23)

where W is a binary {0,1} RV, independent of U, with Py (1) = D, 0 < D < 1/2. The
G-P channel is given by

Y=XaSaeW, (24)

where X, S and W' are binary RV’s, W’ being independent of S, X, U, and W, and we
have Pg(1) = 1/2, Py (1) = D, where D is as before. The transmission cost function is
¢(r) = x and its allowable level is I" = 1/2.

Consider the encoder X = Uy @ S (which satisfies the transmission constraint) and the
decoder U = (V,Y). To see that this encoder achieves capacity, we observe that in this

case,
IU;Y)=1(UyY) = I(Uy; Uy ® W') = 1 — Hy(D), (25)

Hs(+) being the binary entropy function, whereas the capacity cannot exceed this value
because it corresponds also to the case where the CSI is available to the decoder as well.
As for the conditions stated in Theorem 2, we have the following: Condition (a) is satis-
fied because when the channel output is binary, the input alphabet I/ need not be richer
than binary in order to maximize the mutual information. Condition (b) is satisfied since

I(U;Y) =1— Hy(D) = Cs(o0). Note also that due to the symmetry, both D(Py =,/ Py)

"This pair may represent the binary expansion of a uniformly distributed, four-valued RV, ie., U =
2U1 + Us.
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and E{¢(X)|U = u} are independent of u, and so, there exist infinitely many pairs («, 3)
that satisfy D(Pyy—y|Py) = aE{¢(X)|U = u} + 3, including the one where a = 0, which
corresponds to the case where the power constraint is not active [17], i.e., Cs(I") = Cg(c0).
Condition (c) is satisfied because U; and Us are independent, and hence so are V and Y.

As for condition (d), we have

d(u, (v,y)) = dg(u1,v) + 0dg(us,y). (26)

As for the right—hand side of the equation given in condition (d), first observe that Py =
Py, x Pp,y. Now, since Uy is symmetric and Y = Uz & W' is a BSC, the reverse channel

Py, )y is also a BSC with crossover probability D, and so,
Py (ugly) = D1 029) (1 — Dy, (27)

It then follows that condition (d) is satisfied by the choice

A 0

= Togli = D)/D]' (28)

’7/:

and
d(u,v) = dg(uy,v) + v log[Py, (u1)(1 — D)]. (29)

It is also easy to see that g(v,y) = (v,y) achieves A(U|V,Y") in this case, since U; and U,
are independent, they are both symmetric, and D < 1/2.
To summarize this example, we have shown that the distortion obtained by this simple

communication system,
E{d(U,U)} = (1+6)D, (30)

cannot be improved by any other (more complicated) coding scheme. This example can be
extended to allow for (symmetric) sources, G-P channels, W-Z channels of larger alphabets
provided that the @ operation is more generally understood as addition/subtraction modulo

the alphabet size.

Ezample 2. Let U be uniformly distributed over the interval [—2,2]. The W-Z channel

accepts an input f(U), where f is subjected to design, and generates
V=0o(f(U)+W)-W (31)
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where Q(-) is a uniform quantizer of stepsize e (with infinitely many levels) and W is an

arbitrary RV, independent of U. The Shannon/G-P channel is given by
Y=8-X+W (32)

where X is a continuous—valued RV, whose support is limited to [—1,1] (i.e., ¢(x) = oo for
|z| > 1), S € {—1,41}, and W’ is uniform over [—1,1], independently of all other RV’s.
The distortion measure is

0 Ju—i| <e/2

oo |u—1u|>e€/2 (33)

d(u, it) = {

Let U; 2 fU) =U —sgn(U) 2 U — U, and consider the encoder X = S - Uy (which
satisfies the channel input constraint) and decoder U = V + sgn(Y). Since sgn(Y) = Uy
and |U; — V| < €/2 with probability one, the distortion is zero, and so, this communication
system is trivially optimal. We would like to demonstrate, nevertheless, that Theorem 2
indeed tells that as well.

As for condition (a), we have
I({UY) =I(Uz; Uy + W') = h(Uy + W') — h(W') = log4d — log 2 = 1, (34)

where h denotes the differential entropy. Obviously, no input can achieve larger mutual
information since Y is binary. This also implies that condition (b) is satisfied. Condition
(c) is satisfied since Uy and Us are independent. To see why this is true, note that Uy is
uniform over [—1,1] regardless of whether Uy = 1 or Uy = —1. As for condition (d), we

note that the distortion measure (33) can be formally decomposed as
d(u,g(v,y)) = d(uy + ug, v + sgn(y)) = d(uy, v) + d'(uz, sgn(y)) (35)

where d(u1,v) is as in (33) and d'(a,b) is 0 if its binary arguments are equal and infinite
otherwise. The rationale behind this decomposition is that the distortion between the source
and the reproduction is zero if and only if both |u; — v| < €/2 and us = sgn(y), and if at
least one of the conditions is violated, the distortion is infinite. Now, the first term on the
r.h.s. of eq. (35) is absorbed in 6(u, v) of condition (d) and the second term is proportional
to —log P(u2ly) because P(uszly) = 1{us = sgn(y)}. The overall distortion, in this example,

is always zero as mentioned earlier, thus g trivially achieves A(U|V,Y).
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5 Applications

In this section, we outline several applications of our theory where a G—P, or a Shannon,
channel emerges naturally in combination with a W—Z channel. In subsection 5.1, we exam-
ine a BSC with the error state available to the transmitter, who is subjected to a Hamming
weight constraint I'. We proceed to discuss defected memory channels, and close this sec-
tion with two models of an overlaid, back—compatible communication system. The general
setting motivated by the underlying framework here facilitates quantative assessment of the
degradation in combining raw data (that is, systematic transmission) in the communication
system and in that respect, this section extends the treatment of [27] and enhances the

insight into this communications setting, of practical importance.

5.1 The BSC with CSI at the Transmitter

Consider a binary symmetric source (BSS) {U;}, operating at the rate of p, bits per second,
which is to be transmitted, within a prescribed Hamming distortion D, through a BSC with
crossover probability e = 1/2, which operates at the rate of p. channel uses per second. More

explicitly, the channel output is given by
Y, =X,8 5, (36)

where @, as before, designates the XOR operation, {S;} — the noise sequence, is drawn by
a BSS, independent of {U;}, and {X;} is the binary channel input. We consider here the
case where {S;} is available to the transmitter either in a causal or a non—causal manner,
corresponding to the Shannon and the G-P settings, respectively. The channel input {X;}

is subjected to a weight constraint:

E{%zn:Xl}gP. (37)
=1

We enquire, what is the maximal source rate, ps, that can be conveyed subject to these
constraints.

Theorem 1 tells us that for the G-P channel:

and, for the Shannon channel:



where we have used the facts that Cop(I') = Hy(T'), Cs(I') = 2I' [4],[40] and R(D) =
1 — Hy(D) [12] in this case.

Next, consider systematic coding. Since the systematic part has an average weight 1/2,
it cannot endure for more than a fraction of 2I' of the channel uses as to conform with
the weight constraint (37). Now, observe that in this case, still the weight constraint is
satisfied if X; = U; ® S;, which is also of average weight 1/2. This yields a clean output
Y; = U; for those systematic bits that can be accommodated. Note that the transmitted
bits are perfectly recovered whereas those that could not be transmitted are fully distorted
(D =1/2),sofor D < 1/2, a fraction of 1—2D of the systematic bits should be transmitted.

Thus, the systematic option yields:

(40)

Comparing to (39), we see that the systematic approach is optimal in the lossless case
(D = 0) of the Shannon causal setting. Note that this optimality is also achieved in the
sense of Section 4, that is, symbol-by—symbol encoding.

The actual coding over these G-P and Shannon channels, in terms of random jointly

typical codes or constructive algebraic binning, are explained in [40] and references therein.

5.2 Defected Memory

Consider the defective memory channel model described in [20]. According to this model,
the channel output is, with probability ps/2 — stuck at ‘0’, with probability ps/2 — stuck at
‘1’, and with probability (1 — ps) — behaves like a BSC with crossover probability e. The
capacity of this channel, with the stuck cells known non—causally at the transmitter (the

G-P model), has been determined to be
Cap = (1 — ps)[1l — Ha(e)] bits/memory-cell. (41)

If we wish to record a BSS of N bits (N — oo) within Hamming distortion D, Theorem 1

guarantees that this is possible provided that

1= Hy(D) < (1= py)[1 - Hafe)). (42)

=1

We now envisage a practical scenario where the data is recorded unaltered (that is,
systematically). This is done to facilitate either simple reading or, alternatively, fast mem-

ory access, tolerating no delay, which otherwise is inherently associated with decoding.
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Evidently, the distortion associated with this simple procedure is

Ds

Dy = ¢(1 —ps) + o (43)

where the subscript u stands for “uncoded.” Yet, the remaining n— N memory cells are used
to record optimally coded information in an effort to reduce the distortion (as compared
with D,) and that is at a cost of a more complicated, and hence slower, reader which
performs the decoding.

To determine the optimal distortion in this case, designated by D., where subscript
¢ stands for “coded,” we interpret the uncoded recorded data as a W-Z7Z channel. This
W-Z channel is, in fact, a BSC with crossover probability D,. The associated W—Z rate—
distortion function Ry z(D;D,) (where the second argument, with a slight abuse of nota-
tion, designates the crossover probability of this W—Z channel), has been established in [37]
and it equals

g(D)v OSDSDt

. 14
g(D.) (1 . gu_%t) , D, <D <D, (44)

Rwz(D;Dy) = {

where

g(D) = { gz(Du + D) — Hy(D), %g:%ug D, )

where * designates the binary convolution operation: ax*f = a(1—08)+8(1—a), 0 < o, < 1,

and where the threshold distortion Dy is the solution to the equation

9 (D t) /
———— =g (Dy). 46
A= (D) (16)
Evidently, by Theorem 1, which involves here the W-7Z and G-P components, the reduced
distortion associated with the addition of the coded part, D, is given by the solution to the

equation

Rwz(De; Du) = (5 = 1) (1 = po)[L = Ha(e)]. (47)

This expression describes the best possible trade-off between the excess memory (n — N)
versus distortion reduction (from D, to D.). Note that due to the general suboptimality
of the W-Z coding as compared to the case where the W-Z side information is available
to the encoder in this binary regime [27],[37], there is a cost associated with imposing the
recording of raw data. This cost, in general, manifests itself in D, > D, cf. (47) and (42),

respectively.
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5.3 Overlaid Back—Compatible Communication

Within this framework of overlaid back—compatible communication, we shall consider the
binary case and the Gaussian case. Both cases invoke the model where common information
is transmitted to users who employ standard (old) equipment. New users, who may use
more advanced equipment, are interested in better performance. However, service to old
users must be maintained, with a prescribed level of allowed degradation. We investigate
the trade—off between improvement in performance of the new users and the degradation
inflicted on the old ones.

These models can be cast also within the general framework of lossy transmission over
broadcast channels, see [23],[25] and references therein, and the technique here might be use-
ful in devising achievable regions for other communications configurations. We emphasize
that the theory developed in the previous sections is merely used to motivate the commu-
nication schemes discussed below, but by no means, these schemes will be claimed to be
optimal.

For simplicity, we shall use, in this subsection and in the figures involved, scalar nota-
tion, conforming with the single-letter expressions of the associated information—theoretic

expressions.

5.3.1 The Binary Case

Consider a BSC with crossover probability p, over which the common data is transmitted.
Evidently, this BSC may model a full-fledged communication system, where p;, characterizes
its error probability. Thus, p, is the Hamming distortion, or the bit—error rate (BER) of
the raw information transmitted over this channel. The new user, who employs advanced
detection methods, enjoys a BSC with crossover probability p, < p,. We then have a
degraded broadcast channel, which is composed of the two BSCs, as is described in Fig. 3.
Notably, with no modification whatsoever, the new user already enjoys better performance
in terms of the BER, which is now p,.

The problem is not trivial even if p, = p,, that is, both users are exposed to the
very same channel characteristics.® In this case, the upgrade of the new users is due to
the more involved coded communication technique they may use, taking advantage of the

superimposed coded part.

8Whether these channels are correlated, or not, is immaterial in this broadcast-like setting.
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We would like then to provide a quantitative assessment of the trade—off between the
BER reduction of the new user and the performance degradation of the old user. Let the

degraded performance of the old user be represented as
Dy =1pp*e (48)

where 0 < e < 1/2 is thought of as a parameter. Our encoding system, described in Figure

3, produces then the channel input
X' =U®®X, (49)

where U stands for the symmetric {0,1} raw data and X the encoded part. The received
signals at the old and the new user receivers, designated by Y; and Y, respectively, are

given by

v, = X'oWw,

Y, = X'ow, (50)

where W}, and W, stand for the binary noise components with Py, (1) = Pr{W}, =1} = p,
and Py, (1) = py. Clearly, the additional transmitted part X should be constrained such
that the combined binary noise X & Wy, =Y, ® U, viewed by the old user who uses Y}, as
the detected output, does not inflict more degradation than allowed. In other words, this
imposes the constraint Px (1) < e (i.e., I' = €). The encoded message is constructed by
concatenating a W—Z encoder which accounts for the side information channel between U

and Y, where
E{Ua®Y,} = E{X®W,} =pgxe. (51)

The associated rate is given by Ry z(Dg;pg * €) (cf. eq. (44)). Now, the channel from X to
Y, is viewed as a G-P channel where U plays the role of a state sequence given non—causally

to the transmitter,” whose capacity [4] is given by

Cap(e) = u.c.e {Ha(e) — Ha(py), (0,0)}, (52)

where u.c.e{-} denotes the upper concave envelope as a function of e, which includes the
origin (0,0). Theorem 1 characterizes then the trade-off between Dy, the distortion associ-

ated with the new user and Dy, the distortion associated with the old user in a parametric

®This is implemented by delaying the raw data before transmission.

21



set of equations. Namely, the solution for D, of the equation
Rwz(Dg;pg * e) = Cap(e), (53)

together with (48), where 0 < e < 1/2 is the parameter. Note that G-P encoding [4]
guarantees that X is independent of U, yielding that X & W} and X & W, in (49),(50), are
noises that are independent of U. Concepts of G-P and W-Z coding within the context of

either random or nested linear codes are reviewed in [40].

5.3.2 The Gaussian Case

Here, we address the setting introduced first in [27], and is depicted in Fig. 4. Here U is
the binary memoryless source transmitted uncodedly and antipodally, with values ++/Pr.

Evidently, the Hamming distortion associated with this transmission is

Pr 1 / —a%/2
Q I dz, 54
Pb ( 0'2> AV 271' ,/p1/0.2 ¢ v ( )

where Q(-) designates the complementary error function and where we have assumed an
additive Gaussian noise with variance EW? = ¢2. Again, in order to enhance performance
for new users, a certain fraction of the power Pp (0 < Pp < Pr) is taken away and assigned

to the coded transmission X as shown in Fig. 4. The achievable distortion D, for the

Dy =E{U®U,) =0 (y/%) (55)

where U,, stands for the uncoded demodulated information based on the channel output Y.

uncoded user is'? then

The strategy introduced here can be viewed as complementary to Strategy 1 described in
[27], and is uniformly advantageous over Strategy 2 therein, as is shown next.

The model in Fig. 4 can readily be generalized to the case where the two decoders,
producing U, and Uc, have different ambient Gaussian noise conditions, in parallel to the
binary setting as described in Fig. 3. For the sake of simplicity and comparison w ith the
strategies in [27], we adhere to the special case as described in Fig. 4.

The encoding procedure is motivated by Theorem 1, combining W-Z source coding
and G-P channel coding. First, observe that the W-7 channel, as seen from U to Y, is

equivalent to a binary input Gaussian channel with input power P; — Pp and additive

107t will be argued that the coded part X is Gaussian and independent of U.
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Gaussian!©

noise of power Pp + 02. The W-Z rate-distortion function of a BSS with
Hamming distortion D and a Gaussian W-Z channel having signal-to—noise ratio SN R,

designated by Rwz(D;SNR), is given [27] by
Rw7(D; SNR) = Lc.e{F(D; SNR)}, (56)

where l.c.e{-} stands for a lower convex envelope as a function of D, and where F/(D; SN R),
is given parametrically by two functions, D(q) and F(q), of in independent parameter

0 < g <1/2, which for a given SNR are defined as follows:

_ _ 1 1—q
D(q) = qQ(\/SNR 2\/mlog . )

1 1—¢q
+(1—-¢q)Q (\/SNR+2 SNRlog . >, (57)

00 ‘ _ —2(uV/SNR+SNR)
F(q) = / d_ue—uz/QHQ (1—q)+qe ~ Hy(q). (58)
oo V27 1 + e—2(uV/SNR+SNR)

Now, for the G-P part, the uncoded antipodal signaling (of power Py — Pp) serves as a
state known in advance to the transmitter?. Invoking the generalization!! [10],[14] of the

classical setting of Costa [11], the capacity of this channel yields
1 Pp
CGP(PD) == 5 ].Og <]_ + ?> y (59)

eliminating absolutely the state inflicted interference. The trade—off between the uncoded
distortion D,, = E{U ® U, } and the distortion for the coded part D, = E{U ®U,}, is then

given by the pair of equations, namely, (55) and the solution D, to the equation

Pr— Pp
Do L—IDY _ cp(Pp).
Rwz ( p +PD> Cap(Pp) (60)

Note that also in the generalized Costa setting!® [10], X is independent of U and is Gaussian
with variance Pp. Hence, the overall noise X + W w.r.t. the uncoded part is also viewed
as Gaussian, whose power is Pp + o2, thus giving rise to equation (55), as well as to the
Gaussian W—7Z side information channel.

Observe that the overlaid communication strategy proposed here favors the coded part

in the sense that it suffers no interference from the uncoded part via the G-P setting. In this

"The state sequence here is binary and memoryless, which differs from the Gaussian memoryless state in
Costa’s setting [11].
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respect, our strategy is uniformly better than Strategy 2 of [27] opting for the same goal,
namely, reducing the interference to the coded part. This can be verified by noting that
the performance here equals to that of [27] eq. (53) with ¢ therein (commensurates with the
residual interferences of the uncoded part to the coded one) set to zero. The complement
Strategy 1 of [27], which favors the W—Z channel, while absorbing the full interference of
the uncoded part to the coded signal, exhibits the trade-off characterized by eq. (55) and

equation

Rwz (DC; %) = %log (1 + dﬁ) , (61)
solved for D..

Note that an analogue of Strategy 1 of [27] is useless in the binary setting discussed in
subsection 5.3.1, as the systematic part which is a symmetric DMC, yields an absolutely
useless coded channel (a BSC with crossover probability 1/2).

In both models of the overlaid communication system, the very same channel output
is used to produce the W-Z and the G-P channels, which are evidently correlated being
affected by the very same noise component (available neither to the transmitter nor to the
receiver). No use of this feature was attempted and hence no optimality is claimed. Note,
however, that in both examples here the coded overlaid part is independent of the uncoded
part, where the latter is interpreted as the known state sequence in the G-P channel model.

Specific coding strategies either random or structured (based on nested lattice for the
W-Z and G-P problems as specialized here) are overviewed in [40]. Further note that
no look—ahead techniques are needed in the preferred strategy of Fig. 4 as compared to

Strategy 2 of [27], but a simple delay”.

6 Conclusions

We have addressed a communication framework which combines two basic ingredients of
side information, namely, side information about the source provided to the decoder, which
give rise to the W-Z rate distortion [37] and side information about a communication chan-
nel provided to the transmitter only which matches the Gel’fand—Pinsker [18] or Shannon
[28] models. A separation theorem is shown to exist also in this general communication
framework where the standard Markov structure, necessary for the application of the classi-

cal data processing theorem [12], is not maintained. Within this framework, the conditions
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that guarantee the optimality of scalar uncoded communication are determined extending
the results of [17] to this setting.

Various application of communications systems where the W—7 and G—P models emerge
in a natural way are discussed. In particular, this setting facilitates quantitive assessment of
the degradation associated with systematic coding, where the W—7 channel is structured by
those channel outputs that correspond to the systematic transmitted part (raw data). This
treatment extends previous analyses [26], [27], which have considered standard channels
with no side information. Motivated by the theory here, we have advocated a combined
W-Z and G-P approach to overlaid, back compatible, communication systems. In these
settings, as demonstrated in Fig. 3 and Fig. 4, both the W-Z and G—P channel are correlated
in terms of the ambient noise, and hence no optimality claims of our overlaid communication
structures are made. Yet, as demonstrated, the current approach is uniformly better than
previous treatments of similar models [27, Section V, Strategy 2]. This combination of the
W-Z and G-P models can also be used as to gain further insight to the general problem of
lossy transmission over a broadcast channel [23].

The overall setting of our model, as depicted in Fig. 2 is general enough to allow dis-
torted versions of side information about the source and channel to be available to both
transmitter and receiver, though we do demand that the G-P and W-Z channels are statis-
tically independent given the source input. As mentioned, extension to general alphabets
and sets follows directly by classical extensions of the W-Z and G-P stand alone results,
and facilitate the application of the results here to a wide classes of sources and channels

with side information.
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