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Abstract

Performance and design of finite-memory predictors for Markov sources are inves-

tigated under the large deviations regime of the probability of excess cumulative loss

beyond a certain threshold. It is shown that time-varying predictors with memory size

corresponding to the Markov order of the source are as good as any finite memory

predictor. In addition, we present a procedure for designing a sequence of predictors

with error exponent arbitrarily close to the optimal error exponent. The computational

complexity of this procedure is linear in the sequence length. Upper and lower bounds

on performance are given.

1 Introduction

Consider the problem of sequentially predicting symbols emitted from a Markov source,

based on k previously-observed symbols, where, at each time instant, we can choose a

different prediction function. This problem has been extensively studied under the expected-

loss criterion where it is clear that the optimal performance can be obtained using a time-

invariant predictor whose memory size is identical to the Markov order of source.

By contrast, large deviations (LD) performance analysis of predictors received relatively

little attention (e.g., [1, Sec.III] where predictors for binary memoryless sources were con-

sidered), and it is not even a priori obvious, that optimum LD performance can be achieved

by a predictor whose memory length is as the Markov order of the source. In this work, we

investigate the LD performance of finite-memory time-varying predictors under the large-

deviations criterion, namely, the exponential decay rate of the probability of excessive loss.

It should be noted that the above problem for infinite memory predictors is still open as it is

not clear if our result continues to hold. The techniques used are in the spirit of those of [2]

and [3] where LD performance of zero-delay finite memory lossy source codes were studied.
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2 Notations and Conventions

We begin with some notations and definitions. Throughout this work, capital letters repre-

sent random variables (RVs), specific realizations of them are denoted by the corresponding

lowercase letters, and their alphabets are written as the respective calligraphic letters. For

a sequence of symbols {xt}, the substring (xt, xt+1, . . . , xτ ), where t ≤ τ , will be denoted

by xτ
t . A similar convention applies to RVs with capital letters replacing lowercase letters.

For the sake of simplicity we confine ourselves to the case of first order Markov sources.

However, the extension to higher orders of the following results is straightforward.

Consider a first-order, homogeneous, irreducible, aperiodic Markov source, {Xt}t∈Z, over

a finite alphabet X of size A ≥ 2 with a stationary distribution {π(a), ∀a ∈ X} and a

transition matrix Π whose elements are {Π(i|j) = Pr{Xt = i|Xt−1 = j}, ∀i, j ∈ X}.

A time-varying, finite-memory predictor with memory size k is a sequence of prediction

functions {Ft}t≥1, where Ft : X k → X̂ predicts the next source symbol, Xt, based on the

past k source symbols, Xt−1
t−k , and X̂ denoted the prediction alphabet of size B. Let Fk

denote the set of all prediction functions with memory size k, where |Fk| = r(k)
4
= BAk

.

The sequence {x̂t}t≥1, where x̂t = Ft(x
t−1
t−k), is referred to as the prediction of the source

sequence {xt}t≥1. The loss between xn
1 and its prediction x̂n

1 is defined as
∑n

t=1 ρ(xt, x̂t),

where ρ : X × X̂ → IR+ is an arbitrary single-letter loss function. We assume that

dmax
4
= maxx,x̂ ρ(x, x̂) is finite.

3 Prediction Exponent of Finite-Memory Predictors

For a given loss level d, the prediction error exponent function for time-varying predictors

with memory size k is defined by

J k(d)
4
= lim sup

n→∞



−
1

n
ln min

{Ft}
n
t=1

Ft∈Fk

Pr

{

n
∑

t=1

ρ
(

Xt, Ft(X
t−1
t−k)

)

≥ nd

}



 .

As in the case of finite memory predictors under expected loss criterion, it turns out that

predictors with memory size equal to the Markov order of the source are at least as good as

any other predictors with finite memory, namely:

Theorem 1. For every d ∈ (0, dmax), and any positive integer k,

J k(d) = J 1(d).

First, we prove that J k(d) = J 1(d). Next, based on this proof, we propose a proce-

dure for designing a sequence of predictors, each of memory size one, with error exponent

arbitrarily close to J 1(d).
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3.1 Proof Outline

The direct part is trivial since F1 ⊂ Fk which implies that J k(d) ≥ J 1(d). Therefore, we

focus on the converse part, namely, proving that J 1(d) ≥ J k(d). Given an integer N , fix

integers p and c such that p � c ≥ k and let n = bN/qc where q = p + c − 1, and define

Zt =

tq
∑

τ=(t−1)q+c

ρ
(

Xτ , Fτ (Xτ−1
τ−k)

)

, 1 ≤ t ≤ n , (3.1)

where {Fτ}
tq

τ=(t−1)q+c
is a sequence of prediction functions with memory k. Note that Zt is

a RV representing the total loss incurred by applying {Fτ}
tq

τ=(t−1)q+c
on the last p symbols

of the t’th sub-block, Xtq

(t−1)q+c
. The basic uniformly-strongly-mixing property of finite-

homogeneous-irreducible-aperiodic Markov process [4, p.175],[5] imply that {Zt}
n
1 obeys the

following condition:

1

κn

n
∏

t=1

P (zt|st) ≤ Pr(Z1 = z1, . . . , Zn = zn) ≤ κn

n
∏

t=1

P (zt|st), (3.2)

where st represents a sequence of p prediction functions with memory size k (one out of

r(k, p)
4
= [r(k)]p = BAkp different sequences) associated with Zt, namely {Fτ}

qt

τ=(t−1)q+c
,

and κ, a function of c (the gap between each two sub-blocks of size p), converges to 1

exponentially fast in c [5, Th.5] (i.e., κ = 1+exp{−ωc}, ω > 0). This condition enables us to

analyze the cumulative loss (represented by Zt) of each sub-block’s as “almost” independent

of the other sub-blocks. Since each sub-block contributes no more than κ to the product

term we obtain (3.2). Using the above condition, we can derive [3, Lem.1] a lower bound

on the probability of excess loss in terms of the moment-generating function (MGF) of Zt

given the sequence of prediction functions.

In the second part of the proof, we show that for any sequence of prediction functions

with memory size k, the moment-generating function (MGF) of the cumulative loss can be

minimized by a sequence of prediction functions with memory size 1, i.e.,

E exp







ξ

p
∑

j=1

ρ(Xj , F̃j(Xj−1))







≤ E exp







ξ

p
∑

j=1

ρ(Xj , Fj(X
j−1
j−k ))







, (3.3)

where {F̃i}
p
i=1 ∈ Fp

1 and ξ ≥ 0 is an arbitrary constant. In order to show that, we use a

“onion-peeling” argument, originally used by Stiglitz [6], but in a rather different context.

Let us rewrite the r.h.s. of (3.3), call it M , as follows:

M =
∑

x0
−k+1

∈Xk

P (x0
−k+1)

∑

x1

Π(x1|x0) exp
{

ξρ
(

x1, F1(x
−1
−k+1, x0)

)

}

×

∑

x2

Π(x2|x1) exp
{

ξρ
(

x2, F2(x
0
−k+2, x1)

)

}

× · · · ×

∑

xp

Π(xp|xp−1) exp
{

ξρ
(

xp, Fp(x
p−2
p−k, xp−1)

)

}

. (3.4)

Consider first, the part of the expression that depends on Fp, namely, only the last sum-

mation over xp. Note that in this part of the expression, xp−2
p−k can simply be thought of as
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an index of a function of xp−1 from X → X̂ (prediction function with memory size 1 which

depends on the past only via this index). Therefore, for any xp−2
p−k and any given xp−1, this

summation over {xp} cannot be smaller than

m(xp−1) = min
F̃p∈F1

∑

x∈X

Π(x|xp−1) exp
{

ξρ
(

x, F̃p(xp−1)
)

}

. (3.5)

Repeating this argument over the rest of the “peels” proves eq.(3.3). So far we showed

that a p-tuple of prediction functions (F̃1, . . . , F̃p) ∈ Fp
1 for which the moment-generating

function of the associated loss, at a given value of ξ, does not exceed that of a given

(F1, . . . , Fp) ∈ Fp
k .

Combining eq.(3.3) with condition (3.2) enables us to follow the proof in [3]. Note that

unlike the source-coding exponent for memoryless sources, presented in [2], single-letter

expression can not be given to the prediction error exponent since the prediction functions

are time-variant and the source is not memoryless. In Remark 1 below, we present the error

exponent of time-invariant predictor.

3.2 Predictor Design

In quest for an optimal predictor achieving the optimal prediction exponent for Markov

sources, Theorem 1 confines our search to sequence of prediction functions with memory

size corresponding to the Markov order of the source. Nevertheless, the way of finding

that sequence of functions still needs to be specified. In the following theorem, we propose a

procedure for designing a predictor with memory size 1, having an exponent arbitrarily close

to the optimal exponent. This procedure is derived from the above proof of the converse

part, where the MGF of the prediction loss is recursively minimized.

Theorem 2. Given an integer p > 2 there exist a procedure for designing a sequence of

prediction functions {Fi}
p
i=1, where Fi ∈ F1, satisfying the following properties:

(i) The computational complexity is linear in p.

(ii) The designed code achieves an exponent J 1(d) − ε(p), where ε(p) −−−→
p→∞

0.

Procedure description:

Given an integer p calculate:

Jp,1(d) = max
ξ

[

ξpd − M(ξ)
]

, (3.6)

where M(ξ) is evaluated in the following way:

1. For i = 0, . . . , p − 1 compute:

m(xp−i−1) = min
Fp−i∈F1

∑

xp−i

m(xp−i)Π(xp−i|xp−i−1) · exp
{

ξρ
(

xp−i, Fp−i(xp−i−1)
)

}

,

where m(xp) ≡ 1.
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2. Compute:

M(ξ) = ln
(

∑

x0

π(x0)m(x0)
)

.

The procedure returns the sequence of prediction functions, {Fi}
p
i=1, which achieves Jp,1(d).

The resulting sequence of prediction functions will be employed periodically on sub-

blocks of size p, with gaps of size c∗ between each two sub-blocks, on an input sequence.

During the gaps, arbitrarily prediction function is employed, and the value of c∗ is given by

c∗ = Round

(

arg max
c>2

1

p + c

[

Jp,1(pd − c · dmax) − ln
(

1 + exp(−ωc)
)

]

)

,

It is easy to see that the computational complexity of the evaluation of M(ξ) is linear in

p, where in each step, a minimizing function is sought out of a finite set of functions, where

the set size is not greater than BA. The fact that M(ξ) is piecewise convex, continuous, and

M(0) = 0 implies that [ξpd−M(ξ)] is continuous and piecewise concave therefore Jp,1(d) can

easily evaluated using simple optimization methods as the quadratic interpolation algorithm.

To evaluate the performance of the procedure when n → ∞ (i.e., the number of sub-

blocks tends to infinity while the size of the sub-blocks, p, is fixed) We use [3, Lem.1,2]

which gives upper and lower bounds on the prediction exponent in terms of the MGF.

Denote by ε the difference between the optimal performance, J 1(d), and the actual

predictor performance, we can conclude that:

ε <
1

q

[

Jp,1(pd + cd) − Jp,1(pd − cdmax) + 2 lnκ
]

.

Note that ε tends to zero as p → ∞.

It remains an open question whether the sequence of predictors gives rise, in general, to

repetitive usage of a single predictor as p → ∞.

Remark 1. When restricting attention to a fixed prediction function taken out of F1, it is

easier to calculate its prediction exponent. For a given function F ∈ F1, define the matrix

Πξ(F ) whose elements are

Πξ(F ) = {Π(a|b) exp{ξρ(a, F (b))} , ∀b ∈ X}.

Let λ
(

Πξ(F )
)

denote the Perron-Frobenius eigenvalue of the matrix Πξ(F ) (Perron-Forbenius

eigenvalue exist for irreducible matrices [7, Th.3.1.1]), Then by applying Theorem 3.1.2 in

[7]:

JF (d) = sup
ξ≥0

[

ξd − lnλ
(

Πξ(F )
)]

,

where JF (d) is the prediction exponent of F , for distortion level d. Therefore, the optimal

error exponent of time-invariant predictor with memory size 1 is

J(d) = max
F∈F1

JF (d).
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Remark 2. The above proof technique may be useful to other problems in information

theory. In [3, Ch.4], it is shown that zero-delay finite-memory encoders/decoders with

memory size equals to the Markov order of the source/channel are as good as any finite

memory encoders/decoders. The procedure proposed earlier can be modified and used to

design a sequence of encoders and decoders with performance close to the optimal error

exponent.
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Taqqu, Eds. Boston: Birkhäuser, 1986, vol. 11, pp. 163–192.

[5] J. R. Blum, D. L. Hanson, and L. H. Koopmans, “On the strong law of large numbers

for a class of stochastic processes,” Z. Wahrsch. Verw. Gebiete, vol. 2, pp. 1–11, 1963.

[6] I. G. Stiglitz, “A coding theorem for a class of unknown channels,” IEEE Trans. Infor-

mation Theory, vol. 13, no. 2, pp. 217–220, April 1967.

[7] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd ed.,

I. Karatzas and M. Yor, Eds. Springer-Verlag, 1998.

6


