Universal Delay—Limited Simulation

Neri Merhav Gadiel Seroussi Marcelo Weinberger
Department of Electrical Engineering Mathematical Sciences Research InstitutdHewlett-Packard Laboratories
Technion—Israel Institute of Technology Berkeley, CA 94720, U.S.A. Palo Alto, CA 94304, U.S.A.
Haifa 32000, Israel Email: gadiel@msri.org Email: marcelo@hpl.hp.com

Email: merhav@ee.technion.ac.il

Abstract— Universal, delay-limited simulation of an unknown sources of a given order, parametric subsets of these families,

information source of a certain parametric family (e.g., the family  etc.) but is otherwise unknown, and a training sequence
of memoryless sources or Markov sources of a given order), given ™ = (x zn) that has emerged from this source is
- st m

a training sequence from that source and a stream of purely . o - . . - .
random bits, is considered. In the delay-limited setting, the available. In addition, the simulation scheme is provided with

simulation algorithm generates a random sequence sequentially, @ Stream ofk purely random bita:* = (us,...,ux) that are
by delivering one symbol for each training symbol that is made statistically independent of the training sequence. The goal of

available after a given initial delay, whereas the random bits the simulation schemes in [8], [9] is to generate an output
are assumed to be available on demand. The goal of universal sequencey” = (y; yn), n < m, corresponding to the
- yrccyIn )y = ’

simulation is that the probability law of the generated sequence . _ & .

be identical to that of the training sequence, with minimum smulatgt_:i Processz such thgt = ¢(z™,u"), where¢ is a
mutual information between the random processes generating deterministic function that does not depend on the unknown
both sequences. In this paper, the optimal universal delay—limited sourceP, and which satisfies the following two conditions:

simulation scheme is characterized, and an upper bound on the - T .
expected number of random bits it consumes is presented. As C1. The probability distribution of the output sequence is

in the non-sequential case, the upper bound is related to the exactlythe n-dimensional marginal of the probability law
entropy rate of the source. The results are extended to a setting P corresponding to the training sequence foriale P.
of variable delay. C2. The mutual information between the training sequence

Index Terms:Random number generators, random process and the output sequence is as small as possible (or
simulation, universal simulation, mutual information, method ~ €quivalently, under Condition C1, the conditional entropy
of types, enumeration. of the output sequence given the training sequence is as

large as possible), simultaneously for Alle P (so as to
. INTRODUCTION make the generated sample path as “original” as possible).

Simulation of random processes is about artificial generatitm[8], the smallest achievable value of the mutual information
of random data with a prescribed probability law, by using as a function of:, m, k, and the entropy rat& of the source
certain deterministic mapping from a source of purely random is characterized, and simulation schemes that asymptotically
(independent, equally likely) bits into sample paths. The sirachieve these bounds are presented. It is shown in [8] that in
ulation problem finds applications in speech and image sywrder to satisfy Condition C1, it is necessary that the output
thesis, texture reproduction, generation of noise for purposgs be a prefix of a sequencg® having the samaype [12]
of simulating communication systems, and cryptography. asz™ with respect toP (whenP is the entire class of i.i.d.

The simulation problem of sources and channels has besurces over a finite alphabet, this means that and y™
investigated by several researchers, see, e.g., [1], [2], [3], [ABve the sameomposition namely yield the same empirical
[5], [6], [7]. In all these works, the common assumption isglistribution [13]). Moreover, it is shown that fok large
that the probability law of the desired process is perfectnough, the optimal simulation scheme essentially takes the
known. Recently, universal versions of this problem werfirst n symbols of a randomly selected sequence of the same
studied in [8], [9], [10], and [11]. In [8],[9], the assump-type asz™.
tion of perfect knowledge of the target probability law is |n [10], the goal was to characterize the minimum key
relaxed. Specifically, the target souréeto be simulated is rate required in order to generate a collection Mfoutput
assumed to belong to a certain parametric fanfly(like sequenceg(y™);} ,, all governed by the same probability
the family of finite—alphabet memoryless sources, Marka4w as the given training vector™, such that a certain,
prescribed set of statistical tests would be satisfied. In [A'1],

* The material in this paper was presented in part at the 2005 IEEE Infgg 555med to be an individual sequence not originating from
national Symposium on Information Theory, Adelaide, Australia, September e . . . . . .
20065. any probabilistic source. Simulation in this setting is based on
T This work was done while N. Merhav was visiting Hewlett-Packaréin extension of the conventional notion of type, referred to
Laboratories, Palo Alto, CA, U.S.A. ;

¥ This work was essentially done while G. Seroussi was with HeWIett—Packemj [11] as auniversal type

Laboratories, Palo Alto, CA, U.S.A. In this paper, we investigate the universal simulation prob-




lem, as stated in [8], in a sequential, delay-limited settingthich upper-bounds (up to an additive constant) the expected
In this setting, upon observing an initial trainin@ —1)- key length required for implementing the scheme, equals,
tuple 2¢~1, whered is some fixed initial delay, the simula-after normalization by the number of output symbols, the
tion scheme is requested to output one symjofor every expectation undeP of the empirical entropy of-tuples (and
additional symbolz;, 4 1 it observes,1 <t <n. Thus,y' is is therefore independent efandm). By [17], this expectation

a (randomized) function off*+9=! but, unlike in [8], not of falls short of the entropy ratél by anO(1/d) term. Since,
Zerasi, © > 0. In order to generate an output sequence satisy Condition C1, the entropy of the output vector is the same
fying conditions C1-C2 (withn =n+d — 1), the simulation as the entropy of a training vector of length this term is
scheme has also access to a stream of purely randorfubits precisely the normalized mutual information between the input
(the key), which are available “on demand.” This assumptioand the output. The above results are actually special cases of
differs from the setting in [8] in that there is no fixed budgethose to be presented in Section Il for more general parametric
of key bits; rather, as in [5] and [11], we will be interestedamilies of sources with memory.

in the expectechumber of key bits that the scheme consumes In the remainder of this paper, Section Il introduces the main
in order to generate its output, where, here, the expectatiorc@cepts and notation. Our main results are then presented
with respect to{u;} and P. Thus, a delay-limited simulationin Section Ill, and extended to the case of arbitrary request
scheme is given by a sequence of conditional probabilischedules (encompassing also the “batch” simulation case) in
distributions{ W, (y;|z‘*4=1 y*~1)}. It is well known (cf. [5]) Section IV.

that a corresponding sequence of draws can be implemented

with an Elias decoder [14, pp. 479-482]. To output the } )
Elias decoder is tuned to the distributiof, (-|z/+4—1, y*~1), Throughout the paper, random variables will be denoted by

and uses the random bitstream as its input. As shown in [gﬁpital letters and specific values they may take will be denoted

the expected number of key bits that the decoder consume$Yothe corresponding lower case letters. The same convention
(sequentially) producg™ is upper-bounded by the conditionaill @pply to random vectors, with an addmgna_l superscript
entropy of the resulting product distributidi (y™|z"+4-1), denoting their dimension. Thus;™, 3™, andu” will denote
plus 3 bits (see [11] for algorithmic detalils). specific vector values of the random vectafg, Y, andU*,

A special, trivial case of the delay—limited universal simuld€espectively. If the dimension is omitted, random vectors will

tion problem is obtained when pure sequentiality is requireB€ denoted in bold. A generic parametric family of sources

namely when the allowed delay is 1, and P is the entire will be denoted byP, and a particular source iR, defined
a parameter vectat taking values over some parameter

class of i.i.d. sources over a finite alphabet. In this case, i )
to the constraint thay” must be of the same type a€ in spacef?, will be denoted byP,. However, in a context where

order to satisfy Condition C1, the simulation scheme can orflj¢ Parameter value is either fixed or irrelevant, we will omit
copy the input, and therefore the conditional entropy of tHe denoting a source irP simply by P. The (finite) source

output sequence given the training sequence, vanishes. Trihabet is denoted hyl. o _
the problem becomes interesting dgrows. A finite-state machine (FSM) over a finite state sewill

As it turns out, for a broad class of familie®, the be identified with its next-state functiop: S x A — S,

optimal simulation scheme that preserves the probability 1##d Will be assumed to start at a given initial statec S.
(Condition C1) while minimizing the mutual information® Parametric family to which we will refer frequently as an

simultaneously for allP € P (Condition C2), takes a form '

II. NOTATION AND PROBLEM FORMULATION

important particular case is the clasg ;, of all FSM sources

that is reminiscent of an enumerative sequential decodiRYe" -4 driven by the next-state function starting at state,
scheme [15] in which the enumerated set varies as the trainif{tin the parameters given by the transition probabilities. Thus,
data becomes available. For example, wheris the entire If /IS @ parametric subfamily o, , andt is a given positive
class of ii.d. sources over a finite alphabet, the simulatiéffeger, the probability of &-vector z* = (z1,s,...,z1)
scheme draws a symbal at time ¢ with probability equal drawn fromP € P, z; € A, i =1,....1, is given by

to the empirical probability of: in any d-tuple z¢ such that t A

y'~12¢ andz+9~! have the same composition (it is easy to PH{Xi =i, i =1,...,t} = [[ P(ailsi—1) = P(a")

see, by induction, that such a sequenréewill always exist). i=1

In other words, for any symbal we have where sqg, s1,...,5:-1 € S denotes the sequence of states

trd—1 i1 assumed by the FSM. We shall define thpe clasq12] T,
Ma(® ) = maly”) (1) of a vectorz™ as the set of all vectors™ < A™ such that

d P(z™) = P(z«™) for everysourceP € P. The set of all type
wheren, (v’) denotes the number of occurrences of a symbolasses of vectors id™ will be denoted byZ . For example,
a in an /—vectorv’. The distribution assigned by the scheme caseP = F, ;, (or if P is a subclass of7, s, that admits
is precisely the one that an enumerative decoder would ube sameminimal parametrization as the entire clags ,,,
to decodey; sequentially, given thay‘t?~! has the same but for whichQ is a subset of the entire spacé),~ is the
composition asz'*t¢~!. The corresponding conditional en-set of all vectors having the same compositiona&s with
tropy of the output sequence given the entire training sequenasspect tog [12], [13] (i.e., each state transition occurs as

Wil 41y 1) =



many times inz™ € T,~ as inx™, starting from statesy). satisfy Condition C1. Here, a simulation scheme is simply a
Given another sequengg’ € A", n < m, r = m —n, let channelW (y™|z™), m > n.

Tym\yn = {27 € A" 1 y"2" € Tym}, Which is interpreted as  Lemma 1:Assume P satisfies Assumption Al. Then, a
a “difference type.” Notice that for = 0, A° = {\} (where channel W satisfies Condition C1 if and only if for all

A denotes the null string),A°| = 1, and thus|T,m\,~| = 1 sequencex € A™ andy € A" we have

if Tym =Ty~ and0 otherwise. For a family of FSM sources, 5

if the initial state is not assumed to Bg but a generic state Z W(y[%) = [Tayl- (4)

s € S, the type ofz™ and the difference type will be denoted ®elx

Ts. and T;m,\ ., respectively. We will reserve the notationProof. Clearly, Condition C1 is satisfied if and only if for all
s0,51,. .., Sn to denote the state sequence over which the FSme A™ and P € P we have

evolves withy™. Notice that for any sequenc€ € Tm\n, _ -
we haveT, . — T, S PEWK) = Y Px) D W) = Py).

The probability of every type class € 7™ is given by xeAn T XD
Now,
A L
Py(T)= Y Py(@™) =|T|- Py(z™) )
FmeT P(y) = Z P(yz) = Z P(x)|T\y|
zeA'rn—n TxeTm

wherez™ is a sequence iff' and, throughout|T’| denotes the
cardinality of 7. Next, given some enumeration G, let where the last equality follows from the fact that each type
7O, 7@ . TUT"D denote the corresponding type classedx contains|T., | sequences prefixed by. Therefore, Con-
For eachj, 1 < j < |T™|, Py(TY) can be regarded dition C1 is satisfied if and only if

as a function of the parameter vectérdefining Py € P.

Following [8], we will assume that the class of sourc@s Z P(x) [Ty | — Z W(ylx)| =0.
satisfies the following assumption: T.eTm %eT),

. T"” . . .
Al. The Set{Pf’(T(J))}lj:ll (as functions off € Q) islinearly  ne ¢laim then follows from Assumption Al. L]

independent oveR. Notice that L 1 implies that imulati h
As shown in [8], Assumption Al is satisfied for a broad ouce that emma L Imples that a simulation scheme

class of parametric families, including any i.i.d. exponentie?lausrymg Condition C1, when trained with a sequesgean

family for suitable®, or any family 7, only output sequences such thatly , is nonempty. In other
’ ,80" . L
A simulation scheme with delay limitatiod and horizon words, y must be a prefix of a sequence T in [8], such

n consists of a sequence of conditional probability distrib§ S€duUence 1S said to pefeasmle\_mt_h r_espect tOx._NOW,
tions {W; (ye|z'+4=1, 5= 1)}7_ |, wherez"+4-1 is the training a simulation scheme with delay limitatioth and horizonn

sequence ang” is the output. To generate a sequence f@flqes g ?eqtﬁ?ﬂfeloi ‘:'anact:'lon :T‘cht(;mes thdat o%fpr\]with
draws y™ distributed accordingly, it will be assumed that raining datav » L st sn. learly, these reduced-horizon

stream{U;} of purely random bits, independent &f"+-! schemes preserve the probability law if so does the scheme

is available on demand. The resulting conditional distributio ith_horizon n, and thereforei also satisfy Condlt!on C.l' It
en follows thateveryprefix y* of 4™ must be feasible with

on y™, which is regarded as a channel, will be denoted b
y 9 spect tapit9-1,

n|n+d—1
Wiyl ), namely Our main result states that the optimal simulation scheme
with delay limitationd and horizom, in the sense of minimiz-
ing the mutual informatiod (X"+4=1; Y™) simultaneously for
P € P among schemes that preserve the probability law
d, therefore, satisfy the condition (4)), is given by

W(yn‘$n+d_1) = H Wt(yt“rt+d_1a y ). 3)
t=1
. call
In the sequel, we alternate freely between the smulaﬂc?gn
scheme{1V;} and the corresponding chanriél, referring to
{W} when the emphasis is on sequentiality, andifowhen
we discuss “batch” properties of the channel.

The conditional entropy achieved by the chankélwith . . , . . L
the input sourceP will be denotedH (Y™ X"+4-1). Finally, qu_Jatlon (5) |_ndeed defines a conditional probability distri-
bution on A since, for any pair of sequencesandy, the

let 7(X"*+d=1,y") denote the mutual information betweendef'n't'on of a difference tvoe implies that T B
Xnt+d=1 and Y™ that is induced by the sourcB and the ! HS ecificall ! - t+%F—)1 |t_p1| ‘s th??r%ét'c;(r}ygf s_e-
channellV. We seek a delay—limited simulation scheme thggx\y' pecifically, W/ (alx ) :

meets conditions C1-C2 that were itemized in Section I, fQHENC€S IMr4a-1\,e-1 Starting witha. For the scheme (5) to
preserve the probability law, we need the following additional

« _ _ |Txt+d—1 t‘
Wi (el 1y ) = (5)

N |T,I;t+d—1\yt—1 | ’

m=n+d—1. : .
assumption orP:
ll. M AIN RESULTS A2. If Ty, =Ty, then for every we haveTyy, | = |Tx\y, |-
A. The general case Notice that this assumption holds trivially in the i.i.d. case,

We first state a necessary and sufficient condition for asynce in this casd., depends ory only through its type.
simulation scheme (not necessarily with a delay limitation) teor a general FSM clasg;.,, may also depend on the final

3



state to which the FSM evolves with. However, if P is a If W preserves the probability law then it does so for
class F, ,, parametrized by the transition probabilities, theall horizonst,1 < ¢ < n, and also for the marginals.
the assumption still holds since, in this case, two sequendgwis, by Lemma 1, we havg’, ., W(ylx) = [Thy| =

y1 andy of the same type bring the FSM to the same fingl_, .. W*(y|x) (asW* also preserves the law). By Jensen’s
state (as the number of transitions between any pair of staitesquality we then have

is the same for both sequences, with the initial and final states H (X1 vty <

being the only ones for which the nodes in the underlying ¢ ’ )<
graph may have an outgoing degree which differs from the Z Z
incoming degree).

The conditional entropy achieved by the chann&l,
derived from (5) as in (3), will be denoteld* (Y| X" +d-1), 1
We have the following optimality result for the delay—limited Ty
simulation schemdV;*}.

Theorem 1:AssumeP satisfies assumptions Al and A2. With equality if and only if W;(-[x,y) depends onx only
(&) The channelV* satisfies Condition C1. thro“.ghT.x- Again by Lemma 1 the argu.ment O*f the entropy
(b) For any simulation schemgV,} with delay limitationd functlon_ IS |Tx\yyt|/.|Tx\y|’ WhICh 'S prfec(Eel:IyV[t/iqux,y),

that satisfies Condition C1 we have so the right-hand side of (8) " (Y;|-X""™", Y'™1). Equa-

tion (6) then follows by the chain rule of conditional entropies
H(Y™ X" < gr(yn|xntd-1) (6) and the independence &f from X, ;, i > d, for both {W;}

, L . . and {W;}. To complete the proof, it suffices to show that
with equality if and only if{W:} = {Wy}. {w;} is theonly law-preserving scheme that, for every 1,

Proof. Part (a) follows from showing, by induction in, that depends onx only throughZy. To this end, let{I¥;} be any
the simulation scheme satisfies the condition (4) of Lemmad,-h scheme. Then with = y'a,a € A y € A, and

Forn = 1 we have, for anyk € A? andy € A,

P(x)

) W*(yxﬂ

YEAt-I Ty eTd+t—1 x€Tx

> W(y|x)wt<-|x,y>> (8)

x€Tx

x € Att4-1 we have

- Ty - - -
> W = T = 1. Tyl = D WER =D WE'RWlay')
XETy 7] %eTx xeTx
Assume now that the condition holds far= ¢t — 1 and, for = Wilalx,y") Y W('|%) = Wilalx,y") [Tay|
y € At, lety = y'a, a € A. Then, for anyx € At+d-1, %ETy
Tary | where the first and the last equalities in the above chain
SwrylR) = > W*(y/li)|T~ y‘ follow from Lemma 1, and the third equality follows from
%ETy RETy X\ the assumed property ¢fi¥;}. Therefore,
|Tx\y| /1~
W*(y |X) (7) no_ |Tx\y| R ’
|TX\y" i;x Wt(a|xvy ) = ‘Tx\y’| =W (a|x,y ) . 0O

where the second equality follows from the fact that the Notice that the simulation schenf&V;*} is strictly optimal
difference types depend énonly through its type. To evaluatefor everyvalue of n, and not merely in an asymptotic sense.
the summation on the right-hand side of (7), we first notiagoreover, the simulation scheme is horizon-independent, and
that W*(y’|x) is independent of the last symbol &f Thus, therefore it also minimizeg(X*+9~!;Y?) and preserves the
we consider the multiset of sequences obtained by deletipbability law forY? for all t > 1.

the last symbol of eackk € Tx. By Assumption A2, two  For an intuitive interpretation of W;}, observe that a
sequences of the same type in this multiset can be extendegw of a sequence;, vo, - - -, vq uniformly at random from a

in the same number of ways to obtain sequenceslin given set can be implemented sequentially by simply draw-
Thus, the summation can be broken into a number of partiaj each symbok; according to the distribution given by
summations, each over an entire typeiit¢=2, to which the fraction of the sequences in the set which start with
the induction hypothesis can be applied. As a result, eagh vy, --,v; (aswvi,vs,---,v;_1 is already available at the
partial summation equals the number of sequeacasch that time of the i-th draw). Now, sinceW;(a|z!T¢=1 4*=1) is

y'z ranges over the corresponding type@ri**~2. Adding the fraction of sequences ifi,+a-1\,:-1 which start with
these partial contributions, we obtajffi,,,|, which by (7) a, thenW;(-|z*+t4=1 y*~1) is the distribution that a scheme

completes the induction step. drawing uniformly at random frorfi,+a-1\,:-1 would assign
As for Part (b), for any simulation schen{@/;} and any to the first draw. In our delay—limited setting, however, a
t > 1, we have new symbolz;, 4 is observed after this draw, thus renewing

the process. In other words, the scheme aims at outputting

a random sequence with the same type as the input, as the
> > > PW(yIRH Y, y). latter becomes sequentially available. Another interpretation is

yEAI~1 TyeTtHd—1 x€Ty thatW(-|zt+4=1 y'~1) is the distribution that an enumerative

H(G XMy =



decoder would use to decogesequentially, given that'*¢—!  for any states such thatn,, (u) > 0. Since all these counts

has the same type agt4-1. are invariant over the type classes %jf ,, we may abuse

the notation by replacing the argumantwith its typeT'. For

a type classT’, let ®” denote the matrix whose rows and
To investigate the optimal scheme for an FSM family, i€olumns are labeled by the statesSn such that the(s, s)

is convenient to define, for a given state= S and a given entry is the count,. (7). Let U7 denote the matrix obtained

sequence € A%, a probability distributiorQ), ..(-) on A given  py subtractingd?, after normalizing every non-zero row, from
by the fraction of sequences iy that start witha, namely  the |S| x |S| identity matrix, namely

B. The optimal scheme in the i.i.d. and FSM cases

Tl

_ z\a nss’(T)
Qszla) = ,ae A ) \I/T/:(Sss/—
(@) 75| s ns.(T)
(in the i.i.d. case, the distribution will be denoteg,(-)).

if ne,(T) >0, and¥7, = §,, otherwise, wherd,, denotes
the Kronecker delta function. It can be shown that all entries
* t+d—1 , t—1\ _

Wi (el ) = sz (10) (5, &) such thata,..(T) > 0, in a fixed rows of U7, have the
for any sequence in T;:;;il\ytill where we recall thait—l Same cofactor, independently ﬂfl which we denoteI/T(s).
denotes the state to which the FSM evolves witii!. In  Whittle’s formula states that
particular, applying the law preservation propertyii§, we

Clearly,

)= w7 (o)- T ="
have 7] (o) Sg;naeA”w(T)!
Z P(2]5)Qs.2(a) = Plals),a € A s €S, where o denotes the final state faF. Letting z denote any
zeA! sequence irﬂ”;f;;,l\ .., for which the FSM assumes the
Therefore,Q; ,(-) is a consistent estimate @t(:|s). state sequencey,o1,---, o4 (where oo —=s,_; and the no-
When P is a class of ii.d. sources oved with the tation emphasizes the distinction between this state sequence
parameters given by the symbol probabilities, the size ghd the sequencey,---,s, induced byy"), and denoting

a type is given by a multinomial coefficient [13], and ther — 7! andT'(a) = Tz‘g(;l, we then have, by (10) and (9),
ratios defining@,(-) take the form (after cancellation of
terms) of the empirical probability of in z, as given in
Equation (1), making the computation of the optimal scheme
practical. The fact that the estimafg,(-) coincides with the
maximum-likelihood (ML) probability holds for more generaiThe matricest” and ¥7(*) differ in row s,_,. Therefore,
i.i.d. subfamilies (e.g., a subfamily of “symmetric” discretéV; (a|z'*4~1, 4~ 1) will in general differ from the conditional
sources for which symbols are grouped by pairs, with bolL probability estimateP,(a|s;—1), except whers,_; = oq4
symbols in a pair having the same probability). However, the(as all other rows coincide and the cofactors ignore v In
exist simple exponential families for whiaf,(-) differs from principle, each draw requires the computation of the cofactor
the ML probability estimate. U1 (04). Clearly, if this cofactor is computed by expanding

WhenP = F, ,, (or P is a subclass ofF, ;, that admits the determinant along row;_;, no further determinants need
the sameninimal parametrization as the entire claBg,,, but to be computed to obtain the cofactobs*)(a4), a € A2
for which Q is a subset of the entire space), the computationThe achievable conditional entropy* (Y ™| Xn+d-1)
of W in (10) reduces, by (9), to computing the ratio betweefwhich, as discussed in Section I, also determines a bound on
the size of an FSM-type class i@?~! (with initial state the expected number of random bits consumed by the simula-
g(st—1,a)), and the size of an FSM-type class T (with tor), on the other hand, admits a closed form expression when
initial states;_1), by application of Whittle’s formula for the P is a general subfamily o, .,, as shown in Theorem 2
type size [16]. To state this formula we introduce some furthbelow.
notation. Theorem 2:AssumeP is a subfamily ofF, ,, satisfying

Let ns,(u) denote the number of occurrences of symbassumptions Al and A2. Then,
a € A at states, in a sequencer, where (to simplify the 1
notation) the initial state will be understood from the context. ~H*(Y"|X"MN = EH(Qs.7) (12)
Similarly, let ns,(u) (where symbok has been replaced by n
S:@.tes’) denote the number of transitions from statto state IRecall that the(s, s”)-cofactor is the determinant obtained by deleting row
s"in u. Further, letn,, (u) = ZaG.A Nnse(u) = ZS’ES Ngs(W) s and columns’, with a sign change in case the sum of the row and column
denote the number of occurrences of stateexcluding the indexesin a&\jgfbitfgry Ozjdt;:@‘_ iSd odd. :jfnm(T)f>th0 for ?vetrys ; r}S,”each
occu.rr.ence of the_ Tinal state frc_’m th? C(?um_' The Cor_reSpondirﬁ.&iIi/ufr:]orlrrl1 the fI:ct ’th?;\rt] the ?Jeltner‘ranpiﬁgn? :;Cﬁngﬁec?egﬂfag gtglsumnoisoleaced
conditional (empirical) probability distribution is defined as by the sum of all the columns. Clearly, states for whigh (T") =0 do not
affect the independence of the cofactors on statesuch thatn,/, (7") > 0.

nsa(u) 2The ratio of cofactors may be expressed in closed form in some simple
nS*(u) cases (e.g., first order binary Markov sources).

B \IJT(a) (Ud)

W t-i-d—l7 t—1
t (a|x Y ) \I/T(O'd)

Py(alsi_1). (11)

Pu(als) =



where the expectation is with respect to the distribution  Equation (14) then follows by observing that

n—1
1 n—1
_ _ _ _ 1
Pr{S=sZ=2} = [n > Pr{S;=s}| P(als) ST Ps)P(sls) = =33 Pr{S; = s}P(s']s)
=0 ses " esi=o
SGS,ZGAd. (13) 1 n
_ - _
Furthermore, T on ; Pr{Si =} 0
1 * n n — / . . . T
—HI (YT T4l = Elog |T7| — Elog|T7|  (14)  Notice that the source is started at a given initial state,

a(rj:d therefore may not be in stationary mode. However, for
n . . . .

a stationary chain, a8 — oo, the expectations on the right-
hand sides of (12) and (14) in Theorem 2 are governed, by (13)

where the first expectation is as in (13) and the seco
expectation is with respect to the distribution

" and (15), by the stationary mode 6%

Pr{S' =52 =2} = [1 ZPr{St =s'}| P(Z'|s'), (13). by Y
n
t=1 . .
C. Asymptotic analysis
J €S, 7 e AT (15) ymp y

Proof. Since W;(-|x,y) depends omnx only throughTy we Next, we study the asymptotic behavior of the (normalized)
have mutual information achieved by the optimal scheme, namely

. de1 o1y [H(X™)—H*(Y"|X"*+4=1)]/n (asX™ andY™ have the same
H™ (Y| X YY) = distribution), as! grows. For the i.i.d. families for whict,(-)
> > PEHW(xy) Y W (ylx) coincides with the ML probability estimate, by Equation (12)
YEAt—1 Ty eTd+t-1 €T in Theorem 2, the mutual information is the difference between
_ Z Z P(y) Z P(als) T3] H(Qyx(")) the entropy ofn-tgp[es andn times the expected entropy
of the ML probabilities computed ovel-tuples. After nor-
malization byn, this difference is the expected divergence
where the last equality follows from Lemma 1, fromhetween the actual distribution and the ML distribution (over

SES yist-1=$ TzeTd

Typiva-1\ye—1 =Tz, and from (10) and (9). Thus, d-tuples), which is shown in [17] to approad — 1)/(2d)
H* (Y, Xt yt=1y = asymptotically, agl grows. In contrast, consider the following
straightforward adaptation of the (non-sequential) simulation
ZPY{Stfl = s} Z P(z|s)H(Qs.a(")) - scheme of [8] to the delay-limited setting: Upon observing
€S ze A zf and outputtingy“~14, ¢ > 1, the delay—limited scheme

Equation (12) then follows from the chain rule of conditionabutputs a randomi-tuple of type T ca\,«-1a. Clearly, this
entropies and the independencelgffrom X,.;, ¢ > d. To blockwise scheme satisfies the delay constraint, and by the

prove Equation (14), we denoteP, (s) = S7— Pr{S; = s} results in [8] it achieves normalized mutual information which
and further write is O((logd)/d).
. T2 For i.i.d. families such that),(-) differs from the ML

nEH(Qsz) = Y _ Pu(s) Y. P(zls) > |T5,] logm probability estimates, the above asymptotic analysis does not

s€S TseTd a€A =\" apply. Here, under mild assumptions @ the asymptotic

= Elog|Ty| - an(s) Z P(z]s) expansion presented in [8, Equation (A4)] states that
- e FElog|Tz|=dH Kll 27d Kl
STl log Tl (16) 08 [Tl = d 1T = =~ log(2md) = 5 log e

acA 1
NP | | — 5 logldet M (P)] + o(1)
Denoting with A(s) the summation ove¥; in (16), we then 2

have where K is the number of parameters definifg, K’ is

A(s) = Z P(a|s) Z p(z/\g(s,a))|ng,(sva)| 10g|Tzf{(S»“)| the lattice dimension of the type classesl for(in the most
common casedy’ = K, see [8]), andV/(P) is the covariance

acA 79050 cd—1 . . .
z , . matrix evaluated forP. Thus, we can use Equation (14) in
=Y P(sls) > P(|s)|Ty | log|Ty| Theorem 2 to conclude that
s'eS TZS// cTd—1 1 K
I = n nt+d—1\ _ -
which, together with (16), implies H——H ("X )= 5 log d—1 +o(1). (17

nEH(Qsz) = Elog|TF| — Y Y P(z|s')log|T;/| Observe that even though we have[d/(d — 1)] = O(1/d),
s'€S /e Ad—1 the asymptotic behavior of the mutual information can be
an(s)p(sqs). dominated by theo(1) term in (17). Thus, the asymptotic

ses expansion of [8] is not accurate enough to obtain the result.



An O(1/d) vanishing rate can also be obtained in the case IV. ARBITRARY REQUEST SCHEDULES

P = Fg,5, for an irreducible chaiﬁ..The key observation is  The sequential, delay—limited simulation problem discussed
that the ratio of cofactors in Equation (11), which is used &, far can be generalized to include, as particular cases, the
compute EH (Qs,z), equalsl + O(1/d) for those types in «patch” setting of [8], as well as a setting in which the rate
which no,(z) = ©(d) wheneverP(alo) > 0 (namely, for of production of output samples is smaller than the rate of
all allowable transitions). T_he reason is that_ the matrices &nsumption of training samples. In the generalized setting,
the numerator and denominator differ only in rawby an 5 ;ser requests random symbols according to sarbirary
O(1/d) term for such types, and we can expand the cofactfshedule, with the only constraint that at any time the total
(which, as shown in the proof of [18, Lemma 3], are bound&g;mper of requested symbols cannot exceed the number of
away from 0 for such types) by this row. After standardyaining symbols observed so far. To this end, the simulation
manipulations involving typicality arguments, we then obtaigcheme has access to a supply of key bits that are delivered on
EH(Qsz) = EH(Pz(-|8)) + O(1/d). demand, as needed. L&{x) denote th_e Ie_ngth of the training
sequence already observed at the tileis requested. The
Using the generalization to Markov sources of the resulisstantaneousielay d; is then defined ag; = ¢;(x) —t +1,
in [17], given in [19], it can be seen that the normalized mutuahd the schedule is given Hyl,}. Thus, we view this setting
information still vanishes at a®(1/d) rate in this case. as one of varying delay; in the setting discussed so far, we
haved, = d for all ¢, whereas in the batch case with training
sequence™, dy=m—t+1,1 <t <n. The optimal scheme
As discussed in Section F/*(Y"|X"*9"") is essentially for this setting turns out to be a straightforward generalization
the expected number of key bits consumed by the optimg {1y/+}, in which a symbol requested after observationof

scheme per output symbol. For some sample paths, howegfg following the output of; is drawn with probability
the number of key bits may be unbounded, and a hard

limit on the key length (resulting in a deviation from the Wi(alx,y) = Loyl , a€A.
target distributionWW*) would affect exact preservation of Tevy |

the probability law. This behavior differs from the schemesg prove this result it suffices to follow the proof of Theorem 1
proposed in [8], for which a suboptimal implementation oferpatim but with x € A% (). Following againverbatimthe
the target distribution affects the mutual information, but n@§roof of Equation (12) in Theorem 2, witl replaced byd,,

the output probability law. Such a behavior is achieved in [$he corresponding conditional entropy in the FSM case takes
by use of the randomness in the input sequeriteso that the form

the probability law is preserved for amyiven value of the el
key. The question of whether a similar idea can be used ﬁ'*(Y”|Xm) _ ZZPY{& = s} Z P(z)8)H(Qs.) -
the delay—limited setting remains open. However, win = iy '

is the entire class of i.i.d. sources ovd; a delay-limited (18)
simulation scheme exists that still achieves normalized mut@early, ford, = m—t+1, this scheme is equivalent to drawing
information which isO(1/d) while satisfying Condition C1 a sequence uniformly at random frofx» and selecting its
and requiring a limited budget of key bits fall sample prefix of lengthn. Thus, it indeed coincides with the scheme
paths. The reason is that, as observed in Equation (1), glbposed in [8] for batch simulation with an unlimited budget
the probabilities can be written as rational numbers with of key bits, and its conditional entropy takes the form

in the denominator. Thus, ifl is a power of2, the Elias

decoder will always terminate after a finite number of input H*(Y"|X™) = Elog[Txm| — Elog |Txm\yn|

key bits [1]. Now, for an arbitraryl, using {W;} with delay \yhich in the FSM case further reduces to
limitation d’, whered' is the largest power df not larger than

d, clearly definesq fortiori) a simulation scheme with delay H*(Y"|X™) = Elog|Txm| — Elog T3 .

Iimitatio_n d. Sin_ce Q.d/ =~ d, it follows that the normalized where the second expectation is with respect to the distribution
mutual information is stillO(1/d). IPr{S — 5,7 — 7} — Pr{S, — s} P(2]s)

: While, alls r;foted, ha hard limit on th_e keyf Ierr:gth Wg Another interesting request schedule is given by the case in
In general & ect the exact _preservatmn of the PrOb&hich, after an initial delayl, each request of a block of
b||_|ty law, by [5], the probability that the scheme W|IIS mbols,0 < r < d, is followed by the observation af new

fail to produce the requested sequence after processm/gning symboEg > 7. The ratiog/r will be denoted byp

H * n n+d—1 i
/]z k% g'}lsxlifd{fl (ﬁ_h|X o ), dbect?lys with. expgnent (p > 1), and will be referred to as thetio of the simulation
— H*(Y"| ). Thus, with probability one it pro uces ¢ home. Clearly, in this case,
an output. P
b(z) =q—] +d.

3If necessary for the chain to remain irreducible, we will assume that certain r

transition probabilities must be positive. Thii8,may not be the entire class Th totic behavi fth lized tual inf fi
Fg,s0, but the parameter spaéis still assumed to be rich enough for the € asymptotic benavior or the normalized mutual infrormation

types to be defined by the sequence composition with respect to I*(X™,Y"™)/n achieved by the optimal scheme in this case

D. Key rate




(wherem = ¢, (z)), whenn — oo andP is the entire class Since f(0) <r/(d—r+1) and is independent of, it then
of i.i.d. sources over4, is studied in the Appendix. Since,suffices to study the asymptotic behavior of the integral

by (18), we have

in (A.4), which grows without bound as — oo. Clearly,

n r r
N — < <
r(xXm vy = S B[H - 1) (19) G=—nurd T ourari=r
t=1 implying
where H denotes the source entropy adfi denotes the Ln/7] 1 rln/r|
(normalized) empirical entropy af;-tuples, andi; ~ (p— 1)t /0 f(u)du < P In {1 tl-1- o= n J (A.5)
in this case, th€®(1/d;) asymptotic behavior off — EH; [17]
: : . .0 and
suggests that the normalized mutual information will be n/rl
O((logn)/n). The analysis in the Appendix indeed shows that f(u)du > 1 In [1 t(p-1)- W’b/rw (A.6)
“p—1 d
1 Al-1 —1 0 r
gI*(X’”;Y") ~ 2|(p|_1)nlog {14— (pd)n} (20) Equation (20) then follows from (19), (A.2), (A.4), (A.5),

where it is assumed that>>r andn — oo. It is interesting
to notice that (20) also captures the= 1 regime, which can
be seen as a particular case by lettmng- 1, in which case

we obtain ) A1
EI (X™Y") ~ g [1]
as expected.
(2]
APPENDIX
In this appendix, we analyze the asymptotic normalize?’
mutual information achieved by the optimal scheme in the
setting in which the simulation ratip is larger thanl, when 4l
P is the entire class of i.i.d. sources ovédr Since

t—1

[5]
QLTJ‘Fd*t‘Fl

(6]

dy (A1)

and d,(H — EH,) tends to(JA| — 1)(loge)/2 asd;, — oo

(see [17] and [19, Proposition 5.2] therein), then for giverjz

e > 0 and sufficiently large we have

(I1-¢)(JA] —1)loge
2d;

(I1+e)(A —1)loge
2d;

<H-EH, < (8]

(A.2)
(alternatively, we can assume thats large enough for (A.2)
to hold for all t). Since (A.2) holds for all but finitely many
values oft and we are interested in the asymptotic behavi6l
of I*(X™,Y™)/n, it suffices to study the asymptotic behavior
of 1 ,(1/d,) asn grows. Clearly, [11]

El

[n/r]=1 »r 1 nq ln/r| . 12

d. A.3
LS e
(14]

where, by (A.1),diy+;=(¢ — r)i+d—j+1. Now, let f(7)
denote the inner summation in the rightmost side of (A.3}s
Since f(z) is non-increasing withi, we have, for all nonneg-

ative integersy, (16]

(17]

N+1 N . N
/0 Fudn <370 < 50+ / f(w)du.

Therefore, by (A.3),

[n/r) " Ln/r)
| rwe< SRR | e @a

(18]

(19]

(A.6), and fromd >>r.
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