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Abstract— Universal, delay–limited simulation of an unknown
information source of a certain parametric family (e.g., the family
of memoryless sources or Markov sources of a given order), given
a training sequence from that source and a stream of purely
random bits, is considered. In the delay–limited setting, the
simulation algorithm generates a random sequence sequentially,
by delivering one symbol for each training symbol that is made
available after a given initial delay, whereas the random bits
are assumed to be available on demand. The goal of universal
simulation is that the probability law of the generated sequence
be identical to that of the training sequence, with minimum
mutual information between the random processes generating
both sequences. In this paper, the optimal universal delay–limited
simulation scheme is characterized, and an upper bound on the
expected number of random bits it consumes is presented. As
in the non-sequential case, the upper bound is related to the
entropy rate of the source. The results are extended to a setting
of variable delay.

Index Terms:Random number generators, random process
simulation, universal simulation, mutual information, method
of types, enumeration.

I. I NTRODUCTION

Simulation of random processes is about artificial generation
of random data with a prescribed probability law, by using a
certain deterministic mapping from a source of purely random
(independent, equally likely) bits into sample paths. The sim-
ulation problem finds applications in speech and image syn-
thesis, texture reproduction, generation of noise for purposes
of simulating communication systems, and cryptography.

The simulation problem of sources and channels has been
investigated by several researchers, see, e.g., [1], [2], [3], [4],
[5], [6], [7]. In all these works, the common assumption is
that the probability law of the desired process is perfectly
known. Recently, universal versions of this problem were
studied in [8], [9], [10], and [11]. In [8],[9], the assump-
tion of perfect knowledge of the target probability law is
relaxed. Specifically, the target sourceP to be simulated is
assumed to belong to a certain parametric familyP (like
the family of finite–alphabet memoryless sources, Markov
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sources of a given order, parametric subsets of these families,
etc.) but is otherwise unknown, and a training sequence
xm = (x1, . . . , xm) that has emerged from this source is
available. In addition, the simulation scheme is provided with
a stream ofk purely random bitsuk = (u1, . . . , uk) that are
statistically independent of the training sequence. The goal of
the simulation schemes in [8], [9] is to generate an output
sequenceyn = (y1, . . . , yn), n ≤ m, corresponding to the
simulated process, such thatyn = φ(xm, uk), whereφ is a
deterministic function that does not depend on the unknown
sourceP , and which satisfies the following two conditions:

C1. The probability distribution of the output sequence is
exactlythen-dimensional marginal of the probability law
P corresponding to the training sequence for allP ∈ P.

C2. The mutual information between the training sequence
and the output sequence is as small as possible (or
equivalently, under Condition C1, the conditional entropy
of the output sequence given the training sequence is as
large as possible), simultaneously for allP ∈ P (so as to
make the generated sample path as “original” as possible).

In [8], the smallest achievable value of the mutual information
as a function ofn, m, k, and the entropy rateH of the source
P is characterized, and simulation schemes that asymptotically
achieve these bounds are presented. It is shown in [8] that in
order to satisfy Condition C1, it is necessary that the output
yn be a prefix of a sequenceyn having the sametype [12]
asxm with respect toP (whenP is the entire class of i.i.d.
sources over a finite alphabet, this means thatxm and ym

have the samecomposition, namely yield the same empirical
distribution [13]). Moreover, it is shown that fork large
enough, the optimal simulation scheme essentially takes the
first n symbols of a randomly selected sequence of the same
type asxm.

In [10], the goal was to characterize the minimum key
rate required in order to generate a collection ofN output
sequences{(ym)i}N

i=1, all governed by the same probability
law as the given training vectorxm, such that a certain,
prescribed set of statistical tests would be satisfied. In [11],xm

is assumed to be an individual sequence not originating from
any probabilistic source. Simulation in this setting is based on
an extension of the conventional notion of type, referred to
in [11] as auniversal type.

In this paper, we investigate the universal simulation prob-
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lem, as stated in [8], in a sequential, delay–limited setting.
In this setting, upon observing an initial training(d− 1)-
tuple xd−1, whered is some fixed initial delay, the simula-
tion scheme is requested to output one symbolyt for every
additional symbolxt+d−1 it observes,1≤ t≤n. Thus,yt is
a (randomized) function ofxt+d−1 but, unlike in [8], not of
xt+d+i, i ≥ 0. In order to generate an output sequence satis-
fying conditions C1–C2 (withm =n + d− 1), the simulation
scheme has also access to a stream of purely random bits{ui}
(the key), which are available “on demand.” This assumption
differs from the setting in [8] in that there is no fixed budget
of key bits; rather, as in [5] and [11], we will be interested
in the expectednumber of key bits that the scheme consumes
in order to generate its output, where, here, the expectation is
with respect to{ui} andP . Thus, a delay–limited simulation
scheme is given by a sequence of conditional probability
distributions{Wt(yt|xt+d−1, yt−1)}. It is well known (cf. [5])
that a corresponding sequence of draws can be implemented
with an Elias decoder [14, pp. 479–482]. To outputyt, the
Elias decoder is tuned to the distributionWt(·|xt+d−1, yt−1),
and uses the random bitstream as its input. As shown in [5],
the expected number of key bits that the decoder consumes to
(sequentially) produceyn is upper-bounded by the conditional
entropy of the resulting product distributionW (yn|xn+d−1),
plus 3 bits (see [11] for algorithmic details).

A special, trivial case of the delay–limited universal simula-
tion problem is obtained when pure sequentiality is required,
namely when the allowed delayd is 1, andP is the entire
class of i.i.d. sources over a finite alphabet. In this case, due
to the constraint thatyn must be of the same type asxn in
order to satisfy Condition C1, the simulation scheme can only
copy the input, and therefore the conditional entropy of the
output sequence given the training sequence, vanishes. Thus,
the problem becomes interesting asd grows.

As it turns out, for a broad class of familiesP, the
optimal simulation scheme that preserves the probability law
(Condition C1) while minimizing the mutual information
simultaneously for allP ∈ P (Condition C2), takes a form
that is reminiscent of an enumerative sequential decoding
scheme [15] in which the enumerated set varies as the training
data becomes available. For example, whenP is the entire
class of i.i.d. sources over a finite alphabet, the simulation
scheme draws a symbola at time t with probability equal
to the empirical probability ofa in any d-tuple zd such that
yt−1zd andxt+d−1 have the same composition (it is easy to
see, by induction, that such a sequencezd will always exist).
In other words, for any symbola we have

Wt(a|xt+d−1, yt−1) =
na(xt+d−1)− na(yt−1)

d
(1)

wherena(v`) denotes the number of occurrences of a symbol
a in an `–vectorv`. The distribution assigned by the scheme
is precisely the one that an enumerative decoder would use
to decodeyt sequentially, given thatyt+d−1 has the same
composition asxt+d−1. The corresponding conditional en-
tropy of the output sequence given the entire training sequence,

which upper-bounds (up to an additive constant) the expected
key length required for implementing the scheme, equals,
after normalization by the number of output symbols, the
expectation underP of the empirical entropy ofd-tuples (and
is therefore independent ofn andm). By [17], this expectation
falls short of the entropy rateH by an O(1/d) term. Since,
by Condition C1, the entropy of the output vector is the same
as the entropy of a training vector of lengthn, this term is
precisely the normalized mutual information between the input
and the output. The above results are actually special cases of
those to be presented in Section III for more general parametric
families of sources with memory.

In the remainder of this paper, Section II introduces the main
concepts and notation. Our main results are then presented
in Section III, and extended to the case of arbitrary request
schedules (encompassing also the “batch” simulation case) in
Section IV.

II. N OTATION AND PROBLEM FORMULATION

Throughout the paper, random variables will be denoted by
capital letters and specific values they may take will be denoted
by the corresponding lower case letters. The same convention
will apply to random vectors, with an additional superscript
denoting their dimension. Thus,xm, yn, anduk will denote
specific vector values of the random vectorsXm, Y n, andUk,
respectively. If the dimension is omitted, random vectors will
be denoted in bold. A generic parametric family of sources
will be denoted byP, and a particular source inP, defined
by a parameter vectorθ taking values over some parameter
spaceΩ, will be denoted byPθ. However, in a context where
the parameter value is either fixed or irrelevant, we will omit
it, denoting a source inP simply by P . The (finite) source
alphabet is denoted byA.

A finite-state machine (FSM) over a finite state setS will
be identified with its next-state functiong : S × A → S,
and will be assumed to start at a given initial states0 ∈ S.
A parametric family to which we will refer frequently as an
important particular case is the classFg,s0 of all FSM sources
overA driven by the next-state functiong, starting at states0,
with the parameters given by the transition probabilities. Thus,
if P is a parametric subfamily ofFg,s0 andt is a given positive
integer, the probability of at-vector xt = (x1, x2, . . . , xt)
drawn fromP ∈ P, xi ∈ A, i = 1, . . . , t, is given by

Pr{Xi = xi, i = 1, . . . , t} =
t∏

i=1

P (xi|si−1)
4
= P (xt)

where s0, s1, . . . , st−1 ∈ S denotes the sequence of states
assumed by the FSM. We shall define thetype class[12] Txm

of a vectorxm as the set of all vectors̃xm ∈ Am such that
P (x̃m) = P (xm) for everysourceP ∈ P. The set of all type
classes of vectors inAm will be denoted byT m. For example,
in caseP = Fg,s0 (or if P is a subclass ofFg,s0 that admits
the sameminimal parametrization as the entire classFg,s0 ,
but for which Ω is a subset of the entire space),Txm is the
set of all vectors having the same composition asxm with
respect tog [12], [13] (i.e., each state transition occurs as
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many times inx̃m ∈ Txm as in xm, starting from states0).
Given another sequenceyn ∈ An, n ≤ m, r = m − n, let
Txm\yn = {zr ∈ Ar : ynzr ∈ Txm}, which is interpreted as
a “difference type.” Notice that forr = 0, A0 = {λ} (where
λ denotes the null string),|A0| = 1, and thus|Txm\ym | = 1
if Txm = Tyn and0 otherwise. For a family of FSM sources,
if the initial state is not assumed to bes0 but a generic state
s ∈ S, the type ofxm and the difference type will be denoted
T s

xm and T s
xm\yn , respectively. We will reserve the notation

s0, s1, . . . , sn to denote the state sequence over which the FSM
evolves withyn. Notice that for any sequencezr ∈ Txm\yn ,
we haveTxm\yn = T sn

zr .
The probability of every type classT ∈ T m is given by

Pθ(T )
4
=
∑

x̃m∈T

Pθ(x̃m) = |T | · Pθ(xm) (2)

wherexm is a sequence inT and, throughout,|T | denotes the
cardinality of T . Next, given some enumeration ofT m, let
T (1), T (2), . . . , T (|T m|) denote the corresponding type classes.
For each j, 1 ≤ j ≤ |T m|, Pθ(T (j)) can be regarded
as a function of the parameter vectorθ defining Pθ ∈ P.
Following [8], we will assume that the class of sourcesP
satisfies the following assumption:
A1. The set{Pθ(T (j))}|T

m|
j=1 (as functions ofθ ∈ Ω) is linearly

independent overR.
As shown in [8], Assumption A1 is satisfied for a broad

class of parametric families, including any i.i.d. exponential
family for suitableΩ, or any familyFg,s0 .

A simulation scheme with delay limitationd and horizon
n consists of a sequence of conditional probability distribu-
tions{Wt(yt|xt+d−1, yt−1)}n

t=1, wherexn+d−1 is the training
sequence andyn is the output. To generate a sequence of
draws yn distributed accordingly, it will be assumed that a
stream{Ui} of purely random bits, independent ofXn+d−1,
is available on demand. The resulting conditional distribution
on yn, which is regarded as a channel, will be denoted by
W (yn|xn+d−1), namely

W (yn|xn+d−1) =
n∏

t=1

Wt(yt|xt+d−1, yt−1) . (3)

In the sequel, we alternate freely between the simulation
scheme{Wt} and the corresponding channelW , referring to
{Wt} when the emphasis is on sequentiality, and toW when
we discuss “batch” properties of the channel.

The conditional entropy achieved by the channelW with
the input sourceP will be denotedH(Y n|Xn+d−1). Finally,
let I(Xn+d−1;Y n) denote the mutual information between
Xn+d−1 and Y n that is induced by the sourceP and the
channelW . We seek a delay–limited simulation scheme that
meets conditions C1–C2 that were itemized in Section I, for
m =n + d− 1.

III. M AIN RESULTS

A. The general case

We first state a necessary and sufficient condition for any
simulation scheme (not necessarily with a delay limitation) to

satisfy Condition C1. Here, a simulation scheme is simply a
channelW (yn|xm), m ≥ n.

Lemma 1:AssumeP satisfies Assumption A1. Then, a
channel W satisfies Condition C1 if and only if for all
sequencesx ∈ Am andy ∈ An we have∑

x̃∈Tx

W (y|x̃) = |Tx\y| . (4)

Proof. Clearly, Condition C1 is satisfied if and only if for all
y ∈ An andP ∈ P we have∑
x∈Am

P (x)W (y|x) =
∑

Tx∈T m

P (x)
∑
x̃∈Tx

W (y|x̃) = P (y) .

Now,

P (y) =
∑

z∈Am−n

P (yz) =
∑

Tx∈T m

P (x)|Tx\y|

where the last equality follows from the fact that each type
Tx contains|Tx\y| sequences prefixed byy. Therefore, Con-
dition C1 is satisfied if and only if∑

Tx∈T m

P (x)

[
|Tx\y| −

∑
x̃∈Tx

W (y|x̃)

]
= 0 .

The claim then follows from Assumption A1.

Notice that Lemma 1 implies that a simulation scheme
satisfying Condition C1, when trained with a sequencex, can
only output sequencesy such thatTx\y is nonempty. In other
words,y must be a prefix of a sequence inTx; in [8], such
a sequencey is said to befeasiblewith respect tox. Now,
a simulation scheme with delay limitationd and horizonn
defines a sequence of simulation schemes that outputyt with
training dataxt+d−1, 1≤ t≤n. Clearly, these reduced-horizon
schemes preserve the probability law if so does the scheme
with horizon n, and therefore also satisfy Condition C1. It
then follows thateveryprefix yt of yn must be feasible with
respect toxt+d−1.

Our main result states that the optimal simulation scheme
with delay limitationd and horizonn, in the sense of minimiz-
ing the mutual informationI(Xn+d−1;Y n) simultaneously for
all P ∈ P among schemes that preserve the probability law
(and, therefore, satisfy the condition (4)), is given by

W ∗
t (yt|xt+d−1, yt−1) =

|Txt+d−1\yt |
|Txt+d−1\yt−1 |

. (5)

Equation (5) indeed defines a conditional probability distri-
bution onA since, for any pair of sequencesx and y, the
definition of a difference type implies that

⋃
a∈A Tx\ya =

Tx\y. Specifically,W ∗
t (a|xt+d−1, yt−1) is the fraction of se-

quences inTxt+d−1\yt−1 starting witha. For the scheme (5) to
preserve the probability law, we need the following additional
assumption onP:

A2. If Ty1 = Ty2 then for everyx we have|Tx\y1
| = |Tx\y2

|.
Notice that this assumption holds trivially in the i.i.d. case,
since in this caseTx\y depends ony only through its type.
For a general FSM class,Tx\y may also depend on the final
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state to which the FSM evolves withy. However, ifP is a
classFg,s0 parametrized by the transition probabilities, then
the assumption still holds since, in this case, two sequences
y1 andy2 of the same type bring the FSM to the same final
state (as the number of transitions between any pair of states
is the same for both sequences, with the initial and final states
being the only ones for which the nodes in the underlying
graph may have an outgoing degree which differs from the
incoming degree).

The conditional entropy achieved by the channelW ∗,
derived from (5) as in (3), will be denotedH∗(Y n|Xn+d−1).
We have the following optimality result for the delay–limited
simulation scheme{W ∗

t }.
Theorem 1:AssumeP satisfies assumptions A1 and A2.

(a) The channelW ∗ satisfies Condition C1.
(b) For any simulation scheme{Wt} with delay limitationd

that satisfies Condition C1 we have

H(Y n|Xn+d−1) ≤ H∗(Y n|Xn+d−1) (6)

with equality if and only if{Wt} = {W ∗
t }.

Proof. Part (a) follows from showing, by induction inn, that
the simulation scheme satisfies the condition (4) of Lemma 1.
For n = 1 we have, for anyx ∈ Ad andy ∈ A,∑

x̃∈Tx

W ∗(y|x̃) =
|Tx\y|
|Tx|

· |Tx| = |Tx\y| .

Assume now that the condition holds forn = t − 1 and, for
y ∈ At, let y = y′a, a ∈ A. Then, for anyx ∈ At+d−1,∑

x̃∈Tx

W ∗(y|x̃) =
∑
x̃∈Tx

W ∗(y′|x̃)
|Tx̃\y|
|Tx̃\y′ |

=
|Tx\y|
|Tx\y′ |

∑
x̃∈Tx

W ∗(y′|x̃) (7)

where the second equality follows from the fact that the
difference types depend oñx only through its type. To evaluate
the summation on the right-hand side of (7), we first notice
that W ∗(y′|x̃) is independent of the last symbol ofx̃. Thus,
we consider the multiset of sequences obtained by deleting
the last symbol of each̃x ∈ Tx. By Assumption A2, two
sequences of the same type in this multiset can be extended
in the same number of ways to obtain sequences inTx.
Thus, the summation can be broken into a number of partial
summations, each over an entire type inT t+d−2, to which
the induction hypothesis can be applied. As a result, each
partial summation equals the number of sequencesz such that
y′z ranges over the corresponding type inT t+d−2. Adding
these partial contributions, we obtain|Tx\y′ |, which by (7)
completes the induction step.

As for Part (b), for any simulation scheme{Wt} and any
t ≥ 1, we have

H(Yt|Xt+d−1, Y t−1) =∑
y∈At−1

∑
Tx∈T t+d−1

∑
x∈Tx

P (x)W (y|x)H(Yt|x,y).

If W preserves the probability law then it does so for
all horizons t, 1 ≤ t ≤ n, and also for the marginals.
Thus, by Lemma 1, we have

∑
x∈Tx

W (y|x) = |Tx\y| =∑
x∈Tx

W ∗(y|x) (asW ∗ also preserves the law). By Jensen’s
inequality we then have

H(Yt|Xt+d−1, Y t−1) ≤∑
y∈At−1

∑
Tx∈T d+t−1

P (x)

[ ∑
x∈Tx

W ∗(y|x)

]

H

(
1

|Tx\y|
∑
x∈Tx

W (y|x)Wt(·|x,y)

)
(8)

with equality if and only if Wt(·|x,y) depends onx only
throughTx. Again by Lemma 1, the argument of the entropy
function is |Tx\yyt

|/|Tx\y|, which is preciselyW ∗
t (yt|x,y),

so the right-hand side of (8) isH∗(Yt|Xt+d−1, Y t−1). Equa-
tion (6) then follows by the chain rule of conditional entropies
and the independence ofYt from Xt+i, i ≥ d, for both{Wt}
and {W ∗

t }. To complete the proof, it suffices to show that
{W ∗

t } is theonly law-preserving scheme that, for everyt≥ 1,
depends onx only throughTx. To this end, let{Wt} be any
such scheme. Then, withy = y′a, a ∈ A, y ∈ At, and
x ∈ At+d−1, we have

|Tx\y| =
∑
x̃∈Tx

W (y|x̃) =
∑
x̃∈Tx

W (y′|x̃)Wt(a|x̃,y′)

= Wt(a|x,y′)
∑
x̃∈Tx

W (y′|x̃) = Wt(a|x,y′) |Tx\y′ |

where the first and the last equalities in the above chain
follow from Lemma 1, and the third equality follows from
the assumed property of{Wt}. Therefore,

Wt(a|x,y′) =
|Tx\y|
|Tx\y′ |

= W ∗
t (a|x,y′) .

Notice that the simulation scheme{W ∗
t } is strictly optimal

for everyvalue ofn, and not merely in an asymptotic sense.
Moreover, the simulation scheme is horizon-independent, and
therefore it also minimizesI(Xt+d−1;Y t) and preserves the
probability law forY t for all t ≥ 1.

For an intuitive interpretation of{W ∗
t }, observe that a

draw of a sequencev1, v2, · · · , vd uniformly at random from a
given set can be implemented sequentially by simply draw-
ing each symbolvi according to the distribution given by
the fraction of the sequences in the set which start with
v1, v2, · · · , vi (as v1, v2, · · · , vi−1 is already available at the
time of the i-th draw). Now, sinceW ∗

t (a|xt+d−1, yt−1) is
the fraction of sequences inTxt+d−1\yt−1 which start with
a, thenW ∗

t (·|xt+d−1, yt−1) is the distribution that a scheme
drawing uniformly at random fromTxt+d−1\yt−1 would assign
to the first draw. In our delay–limited setting, however, a
new symbolxt+d is observed after this draw, thus renewing
the process. In other words, the scheme aims at outputting
a random sequence with the same type as the input, as the
latter becomes sequentially available. Another interpretation is
thatW ∗

t (·|xt+d−1, yt−1) is the distribution that an enumerative
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decoder would use to decodeyt sequentially, given thatyt+d−1

has the same type asxt+d−1.

B. The optimal scheme in the i.i.d. and FSM cases

To investigate the optimal scheme for an FSM family, it
is convenient to define, for a given states ∈ S and a given
sequencez ∈ Ad, a probability distributionQs,z(·) onA given
by the fraction of sequences inT s

z that start witha, namely

Qs,z(a) =
|T s

z\a|
|T s

z |
, a ∈ A (9)

(in the i.i.d. case, the distribution will be denotedQz(·)).
Clearly,

W ∗
t (yt|xt+d−1, yt−1) = Qst−1,z(yt) (10)

for any sequencez in T
st−1

xt+d−1\yt−1 , where we recall thatst−1

denotes the state to which the FSM evolves withyt−1. In
particular, applying the law preservation property toW ∗

1 , we
have ∑

z∈Ad

P (z|s)Qs,z(a) = P (a|s) , a ∈ A, s ∈ S .

Therefore,Qs,z(·) is a consistent estimate ofP (·|s).
When P is a class of i.i.d. sources overA with the

parameters given by the symbol probabilities, the size of
a type is given by a multinomial coefficient [13], and the
ratios definingQz(·) take the form (after cancellation of
terms) of the empirical probability ofa in z, as given in
Equation (1), making the computation of the optimal scheme
practical. The fact that the estimateQz(·) coincides with the
maximum-likelihood (ML) probability holds for more general
i.i.d. subfamilies (e.g., a subfamily of “symmetric” discrete
sources for which symbols are grouped by pairs, with both
symbols in a pair having the same probability). However, there
exist simple exponential families for whichQz(·) differs from
the ML probability estimate.

WhenP = Fg,s0 (or P is a subclass ofFg,s0 that admits
the sameminimalparametrization as the entire classFg,s0 , but
for which Ω is a subset of the entire space), the computation
of W ∗

t in (10) reduces, by (9), to computing the ratio between
the size of an FSM-type class inT d−1 (with initial state
g(st−1, a)), and the size of an FSM-type class inT d (with
initial statest−1), by application of Whittle’s formula for the
type size [16]. To state this formula we introduce some further
notation.

Let nsa(u) denote the number of occurrences of symbol
a ∈ A at states, in a sequenceu, where (to simplify the
notation) the initial state will be understood from the context.
Similarly, let nss′(u) (where symbola has been replaced by
states′) denote the number of transitions from states to state
s′ in u. Further, letns∗(u) =

∑
a∈A nsa(u) =

∑
s′∈S nss′(u)

denote the number of occurrences of states, excluding the
occurrence of the final state from the count. The corresponding
conditional (empirical) probability distribution is defined as

P̂u(a|s) =
nsa(u)
ns∗(u)

for any states such thatns∗(u)> 0. Since all these counts
are invariant over the type classes ofFg,s0 , we may abuse
the notation by replacing the argumentu with its typeT . For
a type classT , let ΦT denote the matrix whose rows and
columns are labeled by the states inS, such that the(s, s′)
entry is the countnss′(T ). Let ΨT denote the matrix obtained
by subtractingΦT , after normalizing every non-zero row, from
the |S| × |S| identity matrix, namely

ΨT
ss′ = δss′ −

nss′(T )
ns∗(T )

if ns∗(T ) > 0, andΨT
ss′ = δss′ otherwise, whereδss′ denotes

the Kronecker delta function. It can be shown that all entries
(s, s′) such thatns′∗(T ) > 0, in a fixed rows of ΨT , have the
same cofactor, independently ofs′,1 which we denoteΨT (s).
Whittle’s formula states that

|T | = ΨT (σ) ·
∏
s∈S

ns∗(T )!∏
a∈A nsa(T )!

whereσ denotes the final state forT . Letting z denote any
sequence inT st−1

xt+d−1\yt−1 , for which the FSM assumes the
state sequenceσ0, σ1, · · · , σd (where σ0 = st−1 and the no-
tation emphasizes the distinction between this state sequence
and the sequences0, · · · , sn induced byyn), and denoting
T = T

st−1
z andT (a) = T

st−1

z\a , we then have, by (10) and (9),

W ∗
t (a|xt+d−1, yt−1) =

ΨT (a)(σd)
ΨT (σd)

P̂z(a|st−1) . (11)

The matricesΨT and ΨT (a) differ in row st−1. Therefore,
W ∗

t (a|xt+d−1, yt−1) will in general differ from the conditional
ML probability estimateP̂z(a|st−1), except whenst−1 = σd

(as all other rows coincide and the cofactors ignore rowσd). In
principle, each draw requires the computation of the cofactor
ΨT (σd). Clearly, if this cofactor is computed by expanding
the determinant along rowst−1, no further determinants need
to be computed to obtain the cofactorsΨT (a)(σd), a ∈ A.2

The achievable conditional entropyH∗(Y n|Xn+d−1)
(which, as discussed in Section I, also determines a bound on
the expected number of random bits consumed by the simula-
tor), on the other hand, admits a closed form expression when
P is a general subfamily ofFg,s0 , as shown in Theorem 2
below.

Theorem 2:AssumeP is a subfamily ofFg,s0 satisfying
assumptions A1 and A2. Then,

1
n

H∗(Y n|Xn+d−1) = EH(QS,Z) (12)

1Recall that the(s, s′)-cofactor is the determinant obtained by deleting row
s and columns′, with a sign change in case the sum of the row and column
indexes in an arbitrary order ofS is odd. Ifns∗(T ) > 0 for everys ∈ S, each
row-sum inΨT is 0, and the independence of the cofactors ons′ follows
easily from the fact that the determinant is unaffected if a column is replaced
by the sum of all the columns. Clearly, states for whichns∗(T )= 0 do not
affect the independence of the cofactors on statess′ such thatns′∗(T ) > 0.

2The ratio of cofactors may be expressed in closed form in some simple
cases (e.g., first order binary Markov sources).
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where the expectation is with respect to the distribution

Pr{S = s,Z = z} =

[
1
n

n−1∑
t=0

Pr{St = s}

]
P (z|s)

s ∈ S, z ∈ Ad . (13)

Furthermore,

1
n

H∗(Y n|Xn+d−1) = E log |TS
Z | −E log |TS′

Z′ | (14)

where the first expectation is as in (13) and the second
expectation is with respect to the distribution

Pr{S′ = s′,Z′ = z′} =

[
1
n

n∑
t=1

Pr{St = s′}

]
P (z′|s′) ,

s′ ∈ S, z′ ∈ Ad−1 . (15)
Proof. Since W ∗

t (·|x,y) depends onx only throughTx we
have

H∗(Yt|Xt+d−1, Y t−1) =∑
y∈At−1

∑
Tx∈T d+t−1

P (x)H(W ∗
t (·|x,y))

∑
x̃∈T

W ∗(y|x̃)

=
∑
s∈S

∑
y:st−1=s

P (y)
∑

T s
z∈T d

P (z|s) |T s
z | H(Qs,z(·))

where the last equality follows from Lemma 1, from
Txt+d−1\yt−1 = T

st−1
z , and from (10) and (9). Thus,

H∗(Yt|Xt+d−1, Y t−1) =∑
s∈S

Pr{St−1 = s}
∑
z∈Ad

P (z|s)H(Qs,z(·)) .

Equation (12) then follows from the chain rule of conditional
entropies and the independence ofYt from Xt+i, i ≥ d. To
prove Equation (14), we denotenPn(s) =

∑n−1
t=0 Pr{St = s}

and further write

nEH(QS,Z) =
∑
s∈S

Pn(s)
∑

T s
z∈T d

P (z|s)
∑
a∈A

|T s
z\a| log

|T s
z |

|T s
z\a|

= E log |TS
Z | −

∑
s∈S

Pn(s)
∑

T s
z∈T d

P (z|s)

∑
a∈A

|T s
z\a| log |T s

z\a| . (16)

Denoting withA(s) the summation overT s
z in (16), we then

have

A(s) =
∑
a∈A

P (a|s)
∑

T
g(s,a)
z′ ∈T d−1

P (z′|g(s, a))|T g(s,a)
z′ | log |T g(s,a)

z′ |

=
∑
s′∈S

P (s′|s)
∑

T s′
z′ ∈T

d−1

P (z′|s′)|T s′

z′ | log |T s′

z′ |

which, together with (16), implies

nEH(QS,Z) = E log |TS
Z | −

∑
s′∈S

∑
z′∈Ad−1

P (z′|s′) log |T s′

z′ |∑
s∈S

Pn(s)P (s′|s) .

Equation (14) then follows by observing that

∑
s∈S

Pn(s)P (s′|s) =
1
n

∑
s∈S

n−1∑
t=0

Pr{St = s}P (s′|s)

=
1
n

n∑
t=1

Pr{St = s′} .

Notice that the source is started at a given initial state,
and therefore may not be in stationary mode. However, for
a stationary chain, asn → ∞, the expectations on the right-
hand sides of (12) and (14) in Theorem 2 are governed, by (13)
and (15), by the stationary mode ofP .

C. Asymptotic analysis

Next, we study the asymptotic behavior of the (normalized)
mutual information achieved by the optimal scheme, namely
[H(Xn)−H∗(Y n|Xn+d−1)]/n (asXn andY n have the same
distribution), asd grows. For the i.i.d. families for whichQz(·)
coincides with the ML probability estimate, by Equation (12)
in Theorem 2, the mutual information is the difference between
the entropy ofn-tuples andn times the expected entropy
of the ML probabilities computed overd-tuples. After nor-
malization byn, this difference is the expected divergence
between the actual distribution and the ML distribution (over
d-tuples), which is shown in [17] to approach(A − 1)/(2d)
asymptotically, asd grows. In contrast, consider the following
straightforward adaptation of the (non-sequential) simulation
scheme of [8] to the delay–limited setting: Upon observing
x`d and outputtingy(`−1)d, ` ≥ 1, the delay–limited scheme
outputs a randomd-tuple of typeTx`d\y(`−1)d . Clearly, this
blockwise scheme satisfies the delay constraint, and by the
results in [8] it achieves normalized mutual information which
is O((log d)/d).

For i.i.d. families such thatQz(·) differs from the ML
probability estimates, the above asymptotic analysis does not
apply. Here, under mild assumptions onP, the asymptotic
expansion presented in [8, Equation (A4)] states that

E log |TZ| = d H − K ′

2
log(2πd)− K

2
log e

− 1
2

log[det M(P )] + o(1)

where K is the number of parameters definingP, K ′ is
the lattice dimension of the type classes forP (in the most
common cases,K ′ = K, see [8]), andM(P ) is the covariance
matrix evaluated forP . Thus, we can use Equation (14) in
Theorem 2 to conclude that

H − 1
n

H∗(Y n|Xn+d−1) =
K ′

2
log

d

d− 1
+ o(1) . (17)

Observe that even though we havelog[d/(d− 1)] = O(1/d),
the asymptotic behavior of the mutual information can be
dominated by theo(1) term in (17). Thus, the asymptotic
expansion of [8] is not accurate enough to obtain the result.
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An O(1/d) vanishing rate can also be obtained in the case
P = Fg,s0 , for an irreducible chain.3 The key observation is
that the ratio of cofactors in Equation (11), which is used to
computeEH(QS,Z), equals1 + O(1/d) for those types in
which nσa(z) = Θ(d) wheneverP (a|σ) > 0 (namely, for
all allowable transitions). The reason is that the matrices in
the numerator and denominator differ only in rows, by an
O(1/d) term for such types, and we can expand the cofactors
(which, as shown in the proof of [18, Lemma 3], are bounded
away from 0 for such types) by this row. After standard
manipulations involving typicality arguments, we then obtain

EH(QS,Z) = EH(P̂Z(·|S)) + O(1/d).

Using the generalization to Markov sources of the results
in [17], given in [19], it can be seen that the normalized mutual
information still vanishes at anO(1/d) rate in this case.

D. Key rate

As discussed in Section I,H∗(Y n|Xn+d−1) is essentially
the expected number of key bits consumed by the optimal
scheme per output symbol. For some sample paths, however,
the number of key bits may be unbounded, and a hard
limit on the key length (resulting in a deviation from the
target distributionW ∗) would affect exact preservation of
the probability law. This behavior differs from the schemes
proposed in [8], for which a suboptimal implementation of
the target distribution affects the mutual information, but not
the output probability law. Such a behavior is achieved in [8]
by use of the randomness in the input sequencexm so that
the probability law is preserved for anygiven value of the
key. The question of whether a similar idea can be used in
the delay–limited setting remains open. However, whenP
is the entire class of i.i.d. sources overA, a delay–limited
simulation scheme exists that still achieves normalized mutual
information which isO(1/d) while satisfying Condition C1
and requiring a limited budget of key bits forall sample
paths. The reason is that, as observed in Equation (1), all
the probabilities can be written as rational numbers withd
in the denominator. Thus, ifd is a power of2, the Elias
decoder will always terminate after a finite number of input
key bits [1]. Now, for an arbitraryd, using{W ∗

t } with delay
limitation d′, whered′ is the largest power of2 not larger than
d, clearly defines (a fortiori) a simulation scheme with delay
limitation d. Since 2d′ > d, it follows that the normalized
mutual information is stillO(1/d).

While, as noted, a hard limit on the key length will
in general affect the exact preservation of the proba-
bility law, by [5], the probability that the scheme will
fail to produce the requested sequence after processing
k key bits, k >H∗(Y n|Xn+d−1), decays with exponent
k−H∗(Y n|Xn+d−1). Thus, with probability one it produces
an output.

3If necessary for the chain to remain irreducible, we will assume that certain
transition probabilities must be positive. Thus,P may not be the entire class
Fg,s0 , but the parameter spaceΩ is still assumed to be rich enough for the
types to be defined by the sequence composition with respect tog.

IV. A RBITRARY REQUEST SCHEDULES

The sequential, delay–limited simulation problem discussed
so far can be generalized to include, as particular cases, the
“batch” setting of [8], as well as a setting in which the rate
of production of output samples is smaller than the rate of
consumption of training samples. In the generalized setting,
a user requests random symbols according to somearbitrary
schedule, with the only constraint that at any time the total
number of requested symbols cannot exceed the number of
training symbols observed so far. To this end, the simulation
scheme has access to a supply of key bits that are delivered on
demand, as needed. Let`t(x) denote the length of the training
sequence already observed at the timeYt is requested. The
instantaneousdelay dt is then defined asdt = `t(x)− t +1,
and the schedule is given by{dt}. Thus, we view this setting
as one of varying delay; in the setting discussed so far, we
havedt = d for all t, whereas in the batch case with training
sequencexm, dt =m− t +1, 1 ≤ t ≤ n. The optimal scheme
for this setting turns out to be a straightforward generalization
of {W ∗

t }, in which a symbol requested after observation ofx
and following the output ofy is drawn with probability

W ∗
t (a|x,y) =

|Tx\ya|
|Tx\y|

, a ∈ A .

To prove this result it suffices to follow the proof of Theorem 1
verbatim, but with x ∈ A`t(x). Following againverbatim the
proof of Equation (12) in Theorem 2, withd replaced bydt,
the corresponding conditional entropy in the FSM case takes
the form

H∗(Y n|Xm) =
∑
s∈S

n−1∑
t=0

Pr{St = s}
∑

z∈Adt+1

P (z|s)H(Qs,z) .

(18)
Clearly, fordt = m−t+1, this scheme is equivalent to drawing
a sequence uniformly at random fromTXm and selecting its
prefix of lengthn. Thus, it indeed coincides with the scheme
proposed in [8] for batch simulation with an unlimited budget
of key bits, and its conditional entropy takes the form

H∗(Y n|Xm) = E log |TXm | −E log |TXm\Y n |

which in the FSM case further reduces to

H∗(Y n|Xm) = E log |TXm | −E log |TS
Zm−n |

where the second expectation is with respect to the distribution
Pr{S = s,Z = z} = Pr{Sn = s}P (z|s).

Another interesting request schedule is given by the case in
which, after an initial delayd, each request of a block ofr
symbols,0 < r ≤ d, is followed by the observation ofq new
training symbols,q > r. The ratioq/r will be denoted byρ
(ρ > 1), and will be referred to as theratio of the simulation
scheme. Clearly, in this case,

`t(x) = qb t− 1
r

c+ d .

The asymptotic behavior of the normalized mutual information
I∗(Xm, Y n)/n achieved by the optimal scheme in this case
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(wherem = `n(x)), whenn → ∞ andP is the entire class
of i.i.d. sources overA, is studied in the Appendix. Since,
by (18), we have

I∗(Xm;Y n) =
n∑

t=1

E[H − Ĥt] (19)

where H denotes the source entropy and̂Ht denotes the
(normalized) empirical entropy ofdt-tuples, anddt ≈ (ρ−1)t
in this case, theO(1/dt) asymptotic behavior ofH−EĤt [17]
suggests that the normalized mutual information will be
O((log n)/n). The analysis in the Appendix indeed shows that

1
n

I∗(Xm;Y n) ≈ |A| − 1
2(ρ− 1)n

log
[
1 +

(ρ− 1)n
d

]
(20)

where it is assumed thatd >>r andn →∞. It is interesting
to notice that (20) also captures theρ = 1 regime, which can
be seen as a particular case by lettingρ → 1, in which case
we obtain

1
n

I∗(Xm;Y n) ≈ |A| − 1
2d

as expected.

APPENDIX

In this appendix, we analyze the asymptotic normalized
mutual information achieved by the optimal scheme in the
setting in which the simulation ratioρ is larger than1, when
P is the entire class of i.i.d. sources overA. Since

dt = qb t− 1
r

c+ d− t + 1 (A.1)

and dt(H − EĤt) tends to(|A| − 1)(log e)/2 as dt → ∞
(see [17] and [19, Proposition 5.2] therein), then for given
ε > 0 and sufficiently larget we have

(1− ε)(|A| − 1) log e

2dt
< H −EĤt <

(1 + ε)(|A| − 1) log e

2dt
(A.2)

(alternatively, we can assume thatd is large enough for (A.2)
to hold for all t). Since (A.2) holds for all but finitely many
values oft and we are interested in the asymptotic behavior
of I∗(Xm, Y n)/n, it suffices to study the asymptotic behavior
of
∑n

t=1(1/dt) asn grows. Clearly,

bn/rc−1∑
i=0

r∑
j=1

1
dir+j

≤
n∑

t=1

1
dt
≤

bn/rc∑
i=0

r∑
j=1

1
dir+j

(A.3)

where, by (A.1),dir+j =(q − r)i+ d− j +1. Now, let f(i)
denote the inner summation in the rightmost side of (A.3).
Sincef(i) is non-increasing withi, we have, for all nonneg-
ative integersN ,∫ N+1

0

f(u)du ≤
N∑

i=0

f(i) ≤ f(0) +
∫ N

0

f(u)du .

Therefore, by (A.3),∫ bn/rc

0

f(u)du ≤
n∑

t=1

1
dt
≤ f(0) +

∫ bn/rc

0

f(u)du . (A.4)

Since f(0)<r/(d− r +1) and is independent ofn, it then
suffices to study the asymptotic behavior of the integral
in (A.4), which grows without bound asn →∞. Clearly,

r

(q − r)u + d
≤ f(u) ≤ r

(q − r)u + d + 1− r

implying∫ bn/rc

0

f(u)du ≤ 1
ρ− 1

ln
[
1 + (ρ− 1) · rbn/rc

d− r + 1

]
(A.5)

and∫ bn/rc

0

f(u)du ≥ 1
ρ− 1

ln
[
1 + (ρ− 1) · rbn/rc

d

]
(A.6)

Equation (20) then follows from (19), (A.2), (A.4), (A.5),
(A.6), and fromd >>r.
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We would like to thankÁlvaro Mart́ın for useful discussions
on type sizes in the FSM case.

REFERENCES
[1] D. E. Knuth and A. Yao, “The complexity of nonuniform random

number generation,” inAlgorithms and Complexity, New Directions and
Results, J. F. Traub, Ed. New York: Academic Press, 1976, pp. 357–428.

[2] T. S. Han and S. Verd́u, “Approximation theory of output statistics,”
IEEE Trans. Inform. Theory, vol. 39, pp. 752–772, May 1993.

[3] Y. Steinberg and S. Verd́u, “Channel simulation and coding with side
information,” IEEE Trans. Inform. Theory, vol. 40, pp. 634–646, May
1994.

[4] Y. Steinberg and S. Verd́u, “Simulation of random processes and rate-
distortion theory,”IEEE Trans. Inform. Theory, vol. 42, pp. 63–86, Jan.
1996.

[5] T. S. Han, M. Hoshi, “Interval algorithm for random number generation,”
IEEE Trans. Inform. Theory, vol. 43, pp. 599–611, March 1997.

[6] T. Uyematsu, F. Kanaya, “Channel simulation by interval algorithm:
A performance analysis of interval algorithm,”IEEE Trans. Inform.
Theory, vol. 45, pp. 2121–2129, Sept. 1999.

[7] K. Visweswariah, S. R. Kulkarni, and S. Verdú, “Separation of random
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