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Abstract

We propose an information–theoretic approach to watermark embedding and detection. We
first introduce our approach to blind embedding/detection in the absence of attacks, and then
expand the framework to allow desynchronization and geometric attacks. We prove, in this
context, the asymptotic optimality of the exhaustive search approach.

1 Introduction

The problem of watermark embedding and detection/decoding under geometric attacks has received

considerable attention throughout the recent years (see, e.g., [1]–[14] and references therein for

theoretical aspects). In this work, we raise and examine certain fundamental questions with regard

to customary methods of embedding and detection and suggest some new ideas, first, for the most

basic setup, even without an attack, and then we extend the scope to include certain classes of

desynchronization/geometric attacks.

The most popular approach to watermark embedding and detection has been the following:

Denoting by x = (x1, . . . , xn) a block from the covertext source and by w = (w1, . . . , wn) the

independent binary (±1) watermark vector, the watermark embedding rule is normally taken to be

additive (linear), i.e., the stegotext vector y = (y1, . . . , yn) is given by

y = x + αw (1)
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or multiplicative, where each component of y is given by

yi = xi(1 + αwi), i = 1, . . . , n, (2)

where in both cases, the choice of α controls the tradeoff between quality of the stego–signal (in

terms of the distortion relative to the covertext signal x) and the detectability of the watermark -

the “signal–to–noise” ratio.

Once the linear embedder (1) is adopted, elementary detection theory tells us that the optimal

likelihood–ratio detector, assuming a zero–mean, Gaussian, i.i.d. covertext distribution, is a corre-

lation detector, which decides positively (H1: y = x + αw) if the correlation,
∑n

i=1 wiyi, exceeds

a certain threshold, and negatively (H0: y = x) otherwise. The reason is that in this case, x

simply plays the role of additive noise. In a similar manner, the optimal test for the multiplicative

embedder (2) is based on the different variances of the yi’s corresponding to wi = +1 relative to

those corresponding to wi = −1, the former being σ2
x(1 + α)2, and the latter being σ2

x(1 − α)2,

where σ2
x is the variance of each component of x.

While in classical detection theory, the additivity (1), (or somewhat less commonly, the multi-

plicativity (2)) of the noise is part of the channel model, and hence cannot be controlled, this is not

quite the case in watermark embedding, where one has, at least in principle, the freedom to design

an arbitrary embedding function y = f(x,w), trading off the quality of y and the detectability

of w. Clearly, for an arbitrary choice of f , the above desctibed detectors are no longer optimal in

general.

The problem of finding the optimum watermark embedder f is not trivial: The probabilities

of errors of the two kinds (false positive and false negative) corresponding to the likelihood–ratio

detector induced by a given f , are, in general, hard to compute, and a–fortiori hard to optimize in

closed form. Thus, instead of striving to seek the strictly optimum embedder, we take the following

approach: Suppose that one would like to limit the complexity of the detector by confining its

decision to depend on a given set of statistics computed from y and w. For example, the energy

of y,
∑n

i=1 y2
i , and the correlation

∑n
i=1 wiyi, which are the sufficient statistics used by the above

described correlation detector. Further, if there is reason to suspect that the stegotext might be

subjected to a certain cyclic–shift attack (see, e.g., [1]), one might wish to include also correlations

between y and the corresponding possible shifted versions of w. Other possible statistics are
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those corresponding to the likelihood–ratio detector of (2), namely, the energies
∑

i: wi=+1 y2
i , and∑

i: wi=−1 y2
i , and so on.

Within the class detectors based on a given set of statistics, we will next show how to find the

best embedder and detector which are asymptotically optimum in the Neyman–Pearson sense of

trading off the exponents of the error probabilities of the two kinds. In doing so, we will use the

techniques of [15] and references therein, and build on them the additional ingredient needed for

devising the optimal embedder.

2 Basic Derivation

For the sake of simplicity, let us assume temporarily, that the components of x and y take on

values in a finite alphabet A. In the sequel, this assumption will be relaxed and Y will be allowed

to be an infinite set, like the real line. The components of the watermark w will always take on

values in B = {+1,−1} as mentioned earlier. Let us further assume that x is drawn from a given

memoryless source P .

For a given w, we would like to devise a decision rule that partitions the space An of sequences

{y} observed by the detector into two complementary regions Λ and Λc, such that for y ∈ Λ

we decide in favor of H1 (watermark w is present) and for y ∈ Λc, we decide in favor of H0

(watermark absent: y = x). Consider the Neyman–Pearson criterion of minimizing the false

negative probability

Pe1 =
∑

x: f(x,w)∈Λc

P (x) (3)

subject to the following constraints:

(1) Given a certain distortion measure d(·, ·) and distortion level D, the distortion between x and

y, d(x,y) = d(x, f(x,w)), does not exceed nD.

(2) The false positive probability is upper bounded by

Pe2

∆=
∑
y∈Λ

P (y) ≤ e−λn, (4)

where λ > 0 is a prescribed constant.
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In other words, we would like to choose f and Λ so as to minimize Pe1 subject to the constraint

that the error exponent of Pe2 would be at least as large as λ.

As explained in the Introduction, this problem does not appear to be trivial. We therefore make

the additional assumption regarding the statistics employed by the detector. Suppose, for example,

that we are interested in the class of all detectors which base their decisions on the empirical joint

distribution of y and w:

P̂wy = {P̂wy(w, y), w ∈ B, y ∈ A} (5)

where

P̂wy(w, y) =
1
n

n∑
i=1

1{wi = w, yi = y}, w ∈ B, y ∈ A (6)

1{wi = w, yi = y} being the indicator function of the event {wi = w, yi = y}, that is, P̂wy(w, y)

is the relative frequency of the pair (w, y) along the pair sequence (w,y). Following standard

terminology in the information theory literature [16], we define the conditional type class of y

given w, and denote it by T (y|w), as the set of all sequences y′ ∈ An such that P̂wy′ = P̂wy,

that is, the set of all y′ which have the same empirical joint distribution with w that y has. The

requirement that the decision of the detector depends solely on P̂wy means that Λ and Λc are

unions of conditional types classes of y given w. Now, let T (y|w) ⊆ Λ. Then, we have

e−λn ≥
∑
y′∈Λ

P (y′)

≥
∑

y′∈T (y|w)

P (y′)

≥ |T (y|w)| · P (y)

≥ (n + 1)−|A|enĤwy(Y |W ) · P (y). (7)

A few words of explanation are in order at this point: The first inequality is by the assumed false

positive constraint, the second inequality is since T (y|w) ⊆ Λ, and the third inequality is due to

the fact that all sequences within T (y|w) are equiprobable under P as they all have the same

empirical distribution, which form the sufficient statistics for the memoryless source P . In the

fourth inequality, we use the well known lower bound on the cardinality of a conditional type class

in terms of the empirical conditional entropy [16], defined as:

Ĥwy(Y |W ) = −
∑
w,y

P̂wy(w, y) ln P̂wy(y|w) (8)
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where P̂wy(y|w) is the empirical conditional probability of Y given W . Defining now

Λ∗ = {y : ln P (y) + nĤwy(Y |W ) + λn− |A| ln(n + 1) ≤ 0}, (9)

we have actually shown that every T (y|w) in Λ is also in Λ∗, in other words, if Λ satisfies the false

positive constraint (4), it must be a subset of Λ∗. This means that Λc
∗ ⊂ Λc and so the probability

of Λc
∗ is smaller than the probability of Λc, i.e., Λc

∗ minimizes Pe1 among all Λc corresponding to

detectors that satisfy (4). To establish the asymptotic optimality of Λ∗, it remains to show that

Λ∗ itself has a false positive exponent at least λ, which is very easy to show using the techniques

of [15, eq. (6)] and references therein. Therefore, we will not include the proof of this fact here.

Finally, note also that Λ∗ bases its decision solely on P̂wy, as required.

While this solves the problem of the optimal detector for a given f , we still have to specify the

optimal embedder f∗. Defining Γc
∗(f) to be the inverse image of Λc

∗ given w, i.e.,

Γc
∗(f) = {x : f(x,w) ∈ Λc

∗}

= {x : ln P (f(x,w)) + nĤw,f(x,w)(Y |W ) + λn− |A| ln(n + 1) > 0}, (10)

then following eq. (3), Pe1 can be expressed as

Pe1 =
∑

x∈Γc
∗(f)

P (x). (11)

Consider now the following embedder:

f∗(x,w) = argminy: d(x,y)≤nD

[
lnP (y) + nĤwy(Y |W )

]
, (12)

where ties are resolved in an arbitrary fashion. Then, it is clear by definition, that Γc
∗(f

∗) ⊆ Γc
∗(f)

for any other competing f that satisfies the distortion constraint, and thus f∗ minimizes Pe1 subject

to the constraints.

3 A Few Important Comments

In this section, we pause to discuss a few important aspects of our basic results, as well as possible

modifications that might be of theoretical and practical interest.

5



3.1 Implementability of the Embedder (12)

The first impression might be that the minimization in (12) is prohibitively complex as it appears to

require an exhaustive search over the sphere {y : d(x,y) ≤ nD}, whose complexity is exponential

in n. A closer look, however, reveals that the situation is not that bad. Note that for a memoryless

source P ,

lnP (y) = −n[Ĥy(Y ) + D(P̂y‖P )] (13)

where Ĥy(Y ) is the empirical entropy of y and D(P̂y‖P ) is the divergence between the empirical

distribution of y, P̂y, and the source P . Moreover, if d(·, ·) is an additive distortion measure,

i.e., d(x,y) =
∑n

i=1 d(xi, yi), then d(x,y)/n can be represented as the expected distortion with

respect to the empirical distribution of x and y, P̂xy. Thus, the minimization in (12) becomes

equivalent to maximizing [Îwy(W ;Y )+D(P̂y‖P )] subject to Êxyd(X, Y ) ≤ D, where Îwy(W ;Y )

denotes the empirical mutual information induced from the joint empirical distribution P̂wy and

Êxy denotes the aforementioned expectation with respect to P̂xy. Now, observe that for given x

and w, both [Îwy(W ;Y ) + D(P̂y‖P )] and Êxyd(X, Y ) ≤ D depend on y only via its conditional

type class given (x,w), namely, the conditional empirical distribution P̂wxy(y|x,w). Once the

optimal P̂wxy(y|x,w) has been found, it does not matter which vector y is chosen from the

corresponding conditional type class T (y|x,w). Therefore, the optimization across n–vectors in

(12) boils down to optimization over empirical conditional distributions, and since the total number

of empirical conditional distrubtions of n–vectors increases only polynomially with n, the search

complexity reduces from exponential to polynomial as well. In practice, one may not perform such

an exhaustive search over the discrete set of empirical distributions, but apply an optimization

procedure in the continuous space of conditional distributions {P (y|x,w)} (and then approximate

the solution by the closest feasible empirical distribution). At any rate, this optimization procedure

is carried out in a space of fixed dimension, that does not grow with n.

3.2 Universality in the Covertext Distribution

Thus far we have assumed that the distribution P is known. In practice, even if it is fine to

assume a certain model class, like the model of a memoryless source, the assumption that the exact

parameters of P are known is rather questionable. Suppose then that P is known to be memoryless
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but is otherwise unknown. How should we modify our results? First observe, that it would then

make sense to insist on the constraint (4) for every memoryless source, to be on the safe side.

Equivalently, eq. (4) would be replaced by

max
P

∑
y∈Λ

P (y) ≤ e−λn (14)

where the maximization over P is across all memoryless source with alphabet A. It is then easy

to see that our earlier derivation goes through as before except that P (y) should be replaced by

maxP P (y) in all places (see also [15]). Since lnmaxP P (y) = −nĤy(Y ), this means that the

modified version of Λ∗ compares the empirical mutual information Îwy(W ;Y ) to the threshold

λn − |A| ln(n + 1). By the same token, and in light of the discussion in the previous paragraph,

the modified version of the optimal embedder (12) maximizes Îwy(W ;Y ) subject to the distortion

constraint (the divergence term now disappears). Both the embedding rule and the detection rule

are then based on the idea of maximum mutual information, which is intuitively appealing.

3.3 Other Detector Statistics

In the previous section, we focused on the class of detectors that base their decision on the empirical

joint distribution of pairs of letters {(w, y)}. What about classes of detectors that base their deci-

sions on larger (and more refined) sets of statistics? It turns out that such extensions are possible as

long as we are able to assess the cardinality of the corresponding conditional type class. For example,

suppose that the stegotext is suspected to undergo a desynchronization attack that cyclically shifts

the data by k points, where k lies in some uncertainy region, say, {−K,−K+1, . . . ,−1, 0, 1, . . . ,K}.

Then, it would make sense to allow the detector depend on the joint distribution of 2K +2 vectors:

y, w, and all the 2K corresponding cyclic shifts of w. Our earlier analysis will carry over provided

that the above definition of Ĥwy(Y |W ) would be replaced the conditional empirical entropy of y

given w and all its cyclic shifts. This is different from the exhaustive search (ES) approach (see,

e.g., [1]) to confront such desynchronization attacks. Note, however, that this works as long as K is

fixed and does not grow with n. We will discuss the case where K grows with n later on in Section

4.
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3.4 Continuous Alphabets

In the previous section, we considered, for convenience, the simple case where the components of

both x and y take on values in a finite alphabet. It is more common and more natural, however, to

model x and y as vectors in IRn. Beyond the fact that, summations should be replaced by integrals,

in the analysis of the previous section, this requires, in general, an extension of the method of types

[16], used above, to vectors with real–valued components (see, e.g., [17],[18],[19]). In a nutshell, a

conditional type class, in such a case, is the set of all y–vectors in IRn whose joint statistics with

w have (within infinitesimally small tolerance) prescribed values, and to have a parallel analysis

to that of the previous section, we have to be able to assess the exponential order of the volume of

the conditional type class.

Suppose, for example, that x is a zero–mean Gaussian vector whose covariance matrix is σ2I,

I being the n × n identity matrix an σ2 is unknown (cf. Subsection 3.2). Let us suppose also

that the statistics to be employed by the detector are the energy of
∑n

i=1 y2
i and the correlation∑n

i=1 wiyi. These assumptions are the same as in many theoretical papers in the literature of

watermark detection. Then, the conditional empirical entropy Ĥwy(Y |W ) should be replaced by

the empirical differential entropy ĥwy(Y |W ), given by [18]:

ĥwy(Y |W ) =
1
2

ln

[
2πe ·min

a

(
1
n

n∑
i=1

(yi − awi)2
)]

=
1
2

ln

[
2πe

(
1
n

n∑
i=1

y2
i −

( 1
n

∑n
i=1 wiyi)2

1
n

∑n
i=1 w2

i

)]

=
1
2

ln

[
2πe

(
1
n

n∑
i=1

y2
i − (

1
n

n∑
i=1

wiyi)2
)]

. (15)

Since

ĥy(Y ) =
1
2

ln

(
2πe · 1

n

n∑
i=1

y2
i

)
(16)

the optimal embedder would maximize

Îwy(W ;Y ) = −1
2

ln

(
1−

( 1
n

∑n
i=1 wiyi)2

1
n

∑n
i=1 y2

i

)
(17)

or, equivalently,1 maximize (
∑n

i=1 wiyi)2/
∑n

i=1 y2
i subject to the distortion constraint, which in

1Note also that the corresponding detector, which compares Îwy(W ; Y ) to a threshold, is equivalent to a correla-
tion detector, which compares the (absolute) correlation to a threshold that depends on the energy of y, rather than
a fixed threshold (see, e.g., [1]).
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this case, will naturally be taken to be Euclidean,
∑n

i=1(xi − yi)2 ≤ nD. While our discussion

in Subsection 3.1, regarding optimization over conditional distributions, does not apply directly

in the continuous case considered here, it can still be represented as optimization over a finite

dimensional space whose dimension is fixed, independently of n. In fact, this fixed dimension is 2:

Every y ∈ IRn can be represented as y = ax + bw + z, where a and b are real valued coefficients

and z is orthogonal to both x and w. Now, without loss of optimality, z should be taken to be

the zero vector. This is because any non-zero z contributes to the energy of y (the denominator of

(
∑n

i=1 wiyi)2/
∑n

i=1 y2
i ) while improving neither the correlation with w (which is the numerator),

nor the distance to x (which is the constraint). Thus, the optimal embedding function should be

of the form

f∗(x,w) = ax + bw, (18)

and so, it remains only to optimize over two parameters, a and b. Upon manipulating this optimiza-

tion problem, by taking advantage of its special structure, one can further reduce its dimensionality

and transform it into a search over one parameter only (the details are omitted here).

Going back to the openning discussion in the Introduction, this seems to be very close to the

linear embedder (1) that is so customarily used (with one additional degree of freedom allowing

also scaling of x). A closer look, however, reveals that this is not quite the case because the optimal

values of a and b depend here on x and w (via the joint statistics
∑n

i=1 x2
i and

∑n
i=1 wixi) rather

than being fixed. Therefore, this is not a linear embedder!

Finally, if we want our detector to take into account joint statistics of y with several (cyclic)

shifts of w, as discussed earlier, the corresponding empirical differential entropy (cf. the first line

of eq. (15)) will be based on the norm of the projection error of y over the space spanned by w and

its cyclic shifts, rather than space spanned by w alone, as in eq. (15). Of course, the derivation of

the optimal embedder will be more involved.

3.5 Random Watermarks

Thus far, our model assumption was that x emerges from a probabilistic source P , whereas the

watermark w is fixed, and hence can be thought of as being deterministic. Another possibile

setting assumes that w is random as well, in particular, being drawn from another source Q,
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independently of x, normally, the binary symmetric source (BSS). This situation may arise, for

example, when security is an issue and then the watermark is encrypted. In such a case, the

randomness of w is induced by the randomness of the key. In this case, the decision regions Λ

and Λ∗ will be defined as subsets of An × Bn and the probabilities of errors Pe1 and Pe2 will be

defined, of course, as the corresponding summations of products P (x)Q(w). Although this model

is somewhat weaker, it can be analyzed for more general classes of detectors. This is because the

role of the conditional type class T (y|w), would be replaced by the joint type class T (w,y), namely,

the set of all pairs of sequences {(w′,y′)} that have the same empirical distribution as (w,y) (as

opposed to the conditional type class which is defined as the set of all such y’s for a given w).

Thus, the corresponding version of Λ∗ would be

Λ∗ = {(w,y) : lnP (y) + lnQ(w) + nĤwy(W,Y ) + λn− |A| ln(n + 1) ≤ 0}, (19)

where Ĥwy(W,Y ) is the empirical joint entropy induced by (w,y), and the derivation of the

optimal embedder is accordingly.2 The advantage of this model, albeit somewhat weaker, is that it

is easier to assess |T (w,y)| in more general situations than it is for |T (y|w)|. For example, if x is

a first order Markov source, rather than i.i.d., and one is then naturally interested in the statistics

formed by the frequency counts of triples {wi = w, yi = y, yi−1 = y′}, then there is no known

expression for the cardinality of the corresponding conditional type class, but it is still possible to

assess the size of the joint type class in terms of the empirical first-order Markov entropy of the

pairs {(wi, yi)}.

It should be also pointed out that once w, is assumed random (say, drawn from a BSS),

it is possible to devise a decision rule that it astymptotically optimum for an individual covertext

sequence, i.e., to drop the assumption that x emerges from a probabilistic source of a known model.

The resulting decision rule, obtained using a similar techique, accepts H1 whenever Ĥwy(W |Y ) ≤

1− λ, and the embedder minimizes Ĥwy(W |Y ) subject ot the distortion constraint accordingly.

2Note that in the universal case (where both P and Q are unknown), this leads again to the same empirical mutual
information detector as before.
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4 Geometric Attacks

Let us now extend the setup to include attacks. We first discuss attacks in general and then confine

our attention to geometric attacks.

The case of attack is characterized by the fact that the input to the detector is no longer the

vector y as before, but another vector, z = (z1, . . . , zn), that is the output of a channel fed by

y, which we shall denote by W (z|y). For convenience, we will assume that the components of

z take on values in the same alphabet A. Thus, the operation of the attack, which in general

may be stochastic, is thought of as a channel. Denoting the channel output marginal Q(z) =∑
y P (y)W (z|y), the analysis of this case is, in principle, the same as before. Assuming, for

example, that Q is memoryless (which is the case when by P and W are memoryless), then Λ∗ is

as in Section 2, except that P , Y , and y, should be replaced by Q, Z and z, respectively. The

optimal embedder then becomes

f∗(x,w) = argmin{y: d(x,y)≤nD}
∑

z∈Λc
∗

W (z|y), (20)

for the redefined version of Λ∗.

We now turn to the more specific case of geometric attack channels. A geometric attack creates,

in general, a transformation of the coordinates of the stegotext signal, or image. Assuming that

no information is lost by such a transformation, we will simply think of z as a (randomly chosen)

permutation of y (e.g., a cyclic shift by a random amount). Let us assume then the following model.

There is a known set of M ≤ n! possible permutations {π1, . . . , πM} that the attack channel may

apply, using the following mechanism: First, a random integer J is drawn, say, uniformly over

{1, . . . ,M}, independently of y, and then the attacker produces z = πJ(y), i.e., z is the result of

the operation of the permutation πJ on the input y. Thus,

W (z|y) =
1
M

M∑
j=1

1{z = πj(y)}. (21)

Assuming that P is i.i.d. as before, we now argue that as long as M grows slower than expo-

nentially in n, the exhaustive search (ES) approach applied to Λ∗ is asymptotically optimum. Let

Λ∗(j) denote the set of all z such that π−1
j (z) ∈ Λ∗ (π−1

j always exists), where here Λ∗ is again as

in Section 2. Consider a ‘genie–aided’ detector which is informed of the realization j of the random
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variable J . Clearly, such a detector can apply the inverse transformation y = π−1
j (z) and we are

back to the case without attack, as in Section 2. We now show that the ES approach of applying

Λ∗ to all inverse permutations performs asymptotically as well as this genie–aided detector. In

particular, let us define

ΛES =
M⋃

j=1

Λ∗(j)

=
{

z : ln P (z) + n min
j

Ĥw,π−1
j (z)(Y |W ) + λn− |A| ln(n + 1) ≤ 0

}
(22)

where we have used the fact that P (π−1
j (z)) = P (z) as P is memoryless. Now, the probability of

error of the second kind is bounded by

Pe2 =
∑

z∈ΛES

∑
y

P (y)W (z|y)

=
∑

z∈ΛES

1
M

M∑
j=1

P (π−1
j (z))

=
∑

z∈ΛES

P (z)

≤
M∑

j=1

∑
z∈Λ∗(j)

P (z)

=
M∑

j=1

∑
{z: π−1

j (z)∈Λ∗}

P (z)

=
M∑

j=1

∑
{z: π−1

j (z)∈Λ∗}

P (π−1
j (z))

=
M∑

j=1

∑
y∈Λ∗

P (y)

= M ·
∑

y∈Λ∗

P (y) (23)

which decays exponentially rapidly at the rate of e−λn since
∑

y∈Λ∗ P (y) decays at such a rate and

M is assumed sub–exponential. Thus, ΛES satisfies the false positive constraint (4). As for the

error probability of the first kind, note that Λc
ES =

⋂M
j=1 Λc

∗(j) which means that Λc
ES ⊆ Λc

∗(j) for

all j = 1, . . . ,M . Thus, Pe2 of the ES detector is smaller than that of the genie–aided detector

whatever the realization of J may be.
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The corresponding optimum embedder will now be

f∗(x,w) = argmin{y: d(x,y)≤nD}
∑

z∈Λc
ES

W (z|y)

= argmin{y: d(x,y)≤nD}
∑

z∈Λc
ES

M∑
j=1

1{z = πj(y)}

= argmin{y: d(x,y)≤nD}

M∑
j=1

1{πj(y) ∈ Λc
ES}. (24)

Evidently, this is not a convenient formula to work with. A reasonable approach would be to

approximate
∑M

j=1 1{πj(y) ∈ Λc
ES} by 1{∃j : πj(y) ∈ Λc

ES} and then the corresponding embedder

f ′ is

f ′(x,w) = argmin{y: d(x,y)≤nD}[lnP (y) + n max
j

min
i

Ĥw,π−1
i (πj(y))(Y |W )]

= argmin{y: d(x,y)≤nD}[lnP (y) + n max
j

min
i

Ĥπi(w),πj(y)(Y |W )]. (25)

We now argue that the approximation of f∗ by f ′ causes Pe1 to grow by a factor of M at most,

and hence it does not affect the exponential decay rate. To see this, first observe that

1{∃j : πj(y) ∈ Λc
ES} ≤

M∑
j=1

1{πj(y) ∈ Λc
ES} ≤ M · 1{∃j : πj(y) ∈ Λc

ES}. (26)

Now, let us denote

Pe1(f) =
∑
x

P (x) · 1
M

M∑
j=1

1{πj(f(x,w)) ∈ Λc
ES} (27)

and

P ′
e1

(f) =
∑
x

P (x) · 1
M

· 1{∃j : πj(f(x,w)) ∈ Λc
ES}. (28)

Then, following eq. (26), we have Pe1(f) ≤ MP ′
e1

(f) ≤ MPe1(f) for every f , and since f ′ minimizes

P ′
e1

(f), we also have:

Pe1(f
′) ≤ MP ′

e1
(f ′) ≤ MP ′

e1
(f∗) ≤ MPe1(f

∗), (29)

which proves this argument. The computation associated with f ′ is still quite involved in general.

However, if the set of permutations {πj} forms a group (e.g., the set of all M = n cyclic shifts), then

things can be substantially simplified: Let the group operation ? be given by the rule πi(πj(·)) =

πi?j(·), and let the inverse of i, denoted i−1, be induced by π−1
i (·). Then, π−1

i (πj(·)) = πi−1?j(·),

13



and so,

max
j

min
i

Ĥw,π−1
i (πj(y))(Y |W ) = max

j
min

i
Ĥw,πi−1?j(y)(Y |W )

= max
j

min
k

Ĥw,πk(y)(Y |W )

= min
k

Ĥw,πk(y)(Y |W ). (30)

Now, in the double minimization miny: d(x,y)≤nD mink[lnP (y) + nĤw,πk(y)(Y |W )], implemented

by the embedding function f ′, the order of the minimizations can be interchanged, and then, the

minimization over y can be carried out first. For every given k, the complexity of this minimization

is as described in Subsections 3.1 and 3.4. The overall complexity will then be proportional to M

(due to the additional minimization over k), and hence subexponential in n.

Similar techniques can be applied to the case of informed detection, which is the case where

the detector has access to x in addition to z and w. The performance will, of course, improve, in

general.
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