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ods for Model Or 
David Hirshberg and Neri Merhav 

Abstract-Model order estimation is a subject in time series 
analysis that deals with fitting a parametric model to a vector 
of observations. This paper focuses on several model order esti- 
mators known in the literature and examines their performance 
under small deviations of the probability distribution of the noise 
with respect to a nominal distribution assumed in the model. It 
is demonstrated that the standard estimators suffer from high 
sensitivity to deviations from the nominal distribution, and a 
drastic performance degradation is experienced. To overcome this 
problem, robust estimators that are insensitive to small deviations 
from the nominal distribution are developed. These estimators 
are based on a composition between model order estimation 
methods and robust statistical inference techniques known in 
the literature. In addition, a new estimator based on a locally 
best test for weak signals is presented both in nonrobust and 
robust versions. The proposed robust model order estimators are 
developed on a heuristic basis, and there is no claim of optimality, 
but experimental results indicate that they provide significant 
improvement over the standard estimators. 

I. INTRODUCTION 

HE problem of estimation the order of a statistical model 
has been studied in the literature of time-series analysis, 

information theory, and automatic control. This problem is 
important in various application areas, like radar and sonar 
reception, where order estimation is actually detection of the 
number of targets within the observation sector of the radar 
or sonar. In science measurement, model order estimation is 
used, for example, to fit an autoregressive model for sun spot 
explosions as a function of time, for the prediction of future 
explosions, or for fitting a model for earthquake measurements. 
In data compression, the model order is selected in accor- 
dance with minimum length considerations. In digital signal 
processing applications, model order selection can help, for 
example, in audio noise cancellation and segmentation for 
image processing. 

In this paper, we focus on model order estimators that 
are defined for general families of probability distributions 
and, hence, can be applied for a wide range of models. 
The first attempt to develop such a general model order 
estimator has been done by Akaike [2]. His estimator, which 
is called an information criterion (AIC) estimator, proved to 
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be inconsistent in the sense that the error probabilities do not 
diminish when the number of observations tends to infinity. 

Rissanen [14] and Schwarz [15] developed, in different 
ways, a consistent model order estimator referred to as the 
minimum description length (MDL) or Bayesian infonna- 
tion criterion (BIC). Rissanen obtained this estimator from 
information-theoretic considerations. The model order in this 
case is the model that minimizes the description length, i.e., 
the model that encodes the vector of observations in the most 
efficient way. Schwarz reached this estimator from a Bayesian 
approach. He assumed that the model order, as well as the 
parameters, are random variables and that the model order 
estimator strives to minimize the overall probability of error. 
The MDL estimator is the most popular estimator and is widely 
used in the literature. 

Another way to treat the problem of model order estimation 
is based on hypothesis testing theory. Anderson [l] used 
hypotheses testing to solve the problem of model order es- 
timation for autoregressive (AR) processes. His approach was 
to make a sequence of tests between two adjacent model order 
hypolheses. Anderson proposed the estimated model order to 
be the highest order that the greater model order hypothesis 
is declared. Anderson’s estimator is difficult to implement 
and, hence, does not seem to have any later treatment in the 
literature. 

Merhav [12] proposed another type of estimator that was 
based on hypotheses testing techniques. Merhav extended the 
known Neyman-Pearson criterion for simple binary hypothe- 
ses to the case of model order estimation. The estimator 
minimizes the probability of underestimation subject to a 
constraint on the overestimation probability. This estimator is 
referred to as the Neyman-Pearson criterion (NPC) estimator. 
For the Markov process model, Merhav et al. [ 131 have shown 
that if the overestimation probability bound is large enough 
the estimator is consistent. 

The above estimators are based on the assumption that the 
statistics of the observations produced by the model are known 
exactly. In the case that the statistics of the observations 
diverse slightly from the assumed statistics, the estimators 
suffer from drastic degradation in performance. 

Huber introduced methods to overcome the performance 
degradation problem in parameter estimation [7] and hypothe- 
ses testing [6]. Huber’s model for uncertainty in the statistics 
is known as the €-contaminated model. Huber introduced a 
solution based on the minimax approach that seeks the best 
solution for the worst-case possible statistics. Comprehensive 
presentations of the work that has been done in this area 
can be found in Hample [4], Huber [SI, and Kassam and 
Poor [9]. While the framework of uncertain statistics has been 
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studied extensively in the context of parameter estimation and 
hypotheses testing, to the best of our knowledge, the problem 
of model order estimation has not yet been treated in this 
framework. 

The purpose of the paper is to introduce the effect of 
uncertain statistics on known model estimators performance 
and to suggest new versions of estimators, referred to as 
the robust estimators, that are more suitable for this case. 
The robust model order estimators are based on a reasonable 
composition between the existing model order estimators and 
the robust statistics techniques. In addition, a new model 
order estimator both in a robust and a nonrobust version has 
been developed. This estimator is based on the assumption 
that model order estimation is a problem of testing close 
hypotheses. Hence, locally best hypotheses testing techniques, 
jointly with Anderson's model order estimation approach, is 
used to construct this model order estimator. These estimators 
are not claimed to be optimal, but experimental results are 
provided to demonstrate their good performance. 

The outline of the paper is as follows. In Section 11, we 
provide some background. In Section 111, robust versions of 
known model order estimators are developed. In Section IV, 
we present a new model order estimator in its nonrobust and 
robust form. Simulation results of the estimators are provided 
in Section V, and finally, in Section VI, we will summarize 
our conclusions. 

term is the optimal number of bits needed to describe the 
j-dimensional parameter vector. 

The NPC model order estimator achieves minimum under- 
estimation probability among all estimators that have overes- 
timation probability that decays as fast as ecXN for a given 
X>0.  This estimator is given by 

where po is an a priori known upper bound on the model 
order, and X is a threshold that controls the overestimation 
decay rate. The estimated model order $ is the first integer j 
for which the test accepts the hypothesis that j is the model 
order and rejects the hypothesis that po is the model order. 
For the case of Markov processes, Liu and Narayan [lo] 
provedl that if the sequence X = AN satisfies the conditions 
limN-,oo AN = 0 and limNdoo NAN = 00, then the NPC 
estimator is consistent. 

B. Robust Estimation 
Huber's model for uncertainty in the statistics is known 

as the €-contaminated model. According to this model, the 
distribution function of the observations is a mixture of the 
known1 nominal density function f~(x) and an unknown 
contaminating density function fc (z). That is 

11. BACKGROUND 

A. Model Order Estimation 
Let X = (2(1) ,2(2) , . . . ,z(N))  be a vector of indepen- 

dent, identically distributed (i.i.d) real-valued random variables 
governed by a probability density function (pdf) f(XlOP), 
where OP is a vector of parameters of dimension p,OP = 
( 0 ( 1 ) , 0 ( 2 ) , ~ ~ ~ , 0 ( p ) )  E RP. A model order estimator $ is 
a function of X that returns an integer value. Given a model 
and an estimator, there are two kinds of error events: under- 
estimation ($ < p )  and overestimation ($ > p )  . P, and Po will 
denote the underestimation and overestimation probabilities, 
respectively. 

The performance of a model order estimator can be judged 
on the basis of its error probabilities. Typically, there is a 
tradeoff between these probabilities, i.e., an estimator that has 
a relatively small P, will normally have a high Po and vice 
versa. A comparison of performance between two estimators 
can be done by comparing the total error probability P, + Po 
or by comparing the probability of error of one kind for each 
estimator at a fixed value of the probability of error of the 
other kind. 

The MDL model order estimator is given by 

j j M n L  = argmin - log f ( x l 6 ~ ~ )  + 1 log,> (1) 

where 6LL is the maximum likelihood estimator under the 
hypothesis of a j-dimensional parameter vector. The first term 
in (1) represents the number of bits needed to describe the 
observations under the best j th order model, and the second 

A 2 

where 0 < E  < 1 is the amount of contamination. For both 
the parameter estimation and the hypotheses testing problem 
under the €-contaminated model, Huber introduced a solution 
based on the minimax approach that seeks the best solution for 
the worst-case distribution in the c-contaminated distribution 
family. 

In the case of parameter estimation, Huber treated the 
estimaiion of a location parameter in the presence of i.i.d noise. 
The conditional distribution function in this case is 

N 

f(Xl@) = nf(4t) - 0) (4) 
t=l 

where 0 is the location parameter. Huber proposed an estimator 
that hiis minimal asymptotic variance V(1, f )  = limN+oo N .  
Var(Z), where 1 is an estimator, and f is the distribution 
function of the observations. In the minimax approach, the 
favored estimator is the one that minimizes the worst-case 
asymptotic variance maxfEF V(1, f ) ,  i.e. 

10 = arg min max V(Z, f )  
1€L f € F  

where 
10 desired robust estimator 
L family of all possible estimators that meet several reg- 

ularity conditions 
3 family of c-contaminated distribution functions. 
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Although the asymptotic variance of the robust estimator is 
higher than the asymptotic variance of the nonrobust esti- 
mator in the presence of nominal noise, the difference is 
generally small compared with the difference in asymptotic 
variance when contaminated noise is present. In this case, the 
asymptotic variance of the nonrobust estimator is much higher 
than the asymptotic variance of the robust estimator. Huber 
proved that the robust estimator lo is actually a maximum 
likelihood estimator for a noise density known as the least 
favorable density function and commonly denoted as fLF. In 
the case where the nominal distributioq is Gaussian with mean 
zero and unit variance, Huber showed that the least favorable 
distribution is 

for parameter estimation f ~ p ( X l O )  as defined in (6) ,  instead 
of the nominal pdf f ( X l 0 )  as the assumed model statistics, 
that is, we define 

where the superscript R corresponds to a robust version of the 
estimator, and 8LF is the j-dimensional maximum likelihood 
estimator under the least favorable distribution assumption. 

B. A Robust NPC Model Order Estimator 

Since the NPC estimator has the form of a sequential 
Neyman-Pearson test, it seems that the techniques introduced 
by Huber [6] for robust hypotheses testing can be applied to 
construct a robust version of NPC estimator. In this case, the 
estimator will have the following form: 

where p is given by 

where K is a function of the amount of contamination E. 

As for hypotheses testing, Huber developed a minimax 
solution as well. In this case, the form of the robust test is 
similar to the Neyman-Pearson test: 

where f ( z ( t )  INo) and f ( x ( t )  IH1) are the conditional densities 
of each observation under the two hypotheses, and k is the 
threshold that controls the tradeoff between the false alarm 
and misdetection probabilities. The robust version of the test 
limits the effect of the likelihood ratio associated with each 
observation between lower bound a and upper bound b,  i.e. 

(9) 

where Lk(z) is defined in (10). The limiter values depend on 
the type of the nominal distribution functions and the values 
of the estimated parameter vectors and 03, The parameter 
vectors 8P0 and 8J can be estimated via nom@al maximum 
likelihood estimation, i.e., &‘o = OEL and 8’ = 8hL or 
by using robust parameter estimation, i.e., &‘o = and 

ratio test (LRT) could be either the nominal distribution fN  or 
the least favorable distribution ~ L F .  Simulation results, under 
the harmonic signal model, for all these possible combinations 
of the NPC estimator that use robust hypotheses testing tech- 
niques reveal poorer performance than the robust version of 
the NPC estimator, which uses the robust parameter estimation 
without any use of robust hypotheses testing techniques, that is 

6’ 4’ LF. The distribution function used for the likelihood 

where L! is a limiter function 

a i f z < a  i b i f z > b  
Lk(z)  = 2 if a< z 5 b (10) 

and the bounds a and b are calculated from the nominal 
conditional distributions f ( z ( t ) l H ~ )  and f ( z ( t ) IHo)  and the 
amount of contamination E. 

111. ROBUST VERSIONS OF KNOWN 
MODEL ORDER ESTIMATORS 

A. Robust MDL Model Order Estimator 

Since model order estimators presented in this paper are 
strongly related to parameter estimation and hypotheses test- 
ing, it seems reasonable to apply the techniques used in robust 
parameter estimation and robust hypotheses testing to robust 
model order estimation. 

For MDL estimators that are based on the likelihood func- 
tion, we propose robust versions that use the least favorable pdf 

The explanation of the failure of the robust NPC version 
that uses robust hypotheses testing techniques is that Huber’s 
solution for hypotheses testing is applicable only when the 
distance between the two hypotheses is large enough. Because 
of the inherent nested structure of the model order estimation 
problem, the robust hypotheses testing techniques are not 
suitable. Martin and Schwartz [ l l ]  have faced the same 
problem in the implementation of a robust version of a signal 
detector at low signal-to-noise ratios (SNR’s). The solution 
that Martin and Schwartz suggested for this case is to use the 
locally best hypotheses testing. This technique provides the 
best performance when the hypotheses are close to each other. 

IV. LOCALLY BEST MODEL ORDER ESTIMATORS 

Since model order estimation using hypotheses testing tech- 
niques deals with close hypotheses, locally best hypotheses 
testing techniques can be applied. In this section, we develop 
a new model order estimator based on locally best hypotheses 
testing techniques. A robust version of this estimator is given 
as well. 
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A. Background 
Let Ho: 8 = 80, H I :  8 = 81 be two hypotheses where 6'0,6'1 

are nonempty disjoint subsets of the parameter space 0. A 
binary test T ( X )  is a function that divides the sample space 
R into two regions ( U ,  wc), where 

1 i f X E w  
0 if X E wc.  

If T ( X )  returns the value 0, we say that the test T ( X )  
accepts the hypothesis 111,. Otherwise, the test accepts the 
hypothesis H I .  A simple hypotheses testing problem occurs 
when each one of the two hypotheses is associated with one 
parameter value, i.e., Ho: 6' = 6'0 and H1 : 8 = 81. A composite 
hypotheses testing problem is the case where at least one of the 
hypotheses consists of more then one element in the parameter 
space. A two-sided composite hypotheses testing problem is 
one where the two hypotheses are Ho: 6' = 80, H I :  8 # 80. A 
locally best test is a test that is optimal only for values of 8 in 
some neighborhood of 6'0. The locally best tests are based on 
the continuity and the differentiability of the power function 
of the test defined as 

The value of the power function in 80, i.e., ,&(Bo),  is called 
the size of the test. and it is actually the probability of incorrect 
decision when Ho is true. This probability is known also as 
false alarm probability in signal detection application. A test 
T o ( X )  with size a will be a locally best test if the derivative 
of its power function in 80 is equal zero, i.e. 

and for all other tests T ( X )  

where @go (8,) is the second derivative at 6'0. The locally best 
test T o ( X )  for the two-sided hypotheses testing problem can 
be found in Ferguson [3] and has the following form: 

1 if A ( X )  > B ( X )  

0 if A ( X )  < B ( X )  
y(X) if A ( X )  = B ( X )  (18) 

where 

k l ,  k2 being positive constants that comply with (16) and 
set the size of the test, and 0 5 y(X) 5 1 is an arbitrary 
measurable function. 

B. The Estimator 

Similarly to Anderson [ 11, we propose to perform the model 
order estimation as a sequence of the two-sided hypotheses 
tests T3 . Each test T3 is a two-sided test that decides between 
the hypothesis Ho: O(j) = 0 and the hypothesis H I :  O(j) # 0, 
where B ( j )  is the j th element of the parameter vector 8. For 
j > p ,  we have 8 ( j )  = 0, and therefore, we expect T, to 
return 0. For j 5 p ,  we have 8 ( j )  # 0; therefore, we expect 
T3 to return 1. The model order estimator will have the form 

(19) 2j = m a x { j : T 3 ( X )  = I}. 
3 

In each step j ,  we set the first j - 1 elements of the pFameter 
vector ito be the maximum likelihood estimator, i.e., 6'&' and 
the jth element of the vector 8 ( j )  to be the free parameter for 
the hypotheses testing. By setting T3 to be a locally best test 
as defined in (18), assigning 6' = B ( j )  and 80 = 0, we get the 
following form for the locally best test T3: 

1 if A 3 ( X )  > B 3 ( X )  

0 if A 3 ( X )  < B 3 ( X )  
y ( X )  if A 3 ( X )  = B , ( X )  (20) 

where 

kl > O , k 2  > 0. 

k1, k2 values should satisfy (16), which can be expressed as 

(21) 

If .f(XI(&-;, O(j))) is a symmetric function around O(j) and, 
hence, (d/de(j))f(XI(8&;, O(j)>) is antisymmetric around 
6'(j), then Pr { T 3 ( X ) } ,  which is symmetric around 6'(j), is 
a sufficient condition for (21) to exist. When N t CO, 

eh, 5 83 , and hence, Pr { T , ( X ) }  is symmetric around 8 ( j )  
if k2 = 0. The locally best test model order estimator is 
reduced, in this case, to the following form: 

(22) 

We denote this estimator with locally best test criterion 
(LBTC). This estimator differs from the other estimators 
in the fact that it uses information on the derivative of f ( X ( 8 )  
as well. 
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Although the estimator seems to be quite complicated, in the 
general case, it becomes very simple and intuitively appealing 
in some specific models. For example, in the case of a 
model where the observations are given by linear combinations 
of deterministic orthonormal signals in presence of additive 
white, nominally Gaussian noise, i.e. 

where 
8 P  parameter vector 
S," orthonormal signal family 
w(t) white Gaussian noise 

the LBTC estimator is given by 

where 8hL(j) is the maximum likelihood estimator for the 
j-element of the parameter vector. 

C. The Robust Version 

The robust version of the LBTC estimator, as our all other 
robust model order estimators, is based on robust parameter 
estimation. The pdf of the observations for the robust esti- 
mator is assumed to be the least favorable pdf for parameter 
estimation: 

where 8;;' is a ( j  - 1)-dimensional robust parameter esti- 
mator. 

v. EXPERIMENTAL RESULTS 

The performance of the various estimators have been eval- 
uated by using a Monte Carlo simulation technique for the 
harmonic signal model. The harmonic signal model is the 
following: 

where 2 is the model order, uz = ( u ( l ) ,  a (2) ,  . . . , a(1)) is the 
vector of amplitude parameters, 4' = ($( l), 4 ( 2 ) ,  . . . ,4( I ) )  
is vector of phase parameters, w(t) is a white Gaussian 
noise with mean zero and variance 02, and W O  is a known 
fundamental frequency of the harmonic signal family. The 

parameter vector 0 = (U', +', 02)  has 21 + 1 elements in this 
case. The phase 4' and the amplitude up can be treaded as a 
model with 21 amplitude parameters of sine-cosine pairs for 
each harmonic of the fundamental frequency. Without essential 
loss of generality, we chose to simulate the model for the case 
where the phase parameter vector is known and equals to zero. 
For this model, the conditional pdf is 

N -  

By substituting (27) in each of the above defined estimators 
and by using simple mathematical manipulations, one can 
get the following expressions of the various model order 
estimators under the harmonic signals model 

Nonrobust Model Order Estimators: 

$MDL = arg min {log 8hL + - j log N }  (28) 2 N  

@NPC = min { j :  log 8hL - log 8kL < A} (29) 
3 

~ ~ L B T C  = m a x { I G ~ ~ ( j ) /  > k }  (30) 

where lo  is an a priori known upper bound on the model 
order, and 

N 

t=l  k = l  
N 

where N is assumed an integer multiple of 2 ~ 1 ~ 0 .  

above estimators are as follows. 
Robust Model Order Estimators: The robust version of the 
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where 

and &LF(k) is the k element of &iF. 
All these estimators have been examined under various 

conditions in order to assess their robustness and to investigate 
the effect of the contaminating pdf, the variance of the 
contaminating pdf, and the number of observations. Unless 
specified otherwise, the simulation conditions for each test 
was as follows: 

The true model order is 1 = 2. 
The amplitude parameter vector is a = (0.3,0.3). 
The maximum model order is 10 = 5. 
The noise w(C) is distributed by €-contaminated noise 
with E = 0.01, nominal Gaussian pdf with mean zero, 
unit standard deviation, and contaminating Laplace pdf 
with mean zero and standard deviation equal to 100. 
The number of observations is N = 400. 
The number of experiments in each test is 1000. 

Most of the results are displayed on a (P,, Po) plane graph. 
The performance of the MDL estimators are presented as 
a point on the graph. The NPC and LBTC estimators are 
presented by a curve constructed from points depending on the 
free thresholds X and k ,  respectively. The grid in these figures 
contains, in addition to P, and Po, curve lines of P, + Po = C,  
where C is a constant. 

A. The Effect of the Contaminating pdf 

In the following test, we investigate the effect of the type 
of contamination on the performance of the estimators. The 
noise generation in this test has been done by applying 
the €-contamination model with Gaussian, zero mean, and 
unit variance nominal noise and uniform, Gaussian, Laplace, 
Rayleigh, and Cauchy types of contamination. 

In all cases, except for the Cauchy distribution, the con- 
taminating noise distribution has been with mean zero and 
variance 100. In the case of Cauchy distribution, where the 
variance is infinite, we chose to scale the Cauchy distribution 
in a way that the symmetric tail cut version of the distribution, 
containing 99% of the distribution mass, has variance 100. “No 
contamination” is the case where E = 0. 

In Fig. 1, the nonrobust and robust MDL estimators perfor- 
mance as a function of the contamination type are shown. The 

lo-’ 1 oo 
Po 

Fig. 1. 
mators. 

Effect of contamination type on MDL, nonrobust, and robust esti- 

10.’ 
Po 

Fig. 2. Effect of contamination type on nonrobust NPC estimator. 

nonrobust and robust NPC estimators performance are shown 
in Figs. 2 and 3, respectively. In Figs. 4 and 5, the nonrobust 
LBTC and the robust LBTC performance are shown. 

In all1 the nonrobust versions of the model order estimators, 
we observe a dramatic degradation in performance between 
where the no contamination case and all other cases, where 
contamination exists, is observed. For the MDL estimator, the 
degradation is from -0.17 to -0.6. For NPC and LBTC esti- 
mators, the degradation depends on the threshold parameters, 
and a degradation from 0.15 to 0.2 to 0.6-0.7 is observed. 
As mentioned above, those drastic changes in performance 
are observed when the amount of contamination E is merely 
as small as 0.01. On the other hand, all the robust versions 
of the estimators are insensitive to the contamination type, 
and the performance is similar for cases of both contaminated 
noise and noncontaminated noise conditions. The difference in 
performance between the robust and nonrobust versions of the 
same estimator type in the presence of optimal conditions, i.e., 
when no contamination is present, is as small as 0.01-0.04 in 
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2 
10.' 

10" 
Po 

Fig. 3. Effect of contamination type on robust NPC esdtimator. 

1 0" 
PO 

Fig. 4. Effect of contamination type on nonrobust LBTC estimator. 

r; 
10'' 

lo-' 
Po 

Fig. 5. Effect of contamination type on robust LBTC estimator 

the total probability error, depending on the estimator types. 
The type of contamination is not so important, and the perfor- 

10" . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . .  
solid : Po 
dashed : Pu 

j ~ . ~ l  . . . . . . . . I  . . . . . . . . I  . . . . . . . .  3 . . . . . . . .  8 . . . . . .  J 
10" 10.' 1 oo 10' L IO2 1 o3 

Contamination Vaiiance 

Fig. 6. Effect of contamination variance on MDL nonrobust and robust 
estimators. 

PO 

Fig. 7.  Effect of contarmnahon vanance on nonrobust NPC estimator 

mance is similar for all contamination types both for nonrobust 
and robust versions of the estimators. As an exception we have 
the Cauchy contamination, which implies a somewhat different 
performance in the case of nonrobust estimators. However, 
for the robust estimators, the performance, in the case of 
the Cauchy contamination type, is similar to the performance 
observed for the other types of contamination. The last result 
could be explained by the fact that the robust versions of the 
estimator are less sensitive to the existence of contamination 
and, hence, to the contamination type as well. 

B. n e  Effect of the Variance of the Contamination 
In this experiment, we investigate how the variance of the 

contaminating noise effects the performance of the estimators. 
The contaminating noise is generated from the Laplace distri- 
bution whose variance takes the values of 0.01, 0.1, 1, 10, 50, 
100, 200, and 1000. 

In Fig. 6, the nonrobust and robust MDL estimators per- 
formances are shown. The nonrobust NPC and robust NPC 
estimators performances are shown in Figs. 7 and 8, re- 
spectively. The results for the nonrobust and robust LBTC 
estimators are similar to these of NPC estimator and will not 
be presented here. 

The contamination variance has a strong effect on the perfor- 
mance of the nonrobust estimators. When the contaminating 
noise variance is smaller than the nominal distribution vari- 
ance, no real effect on the performance is detected. However, 
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1 OD 

r: 10.‘ 

. . .  . .  . . .  . . _ .  . .  

1 o.2 
loa 10” 10” 

Po 

Fig. 8. Effect of contamination type on nonrobust NPC estimator. 

solid : Po 
dashed : Pu 

. “ . I  \ 
I 1 

400 600 1000 2000 3000 
N 

Fig. 9. 
estimators. 

Effect of the number of observations on MDL nonrobust and robust 

when the variance of the contaminating distribution is of 
the same order of magnitude as the variance of the nominal 
distribution or greater, the performance of the nonrobust 
estimators starts to degrade drastically. The effect of the 
variance on the robust versions of the estimators is very 
moderate as opposed to the nonrobust versions. This behavior 
is expected since increasing the contaminated variance beyond 
the order of magnitude of the nominal variance produces 
outliers. As the contaminated variance becomes larger, the 
outliers become stronger, and their effect on the nonrobust 
estimator is larger. On the other hand, for the robust estimators, 
the effect of the outliers is limited; hence, they yield a 
moderate effect on the performance. In Fig. 6,  one can clearly 
see the moderate performance degradation observed when 
the contaminating variance becomes larger then the nominal 
variance. Morever, the degradation in performance for the 
robust estimators is bounded and does not increase further 
when the contaminated variance continues to grow. 

C. The Egect of the Number of Observations 

One of the most interesting features of the estimators 
is the dependency of the estimator’s performance on the 
number of observations. In this experiment, we investigate 
the performance of the various estimators as a function of the 
number of the observations. 

In Fig. 9, the nonrobust and robust MDL estimators perfor- 
mances as a function of the number of observations are shown. 

PO 

Fig. 10. Effect of the number of observations on nonrobust and robust NPC 
estimatoirs. 

Po 

Fig. 11. 
estimators. 

Effect of the number of observations on nonrobust and robust LBTC 

The performance of the nonrobust and robust NPC estimators 
are shown in Fig. 10. In Fig. 11, the nonrobust and robust 
LBTC estimators performances are shown. 

For all estimators, it is shown that the probability of both 
type olf errors decreases as N grows. This is important in 
particular for the LBTC estimator since no theoretical results 
of consistency have yet been provided. Another interesting 
phenomenon that can be seen in Fig. 9 is that the overestima- 
tion antd underestimation error probabilities decay faster for the 
robust versions of the MDL estimator than for the nonrobust 
estimator. This implies that one may gain more from using the 
robust estimator instead of the nonrobust estimator when the 
number of observations grows. 

D. Comparison 

In.Fig. 12, the performance of all three estimators in their 
robust versions are shown, Each of these estimator has its 
working point or curve for N = 400,600, and 800. From 
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Fig. 12. 
conditions. 

Comparison between robust model order estimators in uncertainty 

the figure, we can see that MDL estimator has the best 
performance, and LBTC and NPC are somewhat behind. 
However, in some other conditions that had been simulated, 
like when the vector of parameters has a decreasing shape 
of parameters values, the performance of NPC and LBTC 
estimators are similar and, in some cases, are even slightly 
better then the MDL estimators. 

VI. CONCLUSION 
Model order estimators, like other statistical inferences, 

suffer from degradation in performance when the noise distri- 
bution is not nominal. Even small deviations from the nominal 
statistics can yield dramatic performance degradation. In this 
case, it is very useful to imply robust model order estimators. 
Several robust versions of model order estimators have been 
presented in this paper. Among these estimators, the robust 
version of the MDL estimator seems to be the best choice in 
general, although in some circumstances, one might consider 
using the NPC or LBTC estimators as well. Further study can 
be done to enlarge the theoretical basis of the LBTC estimator 
and to search for optimal robust estimators in the minimax 
sense. 
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