
Transmission and Reflection in a Multi-Layer optical System:

Based on the book by Born&Wolf (Principles of optics p. 52).

The idea is that the propagation of the electromagnetic field through a structure is described by a characteristic matrix (M). M relates the field (E and H) at the input plane to that at the output plane (input=M*output). If a structure is complex (like multi-layer system) the equation becomes: input= $M_1*M_2*...M_{N-1}*M_N*$ output, where M_N describes the layer that is closest to the output plane or in other words $M=M_1*M_2*...M_{N-1}*M_N$.

The format of Mj ($j=1 \div N$) is:

$$M_{j} = \begin{bmatrix} M_{j}(1,1) & M_{j}(1,2) \\ M_{j}(1,1) & M_{j}(1,2) \end{bmatrix} = \begin{bmatrix} \cos(\beta_{j}) & \frac{-i}{p_{j}}\sin(\beta_{j}) \\ -ip_{j}\sin(\beta_{j}) & \cos(\beta_{j}) \end{bmatrix}$$
(1)

 β_i is the propagation coefficient defined as:

$$\beta_j = \frac{2\pi}{\lambda_0} L_j n_j \cos(\theta_j) \tag{2}$$

 L_j is j^{th} layer width, n_j is the complex refractive index, θ_j is the propagation angle in this layer

$$n_{j}\cos(\theta_{j}) = n_{j}\sqrt{1-\sin(\theta_{ref})^{2}n_{ref}^{2}n_{j}^{-2}}$$
(3)

 n_{ref} is the refractive index in the medium which defines the angle (θ_{ref}) we are interested in. Usually this would be the input medium (like air) and θ_{ref} is the incidence angle.

For TE (S) wave
$$p_j$$
 is: $p_j = n_j \cos(\theta_j)$

For TM (P) wave
$$p_j$$
 is: $p_j = n_j^{-1} \cos(\theta_j)$

Reflection (amplitude):

$$r_{TE} = \frac{\left(M_{1,1} + M_{1,2}P_{output}\right)P_{input} - \left(M_{2,1} + M_{2,2}P_{output}\right)}{\left(M_{1,1} + M_{1,2}P_{output}\right)P_{input} + \left(M_{2,1} + M_{2,2}P_{output}\right)}$$

$$r_{TM} = -\frac{\left(M_{1,1} + M_{1,2}P_{output}\right)P_{input} - \left(M_{2,1} + M_{2,2}P_{output}\right)}{\left(M_{1,1} + M_{1,2}P_{output}\right)P_{input} + \left(M_{2,1} + M_{2,2}P_{output}\right)}$$

$$\{R=r^{2}\}$$

(note that the difference between TE and TM is not only in the sign but also the p_j values are different)

Transmission:

t=
$$2* p_{input} / ...$$

($(M(1,1)+M(1,2)* p_{output})* p_{input} + (M(2,1)+M(2,2)* p_{output})$)