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Self-consistent analysis of the contact phenomena
in low-mobility semiconductors

Yevgeni Preezant and Nir Tesslera)

Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 13 August 2002; accepted 22 November 2002!

Self-consistent solution of charge injection and charge transport in low mobility light emitting
diodes~LEDs! is reported. We show that an explicit description of the contact region under the same
premise as the transport equations is needed to accurately evaluate the current–voltage
characteristics of polymer or small-molecule based LEDs. The results are compared to widely used
models, which treat the contact region in an implicit manner. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1539534#
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I. INTRODUCTION

Charge injection and transport phenomena have b
studied for many years and in many material systems1 in-
cluding organic semiconductors.2–5 Many of these studies
are now being revisited4,6–10as high quality devices seem t
emerge through the use of new and better materials.11 Lately,
it has become evident that a better description of the con
region or the contact phenomena in organic-material ba
devices is required. It has been proposed that one may
to add interface states in the form of traps or dipoles to be
simulate experimental results.12,13 However, it has also bee
suggested that the contact phenomena in organic mate
should be formulated in a manner adequate to describe
mobility semiconductors14,15 and not as a correction to con
tact phenomena in ceramic semiconductors. The comm
feature of all the models described above is that they t
contact phenomena separately or lump the contact re
into a single point in space. Recently, a molecularly orien
transport model16 that treats the contact region in an explic
manner was developed and applied to various light emit
diode~LED! structures. In this article we also make the co
tact region an explicit part of the device and solve the en
device using a single semiconductor device model. Mo
over, we show that the effect of disorder and the Gauss
density of states~DOS! can be included in such a model
an easy to implement manner.

II. PHYSICAL PICTURE

Before describing the complete model we first exam
the physical picture we use to describe the contact reg
Investigation and development of physical models for cha
injection into organic as well as disordered materials can
traced back several decades. A microscopic description o
charge injection process would generally include ballis
motion of the charge carrier through the polymer, energy l
and thermalization, and the hopping motion of thermaliz
carriers between the localization site to the collector or
combination at the source. However, a macroscopic semi

a!Electronic mail: nir@ee.technion.ac.il
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ductor device model is generally applied to thermalized c
riers only and hence if we want to include the contact reg
in such a model the thermalization length must be negligi
small. Thermalization of carriers in polymers can be d
scribed as ballistic motion of the particle under the influen
of viscous drag force in the image potential field:17

m
dv
dt

52e
v
m

2e
dw

dx
, ~1!

which lead to an approximate expression for the thermal
tion distance for hot carriers:

xt'mv0~m/e!, ~2!

wherev0 is the initial velocity of the injected carrier,m is the
mobility, andm is the carrier mass. This equation illustrat
the relevance of the low mobility to the physical pictur
Although the mass of a carrier polaron is not well known t
overall thermalization length is believed to be in the range
1–0.1 nm and hence one may assume that the carriers
malize at the first-hop site:15 and that any further motion o
the carrier is governed by hopping transport in the electro
potential. This process can be modeled by Monte-Ca
simulation15 or by the drift–diffusion equation.17–19

In the current context one should compare the therm
zation length with the length associated with the contact
gion, defined as the space between the metal/semicondu
interface and the potential peak~see Fig. 1!. The length of
this contact region varies between;10 and;5 nm for ap-
plied voltages between 2.5 and 4 V, respectively~assuming a
built-in voltage of 2 V and a 100 nm thick device!. In the low
applied voltage range~relevant to LEDs! the thermalization
length is much smaller than the contact region with the la
comprising a sizeable fraction (;10%) of the device. Based
on the above discussion we conclude that the contact re
should be treated in an explicit manner and that it may
treated under the premise of drift–diffusion models.
9 © 2003 American Institute of Physics
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III. DEVICE MODELS

A. Space charge limited current

The upper bound for the current flowing through a
undoped device is given by the so-called space charge
ited current~SCLC! relation ~bulk limited!:

JSCL5
9

8
««0m

V2

L3
. ~3!

B. Emission diffusion „generalized SCLC …

While expression~3! is valid for low barrier injection
contacts it can be extended to include contact-limiting effe
using the following formulas:1

JED5qN0mE~0!expS 2
qfb

kT D ,

~4!
fb5fb02AqE~0!

4p««0
,

whereFb is the potential value at its maximum~point xm in
Fig. 1!. The drop in voltage betweenxm and the other contac
(x5L) is then given by

VED5E
0

LAE2~0!1
2Jx

m««0
dx. ~5!

The physical picture of this model is transport of char
carriers under the combined~joint! potential of the image
force lowered by the potential applied~see Fig. 1!. If the
initial concentration of the carriers at the lower point of p
tential, at the metallurgic junction, is equal to the total DO
(N0) then the concentration at the top of the potential (xm) is
given by

n~xm!5N0 expS 2
qfb

kT D . ~6!

At xm the current is assumed to be drift current only a
proportional ton(xm)E(xm), where one assumes thatxm

'0 or E(0)'E(xm). Due to this latter assumption, the in
fluence of space charge on the value of voltage applie
taken into account only beyond the contact region (x.xm)
and the high charge density at the metal/semiconductor
terface is neglected~since the contact region is lumped into

FIG. 1. Schematic of the contact region.xm is the coordinate of peak of the
image force potential in the presence of an applied field, Jt is the current of
carriers thermalized at the contact region, Jh is the current of ‘‘hot’’ carriers
that successfully overcome the peak ballistically.
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single point!. When applied to single carrier devices th
semianalytical model shown above@Eqs. ~3!–~5!# is similar
to the ‘‘standard’’ numerical semiconductor devic
models.7–9

C. Explicit model

1. Semiconductor device model

In this article we present results obtained by se
consistent solution of an explicit model and compare its
sults to widely used models for charge injection.

The equations that constitute the model are

2D]n/]x2mn]f/]x5J, ~7!

f5fSC1f image1fapplied, ~8!

]2fSC~x!/]x25q/~««0!, ~9!

f image~x!52q/~8p««0x!1fbarrier, ~10!

wheren is the charge density,D is the diffusivity constant,m
is the mobility, fSC is the potential induced by the spati
distribution of charge carriers,f image is the image force po-
tential at the contact, andf is the total potential experience
by the carriers. We compare this model to three other m
els. To make the comparison simpler we do not account
the field dependence of the mobility.9

Our numerical simulation is based on solving Eq.~7!
using the exponentially fitted finite difference solutio
method as outlined in Refs. 20 and 21 and in the Appen
To illustrate the actual effect of lumping the contact regi
into a single point in space@Eqs.~4! and~6!# we plot in Fig.
2 the electronic potential calculated by ‘‘standard’’~lumped-
contact! models7–9 along results obtained using the explic
model presented here. In these calculations the device le
is assumed to be 100 nm, the total DOSN051020cm23, the
mobility m51026 cm2 V21 s21, and the contact barrier is
0.2 and 0.3 eV for Figs. 2~A! and 2~B!, respectively. The
dashed line corresponds to lumped-contact model7–9 results
and the solid line to results obtained through the expl
model described here. We note that in the lumped-con
models a sizeable region, betweenx50 andxm , is pushed
out of the device~pushed to the left in Fig. 2!.

In order to examine the change in physical picture
duced by neglect of the contact region we plot in Fig. 3 t
charge distribution calculated for devices having the sa
contact barriers as those in Fig. 2 and operated at a ne
plied voltage (Vappl2Vbi) of 0.5 V. Figure 3 illustrates a few
points. First, for an injection barrier of 0.2 eV there is agre
ment regarding the predicted charge density at the b
hence one would expect a similarI 2V relation ~bulk lim-
ited!. Second, for the injection barrier above 0.2 eV~see 0.3
eV! the lumped-contact model tends to overestimate
voltage-induced barrier lowering, resulting in a significan
higher charge density in the bulk~hence higher currents!.
Third, even for cases where the injection-contact bar
plays a role the image force still induces a high charge d
sity close to the contact~metal/polymer! interface, as calcu-
lated by the explicit model. Neglect of this high-density r
gion of 5–10 nm and of its space charge is the reason
overestimation of the voltage-induced barrier lowering.22 It
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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is also interesting to note that in order to account for h
charge density at the interface there is no need to inv
extrinsic traps or defects.

The above effects also manifest themselves in theI 2V
characteristics of the device. Figure 4~A! compares simula-
tion results of current–voltage device characteristics to th
of the ~semı´! analytical predictions~lumped-contact models!.
As expected, for low injection-barrier cases, the SC
model is a reasonable approximation and for the 0.2 eV
rier all three models effectively converge. For higher inje
tion barriers, like 0.4 eV, the role of the contact region has
be explicitly taken into account, especially when low vo
ages are applied. At high voltages the main drawback of
lumped models~standard! is that they tend to overestimat
the voltage-induced barrier lowering effect, resulting in ov
estimation of the charge density in the bulk and hence of
current density. This is shown clearly in Fig. 4~B! which
presents, on a linear scale, theI 2V curves for the 0.6 eV
barrier case.

FIG. 2. Typical band bending. The barrier heights are~a! 0.2 and~b! 0.3 eV,
respectively. The voltage applied is 0.5 V beyond the flat band condi
~i.e., V;2.5 V). The dashed line was calculated using the ‘‘standa
~lumped! model and the solid line using our explicit model.
Downloaded 02 Mar 2003 to 132.68.1.29. Redistribution subject to AIP
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2. Accounting for the Gaussian DOS

The advantage of the explicit model described here
that once contact is made part of the transport equation
becomes possible to account for unique properties assoc
with organic materials. The most common property is that
disorder and the Gaussian distribution of the DOS.4 It has
recently been shown that within the framework of the sem
conductor transport equation the Gaussian DOS results in
mobility ~m! and diffusivity(D) not being related through th
classical Einstein relation (D/m5kT/q) but rather through a
generalized relation of the form ofD/m5h"kT/q 23 whereh
is a function of both the charge density(n) and the width of
the Gaussian DOS~s! ~see Fig. 5!. The main assumption in
this calculation is that of equilibrium, which has not be
fully proved. However, such an assumption is embedded
most device models and in the case at hand the final resu
in good agreement with Monte-Carlo simulations.15,24 More
details on the derivation of the generalized Einstein relat
can be found in Ref. 23. Note thath is strongly dependent on
the disorder parameter especially at high charge densi
i.e., this phenomenon should affect transport in the con
region (0,x,xm) where the density is high~see Fig. 3!.

n
’’

FIG. 3. Charge density distribution for contact injection barriers of~a! 0.2
and ~b! 0.3 eV. The dashed line was calculated using the ‘‘standa
~lumped! model and the solid line using our explicit model.
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 4. ~a! Current density as a function of the mean field for a 100 nm long device and varying injection barriers of 0.2, 0.4, and 0.6 eV and devi
of 0.1 mm. ~b! Current density for a 0.6 eV barrier on a linear scale. Standard5 Lumped model; explicit5 our model; SCLC5 space charge limited curren
as in Eq.~3!.
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Mathematically speaking, one should find the self-consis
solution of the following, slightly modified, continuity equa
tion:

2h~n,s!
kT

q
m]n/]x2mn]f/]x5J. ~11!

Accounting forh (n) requires modification of the numer
cal method. For a fine enough grid, one in which the den
(n) does not change by more than an order of magnit
between successive grid points, one can still make use o
exponentially fitted finite difference scheme.20,21 In this case
accounting forh (n) in the numerical code is made trivial~see
the Appendix!. Figure 6 shows the calculated charge dens
distribution for several disorder parameters~s!. In the calcu-

FIG. 5. Generalized Einstein relation~h! as a function of the charge con
centration for a variety of disorder parameters~calculated based on Ref. 23!;
N0 is the total DOS.
Downloaded 02 Mar 2003 to 132.68.1.29. Redistribution subject to AIP
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lation the difference in energy between the Gaussian ce
and the metal work function is fixed at 0.5 eV and the n
voltage applied (V2Vbi) is 2 V. As the Gaussian width is
made larger more transport states become available clos
the energy of the metal work function and hence the inject
barrier effectively becomes smaller.15,24 Figure 7 shows the
calculated current–voltage relations for the cases show
Fig. 6. The dependence of the mobility~m! on the disorder
~s! is not included and hence only the functional form of t
curves is important. One should keep in mind that disor
also reduces the mobility and hence the curves in Fig
would shift slightly downward$m}exp(@(22/3s)2#)%4. As
expected, Fig. 7 shows that ass is made larger, for a fixed
difference in energy between the Gaussian center and
metal, theI 2V curve tends towards the SCLC function
form. This is consistent with the reduction of the effecti
barrier discussed with in the context of Fig. 6.

FIG. 6. Charge density distribution.
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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IV. CONCLUSIONS

We have presented a self-consistent analysis of ch
injection and transport in low mobility disordered materia
It was found that incorporating the contact region into t
transport model is important to properly account for cont
phenomena. The model shows that a high charge den
near the metallic interface is due to the image-force poten
and does not require the addition of extrinsic trap states
defects. Moreover, it makes it possible to account for uniq
features associated with organic materials, like disorder
Gaussian DOS which are known to affect the injection p
cess, all within the framework of a conventional semico
ductor device model. We emphasize that all these effe
enter the model through a single parameter,h,23 and hence
can be added to any semiconductor device model simul
~see the Appendix!. We expect that the method describ
here will make it possible to better simulate, design, a
manufacture state-of-the-art LEDs that can operate at
voltages and potentially have a fast switching time.
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APPENDIX: DISCRETIZATION OF THE CONTINUITY
EQUATION

The simulation program solves the continuity equatio

D
]n

]x
1mn

]f

]x
5J,

whereF(x) is a joint potential of space charge induced fie
the image potential near the contact, and the voltage app
The charge carriers are assumed to be thermalized at the
hop so one can assume the concentration in the vicinity

FIG. 7. Influence of disorder on device behavior. The charge distribu
andI 2V curve show a significant variety for difference disorder in hopp
site energies.
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the metallurgic junction to be in equilibrium with metal ele
trons. If F (x) andJ are known one can derive an analytic
solution of continuity equation for carrier concentration:

n~x!5N0 expS 2
m

D
f~x! D2

J

D
expS 2

m

D
f~x! D

3E
0

x

expS m

D
f~x8! Ddx8.

The above representation clearly shows the importance
the rationm/D. For the numerical solution we apply a dis
cretization scheme:

ni5ni 21 expS 2
m

D
~f i2f i 21! D2

J

D

3expS 2
m

D
~f i2f i 21! D E

xi 21

xi
expS m

D
f~x8! Ddx8.

By writing an analogous expression for the next mesh in
val and expressingJ throughn(x) one can arrive at a schem
that contains the carrier concentration only:

J5DF ni 212ni expS m

D
~f i2f i 21! D

E
xi 21

xi
expS m

D
f~x8! Ddx8

G
5DF ni2ni 11 expS m

D
~f i 112f i ! D

E
xi

xi 11
expS m

D
f~x8! Ddx8

G .

By rearranging terms when assumingm/D5q/kT we arrive
at the following discretization scheme:20,21

ni 21

E
xi 21

xi
expS q

kT
f~x8! Ddx8

2niF expS q

kT
~f i2f i 21! D

E
xi 21

xi
expS q

kT
f~x8! Ddx8

1
ni

E
xi

xi 11
expS q

kT
f~x8! Ddx8

G
1

ni 11 expS q

kT
~f i 112f i ! D

E
xi

xi 11
expS q

kT
f~x8! Ddx8

50.

In the generalized Einstein relation casem/D5q/hkT
and hence the discretization scheme is written as

n
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ni 21

E
xi 21

xi
expS q

h i 21/2kT
f~x8! Ddx8

h i 21/2

2niF expS q

h i 21/2kT
~f i2f i 21! D

E
xi 21

xi
expS q

h i 21/2kT
f~x8! Ddx8

h i 21/2,

1...
ni

E
xi

xi 11
expS q

h i 11/2kT
f~x8! Ddx8

h i 11/2G
1

ni 11 expS q

h i 11/2kT
~f i 112f i ! D

E
xi

xi 11
expS q

h i 11/2kT
f~x8! Ddx8

50.

The above scheme is valid only for a fine enough grid so
h can be assumed to be constant between the mesh p
~namely, the difference incharge density between adjac
points is below a factor of 3!.

For any given electronic potential distribution the equ
tion above can be solved and yield the charge distribution
account for the self-induced potential~space charge effects!
we also solve the Poisson equation in a self-consistent m
ner. The algorithm is based on an iterative solution u
solution convergence is achieved.
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