
An Asynchronous Router for Multiple Service Levels Networks on Chip

Dobkin (Reuven) Rostislav, Victoria Vishnyakov, Eyal Friedman, Ran Ginosar

VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel

ran@ee.technion.ac.il

Abstract

Networks on Chip that can guarantee Quality of

Service (QNoC) are based on special routers that can

support multiple service levels. GALS SoCs call for

asynchronous NoC implementations, to eliminate the need
for synchronization when crossing clock domains. An

asynchronous multi-service level QNoC router is

investigated. It comprises multiple interconnected input

and output ports, and arbitration mechanisms that resolve

any output port and service level conflicts. Buffering and

credit based transport are enabled, enhancing throughput.
A synchronous and an asynchronous routers have been

designed, and their performance is compared. The

asynchronous router requires less area and enables a

higher data rate.

1. Introduction

Interconnect is a very expensive resource within large

systems on chip (SoC), consuming area and power and

incurring high delays relative to gate delays and clock

cycles [1]. Requirements for wide-bandwidth inter-

module communications exacerbates the problem,

incurring larger area and power costs for the

interconnects. In addition, data synchronization problems

arise in multi-clock domain SoCs, and operating clocked

interconnects becomes increasingly more difficult. Large

SoCs are treated as Globally Asynchronous Locally

Synchronous (GALS) systems, calling for suitable

interconnects beyond conventional synchronous buses.

Networks on Chip (NoC) are advocated as a solution for

the SoC interconnect problem [2]– [4]. To support varying

communication requirements, a Quality-of-Service NoC

(QNoC) has been proposed, which performs preemptive

routing according to packet priority [5]. Since it is

designed to support GALS systems with multiple clock

domains, including dynamic scaling of voltage and

frequencies per each synchronous module, it is best

implemented as asynchronous circuits.

A 2D mesh architecture of QNoC is shown in Figure 1

[5]. The SoC comprises modules and a NoC, consisting of

links and routers. All inter-modular communications are

carried out in packets; legacy modules (capable only of

bus-oriented read/write operations) may require wrappers

that handle packet based communications. Packets are

partitioned into small flits, which are sent through the

NoC using wormhole routing. Each QNoC packet carries

a Service-Level (SL) priority tag, related to data

communication requirements. In this paper we explore

QNoC routers that support four service levels, as defined

in [5] (Table 1). The packet consists of three types of flits:

a header flit with routing address, body flits and a tail flit,

indicating end-of-packet (EOP), as in Figure 2. Each flit

contains bits indicating its type and SL.

MODULE

ROUTER

LINK

Figure 1: QNoC 2D Mesh Architecture

Table 1: Service Levels Example [5]

Service-

Level

Description Priority

Signaling Urgent Messages, Short

Packets, Interrupts, Control

signals requiring low transport

latency

Highest

Real-Time Real-time application packets

RD/WR Short memory and register

access

Block

Transfer

Long messages and blocks of

data

Lowest

Flat 2D mesh QNoC may be inappropriate in some

applications. Typically, module placement on SoC strives

to minimize long range communications, and blocks that

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

require high bandwidth interconnect between them are

placed close to each other. Thus, most communications

are ideally short range. However, long range

communications, though usually needing lower

bandwidth, cannot be avoided. On the other hand, some

nearest-neighbor communications may be optimized by

creating custom links that avoid NoC overhead. These

observations give rise to hierarchical multi-level NoC

architectures that offer different types of links and

communication channels for different needs. An example

is shown in Figure 3, where three types of links are

supported: neighbor, local, and global. The Hierarchical

QNoC (HQNoC) is designed to employ the same multiple

service level routers, and manage the use of different links

through different service levels.

CHAIN [6], [7] proposes a different asynchronous

interconnect for NoC. Its CHAINlink protocol is based on

1-of-4 encoding, routers and arbiters. CHAIN provides a

flexible framework for NoC, but it is limited to a single

service level. An asynchronous router architecture with

QoS support was recently presented in [3] [8].

Synchronous routers using round-robin arbitration and

supporting asynchronous interconnect are presented in [9]

[10], though synchronization issues are ignored.

Asynchronous packet routers for off-chip networks were

presented as early as 1994 [11]. Synchronous NoC routers

supporting virtual channels, which could be used to

provide multiple service levels, are described in [12] and

[13]. Other synchronous routers are discussed in [14]. A

synchronous five-port router that supports two service

levels (best effort and guaranteed throughput) is described

in [15]. The butterfly fat-tree interconnect of [16] may

also take advantage of routers described in this paper.

NoC wrappers and synchronization issues are discussed in

 [17]– [22].

We present a single service level QNoC router in

Section 2 and reuse the same components in a multi

service level router in Section 3. Performance analysis of

our design is discussed in Section 4.

Header

(Routing Address)

Body
(Payload)

Tail
(EOP)

SL
Flit

Type
DATA

Flit Type Encoding:
00 Header

01 Body
10 Tail

Figure 2: Packet Structure and Flit Format

Neighbour Local Global
SoC Module WrapperRouter

Figure 3: 3-Level Hierarchical NoC Example

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

2. A Single Service Level (SSL)

Asynchronous Router

Routers are the main functional blocks of QNoC,

routing flits from an input port (IP) to one of the output

ports (OP), according to the routing address and packet

priority. The routing is either specified by the source or

computed at each router along the route. In computed

routing, the packet contains the destination address and

each router determines its own switching. One example is

X-Y routing for a 2D mesh [5] [23], where the packet is

first routed along the X dimension and then along the Y

dimension towards its destination. When source-specified

routing is employed, the packet contains a list of

switching indices, providing a switching command for

each router [6]. In this paper we employ a simplified

version of a source-specified routing: m bits are used to

specify switching of an incoming packet to one of 2m

possible output ports at each router. The m bits are

consumed by the router, and the packet needs M×m

routing bits when M routers are traversed. In the following

we describe, as an example, a 5-port router (Figure 4),

namely m=2.

The bi-directional router interfaces consist each of an

input port (IP) and an output port (OP). We consider a

router with five interfaces, suitable for a 2D mesh with an

additional interface to a SoC Module (as in Figure 1). We

assume that a packet coming through an IP does not loop

back, and thus each IP is connected to four OPs (Figure

4b) and only two bits are required for switching (Figure

4a). The OPs emit flits according to their arrival order and

their priority, as defined by the packet's Service Level

(SL). In the rest of this section we discuss the architecture

of a single service level router. In the next section we

extend this to supporting multiple service levels.

1 0 0 1 1 1 0 0

OP

Addr

to 1st
Router

OP

Addr

to 2nd
Router

OP

Addr

to 3d
Router

OP

Addr

to 4th
Router

(a) (b)

IP2 OP2

IP
3

O
P

3

"10"

"11"

"01"

"00"

IP
1

O
P

1

IP0 OP0
IP

4

O
P4

Figure 4: Routing Address from Source to Sink

2.1. Single Service Level Input Port (SSL-

IP) Architecture

SSL-IP manages incoming flits that belong to a single

service level. The incoming flits are first saved in an

internal buffer L (Figure 5), decoupling the external

(input) interface and internal processing, and enabling

additional flit transmissions. Next, the SSL-IP decodes the

flit type (header, body or tail).

Check
Flit

Type

OP
Index

Latch-Control

Shifter
L

Type

route_addrCUR_ADDR

delay

Di

Ri

Ai

Do

L
a

tc
h

L
o

c
k

Latch
Req

Di

Header Req

Body and

Tail Req

ACK_OUT

Ao4

Ao3

Ao2

Ao1

Rh4
Rh3
Rh2
Rh1

delay

Rbt4
Rbt3
Rbt2
Rbt1

Ld AoRo

LbLb

Pipe

Ctrl

Pipe

Ctrl

Ri

Ai

Ri

Ai

Optional Buffering

Di

Figure 5: Single Service Level Input Port Architecture

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

On a header flit, the first two data bits contain the

target OP index i for the present router. This index is

saved in the OP-Index latch, controlling all muxes that

select one of four OPs. The index will serve all subsequent

flits of the same packet, and will be changed only by the

header flit of the next packet. In addition, a shifted version

of the header flit is sent out, so that the first two data bits

now contain the OP index for the next router. Last, the

header is sent out by signaling Rhi. No processing is

required for body and tail flits—they are sent out by

signaling the common request Rbti to the ith
 OP. Note that

the controller employs asymmetric delay lines to match

latch propagation delays.

Ri+

Ri-

Ai+

Ai-

Ld+

Di+

Ld-

Di-

Ro+

Ao+

Ro-

Ao-

Figure 6: Latch-Control STG

The Latch-Control STG is shown in Figure 6. The

external interface (Ri, Ai) is decoupled and is released as

soon as the flit has been latched inside the IP (upon Di-).

The controller was synthesized using Petrify [24] (see

Section 4).

In order to enhance throughput, asynchronous buffer

stages may be inserted on the input link (dashed block in

Figure 5). The number of buffers depends on throughput

and latency requirements. In case of a single service level

NoC, the buffers may be spread along the interconnect

wires between routers (serving also as repeaters). As

explained below, this is different for multi-service level

NoCs.

2.2. Single Service Level Output Port (SSL-

OP) Architecture

SSL-OP (Figure 7) interfaces four IPs and one external

output. It monitors incoming requests and when one is

granted it establishes an IP-OP connection and maintains

it for the duration of the packet, until receiving a tail-type

flit (different packets from the same service-level cannot

be interleaved).

The Latch-Control unit latches the selected data in data

latch L. Subsequently, it conducts the external handshake

with the next router. The unit is identical to the one used

in SSL-IP, having same STG as Figure 6.

On a header flit, the current IP index is saved inside the

IP-Index latch prior to data latching. Actually, Latch-

Control receives no input request (Ri) before the index is

latched. After header flit handling, body and flit requests

arrive in a mutually exclusive manner. Body and tail flits

are immediately sent out to the external interface, through

latch L.

LATCH
CTRL

Lb

IP

INDEX

Ai

A1

A2

A3

A4

L
Data_Out

D1

D2

D3

D4

delay

RO

AO

Optional Buffering

Pipe
Ctrl

Pipe
Ctrl

ROi

AOi

ROj

AOj

Lb

MUTEX-NET

H1

H2

H3

H4

G1

G2

G3

G4

BT1

BT2

BT3

BT4

T
A

IL

TAIL

AI

RI

C

RO

AO

DILD

L_IP

Figure 7: Single Service Level Output Port Architecture

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

The value inside the IP-Index latch remains unchanged

throughout packet transmission, continuously connecting

the SSL-OP with the current source SSL-IP. The value is

updated by an incoming header-flit and is locked as soon

as header-type appears at the output of data latch L,

switching the c-element output to low. During body flit

transmission the value inside the IP-Index register remains

unchanged. Upon a tail-flit, the IP-Index latch becomes

transparent allowing the processing of the next packet.

The latch becomes transparent only after the port

completes the (Ri, Ai) handshake for the tail-flit. This is

assured by the NOR gate, keeping the c-element input low

during the tail-flit data cycle.

Similarly to the SSL-IP, output buffers can optionally

be used to enhance router performance.

Since the router is asynchronous, arrival time of the

request signals is unknown, and requests may conflict.

Therefore, the four requests should be arbitrated. Note that

only header-type requests are arbitrated, since once an IP-

OP connection is established, requests from the other IPs

are blocked.

Arbitration can be performed using either a tree arbiter

(Figure 8b), consisting of three standard two-way arbiters

(Figure 8a), or a MUTEX-NET (Figure 9). Both

architectures incur similar latency and area. Since

MUTEX-NET seems to be slightly faster than the tree-

arbiter we use it in our design, and its fairness [25] is

analyzed below.

A
R

B
IT

E
R

R1

R0
A0

A1

R2
A2

R1

A1

R2

A2

C

R0

A0C

G1

G2

Y1

Y2

A
R

B
IT

E
R

R1

R2

A
R

B
IT

E
R

R3

R4

A
R

B
IT

E
R

G
AH

Y1

Y2

Y1

Y2

G1

G2

G3

G4

(a)

(b)

Figure 8: Tree Arbiter

In Figure 9, four requests are mutually excluded by

means of a net of six two-input MUTEX elements,

arranged in three stages. The latency of the MUTEX-NET

is expected to be very low for non-conflicting cases,

making this solution fast and effective for the majority of

packet transmissions.

R1

R2

R3

R4

G2

G3

G1

G4

Figure 9: MUTEX-NET

The MUTEX-NET does not always preserve the

original order of the incoming requests. For instance,

assume the sequence R1+, R2+, R4+, R1-. Clearly, R2+ is

blocked by the first stage of MUTEX-NET, while R4 is

blocked by the last one. When R1 is released, R2 is

blocked again at the second stage by R4, and R4 is

granted, even though it came after R2. However, a request

is not starved forever inside the net, as follows.

Claim: MUTEX-NET has a bounded blocking time,

and a request may be outrun by no more than two later

requests.

Proof: Assume that there are four concurrent requests

at the input of the first MUTEX-NET stage, say Ri, Ri',

RK, RK' (the tag means a “pair request,” namely a request

connected to the same two-input MUTEX of the first stage

as the untagged request). Then, at most two of them, say

only Ri (worst-case: Ri wins over RK at the second stage),

are granted at the second stage, and only one, Ri, wins at

the last (third) stage. When the winner request Ri is

released, its pair request Ri' wins at the first stage,

blocking any new Ri propagations through the net. Then,

there is a race between Ri' and RK that will end in the

worst case by blocking RK again at the third stage. In this

case after Ri' is released, the subsequent request that will

be granted is RK, since by being at the third stage it blocks

the pair request Ri. This is the worst-case, and RK was

outrun by two other requests from a different input pair.

When at the beginning RK and Ri both meet only at the

third stage, then RK will be outrun at most by Ri. QED.

Conclusions: Given a request R, the following hold:

a. R cannot be outrun by its pair request R' (only in

case of concurrency).

b. When blocked by a request from another pair at

the second stage, R will always propagate to the

third stage once the blocking is released.

c. When blocked by a request from another pair at

the third stage, R will win the blocker's pair

request after the block is released, thus R is

granted next (this is thanks to the blocking of the

pair request at the second stage).

In an arbiter, one of the main concerns is fairness,

which guarantees that a request will be granted after a

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

bounded number of other requests [25]. Fairness and

correctness [26] of arbitration can be improved by using

ordered arbiters [27], preserving the closest possible

granting order to input arrival, by storing the incoming

requests in an internal FIFO. We consider the scheme of

Figure 9 as fair enough for our application and use it in

the implementation example.

3. Multi-Service Levels (MSL)

Asynchronous Router

We now describe the input and output ports that

support multiple service levels. Additional bits are added

to each flit to identify the service level [5].

3.1. Multi-Service Level Input Port

The QNoC router input port comprises k SSL-IPs (k is

the number of service levels). Figure 10 shows a k=4

example. For each incoming flit, the request is applied to

only one of the four SSL-IPs, according to the service

level. The selected SSL-IP conducts handshake with the

input channel asking for data transmission. After the data

is latched inside the SSL-IP, a request is sent to the

appropriate OP, according to the latched flit’s routing

address. Additional asynchronous buffering per each

service level can optionally be employed, as shown in

Figure 10.

3.2. Multi-Service Level Output Port (MSL-

OP)

The QNoC multi-service level output port structure is

shown in Figure 11. The header requests from the IPs are

grouped according to their service level, and conflicts

within each service level are resolved using the MUTEX-

NET inside the corresponding SSL-OP (see Figure 7).

Flit requests from all service levels enter the static

priority arbiter (SPA) [25]. The SPA decides according to

service level priority which flit is sent at the next output

data cycle. When a service level is granted (G_SLi), the

corresponding SSL-OP is connected to the data link and

sends one flit through the shared output interface. After

sending one flit, control is returned to the SPA, since there

could be higher service level flits pending. Priority

decision is performed only when the output data cycle is

over, thanks to the Gate signal of the SPA. Gating is de-

asserted as soon as current cycle is over (on Ao–).

A modified SPA [25] consists of a Request Lock

Register (containing the MUTEX elements) and priority

logic (Figure 12). When at least one request is sensed, the

set of pending input requests are locked in the register,

and eventually the highest priority request is granted at the

output (Gi+). As a result, the Request Lock Register is

reset. The C-element holding the grant is released only

after the corresponding request goes low. Although

fairness of the priority arbiter has recently been improved

[28], we employ a modified version of the simpler

approach [25], since in our case fairness among service

levels is less of an issue, thanks to additional MUTEX-

arbitration within each service level.

SSL-IP

SL 0()

SSL-IP
SL(1)

SSL-IP

SL(2)

SSL-IP

SL(3)

Di

Ri

Ai

Di

Ri

Ai

Di

Ri

Ai

Di

Ri

Ai

Do

Rh

Rbt

Ao

DATA_IN

ACK_IN

REQ_IN

SL

SLSLSLSL0
BUFFERINGBUFFERINGBUFFERINGBUFFERING

SLSLSLSL1
BUFFERINGBUFFERINGBUFFERINGBUFFERING

SLSLSLSL2
BUFFERINGBUFFERINGBUFFERINGBUFFERING

SLSLSLSL3
BUFFERINGBUFFERINGBUFFERINGBUFFERING

SL =0

Interface to
4 OPs

SL =1
Interface to

4 OPs

SL =3

Interface to

4 OPs

SL =2

Interface to
 4 OPs

4

4

4

OPTIONAL

Do

Rh

Rbt

Ao

4

4

4

Do

Rh

Rbt

Ao

4

4

4

Do

Rh

Rbt

Ao

4

4

4

Figure 10: QNoC Multi-Service Levels Router Input Port

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

SSL-OP

(SL0) Ro4-Way

SPA

G_SL3

Ro

Ao

Do

BT

A_SL0

RH_SL0

RBT_SL0

D_SL0 Di

A

H

SSL-OP

(SL2)

Ro

Ao

Do

SSL-OP

(SL3)

Ro

Ao

Do

SSL-OP

(SL1)

Ro

Ao

Do

Ao

Dout

Ao_0

Ao_1

Ao_2

Ao_3

Ro_0

Ro_1

Ro_2

Ro_3

Do_0

Do_1

Do_2

Do_3

Gate

G_SL1
G_SL2
G_SL3
G_SL4

4

4

4

4*Flit

BT

A_SL1

RH_SL1

RBT_SL1

D_SL1 Di

A

H
4

4

4

4*Flit

BT

A_SL2

RH_SL2

RBT_SL2

D_SL2 Di

A

H
4

4

4

4*Flit

BT

A_SL3

RH_SL3

RBT_SL3

D_SL3 Di

A

H
4

4

4

4*Flit

SL

Index

S* R

Figure 11: QNoC Multi-Service Level Router Output Port

R1

Priority
Module

C G1

C G2

C G3

C G4

R2

R3

R4

S

R*

Q

Lock

Request Lock Register

GATE

RESET

Figure 12: Four-Way Static Priority Arbiter

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

SL

Index

Ro

Do

4-Way
SPA

R_SL0

R_SL1

R_SL2

R_SL3

SSL-IP

SL(0)

DATA_IN

ACK_IN

REQ_IN

SL

Di

Ri

Ai

D
o

Rh

Rb

Rt

Ao

4

4

4

4

SL0
BUFFERING

CREDIT_SL0

SSL-OP

SL(0)

Ro

Ao

Do

BT

Di

A

H

CREDIT_SL1

CREDIT_SL2

CREDIT_SL3

S* R

Figure 13: Credit Mechanism in Multi-Service Levels Asynchronous Router

R0

Priority
Module

C G0

C G1

C G2

C G3

R1

R2

R3

S

R*

Q

LOCK

Request Lock Register

GATE

CREDIT_SL0

CREDIT_SL1

CREDIT_SL2

CREDIT_SL3

RESET

Figure 14: Four-Way Static Priority Arbiter with Credits Support

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

Table 2: Comparison results for Complete Router for 1- and 4-SL

Synchronous Router Asynchronous Router
Parameter

1-SL 4-SL 1-SL, [6] 1-SL 4-SL
Units

Cell Area 210,000 960,000 - 93,300 470,000 m
2

Equivalent Gates (2-in NAND) 3,800 17,500 - 1,700 8,500 Gates

Number of transistors 15,200 70,000 ~19,000 6,800 34,200

Number of FFs / Latches 195 880 - 130 620

Min Latency (Input to Output) 3.3 (1) 3.7 (1) - 7.6 / 3.9 13.0 / 9.2 ns (CLKs)

Data Cycle 13.2 (4) 14.8 (4) - 18.0 / 11.9 13.3 / 13.3 ns (CLKs)

Max Data Rate 75.8 67.6 ~120 55.5 / 84.0 75.2 / 75.2 Mflits/s

Max Clock Frequency 303.0 270.2 - - - MHz

 Notes: (1) Times and rates for async router are specified for header / body&tail flits. (2) Numbers for [6] are estimates.

In a single-service level router, the asynchronous

handshake serves also as the “credit” mechanism [5],

allowing data transfer only when there is a free buffer

space in the next router. In the multi-service level case,

another approach must be applied, since the single

asynchronous communication channel is shared among all

service levels. A free space indication signal is required

per each service level (Figure 13). This indication enables

requests of the same service level inside the SPA (Figure

14).

4. Performance

The proposed asynchronous QNoC router is compared

with a synchronous router of the same functionality. The

asynchronous controller was synthesized with Petrify [24]

and Synopsis Design Compiler, using a 0.35 m standard

cell library. The synchronous router was designed based

on the same technology and has a critical path / clock

cycle of ~20 FO4 gate delays, matching or outperforming

other published results [12]– [15], at a smaller area. Eight-

bit flits were assumed for the single service level router,

and ten-bit flits for the four service level one. The results

are listed in Table 2. The synchronous and asynchronous

designs show similar data rate performance, while the

asynchronous routers require less area. The area reduction

is mostly the consequence of using latches instead of flip-

flops. In addition, we have estimated the cost and

performance of a single service level router using CHAIN

link [6]. The authors reported 120 Mbps per wire data rate

for a case without steering. We have assumed that the rate

with steering is not much lower. The total area of the five-

port CHAIN router was estimated by extrapolating the

data in [6], which relates to a 2×2 router.

Note that the reported results depend closely on the

choice of protocols and on implementation details. Future

research is required to optimize the design, to investigate

alternative protocols, and to evaluate bottlenecks. As

explained in Sections 2 and 3, data buffers may be added

to enhance performance. Buffered routers have not been

analyzed yet, and are expected to improve throughput.

While the synchronous and asynchronous routers

exhibit similar performance, it should be noted that when

the NoC spans multiple clock domains, a multi-link data

transfer may incur the additional penalty of multiple

synchronization latencies. An asynchronous NoC helps

eliminate en-route resynchronizations.

5. Conclusions and Future Research

We have presented QNoC routers for both single and

multiple service levels. The single service level router

comprises a number of interconnected input and output

ports. The output ports arbitrate conflicting requests.

Simplified routing mechanism, as well as minimal

buffering, are designed to minimize area and power costs

at the router. The multi-service level router provides

complete functionality for either planar or hierarchical

QNoCs. Service levels are arbitrated according to priority,

and allow preemption of lower priority transports. Service

level specific credit based signaling between adjacent

routers provides for minimized blocking and high

performance communications. Buffers may be employed

as necessary in either single or multiple service level

routers.

QNoC for multi-clock domain GALS SoCs naturally

benefit from asynchronous interconnects. Our design

demonstrates that asynchronous routers require less area

than their synchronous counterparts, and incurs a shorter

data delay.

Future study is planned for investigating the following

issues. The use of buffering must be analyzed to

determine their potential for throughput enhancement.

Alternative protocols should be studied, as well as other

definitions of service levels. Packet and flit formats should

also be questioned. Employing different links, such as

serial versus parallel links, should also be investigated in

the context of different applications. The entire NoC

model should be analyzed when used for specific

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

applications and different usage models and

communication requirement mixes.

6. Acknowledgement

We thank Julia Kurolap and Sergey Klimov for helping

develop the architecture. Comments of the anonymous

reviewers helped significantly to improve this paper. This

research was funded in part by Freescale Semiconductor

and Semiconductor Research Corporation (1204.001),

Israel Ministry of Industry and Trade (Short Range Radio

Consortium) and by Intel Corporation.

References

[1] International Technology Roadmap for Semiconductors

(ITRS), 2003.

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires:

On-Chip Interconnection Networks,” Proc. DAC, June 2001.

[3] J. Duato, S. Yalamanchili, and L. M. Ni. Interconnection

Networks: An Engineering Approach. IEEE CS Press, 1997.

[4] W.J. Dally and B. Towles, Principles and Practices of

Interconnection Networks Morgan Kaufmann, 2004.

[5] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “QoS

Architectrure and Design Process for Cost Effective Networks

on Chip”, J. Systems Architecture, special issue on Networks on

Chip, 50(2-3), pp. 105-128, February 2004.

[6] J.Bainbridge and S.Furber, “Chain: a Delay-Insensitive

Chip Area Interconnect,” IEEE Micro, vol. 22, no.5, pp.16-23,

Sep./ Oct. 2002.

[7] W.J. Bainbridge, L.A. Plana and S.B. Furber, “The Design

and Test of a Smartcard Chip Using a CHAIN Self-timed

Network-on-Chip,” Proc. DATE, Feb. 2004.

[8] T.Felicijan, S.B.Furber, "An Asynchronous On-Chip

Network Router with Quality-of-Service (QoS) Support," Proc.

of IEEE International SOC Conference, Santa Clara, CA, Sept.

2004, pp. 274-277.

[9] N. Banerjee, P. Vellanki and K.S. Chatha, “A Power and

Performance Model for Network-on-Chip Architectures,” DATE

2004.

[10] P. Vellanki, N. Banerjee and K.S. Chatha, “Quality-of-

Service and Error Control Techniques for Network-on-Chip

Architectures,” Proc. GLSVLSI’04, Boston, USA, pp. 45-50,

2004.

[11] I.M. Nedelchev and C. R. Jesshope, “Basic building blocks

for asynchronous packet routers,“ Proc. of Fourth Great Lakes

Symposium on 'Design Automation of High Performance VLSI

Systems', pp. 184-187, March 1994.

[12] L. Peh and W.J. Dally, “A Delay Model and Speculative

Architecture for Pipelined Routers,” 7th Int. Symp. High-

Performance Computer Architecture (HPCA), Jan 2001.

[13] R. Mullins, A. West and S. Moore, “Low-Latency Virtual

Channel Routers for On-Chip Network,” Proc. 31st Int. Symp.

Computer Architecture, 2004.

[14] H. Wang, L.S. Peh and S. Malik, “Power Driven Design of

Router Microarchitectures in On-Chip Networks,” Proc.

MICRO-36, 2003.

[15] E. Rijpkema, K. Goossens et al., “Trade-offs in the design

of a router with both guaranteed and best-effort services for

networks on chip,” IEE Proc.-Comp. Digit. Tech., 150(5), 294-

302, Sept. 2003.

[16] C. Grecu, P.P. Pande, A. Ivanov and R. Saleh, “A Scalable

Communication-centric SoC Interconnect Architecture,” Proc.

5th Int. Symp. Quality Elect. Design, 343-348, 2004.

[17] R. Dobkin, R. Ginosar and C. P. Sotiriou, “Data

Synchronization Issues in GALS SoCs”, Proc. ASYNC, April

2004.

[18] J. Kessels, A. Peeters, P. Wielage and S.-J. Kim, “Clock

Synchronization through Handshake Signalling,” Proc. ASYNC,

pp. 59-68, March 2002.

[19] T. Villiger, H. Kaeslin, F.K. Gürkaynak, S. Oetiker and W.

Fichtner, “Self-Timed Ring for Globally-Asynchronous Locally-

Synchronous Systems,” Proc. ASYNC, pp. 141-150, April 2003.

[20] J. Muttersbach, T. Villiger and W. Fichtner, “Practical

Design of Globally-Asynchrounous Locally-Synchronous

Systems,” Proc. ASYNC, pp. 52-61, April 2000.

[21] S. Moore, G. Taylor, R. Mullins and P. Robinson, “Point

to Point GALS Interconnect,” Proc. ASYNC, April 2002.

[22] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D.

Mullins and P. Robinson, “Self-Calibrating Clocks for Globally

Asynchronous Locally Synchronous Systems,” Proc. Int. Conf.

Computer Design (ICCD), 2000.

[23] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “Cost

considerations in Network on Chip”, Special issue on Networks

on Chip, Integration - The VLSI Journal, 2004.

[24] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno

and A. Yakovlev, “Petrify: a tool for manipulating concurrent

specifications and synthesis of asynchronous controllers,” IEICE

Transactions on Information and Systems, E80-D(3), pp. 315–

325, 1997.

[25] A. Bystrov, D. Kinniment and A. Yakovlev, “Priority

Arbiters,” Proc. ASYNC, pp. 128-137, April 2000.

[26] C. H. (Kees) van Berkel and C.E. Molnar, “Beware the

Three-Way Arbiter,” IEEE Journal of Solid-State Circuits, 34(6),

pp. 840-848, June 1999.

[27] A. Bystrov and A. Yakovlev, “Ordered arbiters,”

Electronics Letters, 35(11), pp. 877-879, 27th May 1999.

[28] T. Felicijan, J. Bainbridge and S. Furber, “An

Asynchronous Low Latency Arbiter for Quality of Service

(QoS) Applications,” Proc. Int. Conf. Microelectronics (IMC),

Cairo, Egypt, pp. 123-126, Dec. 2003.

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’05)

1522-8681/05 $20.00 © 2005 IEEE

