IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 1, JANUARY 1992

An Efficient Implementation of Boolean
Functions as Self-Timed Circuits

Ilana David, Ran Ginosar, Member, IEEE, and Michael Yoeli

Abstract— Self-timed logic provides a method for designing
logic circuits such that their correct behavior depends neither on
the speed of their components nor on the delay along the commu-
nication wires. This paper proposes a general synthesis method
for efficiently implementing any family of Boolean functions over
a set of variables, as a self-timed logic module. Interval temporal
logic is used to express the constraints that are formulated for
the self-timed logic module. A method is provided for proving
the correct behavior of the designed circuit, by showing that
it obeys all the functional constraints. The resulting circuit is
compared with alternative proposed self-timed methodologies.
Our approach is shown to require less gates than the other
methods. Our proposed method is appropriate for automatic
synthesis of self-timed systems.

Index Terms— Asynchronous systems, combinational logic,
delay-insensitive, self-timed, temporal logic, verification.

I. INTRODUCTION

ELF-TIMED logic provides a method for designing asyn-
Schronous logic circuits such that their correct behavior
depends neither on the speed of their components nor on the
delay along the communication wires. We refer to [18] for
an extensive discussion of self-timed logic and its advantages
as compared with globally clocked, or synchronous, logic.
Seitz [18] illustrates a possible approach to the self-timed
implementation of Boolean functions by showing the design
of a self-timed adder circuit. Other methods of designing self-
timed circuits can be found in [19] and [1]. Both methods, as
well as Seitz’s example, employ an excessive number of gates.
Also, no formal proof for the correctness of the constructed
circuit is provided. An interesting framework for applying
temporal logic to the formalization of the approach of [18]
is proposed in [13]. However, no design method is suggested,
nor is any correctness proof established.

In this paper we propose a general synthesis method for
efficiently implementing any family of Boolean functions over
a set of variables, as a self-timed logic module. Temporal logic
is employed to express the constraints that we formulate for
the self-timed logic module. We provide a method for proving
the correct behavior of our circuit, by showing that it obeys all
the functional constraints. The proposed method is appropriate

Manuscript received July 13, 1989; revised April 23, 1991.

L David is with the Department of Electrical Engineering, Technion—Israel
Insitute of Technology, Haifa 32000, Israel.

R. Ginosar is with the Department of Electrical Engineering and the
Department of Computer Science, Technion-Israel Institute of Technology,
Haifa 32000, Israel.

M. Yoeli is with the Department of Computer Science, Technion—Israel
Institute of Technology, Haifa 32000.

IEEE Log Number 9103032.

for automatic synthesis of self-timed systems. The method is
extended to the synthesis of finite-state machines (FSM) in
the companion paper [6].

The problem of implementing self-timed Boolean functions
is informally described in Section II. In Section III, we
introduce a formal approach to the problem specification. We
use a modified version of temporal logic for this purpose.
In Section IV we formulate the concept of "double-rail self-
timed" implementation in a precise way. In Section V, we
describe a method for implementing a given set of Boolean
functions, as an efficient double-rail, self-timed circuit. The
implementation is obtained by the interconnection of four
subnets. A detailed description of each subnet using temporal
logic is given. An example of this method and its comparison
with previously published methods is given in Section VI. In
Section VII, a formal proof of correctness is provided. Sections
VIII and IX provide a detailed discussion of the merits of our
approach.

II. DOUBLE-RAIL SELF-TIMED
IMPLEMENTATION OF BOOLEAN FUNCTIONS

Let f1,---, fm be m > 1 Boolean functions, eachonn > 1
variables, i.e., f; : {0,1}" — {0,1}, for 1 < ¢ < m. We call
a ternary, asynchronous network N a ternary ST (self-timed)
implementation of f1,---, fm if the following conditions are
met:

1) N has n three-valued inputs £1,---,%, and m three-
valued outputs f1,---, fm. Each input and output may
assume any value from the set {0,1,U}. We refer to U
as the undefined value and to 0, 1 as the defined values.

2) If all the inputs and outputs are defined (i.e., 0 or 1), then

fi = fi(@1, -, 8n), 1 <P <.

3) The sequential behavior of the network N and of its
environment is specified by the following cycle of ac-
tivities. The E;’s are environment (domain) constraints.
The S;’s are network (functional) constraints. S; is to
follow E; (1 < ¢ < 4) and E(;4;) is assumed to
follow S; (1 < i < 3). Each cycle is started by E1
and terminates with S4. Thus, S$4 is to be followed by
E1, to start a new cycle:

E1. All inputs are set to undefined.

S1. All outputs become undefined.
(E1 and S1 constitute the inactive steady
state.)

0018-9340/92$03.00 © 1992 IEEE




DAVID et al.: IMPLEMENTATION OF BOOLEAN FUNCTIONS AS SELF-TIMED CIRCUITS 3

EZ. Some (but not all) inputs become defined.
S2. All outputs remain undefined.
(Partial outputs should be blocked, in order
to assure proper operation of composite ST
system.)
E3. All inputs become defined.
S3. All outputs become defined.
(E£3 and S3 constitute the active steady state.)
E4. Some (but not all) inputs become undefined.
S4. All outputs remain defined.

S4, in spite of FE4, assures proper ST operation of
other ST systems to which N may be connected. The
outputs may be required, and should be retained, until
all inputs become undefined. The intermediate steps of
the environment E2 and E4 may be skipped. Thus, the
network N can also behave in accordance with the cycles
(E1, 51, E3, 83,E1), or (E1,S81,E2,52,E3, 53, El), or
(E1,S1,E3,83, E4, S4,E1).

A ternary network such as N may be implemented phys-
ically by applying three-valued logic (cf. [5]), where three
voltage ranges are used to represent the logic values 0,U, 1.
Instead, we follow [18] and employ double-rail code, in which
the three logic values 0,U,1 are represented by 10,00, 01,
respectively. Let N be a binary asynchronous network rep-
resenting N in accordance with the above double-rail code.
Thus, N has 2n binary inputs and 2m binary outputs, rep-
resenting the n ternary inputs and m ternary outputs of N.
Furthermore, N satisfies the above conditions 2) and 3) of N.
We shall refer to N as a DR (double-rail)-ST implementation
of fi,++, fm. Thus, this paper is concerned with obtaining an
efficient double-rail ST implementation N for any given set
of n-variable Boolean functions fi,:- -, fm.

III. DEFINITIONS

In this section we introduce a formal approach which will
enable us to state the problem and its solution in a precise
way and to provide a suitable proof of correctness. Our
approach is based on a modified and simplified version of
the Interval Temporal Logic (ITL) introduced in [9] and [15].
ITL is a generalization of the syntax and semantics of standard
temporal logics [16], [10]. Our version is particularly tailored
toward the description and analysis of self-timed networks.
We employ the usual propositional connectives NOT, AND,
OR, IMPLIES (with descending priorities) and denote them
by -, A,V, —, respectively. Furthermore, we introduce two
temporal operators. The first one is <, taken over from [10].
The formula P<LQ is interpreted to mean “Q remains true
at least as long as P does.” The operator < is related to the
more familiar until operator by PLQ = Q until = P. The until
operator in question is the so called weak version [10], namely
P until Q does not assert that @ will eventually occur. IfJisa
continuous time interval starting at time ¢, and terminating at
time ¢, (> t,), then P<Q is valid for J (notation: J E PLQ)
iff the following holds: If P is true continuously from time %o
up to time ' (t, <t < t1) then Q is also true continuously
from time t, up to time ¢’ or longer.

Note that the known temporal operators [ (“henceforth”)
and ¢ (“eventually”) may be expressed by means of the
operator < [10]. Namely OOP = true <P and OP = -0-P.

The other temporal operator we introduce is “—”. This
operator is used, in a somewhat different sense, in [11]. We
interpret the formula P — Q to mean the following: If Pis
true and “remains true long enough,” then Q will eventually
become true and stay true at least as long as P remains true.
The formula P — Q could be approximated by the following
formula, using conventional temporal logic: O(OP — ©0Q).
However, the formula P — @ does not require that P stays
true forever.

To illustrate the use of the operator — consider a multilevel
combinational network with an unknown, but finite, propaga-
tion delay. If we apply a particular input combination, say
X, then after the propagation delay in question, the output
will obtain the correct value, say Z. This output value will
not change, at least as long as the input does not change. We
describe this situation by

input = X — output = Z.

In addition to the temporal operators introduced so far, we
shall also need means to reason about finite time intervals.
Although the intervals we consider can be viewed as closed
continuous time intervals, we take over the following concepts
and notations from ITL (Interval Temporal Logic [15]), where
the time intervals considered are discrete.

Let J be a closed (continuous) time interval of finite,
nonzero length. We write J | P to state that assertion P
holds at the beginning of J. Similarly, J k= finP asserts that
P is true at the end of J, and J j= OIP asserts that P is true
throughout the interval J. We write J = = ~ y instead of
J & Oz = y. Assume now that z is a binary variable with
value O at the start of J (ie., J = = 0) and final value 1
(ie., J | finz = 1). Furthermore assume that z changes its
value only once (from 0 to 1) during the interval J. This is
simply denoted by J =1 z. We define J | z similarly.

We now illustrate the concepts and notations introduced in
this section by means of the two-input C-element [14,] [18].
The C-element (also called “rendezvous® element) is an essen-
tial building block of various kinds of speed-independent and
self-timed circuits. It behaves as follows: When all its inputs
assume the same value, the output also assumes this value;
otherwise, the output value does not change. Let CE2(a,b; 2)
denote a two-input C-element with inputs a,b and output
2. Then the conjunction of the following properties can be
considered as a definition of CE2(a, b; 2). PCE1 states that
if the two inputs are equal and stay equal long enough, then
the output will assume the same value. PCE2 and PCE3
state that if the output value equals the value of one of the
inputs, then the output value will not change as long as the
corresponding input value does not change.

(PCE1l) a=br—z=a
(PCE?2) a=0Az=0— (a=0d2=0)
(PCE3) a=1Az=1—(a=10z=1).

In (PCE2) and (PCE3) a may be replaced by b.



Properties (PCE2) and (PCE3) can also be formulated by
means of intervals. Let J be an arbitrary, finite interval of
positive length. Then

(PCE2) (JEa=2=0A(JEFa=0)—=(JE2z=0)
(PCE3) (JEa=z=U)A(JEarl)>(JEzx1)

PCE?2' assumes that at the beginning of the interval J a =
2z = 0 and that a stays at the value 0 throughout the interval.
Under this assumption, the output z will remain at the value
0 throughout the interval. PCE3' can be explained similarly.

IV. FORMAL SPECIFICATION OF DR-ST IMPLEMENTATION

In this section we rephrase the concept of DR-ST im-
plementation in a more formal way. Let N be a double-
rail (n,m) network, i.e., a binary network with input set
I = {a9,},---,2%,2zL}, n > 1, and output set O =
{f{]7f11aaf2uf;z}’ m > 1. We set z;, = ('7"?51'11)’ 1<
ign,andij=(]‘-),f}),1Sjsm.LetO,l,andUbe
the ternary equivalent of the 2-bit (“double-rail”) combination
10,01, and 00, respectively. We assume that always z; # 11
and denote by Z; the ternary equivalent of z;. fj is defined
similarly. z; is “undefined” iff z; = 00 and “defined” iff
z; € {10,01}. This terminology also applies to ij. Following
[13], we write D(I) to state that all the z;’s are “defined”;
D(O) is used similarly for the ij’s.

Speaking informally, we say that the network N is stable
[notation: stable(N)] iff its “internal state” and outputs do not
change as long as its inputs remain unchanged. The internal
state is the set of values of all the nodes of the network N
which are neither inputs nor outputs. We consider the concept
“stable“ to be defined implicitly by the following stability
rules, viewed as axioms. Let incond, intcond, and outcond
be conditions met by the inputs, internal state, and outputs of
N, respectively. Then the following “stability rules” evidently
hold:

(STR1) if incond — outcond

then (incond A stable(N)) — outcond
(STR2) if incond — intcond

then (incond A stable(N)) — intcond.

STR1 states the following: if some input condition eventually
leads to some output condition, and if this input condition
presently holds and the network is already stable, then the rele-
vant output condition also holds presently. STR2 is explained
similarly.

In the informal behavioral description of network N in
Section II, no explicit reference to stable states has been made.
However, we require that the environment will apply activities
E2 and E4 to the network only after it has reached a stable
state. This mode of operation is known as fundamental mode,
versus input—output mode, in which the environment may
change the inputs as soon as the correct output values have
been obtained [2]. Under realistic circumstances, it may be
assumed that the two modes coincide (see also Section VIII).

In order to achieve a formal, behavioral specification of
the network N of Section II, we now introduce the concepts

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 1, JANUARY 1992

of defining interval (D T-interval) and undefining interval
(D |-interval). Given a set X of binary variables and a
binary constant ¢ € {0,1}, we write AX = c instead of
Vz € X : x = c. Thus, when Al = 0, all inputs are undefined.
An interval J is a defining interval (with respect to N), iff the
following conditions are met.

(D11) JE AI=0A stable (N)
(D12) JE fin[D{I)A stable(N))
(D13) Vzel:JEz=0VTa.

D 1 1 states that at the beginning of the interval J all inputs
are undefined and the network is stable. D T 2 states that at
the end of the interval all inputs are defined and the network
has again reached stable state. D 1 3 requires that any binary
input either stays at the value O during the whole interval, or
changes its value exactly once.

An undefining interval J is specified by

(D] 1) JE DU)AND(O)A stable(N)
(D12) Veel:JEz~0V ]z

D | 2 means that during the undefining interval each binary
input either stays at the value 0, or changes from 1 to 0 exactly
once.

We now have the necessary tools for a formal behavioral
specification of N.

Given m Boolean functions fi,---,f;, on n variables,
we say that the double-rail (n,m) network N is a DR-ST
implementation of f1,- - -, fm iff the following conditions are

met:
(DR1) AI=0+ AO =0
(DR2) AI=0A stable(N) — ~D(I)SAO =0
(DR3) Let J be a defining interval (with respect to N).
Then J |= fin[D(O) AVj € {1,---,m}:
fi = fi(@r, - 2n)]
(DR4) Let J be an undefining interval (with respect to N)

Then J | [-AI = 0<4D(0)).

Stated informally, the above conditions may be interpreted as
follows:

DR1: If all inputs are undefined, eventually all outputs will
become undefined.

DR2: If at some instant of time all the inputs are undefined
and the network is stable, then the outputs are undefined and
will remain undefined until all the inputs become defined.

DR3: If J is a defining interval, then at the end of the
interval J, all the outputs are defined and assume the required
value.

DR4: If J is an undefining interval, then all the outputs
remain defined until all the inputs become undefined.

V. EFFICIENT DR-ST IMPLEMENTATION

In this section we describe a method for obtaining an
efficient DR-ST implementation for any given finite set of n-
variable Boolean functions fi, - - -, fm. The implementation of
N consists of four subnets interconnected as shown in Fig. 1.




DAVID et al.: IMPLEMENTATION OF BOOLEAN FUNCTIONS AS SELF-TIMED CIRCUITS

Subnet ORN detects, for each input, whether this input is
defined or undefined: subnet CEN indicates that all the inputs
became defined or all the inputs became undefined; subnet
DRN actually implements the combinational functions; subnet
OUTN ensures that the outputs remain defined as long as
not all inputs have reached their undefined state. A detailed
description of each of the four subnets follows.

Subnet ORN

This subnet consists of n two-input OR-gates. The sth OR-
gate (1 < i < n) has inputs ) and z}, and output w;.
Thus,

I(ORN)=I(N)=1
O(ORN) = {w1,---,wn} = W.

The following conditions are met by the subnet ORN (recall
the assumption that z7 = z} = 1 never occurs).

(CORN1) AI=0— AW =0
(CORN2) ~D(I)S-AW =1
(CORN3) D(I)— AW =1

(CORN4)-~AI = 04-AW = 0.

CORN1 and CORNS3 state that if all inputs are undefined
(defined), then eventually all the outputs of ORN will become
0 ().

CORN?2 and CORN4 state that as long as all the inputs
are not yet defined (undefined), not all the outputs of ORN
equal 1 (0).

Subnet CEN

CEN consists of a single n-input C-element. Its inputs are
wy,- -+, Wy = W and its output is y. It satisfies the following
conditions.

(CCEN1) AW =0 y=0

(CCEN2) AW =1—y=1

(CCEN4) -AW =0Ay=1— (~AW =0dy =1).

CCEN1 and CCEN?2 state that if all the inputs of CEN are
equal, then the output y will eventually assume the common
value of the inputs. CCEN3 and COEN4 indicate that under
any other condition, the output remains unchanged.

Subnet DRN

This is a combinational double-rail (n,m) network with
input I(DRN) = I(N) = I and output O(DRN) =
{FO,F},--- ,F%,FL} = F. DRN is to satisfy the following

w
ORN CEN
I L Y
F (o}
DRN OUTN
(@)
x‘o —_— c f f’

Monotonic

Implementation

0 lofff, e S _@__,ff
1

Xy ———

®

Fig. 1. The general structure of an efficient implementation of self-timed
combinational circuit. Subnet DRN is a monotonic implementation of all the
required Boolean functions and their inverses. The other subnets do not depend
on the functions themselves, only on the number of inputs and functions; their
task is to guarantee self-timed operation.

conditions:
(CDRN1) AI =0~ AF =0
(CDRN2) D(I}y— D(F)AVj€ {1,---,m}:
By = fj(&1, -+, n)
Let J be a defining interval and let
je{1,---,m},i € {0,1}. Then:
(J | finF} = 0) = (J £ Fj = 0)
(CDRN4) Let J be an undefining interval and
let j € {1,---,m},s € {0,1}.

(CDRN3)

Then
(JEF =0)— (JEFj=0).

CDRN1 states that once all the inputs of DRN become
undefined, then eventually all its outputs (F) will become
undefined. CDR2 states that if all the inputs of DRN become
defined, then eventually all the outputs of DRN (F) will
become defined and assume the required function values.
DRN3 stipulates that if at the end of a defining interval some
binary output equals 0, then it was 0 throughout the whole
interval (this condition ensures that there are no static hazards),
while CDRN4 stipulates that if one of the binary outputs of




DRN is 0 at the beginning of an undefining interval, this
binary output stays O throughout the whole interval.

A network satisfying conditions CDRN3 and CDRNA4 is
called monotonic. The monotonicity of DRN is essential for
the correct behavior of the overall network (as explained in
the proof of Lemma 3 below).

An efficient implementation of DRN may be obtained by
means of the following procedure. Let N bea binary network
having as inputs the variables zi,---,z,, as well as their
complements «},---,z,,. N consists of OR gates and AND
gates only and produces 2m outputs, namely f;(z1,---,%x)
and f;(zl,---,zn) for j = 1,---,m. Such a network N
evidently exists. We use known techniques to obtain a minimal
implementation of N. Then, DRN is derived from N by
renaming;:

1) Inputs z; and % (1 < i < n) are renamed z} and z?,

respectively.

2) Outputs f; and f} (1 < j < m) are renamed F} and

Fy, respectively.
The above procedure produces the function f; and its dual f}
as independent AND—OR circuits. By the above renaming we
obtain the desired double-rail implementation. The double-rail
inputs provide the binary variables and their complements, thus
no inverters are required inside the DRN circuit. One easily
verifies that the subnet DRN thus derived from N indeed
satisfies the conditions (CDRN1) — (CDRN4). Note that
DRN is the only subnet in this implementation that depends
on the functions fi,:--, fin.

Subnet OUTN
This subnet consists of the following 2m two-input C-

elements:

CE2(F),y; f)), 1<j<m

CE2(F},y; f}), 1<j<m.

Thus, I{(OUTN) = FU{y} and O(OUTN) = O(N) = O.
In view of the properties of CE2(a,b;z) discussed in
Section III, OUTN satisfies the following conditions:
(COUTN1) AF=0Ay=0—- A0 =0
(COUTN2) y=0ANA0=0—-y=0940=0
(COUTN3) Let J be an interval and let j € {1,
¢ € {0,1}.Then
(JEF~0AJEf=0-JEfi~0
(COUTN4) y=F; »—»_f;:F; »
(COUTNS) y=1Afi=1—-y=14f; =1

ym},

These conditions state the following: if all the binary inputs to
OUTN are 0, then the outputs will become 0 and stay at this
value as long as y = 0 (COUTN1, COUTN?2). Furthermore,
if at beginning of some interval J some f output equals 0,
and the corresponding F' is 0 throughout this interval, then the
f output remains 0 throughout the interval (COUTN3). If y
equals one of the F' inputs, then the corresponding f output
will assume the value of the F input (COUTN4). If y and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 1, JANUARY 1992

F! ()t
=/

o—3")
p—/

g? FO CE fo
ol L—

Fig. 2. Example of an efficient implementation of a self-timed combinational
circuit of the function f(a,b,c,d) =a-b -c-d'.

one of the f outputs both equal 1 at some instant, then this f
output remains 1 as long as y remains 1 (COUTNS).

Note that the y signal contains forks. Under extremely
unlikely conditions, requiring skewed asymmetric delays and
long sequences of specific inputs, such forks may cause
illegal operation of the network. These circumstances are so
unreasonable that it is safe to assume that these forks are
isochronic. With respect to the network NN, this assumption is
a special case of the fundamental mode assumption on which
our model is based, as further discussed in Section VIII.

VI. AN EXAMPLE

As an example we implement the function f(a,b,c,d) =
a-b'-c-d’'. Following the procedure for efficient implementation
of DRN we get

Fl=g" 80 .. d°
FO = qa® + b + 9 + 4.

The circuit is shown in Fig. 2. Other methods for implementing
DR-ST modules, using double-rail code, can be found in
[19] and {1]. Fig. 3 shows the implementations of the above
function, using

1) Seitz’s example outline [18]

2) Anantharaman’s method [1]

3) Singh’s method [19].

The four implementations are compared by number of gates
in Table 1. In order to compare the number of gates used in
each implementation, we count the gates and CE’s in each
circuit and replace each gate or C-element by its two-input-
gate equivalent. Since the CE function is associative, we use




DAVID et al.: IMPLEMENTATION OF BOOLEAN FUNCTIONS AS SELF-TIMED CIRCUITS

1]
N

ao
: 8= .
A ¢
(1)
a (®)
by
o
al
0
% S) (o
do
fo fl
()
dl
S c
F@
=0 ) /!
()—

:

kil

.

©

Fig. 3. Implementing the function of Fig. 2, using methods proposed by (a) Seitz [18], (b) Anantharaman [1], and (c) Singh [19]. The implementation
of Fig. 2 requires a smaller number of gates (Table I).

L)

i

&

the scheme The proof is based on the following rules of inference:
1CE, =(n—-1)CE; (Rl) P—»Q,Q—RFP—R
1CE; = 4G2 (R2) P—Q,P—RFP—QAR
1G, = (n — 1)Ga. (R3) P<Q,Q<R‘F P4R.
(G denotes two-input gate; G, denotes n-input gate.) As for intervals, we have
This example shows that our method uses considerably (RI1) JEPP—QFIEQ

less gates than the other methods. We discuss the reasons

for this advantage in Section VIII below. The non-self-timed (RJ2) J E finP,P - QFJ = fin@Q

implementation of this example would require only three two- (RJ3) JEP,JEQFJEPAQ
input gates; however, the difference in the gate count between (RJ4) JE finP,J | finQF J E fin(P A Q).
conventional implementations and our self-timed circuits be-
comes less significant for large circuits. Theorem: The implementation network N of Section V
is correct, ie., satisfies the conditions (DR1) — (DR4) of
VII. PROOF OF CORRECTNESS Section IV.

In this section we provide a formal proof of correctness. Proof: We need the following lemmas.




IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 1, JANUARY 1992

TAPBLE I
GATE COUNT COMPARISON OF FOUR SELF-TIMED COMBINATIONAL LOGIC IMPLEMENTATIONS

Gate and Element

Two-Input Gate

Count Equivalent
Seitz’s circuit 2CE2 +16 AND4 +1 OR15 + ORg 77
Anantharaman’s circuit 16 CE4 +1 ORys 206
Singh’s circuit 12 CE2 + 3 OR3 54
Our circuit 1CE4+1CEy; +1 ANDy +1 OR,y 30

Lemma 1: The implementation network N of Section V
satisfies conditions (DR1), (DR2).

The formal proof given below is based on the following
sequence of arguments [see Fig. 1(b)]: Let all inputs of the
network be undefined. Then, all the w;’s will become 0 and
consequently y will also become 0. In view of CDRN1, all
F’s will become 0. y = 0 and all F”’s equal 0 will eventually
force all f outputs to become 0 (DR1). The f outputs will
remain 0 as long as y = 0; y = 0 as long as not all w;’s have
become 1, i.e., not all inputs have become defined (DR2).

Proof:

(A = 0 — AW =0 {(CORN1)}
2IAW =0—y=0 {(CCEN1)}
BJAI =0y =0 {[1], 21, (R1)}
[4]AI = 0— AF =0 {(CDRN1)}
BlJAI=0—y=0AAF=0 {[3],[4],(R2)}
BJAF=0Ay=0—~ A0 =0 {(COUTN1)}
[7JAI=0— A0 =0 {[5], (6], (R1)}
(DR1) = [7] is thus proven. a
[8]AI = O A stable(N) {Assumption}
[9]AW =0 {{1], 18], (STR2)}
[10]y =0 {[3], [8], (STR2)}
[11]JA0 =0 {[7],18], (STR1)}

[12]-D(I)<9-AW =1 {(CORN2)}
[13]-"AW = 1dy =0 {[9], [10], (CCE‘N3)}
[14]y = 0940 = 0 {[10], [11], (COUTN2)}
[15]~D(I)9AO0 =0 {12}, [13], [14], (R3)}
[16]AI = 0 A stable(N) —

~D(I)<AO = 0 (18], [15]}.

Since (DR2) = [16], Lemma 1 is proven. O

Lemma 2: The implementation network N of Section V
satisfies condition (DR3).

The formal proof of this lemma is based on the following
sequence of arguments:

Let J be a defining interval. Then, at the beginning of J
all inputs are undefined, and, by Lemma 1, all outputs are
undefined. Thus, all the f; equal 0. By (D 1 2) all inputs
are defined at the end of the interval J, and the network
N is stable. It follows that all F; are defined. Assume for
example that FY = 0 and F} = 1 Thus, Fy was 0 during
the whole mterval Consequently, f0 was also 0 during the
whole interval, and therefore has the value 0 at the end of
the interval. At the end of interval J, all inputs are defined,
and therefore all the w; equal 1, yielding y = 1. Also, at the
end of the interval, F;} = 1. It follows that f} = 1. Thus,
the output f; is defined at the end of the interval and assumes

the correct value. The case F} = 1 and F} = 0 is treated in
the same way.

Proof: Let J be a defining interval (with respect to N).
Thus,

[1J }= [Al = O A stable(N)] {D 11}
[2]J E fin[D(I) A stable(N)] {D 712}
BVzel:Jkz~o0viz  {D13}

[4]D(I) A stable(N) — {(CDRN?2),(STR2)}
5] [ finD(F) {12],[4],(RT2)}.

Let now j € {1,---,m}. D(F) implies that either F} =
OAF} =1or F) = 1 A F} = 0. We consider the first case.
The other case 1s treated i m the same way.

D(F)

[6]] | fin(F) =0AF} =1) {[5], Casel}
[7]J|=F0~0 {011, 2], (3], [6],
(CDRN3)}
[8]AI = 0 A stable(N) — f0 =0 {Lemma I}
91 = 2 =0 11,8}, (RI1))
[10]7l=f0~0 {[71. 191,
(COUTN3)}
1) | finf? =0 ([101)
[12]D(I) — AW =1 {(CORN3)}
BAW =1~y=1 {(CCEN2)}
(14]D(I) A stable(N) —»y =1  {[12],[13], (R1),
(STR2)}
(15]J | finy = 1 {[2],14], (RJ2)}
[16]J |= finF} =1 {[6], (RJ2)}

L7 E finy=1AF =1)  {[15], 16], (RJ4)}

[18]y=1/\Fj1 :10—>fj1 =1 {(COUTN4)}

1917 | finf! =1 {2],[18], (STR1)}

(201 k= fin(FO = fOAFY = £1)  {[6], [11],19], }.
Assertion [20] holds for both cases considered above (see
remarks following assertion [5]).

[21]D(I) A stable(N) — E;

= i@, n) {(CDRN2)}
[22).] & finD(0) {5, [201}
23] &= fin[vj € {1, -,m

fi= fien @) {12, (200 [20)).

In view of the assumptions [1], [2], [3] (i.e., J is a defining
interval) and (R.J3) applied to [22], [23], Lemma 2 is proven.
0

Lemma 3: The implementation network N of Section V
satisfies condition (DR4).

The formal proof of this lemma is based on the following
sequence of arguments:




DAVID et al.: IMPLEMENTATION OF BOOLEAN FUNCTIONS AS SELF-TIMED CIRCUITS 9

Let J be an undefining interval. Then at the beginning of
J all inputs and all outputs are defined, the network is stable
and y = 1. The value of y remaine 1 as long as one of the
inputs is still defined. Assume now that f =0 and f} = 1.
It follows that fj1 equals 1 as long as one of the inputs is still
defined. In view of the monotonicity of DRN, F]Q equals 0
during the whole interval, thus f]‘) also retains the value 0.
It follows that f; remains defined as long as not all inputs
become undefined.

Proof: Let J be an undefining interval (with respect to
N). Thus,

[1]J | [D(T) A D(O)

A stable(N)] {D |1}
vz el:JE(z=0v|x) {D]|2}
[BID(I) — AW =1 {(CORN3)}
AW =1—y=1 {(CCEN3)}
5D() — y =1 {31, 14, (R1)}
[6]D(I) A stable(N) —

AW =1Ay=1 {13], [5], (STR2)}
MR @AW =1Aay=1) {116 (RD)
BAW =1Ay=1—

(AW =0y =1) {(CCEN4)}
[9]-AI = 09-AW =0 {(CORN4)}

[101J £ (-AI =08y =1)  {[7],[8],[9], (R3), (RI1)}
Let j € {1,---,m}
L E(ff=0Aff =1V (f=1Af=0) {{]}
We assume the case
1217 E (ff =0Af} =1) {[11], Case I}
The other case can be treated similarly.
Bly=1Afl=1—

y=14ff =1
[14]J | (-AI = 04f} =1)

{(COUTN5)}

{[10], 12], [13], (R3),
(RID), (RI3)}

[15] stable(N) Ay =1

AfO=0—FP=0 {(COUTN4), (STR1)}

[16] E F? =0 {[1], 7], [12], [15],
(RJ1),(RJ3)}
[17)J E FY =~ 0 {[1], (2], [16], (CDRN4)}
18l = fo o {[12],(17}, (COUTN3)}
(19 F (~AI = 03]
=0Af}=1) {[14], (18], (RJ3)}

(207 = (~AI =079 # f}) {[19]}-

One easily verifies that assertion [20] also holds for the other
case mentioned above. Hence,

[21]J | [~AI = 0<D(O)).

Thus, Lemma 3 and the above theorem are proven. 0

VIII. DIiSCUSSION

The terms self-timed, delay-insensitive, and speed indepen-
dent systems are used to mean different things by different

authors. We distinguish the following three attributes:

1) Independence of delays along wires and inside elements.

2) Generation of a completion signal.

3) Operation without requiring external timing signals (such
as synchronizing clocks).

Delay insensitive systems actually guarantee only the first
attribute, and often include the third as well. The proposed
CL provide all three attributes, and we employ the adjective
self-timed to mean that. Extensive tesearch on the synthesis
of delay-insensitive circuits is also reported in [17], [20], [8],
[11], and [2].

As was shown by means of the example in Section VI, our
approach carries the potential of generating smaller circuits
than other methods. There are two main reasons for this
advantage:

1) We do not generate all minterms (unlike Seitz and
Anantharaman). Rather, we employ a minimized imple-
mentation of each function and its dual.

2) We do not combine small self-timed modules to achieve
a large self-timed module (unlike Singh). A self-timed
circuit incurs a certain amount of overhead, as compared
to non-self-timed circuits. Combining small self-timed
combinational circuits in order to construct a large one,
such as proposed, for instance, in [18], duplicates the
overhead and results in an inflated amount of circuitry.

We adopt a different approach for circuit construction: Com-
bine the multiple Boolean equations into a single set, and
implement that set directly. Thus, we manage to incur the self-
timed overhead only once. In addition, separate CL modules
may be freely interconnected to create larger combinational
logic blocks as long as no loops are generated. In each
case, the correct operation of the overall network is ensured,
provided that the environment adheres to the given behavioral
constraints.

Our synthesis algorithm does not specify what type of
Boolean minimization should be carried on the DRN sub-
net. This subnet may consist of two-level (AND—OR) logic,
or of multilevel logic. The latter form enables reasonable
application of advanced minimization algorithms (4] which
generate multilevel logic for very large combinational cir-
cuits, which are impractical to minimize with exponential
algorithms.

The DRN subnet can be implemented in a number of
different manners. Indeed, all that matters is that the DRN
subnet is monotonic, as expressed by condition CDRNI,
and behaves “rationally,” as expressed by the other three
conditions. The simplest materialization of those conditions
is a combinational network consisting exclusively of AND and
OR gates, but other possibilities may also exist.

An important aspect of our method is that it strives toward
complete delay-insensitivity. Other proposals (e.g., [18]) have
suggested various shortcuts in order to simplify self-timed
logic. Most importantly, an assumption of “equipotential”
regions is often resorted to. Within an equipotential region
it is assumed that the delays are well understood and that the
circuit functions correctly, without providing the additional
circuitry to guarantee self-timed operation.




The equipotential regions approach carries with it a twofold
shortcoming. First, the correct operation of the circuit depends
on loosely defined, intuitive concepts of approximation, which
often lead to missed estimates and design errors. Second, this
methodology does not scale very well: As the implementation
technology improves in speed and density, the equipotential
regions reduce in size at a faster rate than the linear contraction
of the circuit. Thus, a subcircuit which is designed within
an equipotential region at some point in time may not scale
with the advance of technology [7]. In contrast, our proposed
method relies exclusively on double-rail implementation. It
is completely delay-insensitive under the assumption that
fundamental mode coincides with the input—output mode [2];
in the fundamental mode, inputs to a circuit are allowed to
change only after both outputs and all internal nodes have
stabilized, whereas in the input—output mode inputs may
change as soon as the outputs have stabilized. As shown
in Section VII, our proof assumes the former mode. Note
that it has been pointed out that completely delay-insensitive
designs are theoretically impossible, if the input—output mode
is adhered to [3], [12]. Note further that the fundamental mode
assumption renders the isochronic fork assumption (as referred
to in Section V) redundant.

We have developed the proposed method as part of our
effort to construct a silicon compiler which generates self-
timed logic. The implementation method presented in this
paper is straightforward, and is readily embedded it in a
computer program which can generate self-timed combina-
tional circuits automatically out of Boolean equations. Hav-
ing proved the correct self-timed operation of the resul-
tant circuit, our method now generates combinational self-
timed circuits which are mathematically-proven “correct-by-
construction,“ a prerequisite to employing them in a silicon
compiler.

It has been claimed that developing self-timed combi-
national logic is an unnecessary step, and that self-timed
methodology is only useful for sequential (asynchronous)
machines and for structures of higher complexity. However,
we pursue this effort for two reasons. First, self-timed com-
binational circuits, as described in this paper, constitute an
important building block in our synthesis methodologies for
finite state machines and for more complex structures, which
are currently being developed. Second, we believe that with
the advent of extremely fast technologies, such as GaAs,
where many known clocking and timing schemes fail, self-
timed techniques may turn out to be mandatory even at
the smallest combinational circuit level. In addition, this
method is extended to self-timed FSM’s as described in

[6].

IX. CONCLUSIONS

In this paper we have presented a method by which any
finite set of Boolean functions can be implemented efficiently
as a self-timed combinational circuit. We have seen that if
the initial conditions of the circuit are zeroed and stable, then
the circuit satisfies the conditions we formulated, and thus
behaves as a self-timed system.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 1, JANUARY 1992

Other methods for implementing self-timed logic use an
excessive number of gates, whereas our method yields an
efficient circuit.

We have rephrased the informal specification of [18] and
employed temporal logic to express it in a formal manner.
We have provided a formal proof of the correctness of any
self-timed circuit designed by our method. The simplicity
of the synthesis algorithm, and the fact that the resultant
circuits are mathematically proven to be “correct by construc-
tion,” make this method appropriate for automatic synthesis
of self-timed combinational circuits within a silicon com-
piler. The synthesis of self-timed FSM’s is discussed in

[6]-

ACKNOWLEDGMENT

The authors wish to express their appreciation to the referees
for their detailed and helpful comments that improved the
quality of this paper.

REFERENCES

[1] T.S. Anantharaman, “A delay insensitive regular expression recog-
nizer,” IEEE VLSI Tech. Bull., Sept. 1986.

[2] J.A. Brzozowski and J. C. Ebergen, “Recent developments in the design
of asynchronous circuits,” in Proc. Seventh Int. Conf. Fundamental
Computat. Theory FCT’89, Hungary, Aug. 89.

[3] , private communication, 1990.

[4] R.K. Brayton et al., Logic Minimization Algorithm for VLSI Synthesis.

Norwell, MA: Kluwer Academic, 1984.

1. T. Butler, Guest Editor, Special Issue on Multiple Valued Logic, IEEE

Comput. Mag., Apr. 1988.

[6] I David, R. Ginosar, and M. Yoeli, “Implementing sequential machines

as self-timed circuits,” IEEE Trans. Comput., this issue, pp. 12-17.

A.L. Davis, private communication, 1988.

J.C. Ebergen, “Translating programs into delay-insensitive circuits,”

Ph.D. dissertation, Eindhoven Univ. of Technology, 1987.

[9] J. Halpern, Z. Manna, and B. Moszkowski, “A hardware semantics

based on temporal intervals,” in Proc. 10th Int. Colloq. Automata,

Languages and Programming, Barcelona, Spain. Berlin, Germany:

Springer-Verlag, 1983, pp. 278-291.

L. Lamport, “What good is temporal logic?,” in Proc. Inform. Processing

83, R.E.A. Mason, Ed. Amsterdam, The Netherlands: North-Holland,

pp. 657-668.

A.]. Martin, “Compiling communicating processes into delay insensitive

VLSI circuits,” Distributed Comput., vol. 1, no. 3, 1986.

, “Limitations to delay-insensitivity in asynchronous circuits,”

Tech. Rep. CS-TR-90-02, Dep. Comput. Sci., California Institute of

Technology, 1990.

Y. Malachi and S. Owicki, “Temporal specifications of self-timed

systems,” in VLSI Systems and Computations, H.T. Kung B. Sproul,

and G. Steel, Eds. Rockville, MD: Computer Science Press, 1981, pp.

203-212.

R.E. Miller, Switching Theory, Vol. 2. New York: Wiley, 1965.

B. Moszkowski, “A temporal logic for multilevel reasoning about

hardware,” IEEE Comput. Mag., pp. 10-19, Feb. 1985.

Z. Manna and A. Pnueli “ Verification of concurrent programs: The

temporal framework,” in The Correctness Problem in Computer Science,

R.S. Boyer and J.S. Moore, Eds., International Lecture Series in

Computer Science. New York: Academic, 1981, pp. 215-273.

M. Rem, “Concurrent computations and VLSI circuits,” in Control

Flow and Data Flow; Concepts of Distributed Computing, M. Broy Ed.

Berlin, Germany: Springer-Verlag, 1985, pp. 399-437.

C.L. Seitz, “System timing,“ in Introduction to VLSI Systems, C.

Mead and L. Conway, Eds. Reading, MA: Addison-Wesley, 1980, pp.

218-262.

N.P. Singh, “A design methodology for self-timed systems,” M.Sc.

Thesis, MIT Laboratory for Computer Science Tech. Rep. TR-258, MIT,

Cambridge, MA, Feb. 1981.

J.L.A. Van de Snepscheut, Trace Theory and VLSI Design, LNCS 200,

1985.

[5

—

7
8

[10]

1]

(12]

(13]

[14]
(s

[16]

7]

(18]

19

[20]




DAVID et al.: IMPLEMENTATION OF BOOLEAN FUNCTIONS AS SELF-TIMED CIRCUITS 11

Ilana David received the B.Sc., M.Sc. and D.Sc. de-

recs in electrical engineering from the Department
of Electrical Enginecring, Technion—Israel Institute
of Technology, Haifa, in 1972, 1975, and 1991,
respectively.

She is currently a Software Engineer at the De-
partment of Electrical Engineering, Technion. Her
research interests are in the area of logic design,
computer architectures, and asynchronous systems.

Ran Ginosar (S79-M’82) received the B.Sc. de-
gree (clectrical engineering and computer science)
(summa cum laude) from the Technion—Israel Insti-
tute of Technology, Haifa, in 1978 and the M.A. and
Ph.D. degrees from Princeton University, Princeton,
NJ, in 1979 and 1982, respectively.

He has served as a Member of the Technical
Staff at Bell Laboratories Research, Murray Hill,
NJ, until 1983, and has since been with the faculty
of Electrical Engineering and Computer Science at
the Technion, and (as a visitor) the Department of
Computer Science at the University of Utah. His research interests focus on
high-performance, highly parallel VLSI architectures and self-timed design
and architectures.

Michael Yoeli received the M.Sc. degree in math-
ematics from the Hebrew University, Jerusalem,
Israel, in 1957, and the D.Sc. degree in mathematics
from the Technion—Israel Institute of Technology,
Haifa, in 1960.

He is currently Professor Emeritus at the Depart-
ment of Computer Science, Technion. He joined the
faculty of the Department of Electrical Engineering
at the Technion in 1955, where he became Professor
in 1968. In 1969 he was one of the founding
fathers of the Department of Computer Science at
the Technion, and served as its Chairman during 1973-1975. In 1982 he was
awarded the Bank of Leumi Chair in Computer Science. He published many
papers in the following areas: theory of automata, multivalued switching,
cellular logic, theory and applications of Peti nets, switch-level modeling of
CMOS circuits, and verification and synthesis of delay-insensitive networks.
He is also a co-author of Digital Networks (Englewood Cliff, NJ: Prentice-
Hall, 1976) and editor of Formal Verification of Hardware Design (Los
Alamitos, CA: IEEE Computer Society Press).




