A Hardware-Synchronized/Scheduled
Multiprocessor Model

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in Electrical Engineering

Nimrod Bayer

Submitted to the Senate of the Technion - Israel Institute of Technology
Shvat 5749 Haifa January 1989



This research was carried out in the Faculty of Electrical Engineering
under the supervision of Dr. Ran Ginosar.

My deep gratitude is given to Dr.
Ran Ginosar for his dedicated gui-
dance and support through all
stages of this research.

The generous financial help of the
Gutwirth fund is gratefully ack-
nowledged.



-

ABSTRACT

This work constitutes the foundation layers of the assessment and development
of an architectural model for a parallel computer. The proposed model is a
tightly coupled MIMD multiprocessor. A certain amount of affinity exists between

the proposed model and Dataflow architectures.

The model’s central novel feature is a high flow-rate hardware
synchronization/scheduling subsystem. The synchronizer/scheduler implements all the
aspects of coordinating interprocessor parallelism: Synchronization, work allocation,
and scheduling of tasks according to their urgency. Task allocation is dynamic,

and based upon processors availability.

As a run-time working data structure, the synchronizer/scheduler uses the
program’s task map. The task map is a dependency graph, edited according to
defined programming rules. The task map may contain cycles. A particular form
of dynamic process generation is supported: Concurrent release of an arbitrary
number of processes, all derived from a same task. The dependencies expressed in
the task map represent control flow alone, and do not represent data flow. Hence,
the proposed architectural model’s underlying computation control model is Multi-
Threaded Control Flow.

The synchronizer/scheduler comprises a central synchronization/scheduling unit
(CSU), and a distribution network which mediates between the CSU and proces-
sors. By merging and decomposing synchronization data, the distribution network
generates an effect of flow-rate amplification. Synchronization data subject to
merge/decomposition concern parcels of processes, which were generated together

from the same task.

The hardware and software development aspects of the model are treated

within this work at various levels of detail, up to the logic design level.

In addition to the problem of parallel operation coordination, the solutions for
several other problems are discussed: Memory latency may be countered, relying
on window-based multitasking within processors, and on surplus program parallel-

ism with regard to the number of processors; cache coherence may be maintained



=~ TI=

without complex hardware apparatus, relying on shared-variables access rules
obeyed by programs; software engineering improvements result from expressing

programs using task maps.

The viability of an architectural model’s software aspect (its programming
model) must be established by benchmark examples. Several benchmark examples,

representing various domains, were developed; three of which are included.

The overall manifestation of synchronization/scheduling overhead is an increase
in program total execution time. High overhead has strong relation to insufficient
synchronization/scheduling flow-rate capability. Lower and upper bounds on the

slowdown incurred by a given synchronization flow-rate capability are proved.

Petri networks constitute a common tool for exploring the properties of paral-
lel assemblies. An appendix concerning automatic derivation of Petri networks
corresponding to programs coded under the proposed model’s conventions is
included.



Table of Contents

Abstract 1

Introduction 3

Part A: Discussion at the macro-model level 8

Chapter (A.1): Synchronization problem in multiprocessors 8

Chapter (A.2): The proposed macro-model 13

Chapter (A.3): On the solution of additional problems 16

(A.3.1) Scheduling 16

(A.3.2) Cache coherence 17

(A.3.3) Memory latency 18

(A.3.4) Software engineering 19

Part B: Development of the model 20

Chapter (B.1): The programming model and benchmark examples 20
Principles in the consolidation of

the programming model 20

Review of the programming features 21

Definition of a well-built program 31

Benchmark example 1 / Newton’s
iteration 31




Chapter (B.3): Hardware design

(B.3.1) Definition of interfaces

Table of Contents (Continued)

Benchmark example 2 / Array sort

Benchmark example 3 / Solution
of a linear equation set

Chapter (B.2): Modular division of the synchronizer/scheduler

The general structural principle

Distribution network structure
and types of interfaces

Organization of configuration

and processor availability data

Management of termination information

Characterizing parameters

General remarks

Comparison with the combining network

(B.3.2) Design of the central synchronization/scheduling unit

General characteristics

Introduction to the structural description

Definition of building blocks

Detailed structural description

31

37

46

46

48

49

49

3l

52

52

54

54

AR

59

61

63

68



Table of Contents (Continued)

Part C: Performance analysis

80

Chapter (C.1): Evaluation of overhead in a pure
software solution

80

Chapter (C.2): Definition for a performance measure,

83

and proofs on bounds

Introduction

83

Definitions and notations

85

Proposition on a lower bound on slowdown

88

Auxiliary lemmas

89

Proposition on an upper bound on slowdown

88

Result interpretation

o2

Part D: Literature review

95

Models, Methods, and abstract architectures

95

Research projects of physical implementation

Commercial projects

Appendix: Derivation of a Petri network implied

by a program

References

103

109

113

115



- 115 -

REFERENCES mapPn

(1]
[2]

[31

(4]

(5]

(6]

(7]

[8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]
[17]

H. S. Stone, High-Performance Computer Architecture, Addison-Wesley, 1987.

M. J. Flynn, "Very High-Speed Computing Systems," Proceedings of the IEEE 54, 1966, pp.
1901-1909.

H. T. Kung, "Synchronized and Asynchronous Parallel Algorithms for Multiprocessors,” Algo-
rithms and Complexity, Academic Press, 1976, pp. 153-200. (Also included in the Tutorial on
Parallel Processing, edited by R, H. Kuhn and D. A. Padua, Computer Society Press, 1981, pp.
428-463).

N. S. Ostlund, P. G. Hibbard, and R. A. Whiteside, "A Case Study in the Application of a Tightly
Coupled Multiprocessor to Scientific Computations,” included in Parallel Computations, edited by
G. Rodrigue, Academic Press, 1982, pp. 315-364.

J. E. Requa and J. R. McGraw, "The Piecewise Data Flow Architecture: Architectural Concepts,”
IEEE Trans. on Computers, Vol. C-32 No. 5, May 1983, pp. 425-438.

Z. Li and W. Abu-Sufah, "A Technique for Reducing Synchronization Overhead in Large Scale
Multiprocessors,” Proc. of the 12th Symp. on Computer Architecture, 1985, pp. 284-291

C. D. Polychronopoulos, D. J. Kuck, and D. A. Padua, "Execution of Parallel Loops on Parallel
Processor Systems," Proc. Int. Conf. on Parallel Processing, 1986, pp. 519-527.

M. Dubois, C. Scheurich, and F. Briggs, "Synchronization, Coherence, and Event Ordering in Mul-
tiprocessors," IEEE Computer, Vol. 21 No. 2, February 1988, pp. 9-22.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAaliffe, and M. Snir, "The NYU Ultracomputer
- Designing an MIMD shared Memory Parallel Computer,” IEEE Trans. on Computers, February
1983, pp. 175-189.

S. P. Midkiff, and D. A. Padua, "Compiler Generated Synchronization for DO Loops," Proc. Int.
Conf. on Parallel Processing, 1986, pp. 544-551.

P. C. Treleaven, R. P. Hopkins, and P. W. Rautenbach, "Combining Data Flow and Control Flow
Computing," Computer Journal, Vol. 25 No. 2, 1982, pp. 207-217. (Also included in the Selected
Reprints on Dataflow and Reduction Architectures, edited by S. S. Thakkar, Computer Society
Press, 1987, pp. 355-365).

J. B. Dennis, "The Varieties of Data Flow Computers,” Proc. 1'st Int. Conf. on Distributed Com-
puting Systems, 1979, pp. 430-439.

K. Hwang, "Multiprocessor Supercomputers for Scientific/Engineering Applications,” IEEE Com-
puter, Vol. 18 No. 6, June 1985, pp. 57-73.

M. Gransky, I. Koren, and G. M. Silberman, "The Effect of Operation Scheduling on the Perfor-
mance of a Data Flow Computer," IEEE Trans. on Computers, Vol. C-36 No. 9, September 1987,
pp. 1019-1029,

J. D. Ullman, "NP-Complete Scheduling Problems,” J. Comput. Syst. Sci., Vol 10, June 1975, pp.
384-393,

E. G. Coffman, Ed., Computer and Job-Shop Scheduling Theory, New York: Wiley, 1976.

Arvind and R.A. Iannucci, "A Critique of Multiprocessing von Neumann Style,” Proc. 10 Int.
Symp. Comp. Arch., 1983, pp. 426-436.



[18]
[19]

[20]
(21]

[22]

[23]

[24]

[25]

[26]

[271

(28]

[29]

(301

(31]

(32]

[33]

[34]

[35]
[36]

- 116 -

M. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, MIT Press, 1985.

D. Gelemter, "Domesticating Parallelism," IEEE Computer, Vol. 19 No. 8, August 1986, pp. 12-
19.

A. H. Karp, "Programming for Parallelism,” IEEE Computer, Vol. 20 No. 5, May 1987, pp. 43-57.
C. L. Seitz, "System Timing," included as chap. 7 in Introduction to VLSI Systems by C. Mead and
L. Conway, Addison-Wesley, 1980, pp. 218-254.

S. E. Fahlman, and G. E. Hinton, "Connectionist Architectures for Artificial Intelligence," IEEE
Computer, Vol. 20 No. 19, January 1987, pp. 100-109,

E. P. Farrel, N. Ghani and P. C. Treleaven, "A Concurrent Computer Architecture and a Ring
Based Implementation," Proc. of the 6'th symp. on Computer Architecture, 1979, pp. 1-11.

J. D. Brock, A. R. Omondi and D. A, Plaisted, "A Multiprocessor Architecture for Medium-Grain
Parallelism,” Proc. 6’th Int. Conf. on Distributed Computing Svstems, 1986, pp. 167-174,

R. Buehrer and K. Ekanadham, "Incorporating Data Flow Ideas into von Neumann Processors for
Parallel Execution,” IEEE Trans. on Computers, Vol. C-36 No. 12 December 1987, pp. 1515-1522.
D. Kuck, The Structure of Computers and Computations, Wiley 1978.

C. D. Polychronopoulos and D. J. Kuck, "Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers,” IEEE Trans. on Computers, Vol. C-36 No. 12 December 1987, pp.
1425-1439,

D. Gajski, D. Kuck, D. Lauwrie, and A. Sameh, "CEDAR," Report No. UIUCDCS-R-83-1123,
Department of Computer Science, University of Illinois, Urbana, February 1983, pp. 1-25. (Also
included in the Tutorial on Supercomputers: Design and Applications, edited by K. Hwang, Com-
puter Society Press, 1984, pp. 251-275).

C. Q. Zhu, and P. C. Yew, "A Synchronization Scheme and its Applications for Large Multipro-
cessor Systems,” Proc. 4th Int. Conf. on Distributed Computing Systems, 1984, pp. 486-493.

P. Tang and P. C. Yew, "Processor Self-Scheduling for Multiple-Nested Parallel Loops," Proc. Int.
Conf. on Parallel Processing, 1986, pp. 528-535.

G. F. Pfister et al.,, "The IBM RP3 Introduction and Architecture," Proc. Int. Conf. on Parallel
Processing, August 1985, pp. 764-771.

B. J. Smith, "Architecture and Applications of the HEP Multiprocessor Computer System,” Real
Time Signal Processing IV, Proceedings of SPIE August 1981, pp. 241-248. (Also included in the
Tutorial on Supercomputers: Design and Applications, edited by K. Hwang, Computer Society
Press, 1984, pp. 231-238).

B. J. Smith, "A Pipelined, Shared Resource MIMD Computer,” Proc. Int. Conf. on Parallel Pro-
cessing, 1978, pp. 6-8. (Also included in the Turorial on Advanced Computer Architecture, edited
by D. P, Agrawal, Computer Society Press, 1986, pp. 39-41.

W. Crowther, J. Goodhue, R. Gurwitz, R.Rettberg, and R. Thomas, "The Butterfly Parallel Proces-
sor," Newsleiter of the Computer Architecture Technical Comittee (IEEE Computer Society),
September/December 1985, pp. 18-45.

J. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

T. Etzion and M. Yoeli, "Super-Nets and Their Hierarchy," Theor. Comp. Sci. 23, 1983, pp. 243-
272.



- 117 -

[37]1 G.F. Pfister and V. A. Norton, "“Hot Spot’ Contention and Combining in Multistage Interconnec-
tion Networks,” Proc. 1985 Int. Conf. on Parallel Processing, Aug. 1985, pp. 790-797.

[38] R.Lee, "On ‘hot spot’ contention,” ACM SIGARCH Computer Architecture News, Vol. 13, No. 5,
pp. 15-20, Dec. 1985.

[39] R.J. Swan, S. H. Fuller and D. P. Siewiorek, "Cm* — A modular multi-microprocessor," AFIPS
Conf. Proc., 1977 National Computer Conference, pp. 637-644.



