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ABSTRACT

This work constitutes the foundation layers of the assessment and development
of an architectural model for a parallel computer. The proposed model is a
tightly coupled MIMD multiprocessor. A certain amount of affinity exists between

the proposed model and Dataflow architectures.

The model’s central novel feature is a high flow-rate hardware
synchronization/scheduling subsystem. The synchronizer/scheduler implements all the
aspects of coordinating interprocessor parallelism: Synchronization, work allocation,
and scheduling of tasks according to their urgency. Task allocation is dynamic,

and based upon processors availability.

As a run-time working data structure, the synchronizer/scheduler uses the
program’s task map. The task map is a dependency graph, edited according to
defined programming rules. The task map may contain cycles. A particular form
of dynamic process generation is supported: Concurrent release of an arbitrary
number of processes, all derived from a same task. The dependencies expressed in
the task map represent control flow alone, and do not represent data flow. Hence,
the proposed architectural model’s underlying computation control model is Multi-
Threaded Control Flow.

The synchronizer/scheduler comprises a central synchronization/scheduling unit
(CSU), and a distribution network which mediates between the CSU and proces-
sors. By merging and decomposing synchronization data, the distribution network
generates an effect of flow-rate amplification. Synchronization data subject to
merge/decomposition concern parcels of processes, which were generated together

from the same task.

The hardware and software development aspects of the model are treated

within this work at various levels of detail, up to the logic design level.

In addition to the problem of parallel operation coordination, the solutions for
several other problems are discussed: Memory latency may be countered, relying
on window-based multitasking within processors, and on surplus program parallel-

ism with regard to the number of processors; cache coherence may be maintained
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without complex hardware apparatus, relying on shared-variables access rules
obeyed by programs; software engineering improvements result from expressing

programs using task maps.

The viability of an architectural model’s software aspect (its programming
model) must be established by benchmark examples. Several benchmark examples,

representing various domains, were developed; three of which are included.

The overall manifestation of synchronization/scheduling overhead is an increase
in program total execution time. High overhead has strong relation to insufficient
synchronization/scheduling flow-rate capability. Lower and upper bounds on the

slowdown incurred by a given synchronization flow-rate capability are proved.

Petri networks constitute a common tool for exploring the properties of paral-
lel assemblies. An appendix concerning automatic derivation of Petri networks
corresponding to programs coded under the proposed model’s conventions is
included.
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