
The Plural Architecture
Shared Memory Many-core with Hardware Scheduling

Ran Ginosar

Technion, Israel

Oct 2017
1

and

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

2

many-cores

• Many-core is:
• a single chip

• with many (how many?) cores and on-chip memory

• running one (parallel) program at a time, solving one problem

• an accelerator

• Many-core is NOT:
• Not a “normal” multi-core

• Not running an OS

• Contending many-core architectures
• Shared memory (the Plural architecture, XMT)

• Tiled (Tilera, Godson-T)

• Clustered (Rigel)

• GPU (Nvidia)

• Contending programming models

3

Why manycores? Scaling

• We know of VLSI scaling

• Going forward with technology

• See VLSI course

• Another scaling: More cores using same technology

• Example: Start with one core
• Voltage V1

• Frequency ≈ performance = f1

• Power P1 ≈ C V1
2

• Move to 2 cores
• Voltage V2 = 0.8 V1

• Frequency f2 = 0.8 f1

• Performance = 2 f2 = 1.6 f1

• Power P2 = 2C V2
2 =2C (0.8 V1)

2 = 2×0.64 C V1
2 = 1.3 P1

• Conclusions
• Increasing frequency is dead

• Naïve parallelism is naïve

• Manycore scaling can scale

4

Context

• Plural:

• homogeneous acceleration

• for heterogeneous systems

5

HOST

OS

I/O

Network

Peripherals

Plural

Accelerator

streaming

One (parallel) program ?

• Best formal approach to parallel programming is

the PRAM model

• Manages

• all cores as a single shared resource

• all memory as a single shared resource

• and more…

6

Joseph F. JaJa,

Introduction to Parallel Algorithms,

1992

Cormen, Leiserson, Rivest, Stein,

Introduction to algorithms,

2009

PRAM matrix-vector multiply

7

× =

The PRAM algorithm
𝑖 is row index

Begin

yi=Aix
End

A,x,y in shared memory

(Concurrent Read of x)

Temp are in private
memories (e.g. computing
actual addresses given 𝑖)

Ax=y

Ai x
yi

× =

× =

× =

× =

× =

Core 0

Core 1

Core 2

Core 3

Core 4

PRAM logarithmic sum
The PRAM algorithm

// Sum vector A(*)

Begin

B(i) := A(i)

For h=1:log(n)

if 𝑖 ≤ 𝑛/2ℎ then

B(i) = B(2i-1) + B(2i)

End

// B(1) holds the sum

8

a1 a2 a3 a4 a5 a6 a7 a8

h=3

h=2

h=1

B(i)=A(i)

if (..) B(i)=B(2i-1)+B(2i)

h

h

Advantages of PRAM-like programming

• Simpler program

• Flat memory model

• Same data structures as in serial code

• No code for finding and moving the data

• Easier programming, lower energy, higher

performance

• Scalable to higher number of cores

9

Advantages of PRAM-like programming
• Same-node Scalability

• Easy to define high levels of parallelism

• Scalable to more cores running slower at lower voltage
• on same technology node

• Example: same-node-scaling from N to 2N cores
same-node-scaling of Vdd and f by 𝛼 = 0.8, … ,0.5

10

N cores,

Vdd, f

2N cores,

𝛼Vdd, 𝛼f
𝛼 = 0.8 𝛼 = 0.7 𝛼 = 0.6 𝛼 = 0.5

Perf 𝑃 𝑁 = 𝑁𝑓
2𝑁𝛼𝑓
= 2𝛼𝑃 𝑁

𝑃(𝑁)
∙ 1.6

𝑃(𝑁)
∙ 1.4

𝑃(𝑁)
∙ 1.2

𝑃(𝑁)

Time 𝑇 𝑁 =
𝑊

𝑁𝑓

𝑊

2𝑁𝛼𝑓
=
𝑇 𝑁

2𝛼

𝑇 𝑁

1.6

𝑇 𝑁

1.4

𝑇 𝑁

1.2
𝑇(𝑁)

Power
𝑃𝑊 𝑁
= 𝑁𝐶𝑉2𝑓

2𝑁𝐶𝛼2𝑉2𝛼𝑓
= 2𝛼3𝑃𝑊 𝑁

𝑃𝑊 𝑁
𝑃𝑊 𝑁
∙ 0.7

𝑃𝑊 𝑁
∙ 0.4

𝑃𝑊 𝑁
∙ 0.25

Energy

𝐸 𝑁
= 𝑃(𝑁)𝑇(𝑁)
= 𝑊𝐶𝑉2

2𝛼3𝑃𝑊 𝑁
∙ 𝑇 𝑁 2𝛼
= 𝛼2𝐸(𝑁)

𝐸(𝑁)
∙ 0.64

𝐸(𝑁)
∙ 0.5

𝐸(𝑁)
∙ 0.36

𝐸(𝑁)
∙ 0.25

Perf

/ Pwr

𝑃𝑃𝑅 𝑁
= 1 𝐶𝑉2

𝑃𝑃𝑅(𝑁)

𝛼2
𝑃𝑃𝑅(𝑁)
∙ 1.5

𝑃𝑃𝑅(𝑁)
∙ 2

𝑃𝑃𝑅(𝑁)
∙ 2.8

𝑃𝑃𝑅(𝑁)
∙ 4

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

11

12

The Plural Architecture: Part I

“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small private memories (stack, L1 caches)
PPPPPPPP

Off-chip memory, IO

Shared Memory

P-to-M resolving NoC
Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (2-3 cycles)

PPPPPPPP

P-to-M resolving NoC

Low (zero) latency parallel scheduling

enables fine granularity

scheduler

P-to-S

scheduling NoC

The Plural Architecture: Part II

Hardware scheduler / dispatcher / synchronizer

Shared Memory
“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small private memories (stack, L1)

Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (2-3 cycles)

13
external memory, IO

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

14

How does the P-to-M NOC look like?

• Full bi-partite connectivity required

• But full cross-bar not required: minimize conflicts
and allow stalls/re-starts 15

P

P

P

P

P

P

P

P

P

P

P

P

M

M

M

M

M

M

M

M

M

M

M

M

Logarithmic multistage interconnection network

P

P

P

P

P

P

P

P

P

P

P

P

M

M

M

M

M

M

M

M

M

M

M

M

Pipeline stage (registers)Combinational switches 16

Floor plan and route to shared memory

access sequence: fixed latency (when successful)

time

Processors

MEMORY

pipeline stage 3

Pipeline Stage 1

Pipeline Stage 2

cycle
Read Request

18

19

Floor plan: 64 DSP cores (24KB each)

& 4MB shared memory take 320 mm2 on 65nm
20.4 mm

1
5

.5
 m

m

(3
2

+
1

6
) ×

0
.8

 G
b
/s

1

2
 ×

2
 ×

6
.2

5
 G

b
/s

RC64

20

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

21

Three levels of “parallel” programming

22

• Multiple Plural chips
• Distributed computing

(message passing)

• OR: shared memory

• The Plural chip
• 64 cores, shared memory

• A high performance DSP core
• VLIW + SIMD

PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

Shared memory

23

The Plural task-oriented programming model

• Programmer generates TWO parts:

• Task-dependency-graph

• Sequential task codes

• Task graph loaded into scheduler

• Tasks loaded into memory

regular

duplicable taskName (instance_id)

{

… instance_id ….

// instance_id is instance number

…..

}

Task template: PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

Shared memory

Fine Grain Parallelization

Convert (independent) loop iterations

for (i=0; i<10000; i++) { a[i] = b[i]*c[i]; }

into parallel tasks
set_task_quota(doLargeLoop, 10000)

void doLargeLoop(unsigned int id)

{ a[id] = b[id]*c[id]; } //id is instance number

24

duplicable doLargeLoop

25

Task graph example (2D FFT)

Duplicable task …
…
…

…
…
…

Condition

Join / fork

Singular task

26

Another task graph (linear solver)

27

Linear Solver: Simulation snap-shots

Cores and Tasks

28

Finished
All

Allocated
ReadyPending

CollidingWaitingBusyIdleCore

Task

known to scheduler

Hardware Scheduler: Under the hood

29

task # Instance # …0

1

2

core #

…

total instances # already allocated …0

1

2

task #

…

statedependencies

state

task graph

Plural Task Oriented Programming Model:

Task Rules 1
• Tasks are sequential

• All ready tasks, or any subset, can be executed in

parallel on any number of cores

• All computing organized in tasks. All code lines belong to

tasks

• Tasks use shared data in shared memory

• May employ local private memory.

• Its contents disappear once a task completes

• Precedence relations among tasks:

• Described in task graph

• Managed by scheduler: receive task completion messages,

schedule dependent tasks

• Nesting task spawning is easy and natural

30

Plural Task Oriented Programming Model:

Task Rules 2
• 2 types of tasks:

• Regular task (Executes once)

• Duplicable task

• Many independent concurrent instances

• Identified/dispatch: entry point, instance number

• Conditions on tasks checked by scheduler

• Tasks are not functions

• No arguments, no inputs, no outputs

• Share data only in shared memory

• No synchronization points other than task completion

• No BSP, no barriers

• No locks, no access control in tasks

• Conflicts are designed into the algorithm (they are no surprise)

• Resolved only by P-to-M NoC

31

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

32

Concurrency in shared memory manycore

• Non-preemptive execution

• Task graph defines tasks and dependencies

• Task graph executed by scheduler

•  path ti  tk  ti, tk are non-concurrent

• Execution of ti must complete before start of

execution of tk

• Otherwise, ti, tk are concurrent

May execute simultaneously

or at any order

• Task graph must be decomposable into

concurrent sets

33

ti

tk

tkti

(verifiable) Shared Memory Access Rules

1. Predictable Addressing
• Shared memory address derivable at compile time

• No data-dependent shared memory addresses

• Predictable malloc() address

2. Exclusive Write (EW)
• Task ti writes into A
 compiler can verify that
no concurrent task tk allowed to access A

(neither read nor write)

3. Concurrent Read (CR)
• Compiler can verify that

Concurrent tasks may read from same address
but none of them may write into it

34

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

35

Example: Matrix Multiplication

36

set_task_quota(mm, N*N); // create N×N tasks

extern float A[],B[],C[] // A,B,C in shared mem

void mm(unsigned int id) // id = instance number

{

i = id mod N; // row number

k = id / N; // column number

sum = 0;

for(m=0; m<N; m++){

sum += A[i][m] * B[m][k]; // read row & column from

// shared mem

}

C[i][k] = sum; // store result in shared mem

}

duplicable MM

Algorithms and their performance

• Matrix multiplication

• RTD by Ramon Chips

• Image processing

• RTD by TU Braunschweig, DSI, DLR, ELBIT/ELOP

• Hyperspectral imaging

• SAR imaging

• Modem

• RTD by Ramon Chips

37

Matrix Multiplication on RC64

• Each result element 𝐶𝑖,𝑗 is computed by a task

• For N×N matrices, N×N tasks (regardless of #cores)

• Later, each task computes an entire row of 𝐶

• Only N tasks

38

𝐶 = 𝐴 × 𝐵

𝐶𝑖,𝑗 =

𝑚

𝐴𝑖,𝑚 × 𝐵𝑚,𝑗

Matrix Multiplication on RC64

39

#define MSIZE 100

float A[MSIZE][MSIZE], B[MSIZE][MSIZE],

C[MSIZE][MSIZE];

int mm_start() REGULAR
{ int i,j;

for (i=0; i< MSIZE; i++)

for (j=0; j< MSIZE; j++)

{ A[i][j] = 13; B[i][j] = 9; }

}

void mm (unsigned int id) DUPLICABLE
{ int i,j,m; float sum = 0;

i = id % MSIZE; j = id / MSIZE;

for (m=0; m < MSIZE; m++)

sum += A[i][m]*B[m][j];

C[i][j]=sum;

}

int mm_end () REGULAR
{ printf("finished mm\n"); }

#define MSIZE 100

#define MMSIZE 10000

regular mm_start()

duplicable mm(mm_start) MMSIZE

regular mm_end(mm)

CODE (plain C) TASK GRAPH

duplicable mm

regular mm_start

regular mm_end

Matrix Multiplication on RC64

• Why is SU(1024) still less than 1024?

40

P Tp SU Eff

1 8,190,021 1 1.00

2 4,095,021 2 1.00

4 2,047,521 4 1.00

8 1,023,771 8 1.00

16 511,896 16 1.00

32 256,368 32 1.00

64 128,604 64 1.00

128 64,722 127 0.99

256 32,781 250 0.98

512 16,401 499 0.98

1024 8,211 997 0.97

SPEEDUP & THRUPUT

Matrix Multiplication using only N tasks

41

#define MSIZE 100

float A[MSIZE][MSIZE], B[MSIZE][MSIZE],

C[MSIZE][MSIZE];

int mm_start () REGULAR

{ int i,j;

for (i=0; i< MSIZE; i++)

for (j=0; j< MSIZE; j++)

{ A[i][j] = 13; B[i][j] = 9; }

}

void mm_ntasks (unsigned int id) DUP

{ int m, k; float sum = 0;

for (k=0; k<MSIZE; k++) {

sum = 0;

for (m=0; m < MSIZE; m++)

sum += A[id][m]*B[m][k];

C[id][k]=sum;

}

}

int mm_end () REGULAR

{ printf("finished mm with N tasks\n"); }

#define MSIZE 100

regular mm_start()

duplicable mm_ntasks(mm_start) MSIZE

regular mm_end(mm_ntasks)

CODE (plain C) TASK GRAPH

duplicable mm_ntasks

regular mm_start

regular mm_end

Matrix Multiplication using only N tasks

• What went wrong ?

42

P Tp SU Eff

1 8,140,021 1 1.00

2 4,070,021 2 1.00

4 2,035,021 4 1.00

8 1,058,221 8 0.96

16 569,821 14 0.89

32 325,621 25 0.78

64 162,821 50 0.78

128 81,421 100 0.78

256 81,421 100 0.39

512 81,421 100 0.20

1024 81,421 100 0.10

SPEEDUP & THRUPUT

EFFICIENCY

DVB-S2x MODEM on RC64

• Developed at Ramon Chips

• DVB-S2 is critical to modern communication

satellites

43

DVB-S2 transmit—three stages

44

Many-Flow: DVB-S2x Modem

SHARED MEMORY

DMA DMA

SW on Cores

DMA

LDPC
accelerator

Samples Data bits

SW LDPC SWIN OUTTask graph:

SW on Cores

45

Many-Flow: software pipeline

Shared Memory (4MByte)

Input
frames

Pre-LDPC
compute

LDPC
Accelerator

Pre-LDPC
frames

Post-LDPC
frames

Post-LDPC
compute

Output samples

DMA
Out

DMA
In

Frame

group

k

Frame

group

k+1

Frame

group

k+2

Frame

group

k+3

Frame

group

k+4

46

DVB-S2x task graph

47

Many-Flow: Double buffering

Frame

group

k

Frame

group

k+1

Frame

group

k+2

Frame

group

k+3

Frame

group

k+4

48

Performance of DVB-S2 on RC64

16K cycCore #0
Time

Core #8
Core #9

Core #63

Iteration time=16.7K cyc

16K cyc

LDPC Encoder
16.7K cyc

6K

16.7K cyc

16.7K cyc

16K cyc

8K cycCore #0
Time

Core #7
Core #8

Core #63

Iteration time=8K cyc

8K cyc

LDPC Decoder
8K cyc

8Kcyc

8K cyc

8K cyc

8K cyc

Tx 2.3 Gb/s Rx 1.0 Gb/s

49

SW development flow: MATLAB to RC64

1. MATLAB float, unrestricted (also SIMULINK)

2. MATLAB float, restricted memory size and I/O

3. MATLAB fixed point 16-bit
• Insert DSP library functions

• Create Golden model

4. Convert to C
• Sequential code on laptop

• Bit-exact comparison to Golden model

5. Parallelize for RC64 many-core. Create task graph
• Simulate using “many-task emulator” on laptop

• Bit-exact comparison to Golden model

6. Transfer to RC64
• Execute on hardware, or

• Simulate using cycle-accurate RC64 simulator

• Bit-exact comparison to Golden model

50

What if parallelism is limited ?

• So far, examples were highly parallel

• What if algorithm CANNOT be parallelized?

• Execute many (serial) instances in parallel

• Each instance on different data

• What if algorithm is mixture of serial / parallel

segments?

• Use ManyFlow

51

Outline

• Motivation: Programming model

• Plural architecture

• Plural implementation

• Plural programming model

• Validation

• Plural programming examples

• ManyFlow for the Plural architecture

52

Stream Processing

• Data arrives in a sequence of blocks

• In parallel:

• Process current block (K)

• Output results of previous block (K-1)

• Input next block (K+1)

53

time

Process block K K + 1K - 1

Output

block K-1

Input

block K+1

Output

block K

Input

block

K+2

Output

block K-2

Input

block K

ProcessOut+In

data block cycle time

PIPELINED stream processing

• For faster data & slower processing

54

time

Process block K K + 3

Input

block K

Process block K+1 K + 4

Process block K+2K - 1

K - 2

K - 3

K - 4

Input

K-1

Input

K-2

Input

K+2

Input

K+1

Input

K+4

Input

K+3

Input

K+

Input

K+5

Output

K-4

Output

K-5

Output

K-6

Output

K-2

Output

K-3

Output

block K

Output

K-1

Out

K+

Output

K+1

data block cycle time

PIPELINED stream processing: ManyFlow

• Parallel execution of pipelined stream

processing on the shared-memory manycore

Plural architectures

• Flexible, dynamic, out-of-order, task-oriented

execution

55

Example: A DWT image compression

algorithm

56

)

A

B

C

)D

E

B

A C

D

E

Low utilization: only 65%

Image compression time: 160 (relative time units)

DWT

(highly

parallel *)

Bit-plane

encoding

(highly

parallel *)
Time

Num. cores

utilized

Max 64 cores

serial

serial

serial

Speed it up with a pipeline?

25 50 18 54 13 =160

54 54 54 54 54

Sequential

Pipeline

57

Hardware-like Pipeline

Needs 5 stages: two with 64 cores each, three with one core each (total 131 cores)

If only 64 cores, time / step = 64x2 + 25 = 153 (how ? What is the utilization?)

Hard to program, inefficient, inflexible, fixed task per core. Need to store 5 images
58

Step i

Time step i+1 Step i+2 Step i+3 Step i+4 Step i+5 Step i+6

Step i+7Image k+4

Image k+5

Image k+6

Image k+7

Image k+3

Image k+2

Image k+1

Parallel / pipelined “ManyFlow”

59

All 5 stages are independent (order does not matter)

 Can run concurrently

 Scheduler will dispatch most efficiently

)A B C)D E

Pipeline Stage

Sync

Image

k

Image

k+1

Image

k+2

Image

k+3

Image

k+4

Step i

Still need to store 5 images (and their temporary storage)

Parallel / pipelined “ManyFlow”

60

)A B C)D EInput

raw image

Output

compressed

image

Pipeline Stage

Sync

Task graph for continuous execution

Includes two more pipe stages, for I/O of images

Now need to store 7 images (and their temporary storage)

Parallel / pipelined “ManyFlow”
(automatically scheduled)

61

Higher utilization: 99%

B

A C

D

E

Image compression time (piped): 95

The code

PROGRAM
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define N 1000

int round_counter = 0;

void program_start() {

set_task_quota(BB,N);

set_task_quota (DD,N);

}

void AA (void) { set_task_runtime(25); }

void BB (void) { set_task_runtime(3); }

void CC (void) { set_task_runtime(20); }

void DD (void) { set_task_runtime(3); }

void EE (void) { set_task_runtime(10); }

int task_manager(void) {

round_counter++;

if (round_counter < 5)

return(0);

else

return(1);

}

void program_end(void) { }

TASK graph
regular task program_start()

regular task AA (program_start || task_manager==0)

regular task CC (program_start || task_manager==0)

regular task EE (program_start || task_manager==0)

duplicable task BB (program_start || task_manager==0)

duplicable task DD (program_start || task_manager==0)

regular task task_manager (AA && BB && CC && DD && EE)

regular task program_end (task_manager==1)

62

(for simplicity, real task code replaced by indication of duration)

Challenges

• What if on-chip memory is limited?

• Input & output to/from same area

• Process smaller data blocks

• Decompose algorithm to fewer steps

• Beware of combining serial and parallel code segments in

same pipe stage

• Stages may be serial, highly parallel, or limited parallel

63

Example: JPEG compression algorithm

using ManyFlow

RGB pixel

stream
Convert RGB

to YCrCb

Compress

color 4:2:0 DCT 8X8

16X16 pl

Y,Cr,Cb

8X8 pl

4Y 1Cr 1Cb

Quantization

8X8 Coeff

4Y 1Cr 1Cb

DPCM

ZigZag Scan

DC

AC

8X8 Coeff

4Y 1Cr 1Cb

DC Huffman

AC Huffman

8X8 Coeff

4Y 1Cr 1Cb

Combine

Bit Stream

DC

AC

DC

AC

Variable

Length code

4Y 1Cr 1Cb

Compressed

bit stream

64

JPEG compression: ManyFlow

65

66

JPEG compression: Task Allocation

67

JPEG compression: Most cores active

Example: JPEG2000 Encoder

68
Parallel fraction 𝑓=95%

A

B

C

D

E

Number of busy cores

X10 msec

Serial: 220 msec

Parallel:

1280/64=20 msec

Serial: 60 msec

Parallel:

1920/64 = 30 msec

Serial: 70 msec

Serial time 𝑇1 = 3.55 sec

Parallel time 𝑇64 = 400 msec

Speed-up: 𝑆𝑈(64) = 𝑇1/𝑇64 ≈ 9

Efficiency: 𝐸 64 =
𝑆𝑈 64

64
= 0.14

Image: 1𝐾 × 1𝐾 8b pixels Core frequency 𝐹1 = 250 MHz

A C E

B D

Non-ManyFlow RIGID Multi-Job Scheduling

• Run multiple serial sections in parallel

• Run a single parallel section at a time

69

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

S

T

Non-ManyFlow RIGID Multi-Job Scheduling

• Fixed number of cores p=64

• Job with fraction 𝑓 parallel, (1 − 𝑓) serial
• Time of parallel section 𝑓𝑇1/𝑝

• Variable number of Jobs J=1,2,…

• Schedule:
• J serial sections in parallel, time 𝑇𝑃𝑆 = (1 − 𝑓)𝑇1
• J parallel sections in series, time 𝑇𝑃𝑃 = 𝐽 × 𝑓𝑇1/𝑝

• Serial time 𝑇𝑆(𝐽) = 𝐽 × 𝑇1
• Parallel time 𝑇𝑃 𝐽 = 𝑇𝑃𝑆 + 𝑇𝑃𝑃

70

JPEG2000, J=1, 𝑓=95%

J=16

Non-ManyFlow RIGID Multi-Job Scheduling
• Memory-limited

• 8MB (¼ max memory) enables:
• J=16 jobs

• Speed-up 50 (cf. 9)

• 0.8 efficiency (cf. 0.14)

• ManyFlow works better !

71

JPEG2000, J=1

J=16

72

Advantages of the Plural Architecture

• Shared, uniform (~equi-distant) memory

• no worry which core does what

• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC

• low latency

• no bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)

• enables fine grain data parallelism

• Any core can do any task equally well on short notice

• scales well

• Programming model:

• intuitive to programmers

• CREW verifiable

• “easy” for automatic parallelizing compiler (?)

Summary

• Simple many-core architecture

• Inspired by PRAM

• Hardware scheduling

• Task-based programming model

• Designed to achieve the goal of

‘more cores, less power’

• Developing model to illuminate / investigate

73

