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1

BRANCH INSTRUCTION HANDLING IN A
SELF-TIMED MARKING SYSTEM

FIELD OF THE INVENTION

The present invention is directed to a computer system
executing variable length instructions. More particularly, the
present invention provides an instruction decoding circuit
having a self-timed length decoding, marking, and steering
system, and capable of self-timed processing of branch
instructions.

BACKGROUND OF THE INVENTION

Computer systems are capable of executing various arith-
metic and logic operations on data. The particular arithmetic
or logic operation to be executed is indicated by an “instruc-
tion” that is typically retrieved from a memory of the
computer system, decoded in an instruction decode block,
and then transmitted to an execution block of the computer
for execution. Computer programs comprise a set of instruc-
tions that, when taken from memory, decoded and transmit-
ted to the execution block in a certain sequence, cause the
computer system to execute a series of operations that
achieve the objective of the program.

There are computer systems designed to implement a
variable length instruction architecture, wherein instructions
can vary in length from, for example, one byte to eleven
bytes or more. However, memory systems, and in particular
the cache memory used to store instructions prior to
execution, typically store data in fixed sized blocks such as,
for example, sixteen byte blocks. In such a system, instruc-
tion data is fetched in sixteen byte lines aligned on sixteen
byte boundaries. Accordingly, in a variable length instruc-
tion architecture, each fixed sized line fetched from memory
contains instructions of various lengths that may start any-
where within the line and may even cross a line boundary
into a succeeding line of memory.

An instruction marking circuit is typically implemented in
the instruction decode block of a computer having a variable
length instruction architecture in order to mark the begin-
ning of each instruction in a line fetched from a fixed sized
line memory system. The instruction marking circuit
includes length decoders, which process a selected byte or
number of bytes of the fetched line to determine a length for
the instruction containing the bytes. Once instruction lengths
are determined and first instruction bytes are marked, the
instructions of the fetched line can be transmitted to an
instruction decoding circuit within the decode block.

Instruction marking is, by nature, a serial operation, since
the beginning of a particular instruction can be determined
with certainty only after the beginning and length of a
previous instruction have been determined. In present
instruction marking circuits, the serial nature of instruction
marking is accommodated by performing the marking
operation according to an externally-timed scheme that
controls and synchronizes circuit operations by a system
clock. Marking information is propagated through the mark-
ing circuit in synchronization with the system clock. The
length decoders that are typically used in marking circuits,
however, comprise combinational logic circuits that perform
length decodes in varying amounts of time depending upon
the particular instruction being processed. To assure that all
possible instructions found in an instruction line fetched
from memory will be marked, the timing of the clock signals
must be sufficient to process a “worst case” decode time for
an instruction. That is, the timing must be sufficient to permit
signals to traverse the longest path through the combina-

10

15

20

25

30

35

40

45

50

55

60

65

2

tional logic of the length decoder, thus delaying the propa-
gation of marking signals through the marking circuit when
the instruction is not a “worst case” instruction.

Only a limited subset of instructions are of the “worst
case” instruction type. Thus the time required for processing
this relatively small subset of instructions is imposed on all
marking operations such that the overall time needed for
instruction marking is longer than actually required in most
instances. As a result, the known scheme for marking
instructions in a variable length instruction architecture
incurs wasteful delay in the instruction execution process,
decreasing system performance.

The U.S. patent application Ser. No. 08/997,457, entitled
“Parallel Processing and Self-Timed Serial Marking of Vari-
able Length Instructions” (filed on even date herewith),
provides for fast and efficient instruction decoding through
the self-timed length decoding, marking, and steering of
instructions. An exemplary embodiment of a computer sys-
tem according to the teachings of the aforementioned appli-
cation is shown in FIG. 1 (and described in more detail by
the aforementioned application). As shown in FIG. 1, an
instruction fetch, decode, and execute pipeline 1 is imple-
mented in a computer system. An instruction cache 10 is a
memory used to store a set of instructions that are most
likely required by the computer for execution in the near
future, in accordance with known caching techniques. The
instructions are stored in and fetched from the instruction
cache 10 in instruction lines, each comprising a fixed sized
block of bytes, for example, sixteen bytes. Each instruction
line stored in the instruction cache 10 is aligned within the
memory along a sixteen byte boundary. Each instruction
contained in a line can vary in length from one byte to the
maximum byte length used in the computer system, and any
particular line of instructions can contain instructions of any
combination of byte lengths.

An instruction fetch block 12 operates to fetch a line of
instructions for input to an instruction decode block 14. The
instruction decode block 14 decodes the instructions within
the line fetched from the instruction cache 10 for input to an
execution block 16 for execution, as is generally known. An
instruction issue block 18 can be implemented to receive
decoded instructions from the instruction decode block 14
for transfer to the execution block 16.

As noted above, the instructions stored in the instruction
cache 10 can vary in length and instructions of any combi-
nation of lengths can be found in any particular instruction
line fetched from the instruction cache 10. Accordingly, the
instruction decode block 14 includes an instruction marking
circuit 20 that operates to mark the first byte of each
instruction contained in a fetched line. Once marked, the
instructions are transferred, for example, to an instruction
steering circuit 22 to await transfer to an instruction decode
circuit 24. The instruction decode circuit 24 decodes the
instructions and outputs decoded instructions to the instruc-
tion issue block 18.

FIG. 2 shows an exemplary embodiment of an instruction
decode block 14 using the self-timed techniques of the
aforementioned application. Instruction lines fetched from
the instruction cache 10 by instruction fetch block 12 are
received by an instruction line buffer 26 of the instruction
marking circuit 20. Instruction line buffer 26 may be imple-
mented as a FIFO, such that multiple instruction lines can be
stored in anticipation of the marking process.

The instruction marking circuit 20 can be described for
illustrative purposes as being arranged in “columns” corre-
sponding to each byte position of the instruction line buffer
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26. Thus, a column “contains” those functional units used to
process a byte for the particular byte position in the instruc-
tion line. For an instruction line width of, for example,
sixteen bytes, the instruction marking circuit 20 can be
described as having sixteen columns, each containing the
functional units used in byte processing. Those columns
corresponding to the first byte positions of the instruction
line buffer (i.e. lower memory addresses) are considered the
“front” of the instruction marking circuit, while those col-
umns corresponding to the last byte positions of the instruc-
tion line buffer (i.e. higher memory addresses) are consid-
ered the “end” of the instruction marking circuit. Relative to
each other, columns associated with lower memory
addresses are considered “upstream” columns, while col-
umns associated with higher memory addresses are consid-
ered “downstream” columns.

Each byte of the instruction line is separately sent to a
respective byte latch 28 in each column of the instruction
marking circuit 20. The byte is processed by a length
decoder 30 for that same column of the instruction marking
circuit 20, together with any additional downstream bytes in
byte latches 28 of downstream columns, as may be required
by the length decoding algorithm used in the variable
instruction length architecture. The combinational logic
implemented in the length decoder 30 produces a signal
indicating the computed length of the instruction, under the
assumption that the byte being processed is the first byte of
an instruction.

To indicate instruction length, each length decoder 30 has
a number of length signal outputs. The length signal outputs
are coupled to length signal output lines 38, which are
further coupled to other functional units in the instruction
marking circuit 20, as described below. The number of
length signal outputs (and, therefore, length signal outputs
lines 38) is dependent on the maximum possible instruction
length and the encoding scheme used for length signals. For
the example of FIG. 2, the maximum possible number of
bytes in an instruction is four, and the length signals are
implemented as “one-hot” signals, i.e., only one signal is
provided as active for each byte length. As a result, each
length decoder 30 shown in FIG. 2 has four length signal
outputs, one for a one byte instruction, one for a two byte
instruction, and so on. Each length decoder 30 asserts a
“one-hot” signal on the length signal output line 38 corre-
sponding to the length determined by the length decoder 30
for the current byte being processed in that column.

Since each length decoder 30 asserts the appropriate
length signal as soon as it completes the length decode for
the current byte, length information may be available much
earlier than under the “worst-case” decode time.

A plurality of marking units 34 is also provided, one in
each column of the instruction marking circuit 20. The
instruction length output lines 38 coupled to each length
decoder 30 are also coupled to the marking unit 34 for the
same column. Each marking unit 34 is further coupled to a
number of marking lines 35 used to carry marking signals to
mark a subsequent byte as the first byte of the next instruc-
tion. The number of marking lines 35 corresponds to the
maximum number of bytes possible in the variable length
instruction architecture. Thus, as shown in FIG. 2 for a
maximum instruction length of four bytes, each marking
unit 34 is coupled to four marking lines 35, one correspond-
ing to each byte length available in the variable length
instruction architecture. Accordingly, each marking unit 34
is also coupled to four marking lines 35 carrying marking
signals generated by four upstream marking units 34.

Based on the length signals provided by the length
decoder 30, the marking unit 34 determines the column
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containing the first byte of the next instruction in the
instruction line. The marking unit 34 indicates the first byte
of the next instruction by directly signaling a subsequent
marking unit 34 in a downstream column via a marking
signal over the appropriate marking line 35. Marking may be
achieved, for example, by sending a “one-hot” signal over
the appropriate marking line 35 to a downstream marking
unit 34. Each marking line 35 is coupled between the
marking unit 34 of the present column and a marking unit 34
for a subsequent column: the marking line 35 used to signal
a one byte length instruction is coupled to the marking unit
34 for the next column of the instruction marking circuit 20;
the marking line 35 used to signal a two byte length
instruction is coupled to the marking unit 34 two columns
away, and so on. The marking unit 34 asserting a marking
output thereby directly marks the first byte of the next
instruction of the fetched line.

For those marking units 34 at the end of the instruction
marking circuit 20, the marking lines 35 used to mark a
column beyond the end of the instruction marking circuit 20
are “wrapped around” to the marking units 34 at the front of
the instruction marking circuit 20. The marking information
transmitted via the wrapped-around marking lines 35 there-
fore marks the first byte of the first instruction on the next
fetched instruction line.

Activation of a marking output of a marking unit 34 is
controlled by satisfaction of certain system conditions. For
example, a marking unit 34 waits for an indication that its
column contains the first byte of an instruction, as provided
by the marking signal received over the marking lines 35
from upstream marking units 34. A marking unit 34 also
waits for an indication that the bytes that comprise the
instruction have been loaded into their respective byte
latches 28 and are ready for transmission, for example, as
provided by an INSTRUCTION READY signal provided
by length decoder 30 and carried by length decoder hand-
shaking lines 37. A marking unit 34 also waits for an
indication that the instruction steering circuit 22 is available
to receive an instruction for decoding and execution, for
example, as provided by a BUFFER AVAILABLE signal
produced by instruction steering circuit 22 and carried by
output buffer handshaking lines 36. These signals can arrive
in any order.

Once these conditions have been satisfied, the instruction
bytes are transmitted from the byte latches 28 to the instruc-
tion decode circuit 24 over byte latch output lines 29 and via
a crossbar switch and output buffer within the instruction
steering circuit 22. Instruction length data is also transmitted
from the length decoder to the instruction decode circuit 24
via the crossbar switch and output buffer. The byte latches 28
are then loaded with new bytes from the next instruction line
in instruction line buffer 26. A marking signal is concur-
rently sent over a marking line 35 to the marking unit 34 in
the downstream column containing the first byte of the next
instruction. The marking unit 34 in that downstream column
may then perform a similar marking and transfer operation.

As a result of the above, the generation and transmission
of all instruction bytes and marking information flows
through the length decoders 30 and marking units 34 in a
self-timed manner, and at an average speed that is faster than
clocked circuits. To further increase the throughput of the
instruction length decoding and marking process, processing
of the bytes in a next instruction line can begin as soon as
the individual byte latches 28 processing previous instruc-
tion bytes become available. The wrap around marking
information generated during a current instruction line
remains available to mark the first byte of the first instruction
in the next instruction line.
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In a second exemplary embodiment of an instruction
decode block 14 implementing self-timed instruction length
decoding, marking, and steering, as described in the afore-
mentioned patent application, multiple self-timed marking
units 34 are employed to increase the throughput capabilities
of the instruction decode block 114. FIG. 3 shows such an
embodiment, wherein the instruction decode block 114 is
implemented having sixteen columns and is capable of
processing instructions up to 4 bytes in length. As shown in
FIG. 3, instruction marking circuit 120 is implemented using
multiple marking units 34 in each column, with each mark-
ing unit 34 of the column given a different “row” designation
for descriptive purposes. Marking signals are propagated
through the marking circuit by sending the marking signals
to the marking unit 34 of the next higher row in the column
to be marked. The number of rows to be implemented in an
instruction marking circuit 20 can be determined based on a
calculation of the speed of instruction marking in relation to
the speed of the steering function. For the embodiment
shown in FIG. 3, three rows (row 0, row 1, and row 2) are
implemented in instruction marking circuit 120, although
other quantities can be implemented.

The instruction steering circuit 122 is implemented to
mirror the instruction marking circuit 120, such that instruc-
tion steering circuit 122 contains a crossbar switch 62
having a number of rows equal to the number of rows in the
instruction marking circuit 120, and a number of output
buffers 64 equal to the number of rows in the instruction
marking circuit 120. Instruction bytes are transferred, via the
row of the crossbar switch 62 that is the same row as the row
of marking unit 34 that has processed those instruction
bytes, the output buffer 64 of the same row designation as
the row of the marking unit 34. Instructions are therefore
incrementally spread across each output buffer, allowing the
instruction decode circuit 124 to fetch instructions sequen-
tially from each output buffer using, for example, a row
pointer 301.

A more detailed description of the self-timed length
decoding, marking, and steering of instructions may be
found in the aforementioned patent application, which is
expressly incorporated herein by reference.

As described above, modern computer systems are typi-
cally implemented with an instruction pipeline, where a
“stream” of instruction bytes is directed through the func-
tional elements of the pipeline. For example, referring to
FIG. 1, instruction bytes are supplied to the instruction cache
10 of the instruction pipeline 1, which are then directed
through each subsequent functional block of the instruction
pipeline 1. A pipelined system architecture can increase the
overall throughput of the computer system by performing
instruction overhead functions in advance of the actual
execution time of the instruction.

Branch instructions, however, pose a special problem in
instruction pipelining, since branch instructions allow pro-
gram execution to jump to another location in the program,
possibly outside of the instruction stream of the pipeline.
Without contingencies for branches, the instruction pipeline
would need to be “flushed” of its contents and reloaded with
a new instruction stream containing the target instruction
whenever a branch occurred. In order to avoid the delays
that would occur if the instruction pipeline were “flushed”
on a taken branch, branch instructions are typically evalu-
ated prior to or during processing in the instruction pipeline.
The instruction stream can then be adjusted to contain the
targeted instruction of the branch and those instructions
following that targeted instruction. For example, in the
typical computer system having a memory system that stores
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6

data in fixed-size lines, such as in FIG. 1, the instruction line
containing the targeted instruction can be supplied to the
instruction cache 10 immediately following the instruction
line containing the branch instruction, thus avoiding a pipe-
line flush.

Some branch instructions, however, are “conditional
branches”—branches that are taken only when certain con-
ditions based on run-time data are satisfied (such as in a
program loop). Thus conditional branches cannot be accu-
rately evaluated while being processed in the instruction
pipeline. In order to mitigate this problem, modern computer
systems employ a branch prediction function that evaluates
conditional branches based on various prior events. Based
on the evaluation of the branch predictor, the instruction
stream can be adjusted to include the instruction line con-
taining the predicted target instruction. If the branch has
been correctly predicted, processing of the instruction
stream in the instruction pipeline can continue without delay.
If the branch has not been correctly predicted, then the
instruction pipeline is flushed and loaded with the appropri-
ate instruction bytes.

Branch instructions present a special problem for a self-
timed length decoding, marking, and steering system such as
previously described. The system is expecting the next
instruction to be found immediately following the presently
marked instruction. Accordingly, the system will send a
marking signal to the byte immediately following the last
byte of the present instruction, regardless of whether a
branch has been predicted. Thus, a branch instruction in a
self-timed marking system may cause the pipeline to be
flushed, incurring wasteful delay.

SUMMARY OF THE INVENTION

An exemplary embodiment of the present invention is
implemented as an instruction marking circuit. The instruc-
tion marking circuit has a buffer of a certain byte width in
order to receive and hold bytes of, for example, an instruc-
tion line. The buffer also can hold branch information
associated with each byte. The instruction marking circuit
also has a number of columns that correspond to the byte
width of the buffer, where each column comprises a self-
timed marking unit and branch handling logic. The self-
timed marking unit is operatively coupled to the buffer in
order to receive instruction length information at least
partially derived from the byte in the buffer corresponding to
that column. The branch handling logic is also operatively
coupled to the buffer in order to receive the branch infor-
mation associated with the byte. The branch handling logic
uses the branch information to produce a branch marking
signal to mark one of the columns as containing the target
instruction when the byte being processed is part of a
predicted branch instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of an exemplary instruction
execution pipeline.

FIG. 2 shows a block diagram of a first exemplary
self-timed instruction decode block.

FIG. 3 shows a block diagram of a second exemplary
self-timed instruction decode block, having multiple mark-
ing units.

FIG. 4 shows a block diagram of an exemplary instruction
execution pipeline and branch target buffer, according to the
present invention.

FIG. 5 shows a format of an exemplary instruction line
according to the present invention.
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FIG. 6 shows a block diagram of an exemplary embodi-
ment of an instruction marking circuit and target FIFO
according to the present invention.

FIG. 7 shows a circuit logic diagram of an exemplary
marking unit according to the present invention.

FIG. 8 shows a circuit logic diagram of an exemplary
branch handling circuit according to the present invention.

FIG. 9 shows a circuit block diagram of an exemplary
target logic block as shown in FIG. 6.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 4 shows a block diagram of an exemplary embodi-
ment of an instruction execution pipeline according to the
present invention. The exemplary embodiment is described
with reference to a sixteen byte instruction line architecture,
although the present invention is equally applicable to larger
or smaller instruction line widths, as those in the art will
recognize. The exemplary embodiment is also described
with reference to a maximum instruction length of four,
although the present invention is equally applicable to larger
or smaller instruction sizes.

As shown by FIG. 4, an instruction execution pipeline 401
includes an instruction cache 10. Instruction cache 10 is
implemented, in accordance with known caching
techniques, to store a stream of instruction lines fetched
from another storage medium (for example, memory or disk
storage) for execution by the computer system. According to
the exemplary embodiment, instruction cache 10 is designed
to store instruction lines of sixteen bytes.

An instruction fetch block 412 operates to fetch a line of
instructions from instruction cache 10 for input to an instruc-
tion decode block 414. The instruction decode block 414
includes an instruction marking circuit 420 for length decod-
ing and marking of the instructions within the instruction
line. Instruction decode block 414 also includes an instruc-
tion steering circuit 122 and instruction decoding circuit
124, which are implemented in a manner similar to that for
the previously described self-timed instruction length
decoding, marking, and steering system. Instructions pro-
cessed by the instruction decode block 414 are sent to an
execution block 16 for execution, as is generally known. An
instruction issue block 18 can also be implemented to
receive decoded instructions from the instruction decode
block 414 for transfer to the execution block 16.

Instruction execution pipeline 401 is implemented in
conjunction with branch target buffer 408, which is opera-
tively coupled to the instruction fetch block 412. Branch
target buffer 408, as part of a commonly implemented
branch prediction system, contains information on where
predicted branch instructions are located in an instruction
line, as well as where predicted target instructions are
located in an instruction line. When a branch has been
predicted for a branch instruction in a particular instruction
line, branch target buffer 408 marks the branch instruction as
a taken branch, and marks the predicted target of the branch
as a branch target instruction. A specific implementation of
this action is described below.

Instruction fetch block 412 is implemented to accommo-
date the branch prediction system by including a set of
branch flag bits appended to each byte position in the
instruction line. As shown by FIG. 5, each byte of each
instruction line processed by instruction fetch block 412
includes, for example, three branch flag bits: a Taken Branch
(TB) flag, a Target (TGT) flag, and an Unused (UN) flag.
When the branch target buffer 408 contains information that
a branch instruction in an instruction line will likely be
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taken, the first byte of the predicted branch instruction is
marked as such by setting its TB flag. Those bytes following
the last byte of the predicted branch instruction, up to the end
of the instruction line, are marked as “unused” by setting the
UN flag, indicating that they should not be processed.
Accordingly, the first byte of the target instruction of the
predicted branch is marked as such by setting its TGT flag.
Those bytes preceding the first byte of the target instruction,
up to the beginning of the instruction line, are marked as
“unused” by setting the UN flag, indicating that they should
not be processed. In this exemplary embodiment, the TB,
TGT, and UN flags are mutually exclusive for each byte of
the instruction line; only one of these flags (if any) may be
set for any byte of an instruction line.

Typically, the branch fetching process will cause the
instruction line containing the target instruction to be
fetched by instruction fetch block 412 immediately follow-
ing the instruction line containing the branch instruction,
regardless of where the target instruction is located. If,
however, the target instruction is located in the same instruc-
tion line as the predicted branch instruction, then that
instruction line will be repeated as the next instruction line.

FIG. 6 shows a portion of an exemplary embodiment of
an instruction marking circuit 420 within instruction decode
block 414. Instruction marking circuit 420 is implemented
using the multiple marking unit configuration described
previously, with modifications to implement an embodiment
of the present invention, as discussed below. Only columns
j=1, j, j+1, and j+2 of instruction marking circuit 420 are
shown, however, all additional columns may be imple-
mented in a manner similar to that shown for these repre-
sentative columns. Also, for reasons of clarity, only those
connections needed to explain the operation of the exem-
plary embodiment have been shown in FIG. 6. According to
the exemplary embodiment of the instruction execution
pipeline, the exemplary embodiment of instruction marking
unit 420 is implemented for an instruction line having
sixteen bytes and a maximum instruction length of four. The
instruction marking circuit 420 may equivalently be imple-
mented using the single marking unit configuration of a
self-timed instruction marking circuit (See FIG. 2).

Instruction lines are sent to instruction line buffer 426,
which has been designed to accommodate branch flag bits
for each instruction byte. Each instruction byte and its
associated branch flag bits are latched into a byte latch 428
for a column of the instruction marking circuit 420, accord-
ing to the operation of the self-timed length decoding and
marking system. Byte latches 428 are likewise implemented
to accommodate the branch flag bits appended to each byte.

Byte latches 428 further include outputs to indicate the
settings of the branch flag bits. For example, each byte latch
428 includes a taken branch output and a target output to
indicate the status of the TB and the TGT bits, respectively.
These outputs are coupled to branch indicator lines 437,
which include, for example, a TB line and a TGT line. As
described more fully below, the target output is used to
indicate that the column contains the first byte of a target
instruction, while the taken branch output is used to indicate
that the column contains the first byte of a branch instruc-
tion.

If the UN flag bit is set for the byte in byte latch 428, the
byte latch 428 will not assert a ready signal, but rather will
be reloaded with a byte from the next instruction line in the
instruction line buffer 426, according to the FIFO imple-
mentation of instruction line buffer 426.

In all other cases, the contents of each byte latch 428 are
received by those length decoders 430 that are coupled to
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particular byte latches 428, according to the normal opera-
tion of the self-timed length decoding and marking system.
The branch flag bits in the byte latch 428 of the column are
also provided to length decoder 430. Where no branch flag
bits have been set, length decoding in the length decoder 430
is performed according to the normal self-timed length
decoding process, producing, for example, a “one-hot”
length signal output over length signal lines 38 indicating
the length of the instruction. Where the TGT flag bit has
been set, normal length decoding is likewise performed by
the length decoder 430. However, when the TB flag of an
instruction byte has been set, the “one-hot” length signal
outputs of length decoder 430 are inhibited to allow branch
handling to occur.

Similar to the previously described self-timed multiple
marking unit configuration (see FIG. 3), the marking units
434 of instruction marking circuit 420 are arranged in
“rows” such that each column contains a number of marking
units 434 each having a different row designation. In the
exemplary embodiment of the instruction marking circuit
420 shown in FIG. 6, each column of instruction marking
circuit 420 contains three marking units 434, designated as
being in rows 0, 1 and 2 of the instruction marking circuit
420. The number of rows implemented can be higher or
lower as desired without deviating from the principles herein
described, as those in the art will recognize.

Each marking unit 434 within a column is coupled to the
length decoder 430 for the same column via the length
output lines 38 and the length decoder handshaking lines 37.
Each marking unit 434 is further coupled to the byte latch
428 of the same column via branch indicator lines 437,
which include, for example, a TB line (for the taken branch
signal) and a TGT line (for the target signal).

Each marking unit 434 is further coupled to the subse-
quent and previous marking units 434 via marking lines 35,
according to the previously described self-timed multiple
marking unit configuration of the length decoding and
marking system (see FIG. 3). Marking lines 35 are imple-
mented to connect the marking unit 434 of a particular row
of a column to marking units 434 of the next higher row in
downstream columns. For example, as shown in FIG. 6, the
marking unit 434 of row 0 column j is coupled via marking
lines 35 to the marking units 434 of row 1 in columns j+1,
j+2,j+3 (not shown) and j+4 (not shown). Each marking unit
434 within each column of instruction marking circuit 420
is further coupled to an associated row of instruction steer-
ing circuit 122 via output buffer handshaking lines 36,
according to the previously described multiple marking unit
configuration of the self-timed length decoding, marking,
and steering system (see FIG. 3).

To implement branch instruction handling in the instruc-
tion marking circuit 420, a number of token-out lines 481
and a number of token-in lines 486 are provided. Each
token-out line 481 is coupled between a marking unit 434 in
a particular row and a branch handling circuit 480 (described
below) for the subsequent row, while each token-in line 486
is coupled between a marking unit 434 in a particular row
and the branch handling circuit 480 for the same row. Thus,
as shown in FIG. 6, the token-out lines 481 originating with
the marking units 434 of row O are coupled to the branch
handling circuit 480 for row 1, the token-out lines 481
originating with the marking units 434 of row 1 are coupled
to the branch handling circuit 480 for row 2, and the
token-out lines 481 originating with the marking units 434
of row 2 are coupled to the branch handling circuit 480 for
row 0.

The token-in lines 486 originating with marking units 434
of row 0 are coupled to the branch handling circuit 480 for
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row 0, and likewise for all other rows. As described further
below, each token-out line 481 carries a TOKEN__OUT_ x
signal that indicates to the branch handling circuit 480 of the
subsequent row that a branch instruction is pending, while
each token-in line 486 carries a TOKEN_ x signal that
indicates to the branch handling circuit 480 that a column
has been marked as the target of a predicted branch.

A number of inject lines 484 are also provided in instruc-
tion marking circuit 420. Each inject line 484 is coupled
between the branch handling circuit 480 for a row, and all of
the marking units 434 in that row. For example, as shown in
FIG. 6, one inject line 484 connects the branch handling
circuit 480 for row 0 with all marking units 434 in row 0. As
is explained more fully below, each inject line 484 carries an
inject signal to indicate that a target instruction byte should
be expected in that row of the instruction marking circuit
420.

In operation, the branch handling scheme described above
allows the exemplary embodiment of instruction marking
circuit 420 to correctly and quickly process branch instruc-
tions. When a TB bit is present in a byte latch 428 of a
column, this condition is transmitted via the TB line to each
marking unit 434 in the column, indicating that the column
contains the first byte of a predicted taken branch instruc-
tion. For example, length decoder 430 asserts a TB signal on
the TB line, similar to the assertion of a length signal. Once
a marking signal is received in the column (indicating that
the byte is a first byte of an instruction), the marking unit 434
that is presently active generates a token output signal via
token-out lines 481 to indicate that a branch is pending. The
token output signal is received by the branch handling
circuit 480 for the next higher row in the circuit, which then
generates an inject signal via one of the inject lines 484 to
indicate to the marking units 434 of this next higher row that
a target instruction should be the next instruction to be
marked.

When the marking units 434 of this next higher row
receive the inject signal, the marking unit 434 that also
receives a target signal over the TGT line (indicating the
presence of the target instruction byte in the column)
becomes marked as the first byte of the next instruction.
Thus, according to the above processing, marking informa-
tion is transmitted through the instruction marking circuit
420 to mark the target instruction.

FIG. 7 shows a circuit logic diagram of an exemplary
embodiment of a marking unit 434 used in implementing the
branch handling system described above. LENGTHI1,
LENGTH2, LENGTH3 and LENGTH4 signals (carried by
length output lines 38) are provided at a first input of a
respective AND gate 442, 444, 446, and 448. As previously
noted, the length decoder 430 signals the marking unit 434
via these length signal lines 38 to indicate the instruction
length. The taken branch signal (carried by the TB line of
branch indicator lines 437) is provided to a first input of a
fifth AND gate 449, indicating that the present instruction is
a predicted branch instruction. A second input of each AND
gate is provided a GO signal, which acts as a switching
control. The outputs of AND gates 442, 444, 446, and 448
are coupled to the marking lines 35, and produce the
marking signals to mark the downstream columns of the
circuit according to the normal self-timed marking process.
The AND gate 449 is coupled to one of the token-out lines
481 and produces the signal TOKEN_OUT i, used to
indicate that a branch is pending.

When the GO signal is asserted (described below), the
individual AND gate 442, 444, 446, 448, or 449 which also
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has its first input (LENGTH1, LENGTH2, LENGTHS3,
LENGTH4, or TB) asserted will assert a signal at its output.
Thus, either a marking signal will be transmitted over one of
the marking lines 35 to a downstream marking unit 434, or
the TOKEN__OUT__i signal will be transmitted over one of
the token-out lines 481 to the branch handling circuit 480 for
the subsequent row.

An OR gate 450 receives as inputs a series of MARK in
signals (via marking line 35) that correspond to the marking
signals produced by upstream marking units 434, indicating
that the column contains the first byte of an instruction. OR
gate 450 also receives as an input a TOKEN_ i signal, which
indicates that the column contains the first byte of a target
instruction of a predicted branch. OR gate 450 produces a
COLUMN__MARKED signal when any of the MARK in
signals or the TOKEN_ i signal become active. OR gate 450
is configured to contain, for example, a state device at its
output, such that its output remains asserted until reset by a
reset signal applied at a reset terminal of OR gate 450.

As is the case for the normal self-timed marking unit 34
(see FIG. 2), the COLUMN__ MARKED signal is connected
as an input to AND gate 452, along with a BUFFER__
AVAILABLE signal provided by the instruction steering
circuit 122 (over output buffer handshaking lines 36) and an
INSTRUCTION _READY signal provided by the length
decoder 430 (over length decoder handshaking lines 37).
The output of AND gate 452 is the GO signal, which is
connected to the second inputs of AND gates 442, 444, 446,
448, and 449 (as described above), to drivers 454 and 456,
and to the reset terminal of OR gate 450. The output of
driver 454 is connected to an instruction ready acknowledge
line of length decoder handshaking lines 37, and the output
of driver 456 is connected to a buffer request line of output
buffer handshaking lines 36.

Marking of the target instruction is accomplished by
additional branch handling logic within each marking unit
434. For example, as shown in FIG. 7, each marking unit
434 includes NAND gate 451 which receives as inputs the
INJECT signal from the branch handling circuit 480 for the
same row as marking unit 434, and the target signal over the
TGT line of the branch indicator lines 437. The output of
NAND gate 451 is implemented as, for example, a state
device, such that the output of NAND gate 451 is held until
a reset signal is received at a reset terminal of NAND gate
451. The output of NAND gate 451 is connected to inverter
453, which produces a TOKEN_ i signal as an output. The
TOKEN_ i signal is provided as the input to inverter 455,
while the output of inverter 455 is provided to the reset
terminal of NAND gate 451. This generates the pulse
required at the input of the OR gate 450 (same as the
MARK in inputs, which are also pulsed). The output of
inverter 455 is implemented as, for example, a state device,
such that the output signal is held until a reset signal is
received at a reset terminal of inverter 455. The reset
terminal of inverter 455 is connected to the INJECT signal.

The circuitry of marking unit 434 is configured such that
the TOKEN__ i signal will only be asserted by the marking
unit 434 of the correct row in the column containing the
target of a predicted branch instruction. When both the
INJECT signal (indicating the row that should process the
target of the pending branch instruction) and the target signal
(indicating the column contains the first byte of the target of
the branch instruction) have been asserted, the TOKEN_ i
signal is then asserted at the output of inverter 453. When the
TOKEN_ i signal is asserted, the COLUMN__MARKED
signal at the output of OR gate 450 becomes asserted,
indicating that the column has been marked as containing
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the first byte of the next instruction to be executed. Thus, the
TOKEN i signals acts as a marking signal to mark the first
byte of a target instruction.

The branch handling logic of instruction marking circuit
420 is also implemented, for example, using branch han-
dling circuits 480, an exemplary embodiment of which is
shown in FIG. 8. One branch handling circuit 480 is pro-
vided for each row in the instruction marking circuit 420.
The TOKEN_OUT _ x signals for a particular row of
instruction marking circuit 420 (where “x” is the column
designation of the marking unit 484 that generated the
signal) are provided as inputs to OR gate 482 of the branch
handling circuit 480 for the next higher row. Thus, for the
exemplary embodiment having a sixteen byte instruction
line width, sixteen TOKEN__OUT signals are provided
(TOKEN_OUT_0 to TOKEN_ OUT_15). When any of
these signals are asserted, (indicating that a branch is
pending) the output of OR gate 482—the INJECT signal—is
asserted. The output of OR gate 482 is implemented as, for
example, a state device, such that the INJECT signal is held
asserted until a reset signal is provided at the reset terminal
of OR gate 482. The INJECT signal is provided to every
marking unit 434 of the row served by the branch handling
circuit 480 over the inject line 484 for that row. The INJECT
signal thereby indicates that a target instruction should be
marked in that row as the next instruction. As described
above, the INJECT signal is used by a marking unit 434 in
conjunction with the target signal to determine which col-
umn contains the first byte of the target instruction.

In order to reset the branch handling logic, the TOKEN__ i
signal generated by the marking unit 434 that is the target of
the branch instruction is transmitted via one of the token-in
lines 486 to the branch handling circuit 480 of the same row.
As shown in FIG. 8, the TOKEN__ x signals for a particular
row (where “x” is the column designation of the marking
unit 484 that generated the signal) are provided as inputs to
OR gate 488 in the branch handling circuit 480 for that row
(TOKEN_O to TOKEN__15). OR gate 488 produces a
TOKEN__OR signal as an output. The output of OR gate 488
is implemented as, for example, a state device, such that the
TOKEN_OR signal is held asserted once any of the
TOKEN _ x signals have been asserted.

TOKEN__OR is provided as an input to inverter 490, and
the output of inverter 490 is provided to the reset terminals
of OR gates 482 and 488. Thus, when the TOKEN OR
signal is asserted, the INJECT signal is deasserted and the
TOKEN_OR signal is deasserted. According to the logic
shown in FIG. 7, deassertion of the INJECT signal causes
the inverter 455 in all marking units 434 of the same row as
the branch handling circuit 480 to be reset. The TOKEN_ x
signals generated by all marking units 434 in that row
become deasserted, and thus the branch handling logic for
that row is properly reset to process another instruction byte.

According to the operation of the exemplary embodiment
of instruction marking circuit 420, it is possible that the byte
latches 428 in the circuit could be loaded such that more than
one instruction byte that has been flagged as the target of a
predicted branch instruction. For example, since bytes which
have been flagged as “unused” (e.g., by setting the UN bit)
will be discarded by the byte latches 428 without further
processing, bytes from subsequent instruction lines may
occupy some byte latches 428 during the processing of a
branch instruction. If one of these bytes happens to be the
first byte of a target instruction for later branch instruction,
multiple target signals will be present in instruction marking
circuit 420, causing an error in the marking process.

To ensure marking of the proper target of the predicted
branch instruction, additional logic may be provided. For
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example, FIG. 6 includes a Target FIFO 502 operatively
coupled to instruction marking circuit 420 for implementing
target identification logic. When an instruction byte is iden-
tified as the first byte of the target of a predicted branch
instruction (by setting of the TB bit for that byte), an entry
is made in Target FIFO 502 (for example, by instruction
fetch block 412) identifying the byte position in the fetched
line of the first byte of the target instruction. As other bytes
become identified as first bytes of target instructions (for
later branches), the byte positions for these target instruc-
tions are also entered into Target FIFO 502, such that Target
FIFO 502 contains, in sequential order, the byte positions of
each target instruction to be processed by the instruction
execution pipeline.

Although the format of the entries of Target FIFO 502 can
be implemented in various ways, an exemplary Target FIFO
502 uses a sixteen bit wide FIFO having a number of lines,
such that each line corresponds to an instruction line, and
each bit corresponds to a byte position in the instruction line.
Using this configuration, the contents of the front line of the
FIFO can be easily transmitted to the instruction marking
circuit, as discussed further below.

Target FIFO 502 includes sixteen signal outputs, one
output for each byte position of the instruction line (and of
the instruction marking circuit). When an entry reaches the
front of Target FIFO 502, the contents of each bit position
are asserted at the signal outputs. For example, if the next
target instruction is expected in column 4, the front entry in
Target FIFO 502 will have bit 4 set (and all other bits
cleared), and the output corresponding to bit 4 will be
asserted. Each signal output is connected to a target FIFO
line 504, which is provided to instruction marking circuit
520, as described below.

Instruction marking circuit 420, as shown in FIG. 6,
includes logic for processing the signals provided by Target
FIFO 502. For example, a target logic block 506 is provided
in each column of the circuit. Target logic block 506 is
connected to the branch indicator lines 437 from the byte
latch 428 of the same column, and is also connected to the
Target FIFO line 504 for the column. For example, in
column j, the target logic block 506 is connected to the
branch indicator lines 437 from the byte latch 428 of column
j and the Target FIFO line 504 for column j. Target logic
block 506 is implemented so as to enable the assertion of the
target signal over the TGT line for a column when the Target
FIFO entry indicates that the column should contain the next
target instruction. An exemplary target logic block 506 is
shown in FIG. 9. The TGT line of branch indicator lines 437
is provided as an input to AND gate 508. The Target FIFO
output corresponding to the column (denoted “TARGET__
FIFO_ x,” where “x” is the column number) is also provided
as an input to AND gate 508. The output of AND gate 508
is coupled to the TGT line (which is provided to the marking
units 434 of the column). Accordingly, a signal on the TGT
line from byte latch 428 will only be transmitted to the
marking units 434 if the Target FIFO signal is also set,
indicating that the column contains the next target instruc-
tion as entered in the Target FIFO.

Once a target instruction has been identified and marked
using the TGT bit of the instruction byte and the entry in the
Target FIFO, the Target FIFO must be incremented so that
the next entry in the FIFO is the front entry. This is achieved
by providing the Target FIFO 502 with the TOKEN OR
signals from each row of instruction marking circuit 420.
Since the assertion of a TOKEN OR signal in any row of
the instruction marking circuit 420 indicates that a target
instruction has been marked, the TOKEN__OR signals can
be used to increment the pointer to the front entry in Target
FIFO 502.
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As shown in FIG. 6, TOKEN__ OR lines 510 are coupled
to Target FIFO 502 to provide the TOKEN OR signals to
Target FIFO 502. The TOKEN__OR signals are logically
ORed within Target FIFO 502 (not shown), such if any of the
TOKEN_ OR signals becomes active, the pointer to the
front entry of Target FIFO 502 can be incremented.

Although the present invention has been described with
respect to specific exemplary embodiments, various changes
and modifications may be suggested to one skilled in the art.
For example, it may be contemplated to implement part or
all of the present invention as hardware, microcode, pro-
grammable logic, and/or software. The present invention is
intended to encompass these and other changes and modi-
fications as fall within the scope of the appended claims.

What is claimed is:

1. An instruction marking circuit, comprising:

a buffer having a plurality of byte locations to receive a

plurality of bytes having branch information; and

a plurality of columns corresponding to each of the

plurality of byte locations, wherein each of the plurality
of columns includes a self-timed marking unit opera-
tively coupled to the buffer to receive instruction length
information at least partially based on a corresponding
byte of the plurality of bytes, and branch handling logic
operatively coupled to the buffer and to the self-timed
marking unit to receive the branch information of the
corresponding byte;

wherein the branch handling logic produces a branch

marking signal to mark one of the plurality of columns
as containing a target instruction of an expected branch
instruction, based on the branch information of the
corresponding byte.

2. The instruction marking circuit of claim 1, wherein
each of the plurality of columns has exactly one self-timed
marking unit.

3. The instruction marking circuit of claim 1, further
comprising:

at least one branch handling circuit coupled to the branch

handling logic of each column;

wherein the branch marking signal comprises a token

signal provided to the branch handling circuit when the
branch information of a first corresponding byte of the
plurality of bytes indicates a taken branch, an inject
signal provided to each of the branch handling logic
when the token signal is received, and a branch mark
signal produced when the inject signal is received an
when the branch information of a second corresponding
byte of the plurality of bytes indicates a target instruc-
tion.

4. The instruction marking circuit of claim 1, wherein the
branch handling logic of each column is implemented in the
self-timed marking unit of each column.

5. The instruction marking circuit of claim 1, wherein
each column includes a length decoder operatively coupled
to the buffer to receive the corresponding one of the plurality
of bytes, and coupled to the self-timed marking unit to
provide the instruction length information.

6. The instruction marking circuit of claim 5, further
comprising a byte latch in each of the plurality of columns
operatively coupled to the buffer to receive the correspond-
ing byte, and coupled to the length decoder to provide the
corresponding byte.

7. The instruction marking circuit of claim 1, wherein the
branch information comprises branch flag bits.

8. The instruction marking circuit of claim 7, wherein the
branch flag bits indicate one of a taken branch, a target
instruction, and an unused byte.
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9. The instruction marking circuit of claim 8, wherein the
branch handling logic produces a branch marking signal
when the branching information indicates a taken branch.

10. The instruction marking circuit of claim 9, wherein
each column becomes marked when a branch marking signal
is received and the branch information of the corresponding
byte indicates that the corresponding byte is part of a target
instruction.

11. The instruction marking circuit of claim 1, wherein
each of the plurality of columns includes a first self-timed
marking unit and a second self-timed marking unit.

12. The instruction marking circuit of claim 11, wherein
each of the plurality of columns includes a self-timed length
decoder operatively coupled to the buffer to receive the
corresponding byte, and coupled to the first self-timed
marking unit and the second self-timed marking unit to
provide the instruction length information; and wherein the
first self-timed marking unit has a first output coupled to the
second self-timed marking unit of a first downstream col-
umn to provide a first marking signal and a second output
coupled to the second self-timed marking unit of a second
downstream column to provide a second marking signal.

13. The instruction marking circuit of claim 1, wherein the
buffer and the plurality of columns are implemented in a
MIiCroprocessor.

14. The instruction marking circuit of claim 1, further
comprising a target FIFO buffer operatively coupled to each
self-timed marking unit to provide branch target informa-
tion.

15. The instruction marking circuit of claim 14, wherein
each column includes target circuitry coupled to the target
FIFO buffer to receive the branch target information, opera-
tively coupled to the buffer to receive the branch information
of the corresponding byte, and coupled to the self-timed
marking unit to provide a target signal based on the branch
target information and branching information; and wherein
each column becomes marked when the target signal and the
branch marking signal are received.

16. A computer system, comprising:

a branch predictor; and

an instruction execution system, comprising
an instruction cache,
an instruction fetch block, and
an instruction marking circuit having a buffer with a
number of byte locations, and
a number of columns corresponding to each byte loca-
tion of the buffer, wherein each of the number of
columns includes at least one self-timed marking
unit and branch handling logic;
wherein the instruction cache is operatively coupled to the
instruction fetch block to provide instruction bytes, the
branch predictor is operatively coupled to the instruction
fetch block to provide branch information, the instruction
fetch block is operatively coupled to the instruction marking
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circuit to provide the instruction bytes and the branch
information to the buffer, each of the at least one self-timed
marking units is operatively coupled to the buffer to receive
instruction length information at least partially based on a
corresponding byte of the instruction bytes, the branch
handling logic is operatively coupled to the buffer to receive
the branch information of the corresponding byte and pro-
duce a branch marking signal based on the branch informa-
tion.

17. The computer system of claim 16, further comprising
an instruction steering circuit operatively coupled to the
instruction marking circuit, wherein the instruction steering
circuit comprises a plurality of crossbar switches, including
a first crossbar switch and a second crossbar switch, and a
plurality of output buffers, including a first output buffer and
a second output buffer, wherein the first crossbar switch is
coupled to the first output buffer and the second crossbar
switch is coupled to the second output buffer, and wherein
each crossbar switch is coupled to the number of columns of
the instruction marking circuit to receive the instruction
bytes.

18. The computer system of claim 16, wherein the branch
predictor includes a branch target buffer.

19. The computer system of claim 16, wherein the branch
predictor and instruction execution system are implemented
in a MiCroprocessor.

20. A method for marking instructions, comprising the
steps of:

receiving a first byte having branch information and a
second byte having branch information;

producing a taken branch signal when the branch infor-
mation of the first byte indicates that the first byte is
part of a predicted branch instruction;

receiving the taken branch signal; and

directly marking the second byte when the taken branch
signal is received and the branching information of the
second byte indicates that the second byte is part of a
target instruction.

21. The method of claim 20, further comprising the step
of discarding the first byte when the branch information of
the first byte indicates that the first byte is unused.

22. The method of claim 20, further comprising the step
of setting the branch information based on a branch predic-
tion function.

23. The method of claim 20, further comprising the step
of producing a target signal when the branching information
of the second byte indicates that the second byte is part of
the target instruction and when a target FIFO indicates that
the second byte is part of the target instruction; and wherein
the second byte is directly marked when both the target
signal and the branch marking signal have been received.
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