Easy PRAM-based High-performance Parallel
Programming with ICE

Rajeev Barua Uzi Vishkin

Fady Ghanim

Technical Contribution

Multi-threaded execution is the norm - The ICE language is based on the C language Sld » Goal: ICE produces XMTC code that has a comparable performance to hand

The ICE Language Experimental Results

shared variables declaration

Problem statement Can we enable tightly-synchronous threading-free programming for » Extends C by adding a new keyword “pardo”. Used to specify optimized XMTC

pardo (pid = low; high; step) {

multi-threaded execution? parallelism as in WD e - Developed a benchmark suite consisting of 11 PRAM algorithms

private variables declaration

» Shared variables are declared outside the pardo block

Current understanding No. Performance programming must be multi-threaded oclstep paraelcode * The experiment was conducted by
* Private variables are declared within the pardo block s

.) * Producing a pseudocode for each algorithm in the suite
New result Yes: ICE Language Syntax
+ Parallel programming can be lock-step | Problem: | et o /] oo of et e reurs » Using the pseudocode, two implementations were produced; an XMTC version
* In ICE, unlike threaded languages, a programmer ONlYy NEEAS 1O o e o e e e, | void pointer_jumplint Sta, int Wil it n —_— .
int W_tmpl]; manually optimized for best performance, and an ICE version
o . . int S_tmp[n];
: WITh no performcnce penOH-y SpeCIfy pGrO”ellsm !ngr::;S(l...n):S(i)contcinstheindexof dos{puwn(o,n-l){ . .
e Scesor of loment . Th s fisii=Ssone « Compile and execute each version on a 64 core XMT processor
ot the astee.mentt;sir:S?Z?Nn:nt;t:e o 1‘_r:‘]mp :: .+ H
- ICE compiler produces high performance XMTC code closo . iy W0)=0 for o o SIS
e;emenf in the list and W(i)=1 for all other W_tmp[$] = WIS];
elements. S_'r_mp[$] — S[$];

Output: - |CE achieves comparable performance to optimized XMTC while requiring

([) ([) ®
S I Ifl * ICE is the first language that can franscribe PRAM algorithms and |75 e o me o sensror e | Lo o
* W(i) is the distance of element i from this spawn " n- c
g n (:(] r \ (:e T I — considerably less effort

automatically franslates them into effective threaded programs (a) Problem Specification

inti = 1;

ps(i, flag);

WI[$] = W_tmp[$] + W_tmp[S_tmp[$]];
e s | i pardo (unsigned i = 0; n-1;1) = SRl * Average speedup of ICE across all benchmarks is 0.76%

Hardware parallelism is increasing Y E S ge sp o o

S e YR SI$] = S_tmpl$];
. . . = 11; } R . .
Auto parallelization in hardware or software? |) R Maximum slowdown was 2.7%, Maximum speedup was 8.3%
o ° ° . ° ° } L4 (] ° . .

Limited success and scaling. Not for imegular programs — Parallel algorthms & programming * We do not claim that ICE will provide speedups compared to hand-optimized XMTC

(b) ICE program (c) XMTC program

Pointer Jumping Example

» But, how to minimize human effort?¢

Our goal: Specify what is parallelizable, but nothing else . . [e
Translation: ICE to XMTC

- NObOdy knows 1o do less... 8.0% INT Integer sort

% oo SMP Sample Sort
Fact: parallel programmer must specify much more. He/she is expected to * Threaded model (XMTC) is incompatible with lock-step model (ICE) MRG Merge

S 4.0% CVTY Connectivity

cpe : : : . . , = BFS Breadth First Search
parfitfion a task info subtasks (threads) so as fo meet multiple constraints anad - In lock-step, different parallel contexts progress in concert one step at a time £ 2ox I I . e A;zjimur#r;ndf:;
. : : . . o : . g oo% [CTRC Tree Contraction
objectives, involving dafa and computafion partitioning, locality, - Threads each progresses on its own pace regardless of other threads g [] I i RANK Tree Ranking
synchronization, race conditions, limiting and hiding communication latencies SN -
. . o . . . -4.0% LU LU Factorization
» Correct franslation requires synchronizing threads by introducing bbarmers between dependent memory accesses Net Speedup of ICE normalized to hand-optimized XMTC CHO Cholesky Factorization

* Pain of parallel programming of the available ecosystem: commodity hardware

and parallel programming languages * A ‘pardo’ block is split into multiple ‘spawn’ blocks

* The splitting occurs wherever barriers were added

» Use temporary variables to communicate data and conftrol flow between different ‘spawn’ blocks

INnfermediate Concurrent Execution :
Conclusion

(ICE) Model
A parallel algorithm is expressed as a series of time steps of parallel operations TrO n S ‘ O -l-l O n : O p -l-l m IZO -l-l O n * Transcribe PRAM algorithms right out of the fextbook & go fishing

» Lock-step execution model; A time step is not executed until all operations of the

* Freeing parallel programmers from current pain points

 Splitting a pardo block info multiple spawn blocks causes

previous time step are completed

performance degradation L Mot allmemoryaceses - Get the best performance with proper compiler and architecture
- Parallel Random Access Machines (PRAM) is the main parallel algorithmic theory . S ; S - S e BB e
| | * S0 does using shared memory o communicate information A i ot - Was it premature to replace the Parallel Algorithms section by @
* The “Work-Depth (WD)" abstraction. Pseudocode uses “pardo”. defines ICE e R TR
« Minimizing the number of splits is crucial to high performance 5 N oM Algorithms section in some standard algorithms texts?
- PRAM is a large latent knowledge base of algorithms and technique e e
. . . 12 | return true 22 Define Procedure cluster:
* Consolidate unnecessary splifs wherever possible B |ifmnct # ot B [Detmegerio0 - To be fair, we surprised even ourselves. The XMT (explicit multi-threadin latform
- Uses the XMT platform developed at UMD 4 e, d melior, P (exp g) p
. - . . . - - Use a list scheduling algorithm to group independent memory T - It ConlietsWith (m, L then expected a manual workflow: starting from PRAM algorithms produce multi-threaded
» Designed with irregular algorithms (like those in PRAM) in mind | |t ith e, CL) then 28 o o CL, . .
accesses into clusters 2 bt st | li=int programs. Not directly-transcribed PRAM.
* Programmed using threaded parallel language called XMT-C
* Each cluster becomes a spawn block lafer on - New work goes back to : U. Vishkin, Synchronized Parallel Computation, D.Sc. Dissertation,

* XMT ‘ 'k ’r ’r t th | i
C uses ‘spawn’ keyword fo creafe concurrent threads CS, Technion, 1981, where WD was infroduced.

: , , Called clustering algorithm
* The ICE compiler franslates the ICE high level language into XMTC

