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Technical Contribution  

Multi-threaded execution is the norm 

Problem statement Can we enable tightly-synchronous threading-free programming for 

multi-threaded execution? 

Current understanding  No. Performance programming must be multi-threaded 

New result Yes: 

• Parallel programming can be lock-step 

• With no performance penalty 

Significance 

Hardware parallelism is increasing 

Auto parallelization in hardware or software?  

 

• But, how to minimize human effort? 

 Our goal: Specify what is parallelizable, but nothing else 

• Nobody knows to do less…  

  Fact: parallel programmer must specify much more.  He/she is expected to 

partition a task into subtasks (threads) so as to meet multiple constraints and 

objectives, involving data and computation partitioning, locality, 

synchronization, race conditions, limiting and hiding communication latencies  

• Pain of parallel programming of the available ecosystem: commodity hardware 

and parallel programming languages 

Intermediate Concurrent Execution 

 (ICE) Model  

• A parallel algorithm is expressed as a series of time steps of parallel operations 

• Lock-step execution model; A time step is not executed until all operations of the 

previous time step are completed 

• Parallel Random Access Machines (PRAM) is the main parallel algorithmic theory 

        • The “Work-Depth (WD)” abstraction. Pseudocode uses “pardo”. defines ICE 

        • PRAM is a large latent knowledge base of algorithms and technique 

• Uses the XMT platform developed at UMD 

        • Designed with irregular algorithms (like those in PRAM) in mind 

         • Programmed using threaded parallel language called XMT-C 

         • XMTC uses ‘spawn’ keyword to create concurrent threads 

• The ICE compiler translates the ICE high level language into XMTC 

The ICE Language 

• The ICE language is based on the C language 

        • Extends C by adding a new keyword “pardo”. Used to specify  

     parallelism as in WD 

       • Shared variables are declared outside the pardo block 

       • Private variables are declared within the pardo block 

 

• In ICE, unlike threaded languages, a programmer only needs to 

   specify parallelism 

• ICE compiler produces high performance XMTC code 

• ICE is the first language that can transcribe PRAM algorithms and 

   automatically translates them into effective threaded programs 

 

   

…
 

serial code 

shared variables declaration 

…
 

pardo (pid = low; high; step) { 

 

…
 

 private variables declaration 

 lockstep parallel code 

 

…
 

} 

ICE Language Syntax 

Problem:  
Given a linked list with n elements, find for 
every elements its distance from the last ele-
ment. 

Input: 
•   Array S(1...n): S(i) contains the index of 
     the successor of element i. The successor 
     of the last element is the element itself. 

•   W(1…n): W(i) contains the weight of 
     element i. Initially W(i)=0 for the last 
     element in the list and W(i)=1 for all other 
     elements. 

Output: 
•   S(i) is the index of the last element of the list. 

•   W(i) is the distance of element i from this 
     last element.  

psBaseReg flag;  // number of threads that require 
                              another loop iteration 
void pointer_jump(int S[n], int W[n], int n) { 
    int W_tmp[n]; 
    int S_tmp[n]; 
    do { 
        spawn(0, n-1) { 
            if (S[$] != S[S[$]]) { 
                W_tmp[$] = W[$] + W[S[$]]; 
                S_tmp[$] = S[S[$]]; 
            } else { 
                W_tmp[$] = W[$]; 
                S_tmp[$] = S[$]; 
            } 
        } 
        flag = 0; 
        spawn(0, n-1) { 
            if (S_tmp[$] != S_tmp[S_tmp[$]]) { 
                int i = 1; 
                ps(i, flag); 
                W[$] = W_tmp[$] + W_tmp[S_tmp[$]]; 
                S[$] = S_tmp[S_tmp[$]]; 
            } else { 
                W[$] = W_tmp[$]; 
                S[$] = S_tmp[$]; 
            } 
        } 

    } while (flag != 0); 

}  

(a) Problem Specification  

    pardo (unsigned i = 0; n-1;1) { 

        while (S[i] != S[S[i]]) { 
            W[i] = W[i] + W[S[i]]; 
             S[i] = S[S[i]]; 

        } 

     }       

(b) ICE program (c) XMTC program 

Pointer Jumping Example 

Translation: ICE to XMTC  
• Threaded model (XMTC) is incompatible with lock-step model (ICE) 

    • In lock-step, different parallel contexts progress in concert one step at a time 

    • Threads each progresses on its own pace regardless of other threads 

• Correct translation requires synchronizing threads by introducing barriers  between dependent memory accesses 

• A ‘pardo’ block is split into multiple ‘spawn’ blocks 

    • The splitting occurs wherever barriers were added 

    • Use temporary variables to communicate data and control flow between different ‘spawn’ blocks 

Translation: Optimization  
•  Splitting a pardo block into multiple spawn blocks causes 

   performance degradation 

•  So does using shared memory to communicate information 

•  Minimizing the number of splits is crucial to high performance 

    •  Consolidate unnecessary splits wherever possible 

    •  Use a list scheduling algorithm to group independent memory 

       accesses into clusters 

    •  Each cluster becomes a spawn block later on  

    •  Called clustering algorithm 

 

 1 𝑴: 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 

 2 𝑪𝑳𝒊 = {𝒎 𝝐 𝑴 ∶ 𝒎 is a member of cluster 𝐢} 

 3 𝑵𝑴 =  {𝒎 𝝐 𝑴 ∶ 𝒎 is not a member of any cluster} 
   

  For an 𝒎 𝝐 𝑵𝑴: 

 4 𝑳𝒎  =  {𝒎𝑳 𝝐 𝑴 ∶  loop carried dependence between 𝒎𝑳 𝑎𝑛𝑑 𝒎} 

 5 𝑭𝒎    =  {𝒎𝑭 𝝐 𝑴 ∶  𝒎 is Data flow dependent on 𝒎𝑭 } 

 6 𝑪𝒎    =  {𝒎𝑪 𝝐 𝑴 ∶ 𝒎 is control dependent on value of 𝒎𝑪 }. 

 7 𝑵𝑳𝒎 =  𝑳𝒎  ∩ 𝑵𝑴 

 8 𝑵𝑭𝒎 =  𝑭𝒎  ∩ 𝑵𝑴 

 9 𝑵𝑪𝒎 =  𝑪𝒎  ∩ 𝑵𝑴 
  

 10 Define Procedure ConflictsWith ( 𝑚, 𝐶𝐿 ) : 

 11  if 𝑁𝐿𝑚  ≠  Φ then 

 12   return true 22 Define Procedure cluster: 

 13  if 𝐿𝑚  ⋂ 𝐶𝐿   ≠  Φ then 23  Def: integer i = 0 

 14   return true 24  While (𝑁𝑀 ≠  Φ) do 

 15  for 𝑚𝐹  𝜖 𝑁𝐹𝑚  do 25   define new cluster 𝑪𝑳𝒊 

 16   if ConflictsWith (𝒎𝑭 , 𝐶𝐿 ) then 26   for 𝑚 𝜖 𝑁𝑀 do 

 17    return true 27    if ConflictsWith (m, 𝐶𝐿𝑖) then 

 18  for 𝑚𝐶  𝜖 𝑁𝐶𝑚  do 28     skip m 

 19   if ConflictsWith (𝒎𝑪 , 𝐶𝐿 ) then 29    else 

 20    return true 30     Add m to 𝑪𝑳𝒊 

 21  return false 31   i = i + 1 

 

Experimental Results  

• Goal: ICE produces XMTC code that has a comparable performance to hand 

   optimized XMTC 

• Developed a benchmark suite consisting of 11 PRAM algorithms  

• The experiment was conducted by 

    • Producing a pseudocode for each algorithm in the suite 

    • Using the pseudocode, two implementations were produced; an XMTC version 

       manually optimized for best performance, and an ICE version 

    • Compile and execute each version on a 64 core XMT processor  

• ICE achieves comparable performance to optimized XMTC while requiring 

considerably less effort 

    • Average speedup of ICE across all benchmarks is 0.76% 

    • Maximum slowdown was 2.7%, Maximum speedup was 8.3% 

• We do not claim that ICE will provide speedups compared to hand-optimized XMTC 

  

Benchmark Suite 

Abrv. Algorithm name 

INT Integer sort 

SMP Sample Sort 
MRG Merge 

CVTY Connectivity 
BFS Breadth First Search 

MAX Maximum finding 
CTRC Tree Contraction 

RANK Tree Ranking 
JAC Jacobi 

LU LU Factorization 
CHO Cholesky Factorization 

Conclusion  

• Transcribe PRAM algorithms right out of the textbook & go fishing 

• Freeing parallel programmers from current pain points  

• Get the best performance with proper compiler and architecture  

• Was it premature to replace the Parallel Algorithms section by a Multithreaded 

Algorithms section in some standard algorithms texts? 

• To be fair, we surprised even ourselves. The XMT (explicit multi-threading) platform 

expected a manual workflow: starting from PRAM algorithms produce multi-threaded 

programs. Not directly-transcribed PRAM. 

• New work goes back to : U. Vishkin, Synchronized Parallel Computation, D.Sc. Dissertation, 

CS, Technion, 1981, where WD was introduced.  


