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Abstract

Traditionally, low-density parity-check (LDPC) code ensembles are designed using

numerical methods suited to the channel on which they are to be used. In practice,

the actual channel statistics are hardly ever known in advance. Moreover, even if the

channel statistics were known, it is desirable to design universal codes that will be

robust enough to perform well on a range of channels, rather than a specific channel

only. Therefore, a universal design of LDPC code ensembles that enables to operate

reliably over various channels is of great theoretical and practical interest.

In this thesis we consider the universality of LDPC code ensembles over families

of memoryless binary-input output-symmetric (MBIOS) channels, both under belief

propagation (BP) decoding and maximum-likelihood (ML) decoding.

For the BP decoding case, we rely on the density evolution approach, to derive an

analytical method for universal LDPC code design over various families of MBIOS

channels. We analyze this regime for several families of MBIOS channels. The density

evolution approach also enables us to derive a necessary condition for universality of

LDPC code ensembles under BP decoding. This necessary condition sits at the heart

of an LP bound on the universal achievable fraction of capacity. It also enables us

to provide analytical and easy-to-calculate bounds on the threshold of LDPC code

ensembles under BP decoding that are based on the Bhattacharyya parameter of

the channel. The results for LDPC code ensembles are also extended to irregular

repeat-accumulate (IRA) code ensembles under BP decoding.

For the ML decoding case, we prove that properly selected regular LDPC code

ensembles are universally capacity-achieving for the set of equi-capacity MBIOS chan-

nels. We extend this result also to prove that punctured regular LDPC code ensembles

are also universally capacity-achieving for the set of equi-capacity MBIOS channels.
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Chapter 1

Introduction

The inception of information theory began with Shannon’s seminal paper [38] in which

he showed that it is possible to transmit information reliably over noisy channels at

a positive rate, so long as the information transmission rate is below the channel

capacity. The mechanism by which this reliable transmission was made possible is

coding. Shannon’s proof of existence of such transmission schemes relied on using

random block codes; while this made for a particularly elegant proof, it is of little

practical use in the design of actual codes that can be used. Shannon’s decoding

scheme is a joint-typicality decoding scheme, in which the decoder must compare the

received word with each of the possible codewords. This results in an impractical

amount of time and memory even for modest code rates if the code is long enough.

This motivated the search for “good” practical codes. Researchers sought codes

that could be used to reliably transmit information in as high a rate as possible, all

the while enabling practical decoding. One ripe family of codes considered is linear

block codes. Linear block codes have a special structure that dramatically reduces

the memory requirements of the encoder and decoder. Each of the valid codewords

is constructed by means of the code’s generator matrix. In the binary setting, a row-

vector containing the k information bits is right-multiplied by the generator matrix to

become an n-vector which represents the codeword to be transmitted. Thus, the code

can be seen as the row-space of the generator matrix. An alternative representation

of the code is via its parity-check matrix, whose row-space is orthogonal to the code.

A column-vector of length n is left-multiplied by the parity-check matrix; the result

is the zero vector if the column-vector represents a valid codeword. In this thesis we
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will consider a particular subset of codes within this family, the subset of Low-density

parity-check (LDPC) codes.

1.1 LDPC Codes

Low-density parity-check (LDPC) codes were first introduced by Gallager [8] 1. These

codes are linear block codes that can be represented by a sparse parity-check matrix.

This sparse structure enables to decode these codes using suboptimal iterative de-

coding algorithms. These algorithms are of low-complexity, thus enabling practical

decoding. Even though these algorithms are suboptimal, they are remarkable in that

they enable reliable communication at rates close to capacity for properly designed

LDPC code ensembles (see , e.g., [5], [1], [20], [26] and [28]).

Gallager’s construction of LDPC codes is based on a parity-check matrix with

a constant number of non-zero elements in each row and each column of the ma-

trix. Today, such codes are termed regular. Gallager not only described a method of

constructing these codes, but he also analyzed their weight distribution and their per-

formance under optimal maximum-likelihood (ML) decoding. Gallager’s analysis was

for a somewhat idealized yet highly useful class of channels, the class of memoryless,

binary-input, output-symmetric (MBIOS) channels. These channels are memoryless,

receive a binary input (either 0 or 1), and are symmetric in the sense that the channel

outputs can be paired in such a way that the probability of the channel producing

one output given input 0 is equal to the probability of it producing the other output

given input 1. Common examples of such channels are the Binary Erasure Channel

(BEC), the Binary Symmetric Channel (BSC), and the Binary-Input Additive White

Gaussian Noise Channel (BIAWGNC). Recognizing that ML decoding is not practi-

cal, Gallager also suggested and analyzed the performance of his regular LDPC codes

under several iterative decoding algorithms.

The concept behind the iterative decoding algorithms is to use the channel infor-

mation received for each code variable (i.e., each element of the transmitted word)

and compute “messages” that are sent to the various parity-checks. Each parity-

check receives messages from the code variables that participate in it and computes

1This paper is actually an expanded and revised version of Gallager’s PhD dissertation, in which
the study of LDPC codes was first done.
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a return message to each code variable, based on the other received messages. The

code variables then return a message to the parity-checks, based on the other incom-

ing messages and the channel input. These iterations continue until some stopping

criterion occurs and then a decision is made. The iterative decoding algorithms differ

in the data carried by the messages as well as the way messages are computed at each

iteration. A major iterative decoding algorithm, in which the messages that are sent

by code variables are confidence levels in the value of the code variable, is called the

Belief Propagation (BP) algorithm (see [29, Chapter 2]). The decoding criterion for

which the message update rules of this algorithm were derived is minimum bit-error

probability.

A natural extension of regular LDPC codes is to have a non-constant number of

non-zero elements in each row or column of the parity-check matrix. These LDPC

codes are called irregular, and in [28] were shown to operate well at rates close to

capacity, under suboptimal BP decoding. In paritcular, in [5] the authors have con-

structed LDPC codes that operate very close to capacity for a BIAWGNC. The mech-

anism which enabled this analysis and design is a tool called density evolution, which

enables to numerically calculate whether, for a given channel, a randomly constructed

LDPC code with a certain structure will asymptotically achieve vanishing bit-error

probability under BP decoding. When the channel exhibits degradation based on a

certain channel parameter, this gives rise to a threshold value on the channel parame-

ter. This thershold value determines the range of channel parameter values for which

the randomly constructed code will asympotically exhibit error-free performance.

The structure of an ensemble of irregular LDPC codes can be described using

bipartite graphs. The code variables form variable nodes, on the left-hand-side of the

graph, and the parity-checks form the parity-check nodes on the right-hand-side of

the graph. The non-zero elements of the parity-check matrix are the graph’s edges;

each edge connects a variable node to a parity-check node in which it participates.

For analysis of LDPC code, it is useful to define their degree distributions. A node

(either variable or parity-check) is called of degree i if there are i edges emanating

from it. The fraction of edges connected to variable nodes of degree i is denoted

λi. The left-degree distribution λ consists of the set of fractions {λ2, λ3, . . . λdmax
v

},
where dmax

v is the maximal degree of the variable nodes. Similarly, the fraction of

edges connected to parity-check nodes of degree i is denoted ρi, and the right-degree

6



distribution ρ consists of the set {ρ2, ρ3, . . . ρdmax
c

}, where dmax
c is the maximal degree

of the parity-check nodes. Often, codes in which all parity-check nodes are of the same

degree are considered; such codes are called right-regular or check-regular. Based on

these degree distributions, the polynomials λ(x) =
∑

i λix
i−1 and ρ(x) =

∑

i ρix
i−1

are defined.

The density evolution approach serves as a main tool for the asymptotic analysis

of the performance of LDPC code ensembles under iterative message-passing decod-

ing [28]. Using this approach, it is possible to numerically optimize LDPC codes for

specific MBIOS channels. The goal is to find degree distributions that asymptotically

ensure convergence to error-free communications for a given channel model, and that

are optimal in the sense of either achieving maximal rate for specific channel param-

eters, or exhibiting the best threshold for a specific chosen rate or other constraints

on the degree distributions (depending on the threshold parameter considered, “the

best” threshold could be either “maximum,” as in the crossover probability of a bi-

nary symmetric channel, or “minimum,” as in the noise variance of a binary-input

additive white Gaussian noise channel). Another consequence of density evolution is

the stability condition which forms a necessary condition for an LDPC code ensem-

ble to asymptotically achieve vanishing bit error probability under message-passing

decoding for a given channel model. Density evolution is a powerful tool for nu-

merical optimization of degree distributions, but it does not lend itself, in general,

for the analytical design of degree distributions. An exception to this is the case of

the binary erasure channel (BEC), where density evolution is greatly simplified to a

single-dimensional equation. Based on this, several explicit expressions of capacity-

approaching sequences for the BEC have been derived (see, e.g. [24] and [40]). So

far, no explicit expressions for capacity-approaching code ensembles under iterative

decoding for other MBIOS channel models have been found.

We note that while ML decoding is impractical, explicit expressions for capacity-

approaching codes for any MBIOS channel under ML decoding have been derived

(see [12] and [33, Theorem 2.2]). The analysis under ML decoding relies on upper

bounds on the decoding error probability based on the average weight distribution of

the ensemble (see [22] and [35]).
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1.2 Universal Codes

It is of great interest, both practically and theoretically, to design a code that will

operate reliably over a range of channels. Such robust codes are termed universal.

There are many different notions of universality, and many approaches to the design

of universal codes. An excellent survey on the matter can be found in [18], where the

authors have concentrated on the problem of communicating reliably when there is

channel uncertainty. The authors introduced several models of channel uncertainty,

and discussed several universality strategies for these models, both in terms of encoder

and decoder design.

The subject of universal LDPC codes has been addressed in several recent studies.

In this setting, the goal is to design an LDPC code ensemble that will perform well

in terms of error probability over a family of channels, using a standard decoder for

LDPC codes, such as a belief propagation decoder. This is in contrast to traditional

methods of LDPC code design, in which knowledge of the channel model affords the

use of numerical methods such as density evolution, as described in Section 1.1, to

design the code.

One approach is to find so-called “extreme” channels that can be used to predict

the LDPC code ensemble’s performance under iterative decoding. Khandekar [16]

showed that a code’s behavior on the BEC can be used to predict its behavior on

other channels. In particular, he showed that if for a BEC, the bit erasure probability

of an LDPC code ensemble converges to zero under iterative message-passing decoding

then the bit error probability will also converge to zero on any other MBIOS channel

with the same Bhattacharyya parameter (B-parameter). Among the family of equi-

capacity MBIOS channels, the BEC exhibits the smallest B-parameter whereas the

binary symmetric channel (BSC) exhibits the greatest B-parameter [4]. Based on

this observation, it was suggested that it may be possible to design a code for an

arbitrary MBIOS channel by designing it for a BEC with a matching B-parameter.

Further evidence of the extremality of the BEC and BSC can be found, e.g., in a study

by Sutskover et al. (see [41] and [42]), which is based on an information-combining

approach ([17]) to predict the behavior of LDPC code ensembles over various channels;

they showed that the behavior of an LDPC code ensemble over a BEC and BSC can

be used to provide bounds on its behavior over other MBIOS channels under iterative
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message-passing decoding. These works all use bounds that stem from the reduction

of the density evolution equation to a single parameter. Such bounds first appeared

in [3], albeit not from a universality standpoint.

Several researchers have noticed that LDPC codes exhibit similar performance

under iterative message-passing decoding over a set of channels with similar param-

eters. Numerical evidence that equi-capacity and equi-B-parameters exhibit similar

thresholds is provided in [4], and thus it was conjectured that the performance of an

LDPC code over one MBIOS channel can be approximated by its performance on a

different MBIOS channel but with the same capacity or B-parameter. Franceschini et

al. ([7]), also provide supporting numerical evidence that LDPC code ensembles be-

have similarly on equi-capacity MBIOS channels. In [25], the authors conjecture that

it is possible to design good LDPC codes based on a so-called “surrogate” channel,

such as the BEC, so that they will exhibit good performance over other channels. Re-

cently, Sanaei et al. ([31]) numerically designed some universal LDPC code ensembles

that achieve high fraction of capacity for a set of equi-capacity MBIOS channels. In

addition, based on some practical experiments, they have conjectured that an LDPC

code ensemble designed for two equi-capacity MBIOS channels will also converge

under iterative message-passing decoding over any convex combination of these two

channels2.

We briefly mention several other avenues of research regarding universal LDPC

codes; these works present approaches that are quite removed from the approach

to universality of this thesis, and are presented here for the sake of completeness.

Duyck, et al. [6] numerically optimized LDPC code ensembles to be universal over

Ricean multiple-access channels for all k-factors. Miyake and Maruyama [23] study

universal properties of fixed length LDPC codes under the minimum-entropy decod-

ing scheme. Universal codes with finite block lengths are addressed in [39]; that study

concentrates on the performance of such code ensembles, in terms of bounds on the

probability of error (and error exponents), for a class of channels the authors call “pe-

riodic erasure channels.” Factor-graph decoding over a family of channels related by

some unknown parameters was considered in [45], in which several factor-graph based

decoding schemes over channels with unknown parameters were defined and applied

2I.e., a channel formed by using one of these channels with probability θ, 0 ≤ θ ≤ 1, and the
other channel with probability 1− θ.
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to codes that can be represented by factor graphs, not necessarily LDPC codes. Fi-

nally, Yedla, et al. [48] consider the problem of universal joint source-channel coding;

in their setting, there are two correlated sources transmitting over two channels with

unknown parameters, to be jointly decoded by a single receiver.

1.3 This work

In this work, we consider the universality of LDPC code ensembles under both it-

erative message-passing decoding and ML decoding over MBIOS channels. For the

iterative (belief propagation) decoding case, we use density evolution to derive some

conditions for universality of LDPC code ensembles over various MBIOS channels.

These results serve to formulate an approach for the analytical design of universal

LDPC code ensembles. Moreover, a necessary condition for universality enables us

to formulate linear-programming upper bounds on the universal achievable rate of

LDPC code ensembles over families of MBIOS channels. Furthermore, we show that

for any code ensemble, one can classify channels as “good” or “bad” (in the sense

of asymptotically achieving vanishing bit-error-probability under belief propagation

decoding) based on the value of the B-parameter of the channel. This, in turn, leads

to bounds on the threshold of the code ensemble. Some of these results are also

extended for the family of irregular, repeat-accumulate (IRA) code ensembles. For

the ML decoding case, we show that the regular LDPC code ensembles can be made

universally capacity achieving both with and without puncturing over equi-capacity

MBIOS channels.

This thesis is structured as follows: Chapter 2 provides some preliminary material

and notation. Chapter 3 explores the universality of LDPC code ensembles under

belief propagation decoding, and Chapter 4 extends these results to IRA codes. Uni-

versality results for LDPC code ensembles under ML decoding are considered in

Chapter 5. Finally, in Chapter 6 we present a summary of this thesis and some

directions for future research.

The results in this research work are also presented in [36], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).
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Chapter 2

Preliminaries

This Chapter follows the notation in [29, Chapter 4], and briefly introduces some

preliminaries on memoryless binary-input output-symmetric (MBIOS) channels that

are relevant for the analysis in this research work.

Consider an MBIOS channel whose input and output are designated by X and

Y , respectively, and let pY |X(·|·) be its transition probability. The associated log-

likelihood ratio (LLR) l(y) when the channel output is Y = y is given by

l(y) = ln

(

pY |X(y|0)
pY |X(y|1)

)

.

The LLR associated with the random variable Y is defined as L = l(Y ). Let a

designate the conditional probability density function (pdf ) of the random variable L

given that the channel input is X = 0 (to be referred to as the L-density function).

This density function satisfies the symmetry property a(x) = ex a(−x) for every x ∈ R

(see [29, Theorem 4.26]).

The following three functionals serve at the heart of the analysis presented in this

work (various other functionals are presented in [29, Section 4.1]).

Proposition 2.1 [Capacity functional] Consider an MBIOS channel whose sym-

metric L-density function is denoted by a. The capacity of this channel in units of

bits per channel use, C , C(a), is given by

C =

∫ ∞

−∞
a(x)

(

1− log2(1 + e−x)
)

dx. (2.1)

11



This proposition is proved in [29, p. 193].

Definition 2.1 [The Bhattacharyya functional] The Bhattacharyya parameter

(B-parameter), B , B(a) that is associated with the symmetric L-density function

a, is given by

B =

∫ ∞

−∞
a(x)e−

x

2 dx. (2.2)

Definition 2.2 [The error probability functional] The bit error probability that

is associated with a symmetric L-density function a is given by

E(a) =
∫ 0−

−∞
a(x) dx+

1

2

∫ 0+

0−
a(x) dx

=
1

2

∫ +∞

−∞
a(x) e−(|x

2
|+x

2
) dx.

The following propositions and inequalities establish some relationships between

the capacity, B-parameter, and the bit error probability associated with the same

symmetric L-density.

The following proposition relates the capacity with the B-paremeter of an MBIOS

channel. It is a direct consequence1 of a proposition that was introduced in [2, Propo-

sition 1] (for a proof see [2, Appendix A]).

Proposition 2.2 For every MBIOS channel, let a be the L-density of the LLR at

the channel output for an equi-probable binary input, and let B and C designate the

B-parameter and channel capacity, respectively. Then, the following inequality holds:

log2

(

2

1 + B

)

≤ C ≤
√
1−B2. (2.3)

Proposition 2.2 implies that for a perfect MBIOS channel, whose capacity, C, ap-

proaches 1 bit per channel use, the corresponding B-parameter tends to zero. On

1[2, Proposition 1] is specified for a general binary-input, discrete memoryless channel, and it
relates between the symmetric capacity and the B-Parameter. The extension for MBIOS channels
that are not necessarily discrete is immediate. MBIOS channels are symmetric, for which the
symmetric capacity is indeed the channel capacity; changing summations to integrals extends the
proof to possibly continuous channels.
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the other hand, for a very noisy channel, whose capacity is close to zero, we have

that the B-parameter tends to 1. This is consistent with the interpretation that the

B-parameter forms an upper bound on the error probability under ML decoding when

the channel is used only once to transmit a zero or a one.

Another property that relates the channel capacity and the B-parameter of an

MBIOS channel is presented in the following proposition, which was introduced in [32,

Lemma 8] (for a proof see [32, Appendix IV]). This proposition improves upon the

lower bound in Proposition 2.2.

Proposition 2.3 For every MBIOS channel, the sum of its channel capacity and its

B-parameter is greater than or equal to 1, i.e.,

B + C ≥ 1

and equality is achieved for a BEC.

Note that Proposition 2.3 implies that among all equi-capacity MBIOS channels, the

BEC possesses the minimal B-parameter.

Remark 2.1 From the lower bound of 2.2, it is implied that C+B ≥ 1+(B−log2(1+

B)). It can easily be verified that f(B) , 1 + (B − log2(1 + B)) ≤ 1 for B ∈ [0, 1],

with equality only at the end points, i.e., B = 0 or B = 1. To see this, we first note

that indeed f(0) = f(1) = 1. The derivative of f is f ′(B) = 1 − ((1 + B) ln 2)−1,

which has only one zero, at B = −1 + 1/ ln 2 ≈ 0.4427. This is easily determined

to be a minimum point of f , implying that f(B) ≤ 1 for B ∈ [0, 1]. On the other

hand, proposition 2.3 states that B + C ≥ 1, thereby improving the lower bound in

Proposition 2.2.

The following inequalities relate the Bhattacharyya and error probability func-

tionals. Based on [29, Lemma 4.64], for an arbitrary symmetric L-density a we have

2E(a) ≤ B(a) ≤ 2
√

E(a)
(

1− E(a)
)

. (2.4)

Note that the lower and upper bounds on the B-parameter, as given in (2.4), are

satisfied with equality for a BEC and BSC, respectively.
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Convolutions of densities in the so-called L-domain and G-domain2 are presented

in [29, p. 181], and are denoted by � and �, respectively. Using the density evolution

approach for the asymptotic analysis of LDPC code ensembles over MBIOS channels,

where we let the block length tend to infinity, the � convolution describes how the

distribution of the (statistically independent) messages changes at the variable node

side under BP decoding at every single iteration, whereas the � convolution describes

the change of this distribution at the parity-check node side.

A consequence of density evolution is the stability condition for LDPC code ensem-

bles under belief propagation (BP) decoding. This condition applies to the asymptotic

case where we let the block length tend to infinity, and it forms a necessary condition

for successful BP decoding in the sense that it requires that the fixed point of zero bit

error rate be stable. Consider an LDPC code ensemble with a pair of degree distribu-

tions (λ, ρ) whose transmission takes place over an MBIOS channel, characterized by

its L-density function a. Then, the stability condition under BP decoding assumes

the form (see [29, Theorem 4.125])

B(a)λ′(0)ρ′(1) < 1. (2.5)

The reader is referred to [29, Section 4.9] for a proof.

2As mentioned at the beginning of this chapter, an L-density is the pdf of the LLR l(Y )
given that the channel input is X = 0. A G-density is the result of the transformation l(Y ) →
(sgn l(Y ), log coth(|l(Y )|/2)). The L and G-domains are, respectively, the domains of the L and G
densities.
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Chapter 3

Universality under Belief

Propagation Decoding

In this chapter we consider universality under BP decoding. In Section 3.1 we de-

rive a condition for a sequence of LDPC code ensembles to asymptotically achieve

vanishing bit-error-probability under BP decoding. Using this condition we show

that it is possible to design LDPC code ensembles that will operate reliably over a

range of channels. We study this approach for two particular families of channels.

In Section 3.2 we use the condition developed in Section 3.1 to derive a necessary

condition for universality of LDPC code ensembles under BP decoding. Using this

condition, we derive universal lower bounds on the achievable gap to capacity based

on linear-programming. We conclude this chapter with Section 3.3, in which we show

that the B-parameter of the channel can be used as a universal condition for “good”

or “bad” communications under BP decoding.

3.1 Universal Achievability Results

In the following, we consider the suitability of LDPC code ensembles to operate

reliably over a set of MBIOS channels under BP decoding. We rely here on the

density evolution approach, and our goal is to construct LDPC code ensembles that

achieve vanishing bit error probability, in the asymptotic case where the block length

tends to infinity, uniformly over a set of MBIOS channels.

To this end, let us consider first an arbitrary MBIOS channel, and let a0 denote the
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pdf of the LLR at the channel output given that the channel input is zero. Let λ and

ρ designate the degree distributions of the variable and parity-checks, respectively,

from the edge perspective. Based on density evolution, the densities at every iteration

of the BP decoder satisfy the recursive equation

al = a0 � λ

(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

, l = 1, 2, . . . (3.1)

where the mapping Γ and its inverse Γ−1 are introduced in [28, p. 627], and denote

the transformation of densities from the L-domain to the G-domain and vice-versa.

The densities al are symmetric functions for every l ≥ 0, i.e., al(x) = exal(−x) for

all x ∈ R. Let xl = B(al) for l ≥ 0 where B(a) designates the B-parameter that

is associated with the L-density a. Based on the proof of sufficiency in the stability

condition (see [29, p. 234]), it follows that

xl ≤ B(a0)λ
(

1− ρ(1− xl−1)
)

, l = 1, 2, . . . (3.2)

This inequality is proved directly in [11, Theorem 4.2] and also in [15, Theorem 2].

From (2.4), a necessary and sufficient condition for an LDPC code ensemble to asymp-

totically obtain vanishing bit error probability as the number of iterations grows is

that liml→∞ xl = 0.

Let us now consider an arbitrary set of MBIOS channels, and let A designate the

corresponding set of its L-densities. Suppose that one wishes to design an LDPC code

ensemble with degree distributions (λ, ρ) in order to asymptotically achieve vanishing

bit error probability under BP decoding for every channel in this set. Let us designate

by B the maximal B-parameter over the MBIOS channels of the considered set, i.e.,

B , max
a∈A

B(a). (3.3)

Let us consider the recursive equation

yl = B λ
(

1− ρ(1− yl−1)
)

, l = 1, 2, . . . (3.4)

with the initial value y0 = B. This recursive equation refers to the density evolution

of a BEC whose erasure probability is equal to B. By comparing (3.2) and (3.4),

it is straightforward to show (e.g., by induction) that 0 ≤ xl ≤ yl for every l ≥ 0

and a ∈ A. If the pair of degree distributions (λ, ρ) is selected in a way where
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liml→∞ yl = 0, then we get that liml→∞ xl = 0 in (3.2) for every MBIOS channel

from the set A. Hence, the universality of the LDPC code ensemble whose degree

distribution is (λ, ρ) follows with respect to the considered set of channels.

One can thus rely on (3.4) to construct a sequence of LDPC code ensembles

which achieves vanishing bit error probability, under BP decoding, for all the MBIOS

channels of the considered set. In particular, to this end one can use the well-known

explicit constructions of capacity-achieving sequences of LDPC code ensembles for

the BEC (see, e.g., [24] and references therein). By this approach, the asymptotic

design rate of this capacity-achieving sequence of LDPC code ensembles is equal to

the capacity of the BEC,

Rd = 1−B (3.5)

where B is given in (3.3). We study the following particular cases of this approach.

3.1.1 Universal LDPC Code Ensembles for Equi-Capacity

MBIOS Channels

Among all MBIOS channels which exhibit a given capacity C, the B-parameter that

is associated with the L-densities of this set of channels attains its maximal and

minimal values for the BSC and BEC, respectively (this follows readily from (2.4)).

The B-parameter of a BSC whose crossover probability is p is equal to
√

4p(1− p),

and the capacity of this channel is equal to C = 1 − h2(p). By referring to the of

set all equi-capacity MBIOS channels, one therefore gets from (3.3) that the maximal

B-parameter over this set, B, is given by

B =
√

4h−1
2 (1− C)

(

1− h−1
2 (1− C)

)

(3.6)

where h−1
2 designates the inverse of the binary entropy function on base 2. From (3.5),

the asymptotic design rate of the corresponding sequence of LDPC code ensembles

is equal to Rd = 1 − B. As a consequence of Proposition 2.3, it follows that indeed

Rd ≤ C, which is necessary for reliable communication. The fraction of the channel

capacity that is achievable by this approach,

µ1(C) ,
Rd

C
,
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is therefore equal to

µ1(C) =
1−

√

4h−1
2 (1− C)

(

1− h−1
2 (1− C)

)

C
. (3.7)

Lemma 3.1 The function µ1 is monotonic increasing over the interval (0, 1], and

lim
C→0

µ1(C) = ln 2 ≈ 69.3%, lim
C→1

µ1(C) = 1.

Proof: See Appendix A.

This implies that as the value of the capacity is increased, a larger fraction of the

channel capacity is achievable uniformly for the entire considered set of equi-capacity

MBIOS channels, and the two extremes are 69.3% and 100% when the capacity varies

between zero and 1 bits per channel use. For a value of the channel capacity which

approaches 1, the channels are almost noiseless, so almost no coding is required.

Hence, the uniform attainment of nearly 100% of the capacity for the entire set of

channels is well expected. However, as evidenced in Fig. 3.1, this convergence of the

achievable fraction of capacity is rather slow as we let the code rate tend to 1. To see

this, note that if C is close to 1

µ1(C) ≈ 1− 2
√

h−1
2 (1− C)

C

which tends to 1 quite slowly (e.g., for C = 0.95 bits per channel use, this approxi-

mation is equal to 0.895 which indeed coincides with Fig. 3.1).

The above analysis implies that at least 69.3% of the capacity of any MBIOS

channel can be achieved by designing a capacity-achieving sequence of LDPC code

ensembles for a BEC; the erasure probability of this BEC is set to be equal to the

B-parameter of a BSC whose capacity matches our channel.

This presents an analytical approach for the design of universal LDPC code en-

sembles for equi-capacity MBIOS channels where a provable (non-vanishing) fraction

of capacity is universally achieved, and the value of this fraction gets larger as the

value of capacity is increased. We note, however, that numerical optimization via

density evolution enables to design universal LDPC code ensembles in [31] achieving

a significantly larger fraction of the channel capacity, though the approach considered

here is purely analytical, and it is not subject to numerical optimizations.
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3.1.2 Universal LDPC Code Ensembles for BEC and BI-

AWGNC with the Same Capacity

We consider here the achievable fraction of capacity when one wishes to design an

LDPC code ensemble which asymptotically achieves vanishing bit error probability

under BP decoding for both the BEC and the binary-input AWGN channel (BI-

AWGNC) with the same capacity. Since among all equi-capacity MBIOS channels,

the BEC possesses the minimal B-parameter (see Proposition 2.3), then the param-

eter B in (3.3) corresponds to the B-parameter of the BIAWGNC. The conversion

from the channel capacity to the B-parameter for this channel is done numerically

by first calculating the noise variance σ2 via the following expression for its capacity,

which is based on (2.1) (see [29, p. 194]):

C = 1 +
1

ln 2

[

(

2

σ2
− 1

)

Q
( 1

σ

)

−
√

2

πσ2
e−

1
2σ2 +

∞
∑

i=1

(−1)i

i(i+ 1)
e

2i(i+1)

σ2 Q
(1 + 2i

σ

)

]

,

and then substituting the value of σ2 to obtain the B-parameter B = e−
1

2σ2 (based

on (2.2)). From (3.5), the asymptotic achievable fraction of the capacity is equal to

µ2(C) =
1−B

C
. (3.8)

Since the universality in this example applies to a subset of the equi-capacity

MBIOS channels, the inequality µ2(C) ≥ µ1(C) is expected to hold for 0 ≤ C ≤ 1.

This is exemplified in Fig. 3.1. Our results so far are summarized in the following

theorem. To this end, we denote by BEC(ε) the binary erasure channel whose erasure

probability is ε:

Theorem 3.1 [Universality of LDPC Codes under BP Decoding for Equi-

Capacity MBIOS Channels] Consider a set A of MBIOS channels that exhibit

a given capacity C, and let B denote the maximal B-parameter over this set (see

(3.3)). Let {(n, λ, ρ)} form a capacity-achieving sequence of LDPC code ensembles

for BEC(B), achieving vanishing bit erasure probability under BP decoding. Then,

this sequence universally achieves vanishing bit error probability under BP decoding

for the entire set A, and the design rate of this sequence forms a fraction that is at

least 1−B
C

of the channel capacity. As a consequence, the following results hold:
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• For the entire set of equi-capacity MBIOS channels, the universal achievable

design rate forms at least a fraction µ1(C) of capacity (see (3.7)). Moreover, µ1

forms a monotonic increasing function of the capacity C (see Fig. 3.1), getting

the extreme values ln 2 ≈ 69.3% and 100% at the endpoints where C → 0 or

C → 1, respectively.

• For some sub-classes of equi-capacity MBIOS channels, the results for the uni-

versal achievable design rate significantly improve (see, e.g., (3.8) and µ2 in

Fig. 3.1).

Fig. 3.1 compares the achievable fractions of capacity, µ1 and µ2 as a function of

the channel capacity.

3.2 Universal Lower Bound on the Achievable Gap

to Capacity

The stability condition B(a)λ′(0)ρ′(1) < 1 forms a necessary condition for asymptot-

ically achieving vanishing bit error probability under BP decoding when the trans-

mission takes place over an MBIOS channel.

We wish to find an upper bound on the achievable design rate of universal LDPC

code ensembles over a set A of MBIOS channels, or alternatively, a universal lower

bound on the achievable gap (in rate) to capacity. From the stability condition in

(2.5) and also from (3.3), the inequality

Bλ′(0)ρ′(1) ≤ 1 (3.9)

forms a necessary condition for achieving this goal universally over the set A.

We consider in the following right-regular LDPC code ensembles, where dc desig-

nates the degree of the parity-check nodes (i.e., ρ(x) = xdc−1).

Following the notation in [29, p. 181], let a�b denote the density which is the result

of transforming both a and b from the L-domain to the G-domain, then performing

the convolution in the G-domain, and then transforming the outcome back to the

L-domain. As mentioned in Chapter 2, the operator � describes the change of the

distributions at the check node side under BP decoding.
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Figure 3.1: Universal achievable fraction of capacity under BP decoding for two sets
of MBIOS channels which exhibit a given capacity (see Theorem 3.1). The values of
µ1 in (3.7) and µ2 in (3.8) correspond, respectively, to the entire set of equi-capacity
MBIOS channels, and the subset of a BEC and BIAWGNC with capacity C bits per
channel use.
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In the following, we introduce an additional necessary condition for universally

achieving vanishing bit error probability under BP decoding with respect to a set A
of MBIOS channels.

Theorem 3.2 [A Necessary Condition for Universality of LDPC Code En-

sembles under BP Decoding] Let {(n, λ, ρ)} be a right-regular sequence of LDPC

code ensembles, universally achieving vanishing bit error probability under BP de-

coding for a set of MBIOS channels A. Then, the following condition holds

Bλ
(
√

1− ρ(1− x2)
)

< x, ∀ x ∈ (0, B] (3.10)

where B designates the maximal B-parameter over the set A.

Proof: For the derivation of this condition, we rely on the following inequality:

Lemma 3.2 Let a�k , a � a � · · · � a denote the operator where a is convolved by

itself k−1 times (i.e., a appears k times on the right-hand side of this equality), where

the convolution here is in the G-domain (see [29, p. 181]). Then, for a symmetric

L-density a with B(a) = βa

B(a�k) ≥
√

1− (1− β2
a)

k (3.11)

for any integer k ≥ 2.

Proof: Let a and b denote two symmetric L-densities with B(a) = βa and B(b) = βb,

then from [29, Problem 4.62]
√

β2
a + β2

b − β2
aβ

2
b ≤ B(a � b) ≤ βa + βb − βaβb (3.12)

where the upper and lower bounds are achieved with equality if a and b are from the

family BEC or BSC, respectively. By setting a = b, we get the inequality in (3.11)

for k = 2. The proof for a general k ≥ 2 is completed by mathematical induction.

Let us assume that (3.11) holds for a certain k ≥ 2, then from (3.12)

B(a�k+1) = B(a�k
� a)

≥
√

B(a�k)2 + B(a)2 − B(a�k)2 B(a)2

=
√

1−
(

1− B(a�k)2
)(

1− B(a)2
)

=
√

1−
(

1− B(a�k)2
)

(1− β2
a)

≥
√

1− (1− β2
a)

k+1
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which then implies that (3.11) also holds for k + 1.

Corollary 3.1 For a right-regular LDPC code ensemble

B
(

Γ−1
(

ρ
(

Γ(a)
)

)

)

≥
√

1− ρ
(

1− B(a)2
)

. (3.13)

Hence, by defining xl , B(al) for all l in the density evolution equation in (3.1),

we get the following chain of equalities and inequalities

xl = B(al)

(a)
= B(a0)B

(

λ

(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(b)
= B(a0)λ

(

B
(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(c)

≥ B(a0)λ
(
√

1− ρ
(

1− B(al−1)2
)

)

= B(a0)λ
(
√

1− ρ
(

1− x2
l−1

)

)

(3.14)

where equality (a) follows from the recursive density evolution equation in (3.1) and

since for two symmetric L-densities a and b

B(a⊛ b) = B(a)B(b), (3.15)

equality (b) follows since the linearity of the convolution operator and the last equality

yield that

B(λ(a)) = B
(

∑

i

λia
�(i−1)

)

=
∑

i

λiB
(

a�(i−1)
)

=
∑

i

λiB(a)i−1 = λ (B(a)) ,

(3.16)

and inequality (c) follows from (3.13). By definition, the initial value x0 is equal to

the B-parameter of the symmetric L-density of the MBIOS channel. From (3.14), it

follows that if the sequence {xl} tends asymptotically to zero, then the sequence

zl = B(a0)λ
(
√

1− ρ(1− z2l−1)
)

, l = 1, 2, . . . (3.17)

with the initial value z0 = B(a0), should also tend to zero. Note that the sequence {zl}
is not the same as {xl}: the sequence {xl}, as shown in (3.14), is greater than or equal
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to the right-hand-side of (3.17). Further note that from (2.4), the convergence of the

sequence {xl} forms a necessary and sufficient condition for achieving vanishing bit

error probability as we let the number of iterations grow (recall that by the density

evolution approach, we first let the block length tend to infinity, so that the tree

assumption holds with probability 1 for any fixed number of iterations, and then we

let the number of iterations grow).

Consider a sequence of right-regular LDPC code ensembles that universally achieves

vanishing bit error probability under BP decoding over a set A of MBIOS channels.

Let B be the maximal B-parameter over the entire set A (see (3.3)), then we obtain

from (3.17) that the sequence defined recursively by

zl = B λ
(
√

1− ρ(1− z2l−1)
)

, l = 1, 2, . . . (3.18)

with the initial value z0 = B tends asymptotically to zero. Therefore, the satisfiability

of the condition in (3.10) forms a necessary condition for universality. This completes

the proof of Theorem 3.2.

For an extension of condition (3.10) for general LDPC code ensembles (not necessarily

right-regular), see Appendix B.

In order to relate the condition in Theorem 3.2 to the stability condition, we

calculate the derivative of the left-hand side of (3.10)

d

dx

{

B λ
(

√

1− ρ(1− x2)
)}

= B λ′
(

√

1− ρ(1− x2)
)

x
(

1− ρ(1− x2)
)− 1

2 ρ′(1− x2)

and then require that this derivative be strictly less than 1 at the fixed point x = 0.

Since dc designates the fixed right degree of the right-regular LDPC code ensemble,

lim
x→0

x
(

1− ρ(1− x2)
)− 1

2 = lim
x→0

x
√

1− (1− x2)dc−1

=
1√

dc − 1

and therefore one gets the condition

Bλ′(0)ρ′(1)√
dc − 1

< 1. (3.19)
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Interestingly, this coincides with the stability condition (2.5) up to a scaling factor

that is equal to the reciprocal of the square root of dc − 1; this scaling factor in

(3.19) yields a weaker condition as compared to the stability condition. However,

the condition in (3.10) provides a constraint on the interval (0, B], and not just at a

neighborhood of the fixed point at zero.

Let dmax
v designate the maximal degree of the variable nodes. Since the design

rate of the right-regular LDPC code ensemble is equal to

Rd = 1− 1

dc
∑dmax

v
i=2

λi

i

(3.20)

then the maximization of Rd is equivalent to maximizing
∑dmax

v
i=2

λi

i
.

Suppose that it is required to universally achieve vanishing bit error probability

under BP decoding as the block length tends to infinity over a set A of equi-capacity

MBIOS channels with capacity C. This requirement also implies that the bit error

probability under MAP decoding vanishes. Thus, by combining [32, Eqs. (43), (44)

and (53)], it follows that the design rate satisfies the inequality

0 ≤ Rd ≤ 1− 1− C

h2

(

1−C
dc
2

2

) (3.21)

and therefore, as the parity-check degree (dc) is decreased, Rd becomes more bounded

away from capacity. Combining (3.20) and (3.21) gives that

1

dc
≤

dmax
v
∑

i=2

λi

i
≤ 1

(1− C) dc
· h2

(

1− C
dc
2

2

)

. (3.22)

By a maximization of
dmax
v
∑

i=2

λi

i
subject to

1. the necessary condition for vanishing bit error probability in Theorem 3.2,

2. the satisfiability of the stability condition for all the MBIOS channels in the set

A (see (3.9)),

3. the inequality constraints in (3.22) that follow from the information-theoretic

bounds in [32],
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one obtains a linear programming (LP) universal upper bound on the achievable

rate of LDPC code ensembles over the set A of equi-capacity MBIOS channels with

capacity C under BP decoding. This gives the following LP bound where, practically,

the values of x ∈ (0, B] in the first inequality constraint are quantized uniformly over

this interval in order to get a finite number of inequality constraints in the LP problem

(to be referred to as the ‘LP1 bound’):

maximize
dmax
v
∑

i=2

λi

i

subject to






































































Bλ
(√

1− ρ(1− x2)
)

< x, ∀ x ∈ (0, B]

Bλ2ρ
′(1) ≤ 1

∞
∑

i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

1
dc

≤
dmax
v
∑

i=2

λi

i
≤ 1

(1−C) dc
· h2

(

1−C
dc
2

2

)

Due to (3.20), LP1 also defines an upper bound on the design rate. This upper bound

can also be translated into a universal lower bound on the achievable gap to capacity,

ε = 1−Rd/C.

This LP problem is solved numerically with the aid of the CVX Matlab-based

modeling system for convex optimization (see [9]). Numerical results for the lower

bound on the achievable gap to capacity are provided in Table 3.1 for the cases

where ρ(x) = x7, x9, and x11 (i.e., the parity-check degree is fixed to 8, 10, and 12,

respectively), and the maximal degree of the variable nodes is set to dmax
v = 200.

In order to possibly improve the bound, let us consider the particular case where

the set A forms a set of equi-capacity MBIOS channels that also includes the BEC.

However, in this case, the LDPC code ensembles are not restricted to be right-regular.

For a BEC, the condition for vanishing bit erasure probability under BP decoding

assumes the form

(1− C)λ
(

1− ρ(1− x)
)

< x, ∀ 0 < x ≤ 1− C. (3.23)

26



This condition is used instead of the necessary condition (3.10)1. Since in this LP the

LDPC code ensemble is not assumed to be right-regular, the condition (3.22) that is

a result of combining [32, Eqs. (43), (44) and (53)] and (3.20) assumes the form

1

aR
≤

dmax
v
∑

i=2

λi

i
≤ 1

(1− C) aR
· h2

(

1− C
aR
2

2

)

,

where aR is the average right degree of the LDPC code ensemble.

In this particular case where the set A includes the BEC, one gets the following

LP problem (to be referred to as the ‘LP2 bound’):

maximize
dmax
v
∑

i=2

λi

i

subject to






































































(1− C)λ
(

1− ρ(1− x)
)

< x, ∀ 0 < x ≤ 1− C

Bλ2ρ
′(1) ≤ 1

∞
∑

i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

1
aR

≤
dmax
v
∑

i=2

λi

i
≤ 1

(1−C) aR
· h2

(

1−C
aR
2

2

)

where the values of x ∈ (0, 1−C] are quantized uniformly over this interval in order to

get a finite number of inequality constraints in the LP problem; our implementation

converts the first inequality constraint above to 1000 inequality constraints where x

is equally spaced, and it gets the values xk = 0.001(1 − C)k for k = 1, . . . , 1000 (it

was verified numerically that increasing the number of inequality constraints beyond

one thousand, by a more refined uniform quantization of x over the interval (0, 1−C],

does not affect the numerical results of the LP2 bound). Numerical results for the

lower bound on the achievable gap to capacity are provided in Table 3.2 for the same

setting as in Table 3.12.

1It was verified numerically that adding condition (3.10) to the LP does not change the result.
Thus, this condition is conjectured to be redundant in light of (3.23).

2Even though in the LP2 bound the LDPC code ensembles are not restricted to be right regular,
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By comparing Tables 3.1 and 3.2, the values of the LP1 and LP2 bounds coincide

for large values of the capacity C, whereas the LP2 bound shows an improved (larger)

lower bound as compared to the LP1 bound for lower values of C. Note also that the

two lower bounds become more significant (i.e., they become greater) as the value

of capacity is increased. It is mentioned that the possible improvement in the LP2

bound stems from the fact that it applies to a set of equi-capacity MBIOS channels

that includes the BEC, whereas the LP1 bound applies to any set of equi-capacity

MBIOS channels.

It was observed numerically that the LP2 bound on the achievable gap to capacity

is sensitive the value of dmax
v , especially for large values of dc. For example, for C = 1

2

and dc = 12, when dmax
v = 200, the LP2 lower bound is equal to 1.94 · 10−2 if , but

when dmax
v = 500 the LP2 lower bound becomes 7.38 · 10−3.

for the purpose of comparing the results of the LP2 bound with those of the LP1 bound, we provide
the numerical results for the same setting as for the LP1 bound.
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Capacity Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
(C) dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12

1
2

2.83 · 10−3 7.05 · 10−4 1.76 · 10−4 2.83 · 10−3 7.05 · 10−4 1.76 · 10−4 2.83 · 10−3 7.05 · 10−4 1.76 · 10−4

3
4

9.09 · 10−2 1.79 · 10−2 7.84 · 10−3 7.90 · 10−2 1.43 · 10−2 7.84 · 10−3 5.56 · 10−2 1.43 · 10−2 7.84 · 10−3

9
10

2.06 · 10−1 1.57 · 10−1 1.20 · 10−1 1.73 · 10−1 1.33 · 10−1 1.03 · 10−1 1.67 · 10−1 1.11 · 10−1 7.99 · 10−2

Table 3.1: Lower bound on the universal achievable gap to capacity (ε , 1− Rd

C
) for equi-capacity MBIOS channels

under BP decoding; the degree of the parity-check nodes is fixed (dc), and the maximal degree of the variable nodes
is set to dmax

v = 200. These numerical results refer to the LP1 bound.

Capacity Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
(C) dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12

1
2

1.50 · 10−2 9.01 · 10−3 1.94 · 10−2 1.25 · 10−2 6.76 · 10−3 1.73 · 10−2 7.34 · 10−3 1.79 · 10−3 1.22 · 10−2

3
4

9.09 · 10−2 4.24 · 10−2 2.75 · 10−2 7.90 · 10−2 3.99 · 10−2 2.42 · 10−2 6.59 · 10−2 3.56 · 10−2 1.93 · 10−2

9
10

2.06 · 10−1 1.57 · 10−1 1.20 · 10−1 1.73 · 10−1 1.33 · 10−1 1.03 · 10−1 1.67 · 10−1 1.11 · 10−1 7.99 · 10−2

Table 3.2: Lower bound on the universal achievable gap to capacity (ε , 1− Rd

C
) for equi-capacity MBIOS channels

under BP decoding; the degree of the parity-check nodes is fixed (dc), and the maximal degree of the variable nodes
is set to dmax

v = 200. These numerical results refer to the LP2 bound.
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3.3 Universal Conditions for Reliable Communi-

cations under Belief Propagation Decoding

We prove in this section the following theorem and exemplify its use:

Theorem 3.3 [Universal Conditions on the B-parameter for Good/ Bad

Communications under BP Decoding] Let {(n, λ, ρ)} be a sequence of LDPC

code ensembles whose block lengths tend to infinity. The following universal proper-

ties hold under BP decoding:

• This sequence achieves vanishing bit error probability under BP decoding for

every MBIOS channel whose B-parameter is less than

B0(λ, ρ) , inf
x∈(0,1]

x

λ
(

1− ρ(1− x)
) . (3.24)

• For a right-regular sequence, it does not achieve reliable communications over

any MBIOS channel whose B-parameter is greater than

B1(λ, ρ) , inf
x∈(0,1]

x

λ
(√

1− ρ(1− x2)
) . (3.25)

For every MBIOS channel whose B-parameter B satisfies B > B1(λ, ρ), BP de-

coding is not reliable in the sense that the left-to-right message error probability

(i.e., the average probability of error for a message emanating from a variable

node to a parity-check node) is greater than the positive value

(

1

2
max

{

x ∈ (0, 1] :
x

λ
(√

1− ρ(1− x2)
) ≤ B

}

)2

(3.26)

irrespective of the number of iterations performed by the BP decoder.

Proof: We start by proving the first part of the theorem. Let {al} be the sequence
of symmetric L-densities that are obtained from the density evolution equation (3.1)

(where l ≥ 0 denotes the number of iterations). From (2.4), it follows that a neces-

sary and sufficient condition for obtaining vanishing bit error probability under BP

decoding is that the B-parameter that is associated with the pdf al tends to zero, i.e.,

lim
l→∞

B(al) = 0. (3.27)
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From (3.2), it follows that if the sequence {yl} as defined in (3.4) by the recursive

equation

yl = Bλ
(

1− ρ(1− yl−1)
)

, l = 1, 2, . . .

with the initial condition y0 = B tends to zero, then also the sequence {xl} where

xl = B(al)

tends to zero (since 0 ≤ xl ≤ yl for every integer l ≥ 0, see (3.4) and the paragraph

that follows). The sequence {yl} refers to the density evolution analysis for a BEC

whose channel erasure probability is B. The threshold value, which determines a

necessary and sufficient condition for the convergence of the sequence {yl} to zero,

yields that if B < B0(λ, ρ) then liml→∞ yl = 0 (this follows from [29, Theorem 3.59]).

Hence, for every MBIOS channel, if the B-parameter is less than B0(λ, ρ), then the

property in (3.27) is satisfied, and therefore the bit error probability vanishes under

BP decoding. This completes the proof of the first part.

In order to prove the second part of the theorem, which refers to a sequence of

right-regular LDPC code ensembles, we rely on inequality (3.14). If the equality

in (3.27) holds, then it follows from (3.14) that the sequence {zl} in (3.18) should

necessarily tend to zero. Hence, from (2.4), if the sequence that is defined in (3.18)

via the recursive equation

zl = Bλ
(

√

1− ρ(1− z2l−1)
)

, l = 1, 2, . . .

stays bounded away from zero, with the initial value z0 = B, then the communica-

tion is not reliable. More explicitly, for every MBIOS channel whose B-parameter is

greater than B1(λ, ρ), the sequence {E(al)} that represents the left-to-right message

error probabilities under BP decoding stays bounded away from zero (irrespective of

the number of iterations). In order to proceed, the following lemma considers the

convergence of the sequence {zl}.

Lemma 3.3 Let B1(λ, ρ) be defined as in (3.25). If B < B1(λ, ρ) then the sequence

{zl} in (3.18) tends to zero, and if B > B1(λ, ρ) then the sequence {zl} is lower

bounded by the positive constant

x(B) , max

{

x ∈ (0, 1] :
x

λ
(√

1− ρ(1− x2)
) ≤ B

}

. (3.28)
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Proof: See Appendix C.

From (3.14),

B(al) , xl ≥ zl, l = 0, 1, . . .

and therefore it follows from Lemma 3.3 that for every MBIOS channel whose B-

parameter is greater than B1(λ, ρ)

B(al) ≥ x(B), l = 0, 1, . . . .

From (2.4),

B(al) ≤ 2
√

E(al)(1− E(al)) ≤ 2
√

E(al)

⇒ E(al) ≥
(

B(al)
2

)2

≥
(

x(B)

2

)2

and therefore the left-to-right message error probability cannot be reduced below the

positive value as above, irrespective of the number of iterations of the BP decoder.

This completes the proof of Theorem 3.3.

Corollary 3.2 For every MBIOS channel with B-parameter B > B1(λ, ρ), let x(B)

be defined as in (3.28). Then, the (average) left-to-right message error probability is

bounded away from zero by the universal bound

η , lim
B→B1(λ,ρ)+

(

x(B)

2

)2

(3.29)

irrespective of the number of iterations of the BP decoder.

Proof: By definition, x(B) in (3.28) is an increasing function of B, and therefore

we take the limit B → B1(λ, ρ), where the limit is from the right side, in order to

obtain a lower bound on the left-to-right message error probability for the case where

B > B1(λ, ρ).

Corollary 3.3 Let {(n, λ, ρ)} be a sequence of right-regular LDPC code ensembles

whose block lengths tend to infinity. Then, the left-to-right message error probability

stays bounded away from zero under BP decoding for every MBIOS channel whose

B-parameter is greater than

B2(λ, ρ) , min

{

B1(λ, ρ),
1

λ′(0)ρ′(1)
,
√

1−R2
d

}

(3.30)
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where B1 is introduced in (3.25), and

Rd , 1−
∫ 1

0
ρ(x) dx

∫ 1

0
λ(x) dx

designates the design rate.

Proof: If the B-parameter B is greater than B1(λ, ρ), then the statement follows from

the second part of Theorem 3.3. Also, if B > 1
λ′(0)ρ′(1)

, then the communication under

BP decoding is not reliable because the stability condition is not satisfied. Finally,

if B >
√

1−R2
d then it follows from the right-hand side of (2.3) that Rd > C

and error-free communication cannot be achieved when the design rate exceeds the

channel capacity. Therefore, BP decoding is not reliable for any MBIOS channel

whose B-parameter is greater than B2 in (3.30).

Remark 3.1 In essence, the results of this chapter stem from one dimensional bounds

based on the density evolution equation that utilize the B-parameter (namely, inequal-

ities (3.2) and (3.14)). This approach is not new, and was introduced in [3]. In that

paper, the authors derived iterative bounds on the expectation of messages trans-

ferred in BP decoding. These bounds enabled them to lower- and upper-bound the

performance of BP decoding.

Remark 3.2 Inequalities (3.2) and (3.14) were first proved by Wang, et al. in [46].

They mention that these inequalities can be used iteratively to derive upper and lower

bounds on the decoding threshold based on the initial Bhattacharyya parameter of the

channel, and that closed-form solutions for these bounds can be obtained, but do not

derive them explicitly. In this work, we have independently shown these inequalities

and have also explicitly derived a closed-form solution of the bounds. Moreover, we

have shown a lower bound on the decoding error probability when the Bhattacharyya

parameter of the channel exceeds the value in (3.30).

Although here we concentrate only on channels with symmetric outputs, we note

that [46, Theorem 4] extended inequalities (3.2) and (3.14) also to memoryless chan-

nels with binary input and non-symmetric output, under the assumption that the

input distribution is uniform.
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Remark 3.3 Note that if the B-parameter is above B2(λ, ρ) (see (3.30)), then Corol-

lary 3.3 does not specify an explicit positive lower bound on the left-to-right message

error probability under BP decoding. However, if B > B1(λ, ρ) (where it readily

follows from (3.30) that B1(λ, ρ) ≥ B2(λ, ρ)), then the second part of Theorem 3.3

determines an explicit positive lower bound on the left-to-right message error prob-

ability that is valid universally for all MBIOS channels. As shown in Examples 3.1

and 3.2 that follow, the value of this lower bound η (see (3.29)) is typically large, ir-

respective of the number of iterations of the BP decoder, and this lower bound holds

for all MBIOS channels whose B-parameter is above B1(λ, ρ).

Remark 3.4 All channels in the convex hull3 of equi-capacity MBIOS channels have

the same capacity. Similarly, all channels in the convex hull of equi-B-parameter

MBIOS channels have the same B-parameter. This is due to the linearity of the

capacity and Bhattacharyya functionals in the L-density function, see (2.1) and (2.2).

Therefore, the condition for good channels, under BP decoding, in the sense that

B < B0(λ, ρ) (see the first part of Theorem 3.3) or the condition for bad channels in

the sense that B > B2(λ, ρ) (see the second part of Theorem 3.3 and Corollaries 3.2

and 3.3) are both preserved, respectively, for the convex hull of good or bad channels.

Although this conclusion does not prove [31, Conjecture 1] for equi-capacity MBIOS

channels (since it does not cover the case where B is between B0 and B2 in case that

B0 < B2), it supports this conjecture in the cases where B < B0 or B > B2.

Remark 3.5 From the two parts of Theorem 3.3, it follows directly that for right-

regular codes, B1(λ, ρ) ≥ B0(λ, ρ). For a direct proof of this inequality, see Ap-

pendix D.

In the following, we exemplify the use of Theorem 3.3 and its corollaries:

Example 3.1 [Regular LDPC Code Ensembles] In Table 3.3, we show the nu-

merical values of B0 and B1 in Theorem 3.3, and the value of η in Corollary 3.2 for

some regular LDPC code ensembles whose design rate is one-half. The value of B0

corresponds to the threshold for the BEC under BP decoding, and the value of B1

3The convex hull of a set A of channels consists of all the channels that are convex combinations
of channels in A. A convex combination of several channels is the result of using each channel with
probability θi, 0 ≤ θi ≤ 1, such that

∑

i
θi = 1.
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(see (3.25)) refers to the value of the B-parameter where above it, the left-to-right

message error probability is at least η, no matter how many iterations of the BP de-

coder are performed. For these regular LDPC code ensembles, λ2 = 0, and therefore

LDPC B0 B1 η
(3,6) 0.4294 0.6553 6.50 · 10−2

(4,8) 0.3834 0.6192 6.58 · 10−2

(5,10) 0.3416 0.5884 6.18 · 10−2

Table 3.3: The numerical values of B0 and B1 in Theorem 3.3, and the value of η in
Corollary 3.2 for some regular LDPC code ensembles whose design rate is one-half.

the stability condition is useless. Also, since the design rate of these ensembles is

equal to one-half, then
√

1−R2
d =

√
3
2

≈ 0.8660, hence the values of B2 in (3.30)

coincide with B1 for these ensembles.

Example 3.2 [Optimized Right-Regular LDPC Code Ensembles for the

BEC, and their Universal Properties] In Table 3.4, right-regular LDPC code

ensembles are optimized for the BEC under BP decoding; to this end, a linear pro-

gram is solved as described in [29, Section 3.18] for a design rate of one-half (Rd = 1
2
)

and for a maximal degree of the variable nodes of one hundred (dmax
v = 100).
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λ(x) =
∑

i λix
i−1 ρ(x) =

∑

i ρix
i−1 B0 B2 B1 η

λ2 = 0.4127, λ3 = 0.1762

λ4 = 0.1177, λ7 = 0.1202 ρ6 = 1 0.4816 0.4846 0.7066 8.45·10−2

λ8 = 0.1731

λ2 = 0.2879, λ3 = 0.1222

λ4 = 0.0905, λ6 = 0.1174

λ7 = 0.0300, λ12 = 0.0807 ρ8 = 1 0.4962 0.4962 0.7146 1.02·10−1

λ13 = 0.0831, λ32 = 0.0050

λ33 = 0.1831

λ2 = 0.2226, λ3 = 0.1013

λ4 = 0.0504, λ5 = 0.0646

λ6 = 0.0445, λ10 = 0.1219 ρ10 = 1 0.4988 0.4992 0.7123 1.08·10−1

λ11 = 0.0117, λ24 = 0.0903

λ25 = 0.0678, λ100 = 0.2248

Table 3.4: The degree distributions (from the edge perspective), numerical values of B0 and B1 in Theorem 3.3,
the value of η in Corollary 3.2, and the value of B2 in Corollary 3.3 for some optimized right-regular LDPC code
ensembles whose design rate is one-half with a maximal degree of the variable nodes that is set to 100.
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We observe from Table 3.4 that for these ensembles, B0 ≈ B2. Hence, for these

optimized LDPC code ensembles, the first part of Theorem 3.3 states that these LDPC

code ensembles are reliable under BP decoding, in the sense of achieving vanishing bit

error probability, for every MBIOS channel whose B-parameter is below B0; on the

other hand, Corollary 3.3 implies that these code ensembles are not reliable under BP

decoding for every MBIOS channel whose B-parameter is slightly above B0 or greater

than this value. This is a universal result that applies to all MBIOS channels, and it

separates them into two sets of “good” or “bad” channels for which the reliability of

these code ensembles under BP decoding solely depends on the B-parameter of the

communication channel without any relevance to its channel model (as long as it is

MBIOS, and it exhibits a given B-parameter).

In contrast to the results in Table 3.3 that apply to regular LDPC code ensembles,

for the right-regular LDPC code ensembles studied in this example, the value of

B1 is significantly greater than B2, which here is given by the stability condition.

In continuation to Remark 3.3, the lower bound on the left-to-right message error

probabilities when the B-parameter is greater than B1 is rather large (around 0.1),

whereas such a measure is not provided here for the unreliability of the messages

when the B-parameter is between B1 and B2.

The results of this thesis imply that a family of degraded channels can be param-

eterized by the B-parameter. This is also supported by [29, Theorem 4.76], which

states that a degraded channel has a higher B-parameter than the original (see also

Proposition 2.2 in this thesis). Moreover, in many cases there is a simple one-to-one

correspondence between the channel parameter and the B-parameter. For example,

for a BEC with erasure probability ǫ, we have B = ǫ; for a BSC with crossover prob-

ability p, we have B =
√

4p(1− p); and for a BIAWGN channel with noise variance

σ2, we have B = e−
1

2σ2 .

In order to obtain bounds on any LDPC code ensemble, not necessarily right-

regular, a simple modification of Theorem 3.3 and Corollary 3.3 yields the following:

Corollary 3.4 Let {(n, λ, ρ)} be a sequence of (not necessarily right-regular) LDPC

code ensembles whose block lengths tend to infinity. Then

• This sequence achieves vanishing bit error probability under BP decoding for
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every MBIOS channel whose B-parameter is less than

B0(λ, ρ) , inf
x∈(0,1]

x

λ
(

1− ρ(1− x)
) .

• The left-to-right message error probability of this sequence stays bounded away

from zero under BP decoding for every MBIOS channel whose B-parameter is

greater than

B3(λ, ρ) ,











































min

{

B1(λ, ρ),
1

λ′(0)ρ′(1)
,
√

1−R2
d

}

,

if the sequence is right-regular

min

{

1

λ′(0)ρ′(1)
,
√

1−R2
d

}

,

if the sequence is not right-regular

where B1 is introduced in (3.25), and Rd designates the design rate.

It follows that for any family of MBIOS channels there exists a Bth between B0 and

B3 (its exact value is dependent on the family) such that BP converges for all channels

of this family with B < Bth and does not converge for channels of the family with

B > Bth. Hence, B0(λ, ρ) and B3(λ, ρ) provide universal lower and upper bounds on

the threshold B-parameter. In general, different channel families will have different

thresholds. It should be noted that the lower bound is tight for the BEC. Furthermore,

this universal bound is non-iterative, simple, and easy to compute.

Similar bounds on the Bhattacharyya parameters have been derived in [46]. In

that paper, the authors have derived the same inequalities on the Bhattacharyya

parameter evolution during BP decoding that have led to the bounds on the threshold

in this section. Therefore, the lower bound B0(λ, ρ) and the upper bound B1(λ, ρ)

are not new. In this thesis, however, we have combined the upper bound B1(λ, ρ)

with other upper bounds, such as the stability condition, to arrive at a tighter upper

bound in some cases. Moreover, we have also demonstrated that these bounds can

be tight in some cases, as shown in Table 3.4.

Other works, such as [17], [29, Section 4.10.2], and [41] used an information-

combining approach to also provide universal bounds on the threshold. These bounds

give upper and lower bounds on the capacity of the channel, another natural param-

eter for channel degradation (a degraded channel has lower capacity). These bounds
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are significantly more difficult to compute, requiring either an iterative process or

involving computations that are numerically unstable for high left degrees.

In Table 3.5, we compare the bounds suggested by this approach with the bounds

of [41] for some of the ensembles considered in this thesis. In order to make the

comparison, we translate the bounds on the B-parameter to bounds on the channel

parameters for a BSC and a BIAWGN channel. It is exemplified that the bounds

in [41] are superior for the regular LDPC code ensembles, but the bounds of the

approach presented here are more informative for the irregular LDPC code ensembles

shown in Table 3.5.
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λ(x) =
∑

i λix
i−1 ρ(x) =

∑

i ρix
i−1 Bounds based on B Bounds based on C

0.4294 < B < 0.6553 0.4744 < C < 0.6350
λ3 = 1 ρ6 = 1 BSC: 0.0485 < p < 0.1223 0.0698 < p < 0.1187

BIAWGN: 0.7691 < σ < 1.0877 0.8026 < σ < 1.0180
0.3834 < B < 0.6192 0.5160 < C < 0.6630

λ4 = 1 ρ8 = 1 BSC: 0.0382 < p < 0.1074 0.0624 < p < 0.1048
BIAWGN: 0.7222 < σ < 1.0214 0.7707 < σ < 0.9553

0.3416 < B < 0.5844 0.5564 < C < 0.6970
λ5 = 1 ρ10 = 1 BSC: 0.0301 < p < 0.0943 0.0540 < p < 0.0921

BIAWGN: 0.6822 < σ < 0.9648 0.7333 < σ < 0.8996
λ2 = 0.4127, λ3 = 0.1762 0.4816 < B < 0.4846 0.4147 < C < 0.8980
λ4 = 0.1177, λ7 = 0.1202 ρ6 = 1 BSC: 0.0618 < p < 0.0626 0.0133 < p < 0.1404

λ8 = 0.1731 BIAWGN: 0.8272 < σ < 0.8308 0.5182 < σ < 1.1209
λ2 = 0.2879, λ3 = 0.1222
λ4 = 0.0905, λ6 = 0.1174 0.4962 ≤ B ≤ 0.4962 0.3989 < C < 0.8910
λ7 = 0.0300, λ12 = 0.0807 ρ8 = 1 BSC: 0.0659 ≤ p ≤ 0.0659 0.0144 < p < 0.1465
λ13 = 0.0831, λ32 = 0.0050 BIAWGN: 0.8446 ≤ σ ≤ 0.8447 0.5265 < σ < 1.1513

λ33 = 0.1831

Table 3.5: Comparison of universal bounds on thresholds for various LDPC code ensembles. The bounds based on
the B-parameter are computed based on the approach presented in this thesis; the bounds based on the capacity are
computed according to [41].
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Comparing these information-combining results by Land et al. [17], and by Sut-

skover et al. ([41, 42]) with our bounds, there is one conceptual difference: for B > B1,

Theorem 3.3 and Corollary 3.2 provide an explicit lower bound on the left-to-right

message error probability that is irrespective of the number of iterations, whereas

this is not the case in these related works. Secondly, for the regular LDPC code

ensembles, for which we have B3 = B1, we also have an explicit positive lower bound

on the left-to-right message error probability for the case where the B-parameter is

larger than B3 (e.g., as shown in Table 3.3, for the (3,6) LDPC code ensemble, a lower

bound on the left-to-right message error probability around 6.5% applies to the cases

where p > 0.1223 or σ > 1.088 for the BSC and the binary-input AWGN channel,

respectively).

The observation made in Example 3.2, regarding the reliability of the optimized

right-regular LDPC code ensembles over the entire set of MBIOS channels where

this result solely depends on the B-parameter of the communication channel (but not

on the specific channel model of the MBIOS channel) calls for analysis. Since these

LDPC code ensembles were optimized numerically (via linear programming), closed

forms for the degree distributions are not available, and we turn instead to consider

the sequences of right-regular LDPC code ensembles as suggested by Shokrollahi [40].

In this respect, the following theorem demonstrates a universality property under

BP decoding with respect to the entire set of MBIOS channels that exhibit a given

B-parameter; the following theorem shows that not only the stability condition is

common for the considered set of channels, but also a universality property exists for

this set.

Theorem 3.4 [Universality of LDPC Code Ensembles under BP Decoding

for MBIOS Channels with a Fixed B-Parameter] Consider the set of MBIOS

channels that exhibit a fixed B-parameter (B). Then:

• Every capacity-achieving sequence designed for BEC(B), universally achieves

the following fraction of capacity for the considered set of channels:

µ3(B) ,
1− B

1− h2

(

1−
√
1−B2

2

) , (3.31)

where h2 denotes the binary entropy function to the base 2. The function µ3

is monotonic decreasing in B; it gets the values ln 2 ≈ 69.3% and 100% for
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the extreme cases where B → 1 (i.e., a very noisy channel) and B → 0 (i.e., a

perfect channel), respectively.

• There exists an explicit construction of a sequence of right-regular LDPC code

ensembles for which B satisfies

B ≤ B0 ≤ B2 ≤ 1−
(

dc − 2

dc − 1

)π
2

6

e
1

dc−1
(π

2

6
−γ) (1−B) (3.32)

so B0 and B2 can be made arbitrarily close to B for large dc. Here dc denotes

the fixed degree of parity-check nodes, B0 and B2 are introduced in (3.24) and

(3.30) respectively, and γ ≈ 0.5772 denotes Euler’s constant.

Proof: Among all MBIOS channels which exhibit a given B-parameter B, the

capacity is maximized or minimized for a BSC and BEC, respectively. For a BEC,

C = 1 − B, and therefore the capacity is achieved (i.e., Rd = C) because of (3.5).

For a BSC whose crossover probability is p,

C = 1− h2(p), B =
√

4p(1− p)

and therefore

C = 1− h2

(

1−
√
1−B2

2

)

.

From (3.5), the fraction of capacity that is universally achieved for the entire set of

MBIOS channels which exhibit a given B-parameter B satisfies

1−B

1− h2

(

1−
√
1−B2

2

) ≤ Rd

C
≤ 1 (3.33)

where the upper and lower bounds are obtained, respectively, for a BEC and BSC

with a B-parameter B. Let us check the two extreme cases where B = 0 and B → 1

(referring, respectively, to an ideal channel and a very noisy channel). In the case

where B = 0, the upper and lower bounds coincide, and are equal to 1; hence, capacity

is achievable. For examining the case where B → 1, we rely on the following Taylor

series expansion of the binary entropy function around x = 1
2
(see [47, p. 575]):

h2(x) = 1− 1

2 ln 2

∞
∑

q=1

(1− 2x)2q

q(2q − 1)
, 0 ≤ x ≤ 1 (3.34)
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which enables to calculate the limit of the left-hand side in (3.33) when B → 1 (from

below). This gives

lim
B→1−

1− B

1− h2

(

1−
√
1−B2

2

)

= lim
B→1−

1− B

1
2 ln 2

∞
∑

q=1

(1−B2)q

q(2q − 1)

= lim
B→1−

1−B
(

1−B2

2 ln 2

)

= ln 2.

Moreover, it is easy to verify with (3.34) that the lower bound on Rd

C
in (3.33) forms a

monotonic decreasing function of B (where 0 ≤ B < 1); it varies from 1 to ln 2 ≈ 0.693

as the value of B is increased from zero to 1 bit per channel use. This shows that, for

the entire set of MBIOS channels which exhibit a given B-parameter B, the achievable

fraction (3.5) of capacity is at least 69.3%; this result is obtained by designing a

capacity-achieving sequence of LDPC code ensembles for a BEC whose B-parameter

matches our channel (as above). Interestingly, these two extreme values (i.e., 69.3%

and 100%) coincide with those obtained in Theorem 3.1 for the entire set of equi-

capacity MBIOS channels.

To prove the second part of the Theorem, we consider a sequence of right-regular

LDPC code ensembles with a fixed right-degree dc, and parameters of the degree

distributions that are selected according to [33, Theorem 2.3] for a BEC with channel

erasure probability B (see also [29, Section 3.15] and [32, Appendix VI]). These

sequences are capacity-achieving as we let the right degree dc tend to infinity. From

[33, Theorems 2.1 and 2.3], this sequence is constructed to achieve at least a fraction

1−ε of the capacity of the BEC under BP decoding with a right degree dc that scales

logarithmically with the reciprocal of the gap to capacity, i.e., it behaves like log 1
ε
.

For a BEC, the B-parameter of the channel is equal to the channel erasure prob-

ability. The sequence of right-regular LDPC code ensembles is designed to achieve

vanishing bit erasure probability under BP decoding for a BEC whose channel erasure

probability is set to B (since, by assumption, the parameters (α and N) of its degree

distributions are selected according to [33, Theorem 2.3]). Hence, the threshold of
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this sequence, B0, under BP decoding is greater than or equal to B. This proves the

left-hand side of inequality (3.32).

We derive in the following the upper bound on B2 in this inequality, based on [32,

Appendix VI]. More explicitly, let c(α,N) be the function (see [32, Eq. (116)])

c(α,N) , (1− α)
π
2

6 eα
(

π
2

6
−γ+ 1

2N

)

. (3.35)

for 0 < α < 1 and an integerN ≥ 1 (on the right-hand side of this equality, γ ≈ 0.5772

denotes Euler’s constant). The fraction of edges attached to degree-2 variable nodes,

for this right-regular sequence, satisfies (see [32, Eq. (117)])

α

1− c(α,N) (1−B)
< λ2 ≤

α

B
(3.36)

where α , 1
dc−1

. From (3.30), (3.35) and (3.36)

B2 ≤
1

λ′(0)ρ′(1)

=
α

λ2

≤ 1− c(α,N)(1−B)

= 1− (1− α)
π
2

6 eα
(

π
2

6
−γ+ 1

2N

)

(1−B)

≤ 1− (1− α)
π
2

6 eα
(

π
2

6
−γ
)

(1−B)

= 1−
(

dc − 2

dc − 1

)π
2

6

e
1

dc−1
(π

2

6
−γ) (1− B).

This completes the proof of (3.32). Following the first part of Theorem 3.3 and

Corollary 3.3, it follows that in the limit where dc → ∞, B2 ≤ 1 − (1 − B) = B, so

that (3.32) yields that B0 = B2 = B. Hence,

• the BP decoder achieves vanishing bit error probability for every MBIOS chan-

nel whose B-parameter is less than B,

• it is unreliable (i.e., the left-to-right message error probability is bounded away

from zero) for every MBIOS channel whose B-parameter is greater than B.

This completes the proof of Theorem 3.4.
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Remark 3.6 Another way to prove the first part of the above theorem is via use of

the approach of sub-section 3.1. In the setting of Theorem 3.4, the family of MBIOS

channels being considered is the one that exhibits the same B-parameter (regardless

of capacity). Over this family, the BSC and BEC exhibit the maximal and minimal

capacities, respectively. Following the approach of sub-section 3.1, we construct a

capacity-achieving sequence of LDPC ensembles for a BEC with erasure probability

B. The design rate of this ensemble is Rd = 1 − B. Since the BSC exhibits the

maximal capacity over this set of MBIOS channels, the universally achievable fraction

of capacity is Rd

C
, where C is the capacity of a BSC with B-parameter B. Using the

expressions for Rd and C we obtain that the universally achievable fraction of capacity

is indeed µ3(B).

Table 3.6 shows the resulting achievable fraction of capacity in (3.31) as a function

of the B-parameter of the considered set of MBIOS channels.

B µ3(B)
0 100%

0.250 85.0%

0.333 82.0%

0.500 77.5%

0.750 72.7%

1.000 69.3%

Table 3.6: Universal achievable fraction of capacity under BP decoding for the entire
set of MBIOS channels which exhibit a given B-parameter B (see Theorem 3.4).

Corollary 3.5 In the limit where dc → ∞, the BP decoder in Theorem 3.4 achieves

vanishing bit error probability for all MBIOS channels whose B-parameter is less than

B, and it is unstable for every MBIOS channel whose B-parameter is greater than B.

For finite dc, the values of B0 and B2 differ from B by at most

(1− B)

(

γ

dc − 1
+

(

π2

6
− γ

)

π2/6

(dc − 1)2

)

,

and this difference tends uniformly to zero for 0 ≤ B ≤ 1 as we let dc tend to infinity.
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Proof: The first part of this corollary, for infinite dc, is immediate from (3.32). For

finite dc, subtracting B from (3.32) yields

0 ≤ B0 −B ≤ B2 −B ≤ (1−B)



1−
(

dc − 2

dc − 1

)π
2

6

e
1

dc−1

(

π
2

6
−γ

)



 . (3.37)

Bernoulli’s inequality states that (1 + x)r ≥ 1 + rx for x > −1, r ≥ 1. Thus,

(

dc − 2

dc − 1

)π
2

6

=

(

1− 1

dc − 1

)π
2

6

≥ 1− π2/6

dc − 1
(3.38)

Moreover, for every y > 0 we have ey ≥ 1 + y, so that

e
1

dc−1

(

π
2

6
−γ

)

≥ 1 +
π2/6− γ

dc − 1
. (3.39)

Using (3.37)–(3.39) gives

0 ≤ B0 − B ≤ B2 −B ≤ (1−B)

(

1−
(

1− π2/6

dc − 1

)(

1 +
π2/6− γ

dc − 1

)

)

= (1− B)

(

γ

dc − 1
+

(

π2

6
− γ

)

π2/6

(dc − 1)2

)

.

From the above inequality it is clear that as we let dc → ∞, the differences B0 − B

and B2 − B tend to zero uniformly.

Example 3.3 For ensemble no. 2 in Table 3.4, whose design rate is Rd = 1
2
bits

per channel use, the threshold under BP decoding corresponds uniformly to the B-

parameter B = 0.4962 for every MBIOS channel. For the BEC, this corresponds

to capacity of C = 1 − B = 0.5038 bits per channel use, and therefore 99.3% of

the capacity of the BEC is achieved under BP decoding with vanishing bit erasure

probability. For the BIAWGN channel, this corresponds to channel capacity C =

0.5977 bits per channel use, and therefore this code ensemble achieves 83.4% of the

capacity for this channel. The smallest fraction of capacity under BP decoding is

achieved for the BSC. The B-parameter B = 0.4962 corresponds to C = 0.6496 for

the BSC, which means that 77.0% of capacity is achieved under BP decoding.
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Example 3.4 In this example, we consider a right-regular LDPC code ensemble,

whose design rate is Rd = 0.9 bits per channel use, and which closely approaches

the capacity of the BEC under BP decoding. To this end, we set the degree of the

parity-check nodes to be 40, and the maximal variable node degree is set to 200. The

following degree distributions are obtained by linear programming with the approach

in [29, Section 3.18]:

λ(x) =0.2638x+ 0.1259x2 + 0.1088x3 + 0.0551x5 + 0.1589x6 + 0.0278x15

+ 0.2598x16 ,

ρ(x) = x39.

From (3.24), (3.25), and (3.30)

B0 = 0.0972, B1 = 0.3185, B2 = 0.0972

and therefore, since B0 = B2, then for every MBIOS channel, this LDPC code ensem-

ble achieves vanishing bit error probability under BP decoding if the B-parameter is

below B = 0.0972, and it is unstable if the B-parameter exceeds this value. This en-

ables to calculate the threshold under BP decoding by transforming the B-parameter

to the proper channel parameter. For the BEC, this corresponds to capacity of

C = 1−B = 0.9028 bits per channel use, and therefore 99.7% of the capacity of the

BEC is asymptotically obtained under BP decoding with vanishing bit erasure prob-

ability. For the BIAWGN channel, this corresponds to channel capacity C = 0.9400

bits per channel use, and therefore this code ensemble achieves 95.7% of the capacity

for this channel. The smallest fraction of capacity under BP decoding is achieved for

the BSC, and it coincides with the lower bound µ3(B) = 92.5% as given in (3.31).

Example 3.5 We note that the approach presented in the examples above is not

necessarily the best approach for obtaining universal LDPC code ensembles. Nu-

merically optimized code ensembles may lead to better performance under BP over

some channels. To demonstrate this, we consider the following LDPC code ensemble,

obtained using [1]:

λ(x) =0.244022x+ 0.224973x2 + 0.0476526x5 + 0.225756x6 + 0.0270727x18

+ 0.173877x19 + 0.0515554x20 + 0.00509134x22 ,

ρ(x) =x8.
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This code is numerically optimized for the BIAWGN channel, with a design rate of

one-half; its threshold under BP decoding is σ = 0.966293. This corresponds to

capacity of C = 0.5084 bits per channel use. Therefore, this code achieves 98.35% of

the capacity of the BIAWGN channel. The threshold of this code under BP decoding

for the BEC computes to be B = 0.4741, which corresponds to a capacity of C =

1 − B = 0.5259 bits per channel use. I.e., this code achieves 95.08% of the capacity

for the BEC.

The ensemble above and the ensemble considered in Example 3.3 share the same

design rate. We see that the code ensemble considered here, when used over a BI-

AWGN channel, is superior to the ensemble of example 3.3, achieving a much higher

fraction of capacity. The performance of the two ensembles over the BEC, however,

is similar, with a slight advantage to the ensemble of Example 3.3, recognizing that

it was designed for a BEC.

This observation is also supported by the numerical results presented in [25]. In

that work, the authors compared how LDPC code ensembles designed for one MBIOS

channel performed over other MBIOS channels. The channels considered there were

the BEC, the BIAWGN, and the flat-fading binary input Rayleigh channel. Their

results show that the BEC can indeed be used as a so-called “surrogate” channel for

the design of good LDPC code ensembles, while recognizing that better results can be

obtained, at the expense of a higher computational load, with numerical optimization

for the desired channel.

While the approach presented here may not be the optimal approach, it is analyt-

ical and easy to compute, and thus provides insight. For instance, we have shown how

this approach can be used to obtain bounds on the thresholds of ensembles under BP

decoding over any channel, which, as exemplified in Examples 3.3 and 3.4 above, are

tight for some ensembles.

Remark 3.7 Universality results for LDPC code ensembles have been derived in

this chapter with vanishing bit error probability under BP decoding. An extension of

these results for vanishing block error probability can be made based on the results

of [15] and [19]. These works showed that for a specific MBIOS channel, an LDPC

code ensemble with λ2 = 0 has the same threshold under vanishing block and bit

error probabilities4. The threshold for vanishing block error probability, similar to

4In fact, [15] gives a stronger condition, also enabling λ2 > 0 for ensembles with certain structures.
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the threshold for vanishing bit error probability, is defined as the maximal channel

parameter for which the block error probability will converge to zero. This result is

based on the union bound, PB ≤ nPb, where PB is the block error probability, Pb is

the bit error probability, and n is the block length. The conditions on λ2 ensure that

the bit error probability decays fast enough, thus causing the block error probability

to vanish as well.

An extension of this result to universality over a multitude of MBIOS channels is

now straightforward. As an example, let us demonstrate this by extending the results

of Theorem 3.1. In the setting of this theorem, we consider a set A of MBIOS chan-

nels exhibiting the same capacity, C, and maximal B-parameter B. If the capacity-

achieving sequence of LDPC code ensembles {(n, λ, ρ)} for BEC(B) also satisfies the

above-mentioned condition on λ2, then this sequence is not only universal over this

set in terms of vanishing bit error probability, but also in terms of vanishing block

error probability.

Similarly, by imposing on λ2 the conditions from [15] and [19], the other results

of this chapter can be extended in a straight-forward manner for universality under

vanishing block error probability.
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Chapter 4

Universality for Irregular

Repeat-Accumulate Codes

Irregular Repeat-Accumulate (IRA) code ensembles were introduced in [13], [14] as a

family of code ensembles defined on graphs that have a natural linear-time encoding

algorithm. This family is, in fact, a special subclass of irregular LDPC code ensembles,

and was shown to achieve capacity under BP decoding over the BEC (see, e.g., [14],

[26], [34]).

In this Chapter we use the approach of Chapter 3 to derive universality results

for IRA code ensembles. This is made possible due to the fact that the density-

evolution approach can also be used to analyze IRA code ensembles. In Section 4.1

we introduce IRA code ensembles and present the density evolution equations for

them. Then, in Sections 4.2 and 4.3 we extend some of the results of Chapter 3 to

IRA code ensembles.

4.1 Definition of IRA code ensembles

Figure 4.1 shows a Tanner graph of an IRA code with repetition profile {f2, f3, . . . , fJ}
and right degree a, where fi ≥ 0,

∑

i fi = 1, and a is a positive integer. A Tanner

graph has two types of nodes: variable nodes, which are marked with circles, and

check nodes, which are marked with squares. In an IRA code, the variable nodes are

further divided into two types: information nodes on the left-hand side and parity

nodes on the right-hand side. For a systematic IRA code, both the information bits
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and the parity bits are submitted over the channel. When the IRA code is non-

systematic, only the parity bits are submitted; we can view this as puncturing all of

the information bits of a systematic IRA code. Another way to view non-systematic

IRA codes is to think of them as if the information bits are transmitted over a channel

with capacity zero whereas the parity bits are transmitted over the actual channel

(i.e., we can view this is a change in the channel rather than a change in the code).

An IRA code has k information nodes and r parity nodes. Each information node

is connected to a number of check nodes; the fraction of information nodes connected

to i check nodes is fi. There are r check nodes, each connected to a information

nodes. Each check node is further connected to two parity nodes (the parity node

x0 is virtual and does not constitute part of the code. We set it to 0 for the reason

explained below).

Information
nodes

A
rb

it
ra

ry
 P

er
m

u
ta

ti
o

n

Parity
nodes

Check
nodes

f2

f3

fJ

x0 ≡ 0

x1

x2

xr

Figure 4.1: Tanner graph for an IRA code with repetition profile {f2, f3, . . . , fJ} and
right degree a.

For a fixed permutation, the Tanner graph represents a systematic binary linear

code. The k information bits, (u1, u2, . . . , uk), are represented by the information

nodes, and the r parity nodes are (x1, x2, . . . , xr). The parity bits are computed

as follows. First, we set x0 ≡ 0. The information bits are repeated a number of

times, based on the repetition profile. They are then interleaved according to the

permutation, and are fed into an accumulator, initialized with x0 = 0, that outputs

51



one bit for every a input symbols. The accumulator outputs, xi, i = 1, . . . , r are given

by

xi = xi−1 +
a
∑

j=1

v(i−1)a+j, i = 1, 2, . . . , r

where vj, j = 1, 2, . . . , k are the information nodes. The design rate of a systematic

IRA code is Rs
d = a/(a +

∑

i ifi). In the non-systematic case, the information bits

are not transmitted, so the design rate of the code becomes Rns
d = a/

∑

i ifi.

The code is decoded using Belief-Propagation decoding. The nodes transfer mes-

sages over the graph edges, based on the messages received from their neighbors; the

messages represent log-likelihood ratios. An iteration consists of all variable nodes

(information and parity nodes) sending their messages over the graph edges to the

check nodes, and then the check nodes sending their messages over the graph back to

the variable nodes. In each iteration, therefore, all variable nodes and all check nodes

are activated alternately and in parallel. The initial messages sent by the variable

nodes represent the received symbols from the channel. The computation of the mes-

sages is precisely the same as for BP of standard LDPC codes (see [29, section 2.5.2]).

The same decoder is used for the systematic and non-systematic cases. In the non-

systematic case, the information bits are not transmitted over the channel, so they

are initialized with zero LLRs. As above, we can also think of the non-systematic case

as if the information bits are transmitted over a channel with zero capacity, which

leads to the same conclusion about the initialization of the decoder.

The density evolution technique enables to calculate the BER performance of

BP decoding averaged over the IRA code ensemble for MBIOS channels. In fact,

the derivation of the density evolution equations for IRA code ensembles parallels

that of standard LDPC code ensembles. Let λi be the fraction of edges between the

information and check nodes that are adjacent to an information node of degree i

(i.e., we momentarily ignore the parity nodes, and view the remaining graph as a

standard LDPC code, and define λi as usual), and further define λ(x) =
∑

i λix
i−1.

The relationship between fi and λi is given by [14]

fi =
λi/i

∑

j λj/j
.

Denote by al (ãl) the L-density of the messages transferred from the information
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nodes (parity nodes) to the check nodes at the lth iteration, and by bl (b̃l) the L-

density of the messages transferred from the check nodes to the information nodes

(parity nodes) at the lth iteration. Let a0 be the L-density of the channel observation

messages. Under these definitions, the density evolution equations for systematic IRA

code ensembles are ([30]):

al = a0 � λ(bl) (4.1)

ãl = a0 � b̃l (4.2)

bl = Γ−1
(

Γ(b̃l−1)
�2

� Γ(al−1)
�(a−1)

)

(4.3)

b̃l = Γ−1
(

Γ(b̃l−1) � Γ(al−1)
�a
)

, (4.4)

where � and � represent convolutions of distributions in the L and G domains,

respectively, and Γ and Γ−1 are the transformations from the L to the G domain and

vice versa.

In the non-systematic case, there are no received channel symbols entering the

information nodes, so equation (4.1) becomes:

al = λ(bl). (4.5)

The remaining density evolution equations for non-systematic IRA codes are the same

as for the systematic case.

Remark 4.1 Both systematic and non-systematic IRA codes have been shown to be

capacity-achieving when their degree distributions are properly chosen. However, as

shown in [26] and [34], non-systematic IRA codes are superior to systematic IRA codes

in that bounded decoding and encoding complexity per information bit for message-

passing iterative decoding over the BEC is possible for non-systematic capacity-

achieving IRA codes but not for systematic capacity-achieving IRA codes. Therefore,

in this chapter we develop results both for the systematic and non-systematic cases.

4.2 Universal Achievability for IRA Codes

We now follow in the footsteps of section 3.1 in order to obtain parallel results on

the universal achievability of IRA code ensembles over various families of MBIOS
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channels. First, let us derive a necessary and sufficient condition for convergence of a

sequence of IRA code ensembles. To this end, we apply the Bhattacharyya functional

B in (2.2) onto the density evolution equations (4.1) – (4.4). Denoting

xl , B(al),
x̃l , B(ãl)

and using the multiplicativity of the B-parameter functional for a convolution of

densities in the L-domain, (3.15), and the right-hand side of (3.12) for convolution of

densities in the G-domain, we obtain for the systematic case:

xl = B0 λ(B(bl))
x̃l = B0 B(b̃l)

B(bl) ≤ 1− (1− x̃l−1)
2(1− xl−1)

a−1

B(b̃l) ≤ 1− (1− x̃l−1)(1− xl−1)
a,

where B0 , B(a0). These equations also apply to the non-systematic case, with the

topmost equation replaced with

xl = λ(B(bl)).

Adopting the notation

B̂0 ,







B0 systematic case

1 non-systematic case,

we can address both cases jointly using

xl = B̂0λ(B(bl)).

Note that x̃0 = B(a0) = B0, and similarly x0 = B̂0. The left degree polynomial λ

is monotone increasing; therefore, we can replace B(bl) and B(b̃l) with their upper

bounds in the expressions for xl and x̃l, to obtain

xl ≤ B̂0λ
(

1− (1− x̃l−1)
2(1− xl−1)

a−1
)

(4.6)

x̃l ≤ B0 (1− (1− x̃l−1)(1− xl−1)
a) . (4.7)
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Recall that a necessary and sufficient condition for BP decoding to achieve vanishing

bit error probability is that xl → 0, x̃l → 0 (see (3.27)). Since the information nodes

represent the actual decoded message, it is, in fact, sufficient that only xl → 0 in

order to achieve vanishing bit-error probability under BP decoding. This holds both

for the systematic and non-systematic cases.

As in Section 3.1, let us now consider an arbitrary set of MBIOS channels, with L-

densities in some set A. The goal is to design an IRA code ensemble with right-degree

a and left degree distribution λ that will achieve vanishing bit error probability over

every channel in the set. Let us define B as in (3.3), i.e., B designates the maximal

B-parameter over the MBIOS channels in the set. Consider the sequences yl, ỹl

(l = 1, 2, . . .), defined by the recursion

yl = B̂ λ
(

1− (1− ỹl−1)
2(1− yl−1)

a−1
)

(4.8)

ỹl = B (1− (1− ỹl−1)(1− yl−1)
a) (4.9)

with initial conditions ỹ0 = B, y0 = B̂, and where

B̂ ,







B systematic case

1 non-systematic case.

Note that this recursion refers to the density evolution equations for an IRA code

ensemble used over a BEC (both for the systematic and non-systematic cases). Com-

paring (4.6) and (4.7) with (4.8) and (4.9), it is clear that 0 ≤ xl ≤ yl, 0 ≤ x̃l ≤ ỹl

for every l ≥ 0 and any MBIOS channel in A. Therefore, if λ and a are selected such

that yl → 0 then we will also have xl → 0 for every channel in the set A, making the

code universal over this set of MBIOS channels.

Since capacity-achieving sequences of degree distributions of IRA ensembles over

the BEC are known (see, e.g., [13], [14] for the systematic case, and [26] for the

non-systematic case), a capacity-achieving sequence of IRA code ensembles designed

for a BEC with erasure probability B will be universal under BP decoding for every

channel in the considered set of MBIOS channels. The asymptotic design rate of

this capacity-achieving sequence of IRA codes ensembles is equal to Rd = 1 − B.

Therefore, in a matter completely analogous to Section 3.1, by considering sets of

MBIOS channels that exhibit the same capacity, we obtain the following theorem:
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Theorem 4.1 [Universality of IRA Codes under BP Decoding for Equi-

Capacity MBIOS Channels] Consider a set A of MBIOS channels that exhibit a

given capacity C, and let B denote the maximal B-parameter over this set (see (3.3)).

Let {
(

n, λ(x), ρ(x) = xa−1
)

} form a capacity-achieving sequence of (systematic or

non-systematic) IRA code ensembles for BEC(B), achieving vanishing bit erasure

probability under BP decoding. Then, this sequence universally achieves vanishing

bit error probability under BP decoding for the entire set A, and the design rate of

this sequence forms a fraction that is at least 1−B
C

of the channel capacity.

Remark 4.2 As in Section 3.1, we can compute the universal achievable fraction of

capacity using this approach for specific families of equi-capacity MBIOS channels.

Comparing Theorems 4.1 and 3.1, we see that the universal achievable fraction of

capacity for IRA code ensembles is the same as that for LDPC code ensembles.

Therefore, Fig. 3.1 applies here as well.

Remark 4.3 The results above can also be extended to IRA code ensembles that

do not have a constant right degree. The analysis follows in the same vein, but the

resulting density evolution equations are somewhat more cumbersome, involving right

degree polynomials both from the node and the edge perspectives. Since IRA codes

are often designed with a constant right degree1, we have opted to provide here the

analysis only for this case. The derivation of the more general case is similar and is

left to the interested reader.

4.3 Bounds on the Bhattacharyya Parameter for

Convergence of a sequence of IRA code en-

sembles

The following theorem is analogous to Theorem 3.3 for LDPC code ensembles.

Theorem 4.2 Let {
(

n, λ(x), ρ(x) = xa−1
)

} be a sequence of (systematic or non-

systematic) IRA code ensembles with right degree a and left degree distribution λ

1Some explicit constructions of capacity-achieving check-regular IRA code ensembles for the BEC
are provided in the literature (see, e.g., [26, Theorem 2]).
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whose block lengths tend to infinity. The following universal properties hold under

BP decoding:

• This sequence achieves vanishing bit error probability under BP decoding for

every MBIOS channel whose B-parameter is less than

B0(λ, a) , sup
B∈(0,1]

{

y = B̂λ

(

1−
(

1−B

1−B(1− y)a

)2

(1− y)a−1

)

has no solution y in (0, 1].

} (4.10)

• This sequence does not achieve reliable communications over any MBIOS chan-

nels whose B-parameter is greater than

B1(λ, a) , sup
B∈(0,1]

{

z = B̂λ





√

1−
(

1−B2

1− B2(1− z2)a

)2

(1− z2)a−1





has no solution z in (0, 1],

}

(4.11)

where

B̂ ,







B systematic case

1 non-systematic case.

Proof: To prove the first part of the theorem, consider the recursion given by (4.6)

and (4.7). Let B ≥ B0; clearly,

xl ≤ B̂λ
(

1− (1− x̃l−1)
2(1− xl−1)

a−1
)

,

x̃l ≤ B (1− (1− x̃l−1)(1− xl−1)
a) .

Observe that 0 ≤ xl ≤ yl and 0 ≤ x̃l ≤ ỹl where yl and ỹl are defined according

to (4.8) and (4.9), with B denoting any B-parameter greater than or equal to B0 and

initial conditions ỹ0 = B, y0 = B̂. Thus, if {yl, ỹl} converge to 0 then also xl → 0

and the sequence of IRA code ensembles converges for any MBIOS channel with B-

parameter less than or equal to B. Therefore, if we denote by B0(λ, a) the maximal

B-parameter such that the recursion defined by (4.8) and (4.9) with initial condition
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ỹ0 = B0(λ, a), y0 = B̂0(λ, a) converges to 0, then the sequence of IRA code ensembles

{(n, λ(x), ρ(x) = xa−1)} will converge for any MBIOS channel whose B-parameter is

less than or equal to B0(λ, a).

The expression in (4.10) for B0(λ, a) stems from a fixed-point characterization

of (4.8) and (4.9), as derived in appendix E. This completes the proof of the first

part of the theorem.

To prove the second part, we rely on the inequality (3.13). Applying the B-

parameter functional onto (4.3) and (4.4) and using (3.13) we obtain

B(bl) ≥
√

1− (1− x̃2
l−1)

2(1− x2
l−1)

a−1,

B(b̃l) ≥
√

1− (1− x̃2
l−1)(1− x2

l−1)
a,

where, as above, we have defined xl , B(al) and x̃l , B(ãl). Applying the B-

parameter functional onto (4.1) and (4.2) (and (4.5) for the non-systematic case)

and using these inequalities, we obtain:

xl ≥ B̂0λ
(
√

1− (1− x̃2
l−1)

2(1− x2
l−1)

a−1
)

,

x̃l ≥ B0

√

1− (1− x̃2
l−1)(1− x2

l−1)
a,

where B0 = B(a0). It therefore follows that if the sequences {xl, x̃l} tend asymptoti-

cally to zero, then the sequences

zl = B̂0λ
(
√

1− (1− z̃2l−1)
2(1− z2l−1)

a−1
)

, (4.12)

z̃l = B0

√

1− (1− z̃2l−1)(1− z2l−1)
a, (4.13)

with initial value z̃0 = B0 and z0 = B̂0 should also tend to zero. Recall that xl → 0

forms a necessary and sufficient condition for achieving vanishing bit error probability

under BP as we let the number of iterations grow. Therefore, the convergence of

{zl, z̃l} to zero forms a necessary condition for the sequence of IRA code ensembles

to achieve vanishing bit error probability under BP decoding. Hence, if {zl, z̃l} does

not converge to zero, then xl is bounded away from zero. The expression in (4.11) for

B1(λ, a) stems from a fixed-point characterization of (4.12) and (4.13); its derivation

is completely analogous to the derivation in appendix E, and is thus omitted here.

This completes the proof of the theorem.
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Corollary 4.1 Let {(n, λ(x), ρ(x) = xa−1)} be a sequence of systematic IRA code

ensembles whose block lengths tend to infinity. Then, the message error probability

stays bounded away from zero under BP decoding for every MBIOS channel whose

B-parameter is greater than

B2(λ, a) , min

{

B1(λ, a),
−(1 + λ2(a− 1)) +

√

(1 + λ2(a− 1))2 + 4(1 + λ2(a+ 1))

2λ2(a+ 1)
,

√

1−R2
d

}

(4.14)

where B1 is introduced in (4.11), and Rd designates the design rate.

Proof: If the parameter B is greater than B1(λ, a) the statement follows from the

second part of Theorem 4.2. The stability condition for systematic IRA ensembles,

which is another necessary condition for convergence, is given by

λ2 <
B−1(B−1 − 1)

a+ 1 +B−1(a− 1)
,

as proved in [30, Theorem 1]. Rearranging this inequality yields that a necessary

condition for convergence is that

(a+ 1)λ2B
2 + (1 + λ2(a− 1))B − 1 < 0. (4.15)

The left-hand-side is a convex quadratic polynomial in B with zeros

Z1,2 =
−(1 + λ2(a− 1))±

√

(1 + λ2(a− 1))2 + 4(1 + λ2(a+ 1))

2λ2(a+ 1)

Therefore, the condition (4.15) is equivalent to Z1 < B < Z2, where Z1 is the zero with

the negative sign in front of the square root, and Z2 is the other zero; in particular,

Z1 < 0 and Z2 > 0. Since B > 0 by definition, an equivalent condition is that B < Z2.

Therefore, the stability condition can be written as

B <
−(1 + λ2(a− 1)) +

√

(1 + λ2(a− 1))2 + 4(1 + λ2(a+ 1))

2λ2(a+ 1)
,

and when this condition is violated, the message error probability stays bounded away

from zero. Finally, the case where B >
√

1−R2
d is the same as in Corollary 3.3.
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Chapter 5

Universality under

Maximum-Likelihood Decoding

In Chapter 3 we considered the universality of LDPC code ensembles under BP decod-

ing. Though maximum-likelihood (ML) decoding is in general prohibitively complex,

we show in the following that universality can be achieved under ML decoding for the

entire set of equi-capacity MBIOS channels. The universality results proved in Chap-

ter 3 under BP decoding automatically hold under ML decoding, but the universality

results that are proved in this chapter under ML decoding are stronger in the sense

that capacity can be approached arbitrarily closely for the entire set of channels un-

der consideration with vanishing block error probability. In Section 5.1 we show that

Gallager’s regular LDPC code ensembles can be made universal under ML decoding.

In Section 5.2 we show that randomly punctured regular LDPC code ensembles can

also be made universal.

5.1 Universality of Gallager’s Regular LDPC Code

Ensembles

In his monograph, Gallager introduced ensembles of regular LDPC codes, and also

considered their performance under ML decoding via their distance properties (see

[8, Chapters 2 and 3]). In the following, we rely on [33], and demonstrate that a

proper selection of Gallager’s regular LDPC code ensembles can be made to approach
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arbitrarily closely the channel capacity for the entire set of equi-capacity MBIOS

channels with vanishing block error probability.

Theorem 5.1 [Universality of Regular LDPC Code Ensembles under ML

Decoding for Equi-Capacity MBIOS Channels] Under ML decoding, Gallager’s

regular LDPC code ensembles can be made universal for the set A of MBIOS channels

that exhibit a given capacity C. More explicitly, for any ε > 0 (that can be made

arbitrarily small), there exists a sequence of these code ensembles whose design rate

forms at least a fraction 1 − ε of the channel capacity with vanishing block error

probability for the entire set A. Moreover, the asymptotic parity-check density of

this sequence scales like log 1
ε
.

Proof: The proof of the first part of this theorem follows along the lines of the proof of

[33, Theorem 2.2] by noticing that the way where the capacity-approaching sequence

of regular LDPC code ensembles is determined only depends on the channel capacity.

This therefore makes this sequence universal for the entire set of equi-capacity MBIOS

channels A, and it asymptotically achieves (as we let the block length of this sequence

tend to infinity) vanishing block error probability under ML decoding with a design

rate that is at least a fraction 1− ε of the channel capacity. The asymptotic parity-

check density scales like log 1
ε
, which is a consequence of the upper and lower bounds

on the parity-check density in [33, Theorem 2.2] and [33, Theorem 2.1], respectively,

which both scale like log 1
ε
.

Example 5.1 In order to exemplify Theorem 5.1, consider lower bounds on the error

exponents of some expurgated Gallager’s regular LDPC code ensembles under ML

decoding. Figure 5.1 shows lower bounds on the error exponent for several expurgated

Gallager’s LDPC code ensembles of length n = 100000 and design rate 1
2
. The

expurgation followed the approach in [8, Chapter 2]. The bounds were computed for

three MBIOS channels of different capacities. For the BSC and BEC, the Shulman-

Feder bound was used (see [35, section 4.4.1]). For the BIAWGN channel, the error

exponent was computed based on [44, Theorem 3.1]. The distance spectra of the

ensembles were computed according to the asymptotic results in [8, Chapter 2]. It

is noted that for this block length, the asymptotic results are very close to the exact

distance spectra (see [43]). It is evident from Figure 5.1 that as we increase the degrees
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of the variable and check nodes while maintaining a constant design rate, the point

where the error exponent vanishes gets closer to the channel capacity, regardless

of the MBIOS channel in question. Thus, this demonstrates that this sequence of

ensembles becomes universal under maximum-likelihood decoding for equi-capacity

MBIOS channels.

For short block lengths, we compare the lower bound for the expurgated (6, 12)

ensemble and block length n = 1008 computed using the exact distance spectrum [43]

and the upper bound from [8, Chapter 2]. Figure 5.2 shows the comparison. Clearly,

the vanishing point of the error exponent is closer to capacity when computed using

the exact distance spectrum. The calculation of the lower bound on the error exponent

that uses the upper bound on the distance spectrum provides, however, a reasonable

estimate of the lower bound on the error exponent that is calculated via the exact

distance spectrum.
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Figure 5.1: Lower bounds on the error exponent for expurgated Gallager’s LDPC code ensembles on various MBIOS
channels. The results were computed for block length n = 100000, and for codes with constant design rate 1/2 and
increasing variable and check node degrees.
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Figure 5.2: A comparison of the lower bounds on the error exponent of some expurgated Gallager’s LDPC code
ensembles for various MBIOS channels. The results were computed for the expurgated (6, 12) ensemble with block
length n = 1008, using both the exact distance spectrum as found in [43] (left-hand plot) and the upper bound from
[8, Chapter 2] (right-hand plot).
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5.2 Universality of Punctured Regular LDPC Code

Ensembles

The performance of punctured LDPC code ensembles under BP decoding was ad-

dressed extensively (see, e.g., in [10] and [27]). The potential performance of punc-

tured LDPC code ensembles under ML decoding was studied, e.g., in [12] and [37].

These works show the remarkable performance of some punctured LDPC code en-

sembles for various channel models. In the following, we rely on [12], and consider

the universality of some randomly punctured regular LDPC code ensembles under

ML decoding over the set of equi-capacity MBIOS channels.

Consider a linear block code, which will be referred to as a mother code. By

introducing the option of possibly puncturing various fractions of the code bits of

the mother code, one generates a set of new linear block codes with some higher

rates. The advantage of puncturing lies in the flexibility of the selected rates of the

punctured codes, and in the ability to use the same decoder as for the mother code to

decode all of these punctured codes. Specifically, by puncturing nq bits of a mother

code of length n and rate R, one obtains a punctured code of length n(1−q) and rate

at most R
1−q

. A lower rate occurs whenever at least two different codewords of the

mother code are mapped to the same codeword after puncturing; this phenomenon is

called rate reduction (see [12, Section III]).

In [12], the authors analyze the performance of punctured LDPC code ensembles

under ML decoding. Specifically, they consider puncturing Gallager’s ensemble of

regular (n, j, k) LDPC codes, and provide conditions on the original ensemble (before

puncturing) for asymptotically obtaining zero rate reduction with probability 1 as we

let the block length n tend to infinity. Consider an ensemble whose design rate is Rd,

then in the case where there is no rate reduction due to puncturing, the design rate

of the punctured ensemble is Rd

1−q
. It is also shown in [12] that under the condition

of zero rate reduction, if the original sequence of code ensembles achieves a fraction

1 − ε of capacity (note that Theorem 5.1 ensures the existence of such a sequence),

then so does the sequence of punctured code ensembles. This leads to the following

theorem:

Theorem 5.2 [Universality of Punctured Regular LDPC Code Ensembles
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under ML Decoding for Equi-Capacity MBIOS Channels] Under ML decod-

ing, punctured regular LDPC code ensembles can be made universal for the set of

MBIOS channels that exhibit a given capacity. More explicitly, let ε > 0 (which can

be set arbitrarily close to zero), and consider a sequence of regular (n, j, k) LDPC

code ensembles whose design rate Rd forms a fraction of at least 1− ε of the capacity

C. Assume that this sequence achieves vanishing block error probability under ML

decoding for the entire set of MBIOS channels A which exhibit a channel capacity

C. Random puncturing of a fraction q of code bits from this sequence of ensembles

produces a new sequence of punctured code ensembles with any desired design rate

R′
d > Rd with the following properties:

• It achieves vanishing block error probability under ML decoding over the entire

set of equi-capacity MBIOS channels with capacity C ′ = C
1−q

.

• It achieves a fraction of at least 1− ε of the capacity C ′.

Proof: From Theorem 5.1, there exists a sequence of regular LDPC code ensembles

that universally achieves, under ML decoding, a fraction 1− ε of the channel capac-

ity with vanishing block error probability for the entire set A. The idea is to first

construct such a sequence with a low enough design rate, and then increase the de-

sign rate via (random) puncturing to obtain the new universal code ensemble. More

specifically, according to [12, Theorem 1], if the design rate of the mother ensemble is

low enough, then the rate reduction due to puncturing is zero. Note that the proof of

this theorem is based solely on the distance properties of the original (mother) code

ensemble and the desired design rate. Since the proofs of [12, Theorems 2 and 3] rely

only on the capacity of the MBIOS channel and the condition for zero rate reduction,

this implies that the new sequence of punctured LDPC code ensembles has vanishing

block error probability under ML decoding over all MBIOS channels with capacity

C ′ = C
1−q

. Note that since

R′
d

1− ε
=

Rd

(1− ε)(1− q)
≥ C

1− q
= C ′

then this new sequence of punctured LDPC code ensembles has a design rate that is

at least a fraction 1− ε of C ′.
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Chapter 6

Summary and Outlook

6.1 Contribution of this Thesis

In this thesis, we have considered the universality of LDPC code ensembles under both

BP and ML decoding over families of MBIOS channels. We have focused on obtaining

closed-form analytical results, even though better performance can be obtained by

numerical design of LDPC code ensembles (see, e.g. [4], [7], [25], [31] and also the

discussion in Example 3.5 of this thesis).

Under BP decoding we derived an analytical method to design LDPC code en-

sembles that achieve vanishing bit error probability over every channel in a family of

MBIOS channels. This method is based on a necessary and sufficient condition for an

LDPC code ensemble to achieve vanishing bit error probability under BP decoding;

this condition is a consequence of applying the B functional (2.2) to the density evolu-

tion equation (3.1). We derived an expression for the universal achievable fraction of

capacity over the family obtained using this method, ans applied it to several families

of MBIOS channels, such as the family of equi-capacity MBIOS channels. Thus, we

showed that at least 69.3% of capacity is uniformly achievable for these families.

We also derived a necessary condition for a sequence of LDPC code ensembles

to universally achieve vanishing bit error probability under BP decoding over an

arbitrary set of MBIOS channels. This condition forms the basis for a linear pro-

gramming universal upper bound on the achievable rate of LDPC code ensembles

over a set of equi-capacity MBIOS channels. This bound can also be translated into

a lower bound on the achievable gap to capacity. Additionally, by considering sets of
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MBIOS channels that also include the BEC, we were able to improve the bound in

some cases.

The analytical design method and the necessary condition above were then used

to derive universal conditions for reliable communication under BP decoding. In par-

ticular, we showed that an LDPC code ensemble will achieve vanishing bit error prob-

ability under BP decoding when used over any MBIOS channel whose B-parameter

is less than a certain value, and will achieve a positive bit error probability when

the B-parameter exceeds a certain (other) value. These bounds support [31, Conjec-

ture 1], yet due to the gap between the two bounds, they do not prove it. Although

a form of these bounds was previously published in [46], they were independently

derived here in an easy-to-compute closed form, and the lower bound on the bit error

probability when the B-parameter exceeds the bound in (3.30) is new. We com-

puted these bounds for several LDPC code ensembles, both regular and irregular,

and showed that in some cases they coincide. We also showed that these bounds can

be translated into bounds on the threshold under BP decoding, and compared them

to previously published bounds based on an information combining approach [41]. In

some cases, our bounds were more informative. In addition to analyzing the numer-

ically designed degree distributions, we also computed the bounds for the family of

analytically designed capacity-approaching right-regular degree distributions on the

BEC in [29, Example 3.88], and showed that these LDPC code ensembles can achieve

universality over the set of MBIOS channels with the same B-parameter. Although

numerically designed LDPC code ensembles can achieve better performance than the

codes designed using our approach (see, e.g., [7], [25], and [31]), our approach is

analytical, easily computable, and guarantees universality. The universality results

that were derived for vanishing bit error probability can be extended to universally

achieving vanishing block error probability subject to the conditions on the degree

distributions in [15] and [19].

The universality results of LDPC codes under BP decoding can be extended to

other families of codes defined on graphs that can be analyzed using density evolu-

tion type equations. We demonstrated this by considering the family of IRA code

ensembles ([13], [14]). As for LDPC code ensembles, we derived an analytical method

to design IRA code ensembles that will universally achieve vanishing bit error prob-

ability over a set of MBIOS channels, and determined the universally achievable
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fraction of capacity obtained using this method. Then, we derived conditions on the

B-parameter for reliable communication under BP decoding that are analogous to the

ones for LDPC code ensembles.

Universality under ML decoding was also considered. We used the results of [33] to

show that Gallager’s regular LDPC code ensembles can be made universally capacity

achieving over the set of equi-capacity MBIOS channels (in the sense of vanishing

block error probability). It is noted that the ML decoding results are an improvement

over the BP decoding case, where the universally achievable fraction of capacity over

the family of equi-capacity MBIOS channels depended on the channel capacity and

could be as low as 69.3%. We exemplified this result for a particular sequence of

expurgated regular LDPC code ensembles by showing that as the right degree is

increased, all the while maintaining the same design rate, the point where the error

exponent vanishes approaches capacity for different MBIOS channels. Finally, we

used [12] to extend this result to randomly punctured LDPC code ensembles as well.

The results in this research work are also presented in [36], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).

6.2 Topics for Future Research

In this section, we propose some directions for future research:

• The LP bounds derived in Section 3 are not tight in general, since the univer-

sal achievable gap to capacity does not always decrease for increasing values of

dc (contrary to the expected experimental behavior of optimized LDPC code

ensembles under BP decoding). Finding some new constraints in these opti-

mization problems may enhance the tightness of these bounds. Moreover, our

bounds refer to fixed right-degree ensembles (note that typically LDPC code

ensembles are designed to be right-regular or almost right-regular). Extending

the bounds to the case where the parity-check degree is not fixed is also of

interest.

• The Bhattacharyya parameter (B-parameter) for equi-capacity MBIOS chan-

nels can vary in a large range. As a result, the universal LDPC code ensembles

designed in this work achieve, e.g., 75% of capacity if the channel capacity is 0.5

69



bit per channel use (see Fig. 3.1). Nonetheless, the fact that these ensembles

are provably universal and are designed by simple analytical tools is important.

Since, in practice, numerical optimizations enable to design LDPC code ensem-

bles which universally achieve a larger fraction of capacity for some classes of

equi-capacity MBIOS channels (see [31]), further analysis in this direction is of

interest.

• The ideas of universality in this paper can be developed to consider other sets of

communication channels (for example, the universality of LDPC code ensembles

for the set of MBIOS channels with the same uncoded bit error probability is

considered in Appendix F).

• The approach for universality in Section 3 of this paper stems on the asymptotic

analysis of BP decoding via density evolution; it has resulted in an analytical

design of a universal decoder that is based on code design for a BEC. This

universal LDPC code ensemble converges but does not achieve full capacity

when used over other channels in the family it was designed for, as Fig. 3.1

demonstrates. That said, one should not infer that this is the penalty of uni-

versality, as these results are merely an artifact of the approach presented here.

Numerical evidence in [7] and [25] suggests that better results are possible (see

also Example 3.5 in this paper). One possible approach to obtain better an-

alytical results may rely on analytic properties of GEXIT charts [21], instead

of the suggested approach in this paper that relies on density evolution for the

BEC as a starting point for the analysis. Another possible approach may be

to investigate universal LDPC code ensemble design under other suboptimal

decoding methods for LDPC codes (e.g., a study of the universality of LDPC

code ensembles under LP decoding).

• Although ML decoding is prohibitively complex for codes of large blocklength,

the fact that (regular) LDPC code ensembles are capacity-achieving under ML

decoding for the set of equi-capacity MBIOS channels is interesting (see Theo-

rems 5.1 and 5.2). As a continuation of the previous item, it would be interesting

to investigate the tradeoff between performance and complexity for some near-

ML decoding algorithms that provide a better tradeoff between performance

and complexity than the ML decoding algorithm.
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Appendix A

Proof of Lemma 3.1

In the following, we prove the monotonicity of µ1 (see (3.7)) over the interval [0, 1),

and then calculate the limits of µ1(C) as the channel capacity C tends either to zero

or 1 bit per channel use.

Let x , h−1
2 (1− C), then we get from (3.7) that

µ1(C) =
1−

√

4x(1− x)

1− h2(x)
.

We note that µ1, as a function of x, monotonically decreases when 0 ≤ x ≤ 1
2
. This is

readily seen by taking the derivative of µ1 with respect to x, which remains negative

when 0 ≤ x ≤ 1
2
. The substitution of the Taylor series expansion of the binary

entropy function around x = 1
2
(see [47, p. 575])

h2(x) = 1− 1

2 ln 2

∞
∑

q=1

(1− 2x)2q

q(2q − 1)
, 0 ≤ x ≤ 1
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in the denominator gives

µ1(C) =
1−

√

1− (1− 2x)2

1
2 ln 2

∞
∑

q=1

(1− 2x)2q

q(2q − 1)

=
(1− 2x)2

1 +
√

1− (1− 2x)2
2 ln 2

∞
∑

q=1

(1− 2x)2q

q(2q − 1)

=
2 ln 2

1 +
√

1− (1− 2x)2
1

∞
∑

q=1

(1− 2x)2(q−1)

q(2q − 1)

.

If C is increased from 0 to 1, then x, which was defined above as x , h−1
2 (1 − C),

decreases from 1
2
to 0 and therefore µ1(C) is increasing with C, and

lim
C→1

µ1(C) = 1.

On the other hand, the limit of µ1(C) when we let the capacity tend to zero is equal

to

lim
C→0

µ1(C) = lim
x→ 1

2

2 ln 2

1 +
√

1− (1− 2x)2
1

∞
∑

q=1

(1− 2x)2(q−1)

q(2q − 1)

= ln 2 lim
x→ 1

2

1
∞
∑

q=1

(1− 2x)2(q−1)

q(2q − 1)

= ln 2.

This completes the proof of Lemma 3.1.
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Appendix B

Extension of (3.10) for general

LDPC code ensembles

The condition in (3.10) is stated for a right-regular channel. For a general right-degree

distribution

ρ(x) =
∑

i

ρix
i−1.

This condition can be readily extended to the case at hand, although it takes a more

involved form. As in (3.14) we begin with (3.1) to obtain

xl , B(al)

(a)
= B(a0)B

(

λ

(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(b)
= B(a0)λ

(

B
(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(c)
= B(a0)λ

(

∑

i

ρiB
(

a�i−1
l−1

)

)

(d)

≥ B(a0)λ
(

∑

i

ρi

√

1−
(

1− B(al−1)2
)i−1

)

, (B.1)

where equality (a) follows from the recursive density evolution equation in (3.1) and

the multiplicativity of the B-functional over convolution in the L-domain (3.15), equal-

ities (b) and (c) follow from the linearity of the convolution operator and of the
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B-functional (see (3.16)), and inequality (d) follows from (3.13).

The extension of (3.10) for a general LDPC code ensemble readily follows by

replacing zl in (3.17) with

z′l = B(a0)λ
(

∑

i

ρi

√

1−
(

1− B(z′l−1)
2
)i−1

)

.

Thus, the extended (3.10) assumes the form

B λ

(

∑

i

ρi

√

1−
(

1− x2
)i−1

)

≤ x, ∀x ∈ (0, B]. (B.2)
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Appendix C

Proof of Lemma 3.3

Let us consider the sequence

zl = z0λ
(

√

1− ρ(1− z2l−1)
)

, l = 1, 2, . . .

for z0 < B1(λ, ρ) where

B1(λ, ρ) , inf
x∈(0,1]

x

λ
(√

1− ρ(1− x2)
)

is introduced in (3.25). By substituting x = 1 on the right-hand side above, it follows

readily that B1(λ, ρ) ≤ 1 and therefore z0 < 1. In the following, it is proved by

induction that the sequence is monotonic decreasing and bounded between 0 and 1:

let us assume that 0 ≤ zl−1 < 1 holds for a specific l ≥ 1, then

zl = z0λ
(

√

1− ρ(1− z2l−1)
)

≤ B1(λ, ρ) λ
(

√

1− ρ(1− z2l−1)
)

≤ zl−1

where the last inequality follows from the definition of B1 and the above assump-

tion for zl−1. It therefore follows by induction that the sequence {zl} is monotonic

decreasing and bounded between 0 and 1, hence it is a convergent sequence. Let

z∗ ∈ [0, 1] denote the limit of this sequence, then due to the continuity of λ and ρ

over the interval [0, 1], it follows (by letting l tend to infinity in the recursive equation

for the sequence {zl}) that the limit z = z∗ satisfies the equation

z = z0λ
(
√

1− ρ(1− z2)
)

.
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For z ∈ (0, 1]

z0 < B1 ≤
z

λ
(√

1− ρ(1− z2)
)

⇒ z0λ
(
√

1− ρ(1− z2)
)

< z

and therefore the limit z should be necessarily zero for the case where the initial value

z0 is less than B1(λ, ρ).

For the proof of the second part of the lemma, we consider the case where

B1(λ, ρ) < z0 ≤ 1. From the way B1 is defined in (3.25), it follows that the set

Fz0 ,

{

x ∈ (0, 1] :
x

λ
(√

1− ρ(1− x2)
) ≤ z0

}

(C.1)

is non-empty. Let x(z0) designate the maximal value of this set (note that 0 < x(z0) ≤
1).

Let us define the function g(u, v) , uλ
(√

1− ρ(1− v2)
)

over the square {(u, v) :
0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. Note that the function g is monotonic increasing in its two

variables; the monotonicity in u is due to its linearity in u and since λ is non-negative,

and the monotonicity in v is due to the monotonicity of the degree distribution λ and

ρ over the interval [0, 1] and since they are mapped to the same interval. We show

in the following, by induction, that zl ∈ [x(z0), z0] for every integer l ≥ 0. For l = 0,

the inequality x(z0) ≤ z0 ≤ 1 holds since for x ∈ (z0, 1]

x

λ
(√

1− ρ(1− x2)
) ≥ x > z0.

Let us assume that zl−1 ∈ [x(z0), z0] for a specific l ≥ 1 then

zl = g(z0, zl−1)
(a)

≥ g(z0, x(z0))

= z0λ
(
√

1− ρ(1− x(z0)2)
)

(b)

≥ x(z0)

where inequality (a) is due to the monotonicity of g, and inequality (b) follows from

the way x(z0) is defined above (or, more generally, this inequality holds for every

76



x ∈ FB where the set Fz0 is defined in (C.1)). Also, from the above assumption for

zl−1

zl = g(z0, zl−1)

≤ g(z0, 1)

= z0

and therefore, it follows by induction that

x(z0) ≤ zl ≤ z0, l = 0, 1, . . .

and the sequence {zl} is bounded away from zero (since x(z0) > 0). This completes

the proof of Lemma 3.3.
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Appendix D

Proof of the Inequality in

Remark 3.5

From the definitions of B0 and B1 in (3.24) and (3.25), respectively, in order to prove

that B1(λ, ρ) ≥ B0(λ, ρ), it is sufficient to show that

λ
(
√

1− ρ(1− x2)
)

≤ λ
(

1− ρ(1− x)
)

, ∀ x ∈ [0, 1].

Since λ(0) = 0, λ(1) = 1, and λ is monotonic increasing over the interval [0, 1], then

this inequality is equivalent to

√

1− ρ(1− x2) ≤ 1− ρ(1− x), ∀ x ∈ [0, 1].

By squaring and rearranging terms, we need to prove that

h(x) , ρ(1− x2) + ρ2(1− x)− 2ρ(1− x) ≥ 0, ∀ x ∈ [0, 1].

Note that h is zero at the endpoints of this interval (since ρ(0) = 0 and ρ(1) = 1).

From the assumption of right-regularity then ρ(x) = xdc−1. Let γ , dc − 1 (where

γ ≥ 1), then

h(x) = (1− x2)γ + (1− x)2γ − 2(1− x)γ

= 2(1− x)γ
[

(1 + x)γ + (1− x)γ

2
− 1

]

≥ 0

where the last transition follows from the non-negativity of both terms over the in-

terval x ∈ [0, 1] (the second term is non-negative due to the convexity of the function
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f(x) = xγ for x ≥ 0 (note that γ ≥ 1)). This completes the proof of the inequality in

Remark 3.5.
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Appendix E

Fixed Point Analysis of (4.8)

and (4.9)

At a fixed point of (4.8) and (4.9), yl = yl−1 ≡ y and ỹl = ỹl−1 ≡ ỹ. Rearranging (4.9)

at the fixed point yields

1− ỹ =
1−B

1−B(1− y)a
.

Plugging this into (4.8) yields the fixed-point equation

y = B̂λ

(

1−
(

1−B

1−B(1− y)a

)2

(1− y)a−1

)

. (E.1)

Convergence to zero is obtained if and only if the equation above has no solution y

in (0, 1]. Denote

f(y,B) , 1−
(

1−B

1−B(1− y)a

)2

(1− y)a−1,

so that (E.1) becomes y = B̂λ(f(y,B)). This is a non-decreasing function in both y

and B, since

∂f(y,B)

∂B
=

2(1− B) (1− (1− y)a) (1− y)a−1

(1−B(1− y)a)3
≥ 0,

∂f(y,B)

∂y
=

(1−B)2 (a− 1 + B(a+ 1)(1− y)a) (1− y)a−2

(1−B(1− y)a)3
≥ 0,

where the inequalities are due to 0 ≤ y,B ≤ 1 and a ≥ 1. One solution of (E.1) is

y = 0. If this is the only solution y in [0, 1] for some B, then, since λ(·) is monotone

increasing, this will also be the only solution of (E.1) for any smaller B.
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Appendix F

Universality for MBIOS channels

with the same uncoded bit error

probability

In this appendix we show how the approach of Section 3.1 can be used for the set A
of MBIOS channels that exhibit the same uncoded bit probability of error, E .

It readily follows from (2.4) that over A, the BSC exhibits the maximal B-

parameter and the BEC exhibits the minimal B-parameter. Therefore, here B in (3.3)

assumes the form

B =
√

4E(1− E).

We design a capacity-achieving sequence of LDPC code ensembles for a BEC with

erasure probability B, so that the design rate of this ensemble is Rd = 1 − B. Over

this set, the channel with the maximal capacity is the BSC, with C = 1 − h2(E).
Therefore, the universally achievable fraction of capacity over this set following the

approach of Section 3.1 is given by

µ4(E) ,
1− 2

√

E(1− E)
1− h2(E)

.

Let us analyze the achievable fraction of capacity for the extreme cases of a noise-

less channel (E = 0 or E = 1, where in the latter case we simply flip the detections)

and very noisy channel (E → 0.5). Clearly, when E = 0 or E = 1, we have µ4 = 1,
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meaning that capacity is achievable. When E → 0.5, we have

lim
E→0.5

1− 2
√

E(1− E)
1− h2(E)

= ln 2 lim
E→0.5

1− 2E
√

E(1− E) ln
(

1−E
E
)

= ln 2 lim
E→0.5

−2
(

−2+(1−2E) ln((1−E)/E)
2
√

E(1−E)

)

= ln 2.

Thus, over this set of channels, the extreme values of µ4(E) are 1 for a noiseless channel
and 69.3% for a very noisy channel. We note that this coincides with the extreme

values of the achievable fraction of capacity for the two other families considered in

Chapter 3 of this thesis: the family of equi-capacity MBIOS channels and the family

of equi-B-parameter MBIOS channels (see Theorems 3.1 and 3.4).
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LDPC קודי של אוניברסליים אנסמבלים על

זיכרון וחסרי סימטריים ערוצים מעל

שובל בועז



LDPC קודי של אוניברסליים אנסמבלים על

זיכרון וחסרי סימטריים ערוצים מעל

מחקר על חיבור

תואר לקבלת הדרישות של חלקי מילוי לשם

למדעים מגיסטר

חשמל הנדסת

שובל בועז

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2011 פברואר חיפה תשע"א שבט



ששון יגאל פרופ' בהדרכת נעשה מחקר על חיבור

חשמל להנדסת בפקולטה

תודה הכרת

לא זו עבודה שבלעדיו ששון, יגאל פרופ' שלי, למנחה להודות ברצוני ראשית,

בפז. יסולאו לא המחקר במהלך וסיועו תמיכתו מתאפשרת. היתה
שתמיד כך ועל המחקר לאורך בי תמיכתם על למשפחתי להודות גם ברצוני

עבורי. שם הם

בהשתלמותי הנדיבה הכספית התמיכה על לטכניון מודה אני



למשפחתי.



תקציר

הערוץ לקיבול להתקרב יכולתם עקב וגובר הולך LDPC בקודי השימוש האחרונות, בשנים

אלגוריתמים נמוכה. סיבוכיות בעלי אופטימליים תת איטרטיביים פענוח אלגוריתמי תחת גם

קודקודים, מהווים הזוגיות ובדיקות הקוד משתני בו הקוד, של גרפי ייצוג על מבוססים אלה

הפענוח, בתהליך השונות. הזוגיות בבדיקות המשתתפים הקוד משתני את מייצגות בגרף והקשתות

ההודעות בסיס על המחושבות הגרף, קשתות גבי על לזה זה הודעות מעבירים הקודקודים

המשתנה. ערך לגבי סמך'' ''רמת מהוות אלה הודעות מהערוץ. הקלט וכן שהתקבלו הקודמות

קודי צביר עבור אסימפטוטי באופן להערכה ניתנים האיטרטיבי הפענוח אלגוריתם ביצועי

כיצד מחשבים אנו זו, בשיטה .density evolution הנקראת נומרית שיטה באמצעות LDPC

אינסופי. קוד אורך עבור האיטרטיבי, הפענוח אלגוריתם במהלך העוברות ההודעות פילוג מתעדכן

מתאפסת שגיאה להסתברות אסימפטוטי באופן מביא האיטרטיבי הפענוח האם להסיק ניתן כך,

קודים בתכן המטרה .LDPC קודי של צבירים בתכן מרכזי כלי גם מהווה זו שיטה לא. או לביט

שגיאות ללא תקשורת יבטיח אסימפטוטי באופן אשר LDPC קודי צביר לתכנן היא זו בשיטה

ערוץ פרמטרי עבור מירבי קצב השגת של במובן אופטימלי הינו ואשר מסוים, ערוץ מודל עבור

density ה־ משיטת הנגזרות מהתוצאות אחת הקוד. מבנה על אחרים אילוצים או מסוימים

שגיאה הסתברות ישיג מסוים שצביר לכך הכרחי תנאי שהינו היציבות תנאי הינה evolution

פי על אף מסוים. ערוץ מודל עבור איטרטיבי פענוח תחת אסימפטוטי באופן לביט מתאפסת

כללי באופן ,LDPC קודי של צבירים של נומרי תכן מאפשרת density evolution ה־ ששיטת

עבור קודים תכן הינו דופן יוצא מקרה כאלה. צבירים של אנליטי תכן מאפשרת איננה היא

למשוואה לפישוט ניתנות density evolution ה־ משוואות עבורו שכן הבינארי, המחיקה ערוץ

קודי של צבירים לתכן אנליטיות שיטות פותחו המחיקה ערוץ עבור ואכן, בודדת. מימדית חד

משיגי LDPC קודי עבור אנליטיים ביטויים נמצאו לא עדיין להיום, נכון קיבול. משיגי LDPC

במוצא. וסימטריים במבוא בינאריים שהינם אחרים זיכרון חסרי ערוצים עבור קיבול

.(Maximum Likelihood) מירבית סבירות פענוח הינה LDPC לקודי אחרת פענוח שיטת

שלה. הפענוח מורכבות בשל מעשית איננה זו שיטה אך אופטימלית, פענוח שיטת למעשה, זוהי,

LDPC קודי של לצבירים ביטויים אנליטי באופן נמצאו זו פענוח שיטת עבור כי לציין יש זאת, עם

א



(ולאו במוצא וסימטריים במבוא בינאריים שהינם זיכרון חסרי ערוצים עבור הקיבול את המשיגים

שגיאת על עליונים חסמים על מבוססת זה במקרה האנליזה הבינארי). המחיקה ערוץ עבור דווקא

האנסמבל. של הממוצע המשקלים פילוג על הדוקים בחסמים המשתמשים הפענוח

סטטיסטיקת אך מסוים. ערוץ עבור כלל בדרך מבוצע LDPC קודי של צבירים של נומרי תכן

רב, עניין ישנו תוכנן. הוא שעבורה מזו שונה תהא כלל בדרך הקוד את לבסוף נפעיל בו הערוץ

ישיג כלומר אמין, יהא אשר קוד בתכן המעשי, במישור והן התיאורטי במישור הן איפוא,

אוניברסליים. נקראים כאלה קודים ערוצים. של משפחה עבור מתאפסת, שגיאה הסתברות

תכן מבחינת והן המקודד תכן מבחינת הן אוניברסליים, קודים לתכן ומגוונות רבות גישות ישנן

משמעה האוניברסליות כאן כאשר אוניברסליים, LDPC בקודי הינו זו בעבודה המיקוד המפענח.

כדי תוך וזאת ערוצים, של משפחה עבור השגיאה הסתברות מבחינת טובים ביצועים ישיג שהקוד

לעיל. בקצרה שתואר האיטרטיבי המפענח כדוגמת ,LDPC קודי עבור סטנדרטי במפענח שימוש

איטרטיבי פענוח תחת הן ,LDPC קודי של צבירים של האוניברסליות הינו זו בעבודה המיקוד

בינאריים זיכרון, חסרי ערוצים של משפחות עבור מירבית סבירות פענוח תחת והן אופטימלי תת

.(MBIOS (ערוצי במוצא וסימטריים במבוא,

בהתבסס איטרטיבי. פענוח תחת LDPC קודי של האוניברסליות את בוחנים אנו 3 בפרק

LDPC קודי של צבירים של לאוניברסליות תנאים מפתחים אנו density evolution ה־ שיטת על

של לתכן אנליטית גישה לפתח לנו מאפשרות אלה תוצאות .MBIOS ערוצי של משפחות מעל

עבור יתכנס אשר LDPC קוד לתכנן מנת על זו, גישה לפי .LDPC קודי של אוניברסליים צבירים

בינארי מחיקה ערוץ עבור LDPC קוד לתכנן עלינו MBIOS ערוצי של משפחה מתוך ערוץ כל

אנו הערוצים. במשפחת המקסימלי Bhattacharyya ה לקבוע הזהה Bhattacharyya קבוע בעל

מפעילים אנו במשפחה. ערוץ כל עבור לביט מתאפסת שגיאה הסתברות משיג זה קוד כי מראים

ומחשבים קיבול, שווי MBIOS ערוצי של משפחות כדוגמת ערוצים, משפחות מספר על זו גישה

משיגים הצבירים אמנם המשפחה. גבי על אוניברסלי באופן להשיג שניתן הקיבול אחוז את

הקיבול את משיגים אינם הם אך במשפחה, ערוץ כל עבור לביט מתאפסת שגיאה הסתברות

במשפחה. הערוצים כל עבור אוניברסלי באופן

של הקצב על עליונים חסמים למצוא לנו מאפשרים מפתחים אנו אותם האוניברסליות תנאי

משפחת פני על אוניברסלי באופן להשיג ניתן אותו קבועה ימנית דרגה בעלי LDPC קודי צבירי

אנו אותו לאוניברסליות הכרחי תנאי על מבוססים אלה חסמים קיבול. שווי MBIOS ערוצי

התכנות בעית פתרון מתאימה. לינארי תכנות בעית באמצעותו להגדיר לנו המאפשר מפתחים,

על עליון חסם מהווה ולכן אוניברסלי באופן להשיג שניתן המקסימלי הקוד קצב הינו הלינארי

שניתן לקיבול הפער על תחתון חסם גם לתת לנו מאפשר זה עליון חסם להשגה. שניתן הקצב

MBIOS ערוצי במשפחות התבוננות באמצעות משופר חסם לקבל ניתן כי גם מראים אנו להשיג.

המחיקה. ערוץ את גם הכוללות קיבול שוות

ב



כל עבור שניתן להראות לנו מאפשרים מפתחים אנו אותם האנליטיים התנאים כן, על יתר

שגיאה הסתברות השגת של (במובן ו''רעים'' ל''טובים'' הערוצים את לסווג LDPC קודי צביר

Bhattacharyya קבוע על בהתבסס איטרטיבי), פענוח תחת אסימפטוטי באופן לביט מתאפסת

קבוע בעל MBIOS ערוץ כל גבי על מתאפסת שגיאה הסתברות ישיג הקוד כלומר, הערוץ. של

כל גבי על ממש חיובית שגיאה הסתברות ישיג ומאידך מסוים, סף מערך הקטן Bhattacharyya

עבור ביטוי נותנים גם אנו אחר. סף מערך הגדול Bhattacharyya קבוע בעל MBIOS ערוץ

הקוד מאפייני על מבוססים האלה הסף ערכי ה''רע''. במקרה השגיאה להסתברות התחתון החסם

ניתן כיצד מראים אנו בפרט, לחישוב. וקלות סגורות נוסחאות באמצעות נתונים והינם בלבד

כלשהו. LDPC קוד של להתכנסות הסף על ועליונים תחתונים לחסמים הללו החסמים את להמיר

הדוקים. אלה חסמים מסוימים, צבירים עבור כי גם מראים אנו

לייצוג שניתנת אחרת קודים משפחת עבור 3 פרק של התוצאות את מרחיבים אנו 4 בפרק

ניתנת זו קודים משפחת גם .Irregular Repeat Accumulate codes ה־ משפחת גרפים, גבי על

מבצעים אנו ההרחבה את שונות. עצמן הנוסחאות כי אם ,density evolution באמצעות לניתוח

המתאימות density evolution ה־ משוואות על 3 בפרק שפותחו הכלים הפעלת באמצעות

זו. למשפחה

מירבית. סבירות פענוח תחת LDPC קודי של צבירים של באוניברסליות דנים אנו 5 בפרק

,belief propagation התת־אופטימלי הפענוח אלגוריתם עבור הקודמים, מהפרקים התוצאות

סבירות פענוח תחת אך אופטימלי). (שהוא מירבית סבירות פענוח תחת גם כמובן תקפים

LDPC קודי של גלגר של הצביר כי מראים אנו ובפרט, יותר, חזקות תוצאות לקבל ניתן מירבית

ערוצי משפחת עבור אוניברסלי באופן הקיבול את להשיג יכול מסויימים, תנאים תחת רגולריים,

שווי MBIOS ה־ ערוצי לכל כרצוננו לקיבול מתקרבים אנו כאן כאשר הקיבול. שווי MBIOS ה־

מתאפסת שגיאה הסתברות (לעומת לבלוק מתאפסת שגיאה הסתברות משיגים ובנוסף הקיבול,

באופן המנוקבים LDPC קודי עבור זו תוצאה מרחיבים גם אנו איטרטיבי). פענוח תחת לביט

אקראי.

.6 בפרק מופיעים מחקר להמשך נושאים והצעת העבודה סיכום

ג


