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Abstract

Traditionally, low-density parity-check (LDPC) code ensembles are designed using
numerical methods suited to the channel on which they are to be used. In practice,
the actual channel statistics are hardly ever known in advance. Moreover, even if the
channel statistics were known, it is desirable to design universal codes that will be
robust enough to perform well on a range of channels, rather than a specific channel
only. Therefore, a universal design of LDPC code ensembles that enables to operate
reliably over various channels is of great theoretical and practical interest.

In this thesis we consider the universality of LDPC code ensembles over families
of memoryless binary-input output-symmetric (MBIOS) channels, both under belief
propagation (BP) decoding and maximum-likelihood (ML) decoding.

For the BP decoding case, we rely on the density evolution approach, to derive an
analytical method for universal LDPC code design over various families of MBIOS
channels. We analyze this regime for several families of MBIOS channels. The density
evolution approach also enables us to derive a necessary condition for universality of
LDPC code ensembles under BP decoding. This necessary condition sits at the heart
of an LP bound on the universal achievable fraction of capacity. It also enables us
to provide analytical and easy-to-calculate bounds on the threshold of LDPC code
ensembles under BP decoding that are based on the Bhattacharyya parameter of
the channel. The results for LDPC code ensembles are also extended to irregular
repeat-accumulate (IRA) code ensembles under BP decoding.

For the ML decoding case, we prove that properly selected regular LDPC code
ensembles are universally capacity-achieving for the set of equi-capacity MBIOS chan-
nels. We extend this result also to prove that punctured regular LDPC code ensembles

are also universally capacity-achieving for the set of equi-capacity MBIOS channels.
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Chapter 1
Introduction

The inception of information theory began with Shannon’s seminal paper [38] in which
he showed that it is possible to transmit information reliably over noisy channels at
a positive rate, so long as the information transmission rate is below the channel
capacity. The mechanism by which this reliable transmission was made possible is
coding. Shannon’s proof of existence of such transmission schemes relied on using
random block codes; while this made for a particularly elegant proof, it is of little
practical use in the design of actual codes that can be used. Shannon’s decoding
scheme is a joint-typicality decoding scheme, in which the decoder must compare the
received word with each of the possible codewords. This results in an impractical
amount of time and memory even for modest code rates if the code is long enough.
This motivated the search for “good” practical codes. Researchers sought codes
that could be used to reliably transmit information in as high a rate as possible, all
the while enabling practical decoding. One ripe family of codes considered is linear
block codes. Linear block codes have a special structure that dramatically reduces
the memory requirements of the encoder and decoder. Each of the valid codewords
is constructed by means of the code’s generator matrix. In the binary setting, a row-
vector containing the k information bits is right-multiplied by the generator matrix to
become an n-vector which represents the codeword to be transmitted. Thus, the code
can be seen as the row-space of the generator matrix. An alternative representation
of the code is via its parity-check matrix, whose row-space is orthogonal to the code.
A column-vector of length n is left-multiplied by the parity-check matrix; the result

is the zero vector if the column-vector represents a valid codeword. In this thesis we



will consider a particular subset of codes within this family, the subset of Low-density

parity-check (LDPC) codes.

1.1 LDPC Codes

Low-density parity-check (LDPC) codes were first introduced by Gallager [8] *. These
codes are linear block codes that can be represented by a sparse parity-check matrix.
This sparse structure enables to decode these codes using suboptimal iterative de-
coding algorithms. These algorithms are of low-complexity, thus enabling practical
decoding. Even though these algorithms are suboptimal, they are remarkable in that
they enable reliable communication at rates close to capacity for properly designed
LDPC code ensembles (see , e.g., [5], [1], [20], [26] and [28]).

Gallager’s construction of LDPC codes is based on a parity-check matrix with
a constant number of non-zero elements in each row and each column of the ma-
trix. Today, such codes are termed reqular. Gallager not only described a method of
constructing these codes, but he also analyzed their weight distribution and their per-
formance under optimal maximum-likelihood (ML) decoding. Gallager’s analysis was
for a somewhat idealized yet highly useful class of channels, the class of memoryless,
binary-input, output-symmetric (MBIOS) channels. These channels are memoryless,
receive a binary input (either 0 or 1), and are symmetric in the sense that the channel
outputs can be paired in such a way that the probability of the channel producing
one output given input 0 is equal to the probability of it producing the other output
given input 1. Common examples of such channels are the Binary Erasure Channel
(BEC), the Binary Symmetric Channel (BSC), and the Binary-Input Additive White
Gaussian Noise Channel (BIAWGNC). Recognizing that ML decoding is not practi-
cal, Gallager also suggested and analyzed the performance of his regular LDPC codes
under several iterative decoding algorithms.

The concept behind the iterative decoding algorithms is to use the channel infor-
mation received for each code variable (i.e., each element of the transmitted word)
and compute “messages” that are sent to the various parity-checks. Each parity-

check receives messages from the code variables that participate in it and computes

IThis paper is actually an expanded and revised version of Gallager’s PhD dissertation, in which
the study of LDPC codes was first done.



a return message to each code variable, based on the other received messages. The
code variables then return a message to the parity-checks, based on the other incom-
ing messages and the channel input. These iterations continue until some stopping
criterion occurs and then a decision is made. The iterative decoding algorithms differ
in the data carried by the messages as well as the way messages are computed at each
iteration. A major iterative decoding algorithm, in which the messages that are sent
by code variables are confidence levels in the value of the code variable, is called the
Belief Propagation (BP) algorithm (see [29, Chapter 2]). The decoding criterion for
which the message update rules of this algorithm were derived is minimum bit-error
probability.

A natural extension of regular LDPC codes is to have a non-constant number of
non-zero elements in each row or column of the parity-check matrix. These LDPC
codes are called irregular, and in [28] were shown to operate well at rates close to
capacity, under suboptimal BP decoding. In paritcular, in [5] the authors have con-
structed LDPC codes that operate very close to capacity for a BIAWGNC. The mech-
anism which enabled this analysis and design is a tool called density evolution, which
enables to numerically calculate whether, for a given channel, a randomly constructed
LDPC code with a certain structure will asymptotically achieve vanishing bit-error
probability under BP decoding. When the channel exhibits degradation based on a
certain channel parameter, this gives rise to a threshold value on the channel parame-
ter. This thershold value determines the range of channel parameter values for which
the randomly constructed code will asympotically exhibit error-free performance.

The structure of an ensemble of irregular LDPC codes can be described using
bipartite graphs. The code variables form variable nodes, on the left-hand-side of the
graph, and the parity-checks form the parity-check nodes on the right-hand-side of
the graph. The non-zero elements of the parity-check matrix are the graph’s edges;
each edge connects a variable node to a parity-check node in which it participates.
For analysis of LDPC code, it is useful to define their degree distributions. A node
(either variable or parity-check) is called of degree i if there are i edges emanating
from it. The fraction of edges connected to variable nodes of degree 7 is denoted
Ai. The left-degree distribution A consists of the set of fractions {Aa, Az, ... Agmex},
where d'** is the maximal degree of the variable nodes. Similarly, the fraction of

edges connected to parity-check nodes of degree ¢ is denoted p;, and the right-degree



distribution p consists of the set {ps, ps, ... pgmex }, where d** is the maximal degree
of the parity-check nodes. Often, codes in which all parity-check nodes are of the same
degree are considered; such codes are called right-reqular or check-regular. Based on
these degree distributions, the polynomials A(z) = >~ \a'™ ! and p(z) = Y, pir*™*
are defined.

The density evolution approach serves as a main tool for the asymptotic analysis
of the performance of LDPC code ensembles under iterative message-passing decod-
ing [28]. Using this approach, it is possible to numerically optimize LDPC codes for
specific MBIOS channels. The goal is to find degree distributions that asymptotically
ensure convergence to error-free communications for a given channel model, and that
are optimal in the sense of either achieving maximal rate for specific channel param-
eters, or exhibiting the best threshold for a specific chosen rate or other constraints
on the degree distributions (depending on the threshold parameter considered, “the
best” threshold could be either “maximum,” as in the crossover probability of a bi-
nary symmetric channel, or “minimum,” as in the noise variance of a binary-input
additive white Gaussian noise channel). Another consequence of density evolution is
the stability condition which forms a necessary condition for an LDPC code ensem-
ble to asymptotically achieve vanishing bit error probability under message-passing
decoding for a given channel model. Density evolution is a powerful tool for nu-
merical optimization of degree distributions, but it does not lend itself, in general,
for the analytical design of degree distributions. An exception to this is the case of
the binary erasure channel (BEC), where density evolution is greatly simplified to a
single-dimensional equation. Based on this, several explicit expressions of capacity-
approaching sequences for the BEC have been derived (see, e.g. [24] and [40]). So
far, no explicit expressions for capacity-approaching code ensembles under iterative
decoding for other MBIOS channel models have been found.

We note that while ML decoding is impractical, explicit expressions for capacity-
approaching codes for any MBIOS channel under ML decoding have been derived
(see [12] and [33, Theorem 2.2]). The analysis under ML decoding relies on upper
bounds on the decoding error probability based on the average weight distribution of
the ensemble (see [22] and [35]).



1.2 Universal Codes

It is of great interest, both practically and theoretically, to design a code that will
operate reliably over a range of channels. Such robust codes are termed universal.
There are many different notions of universality, and many approaches to the design
of universal codes. An excellent survey on the matter can be found in [18], where the
authors have concentrated on the problem of communicating reliably when there is
channel uncertainty. The authors introduced several models of channel uncertainty,
and discussed several universality strategies for these models, both in terms of encoder
and decoder design.

The subject of universal LDPC codes has been addressed in several recent studies.
In this setting, the goal is to design an LDPC code ensemble that will perform well
in terms of error probability over a family of channels, using a standard decoder for
LDPC codes, such as a belief propagation decoder. This is in contrast to traditional
methods of LDPC code design, in which knowledge of the channel model affords the
use of numerical methods such as density evolution, as described in Section 1.1, to
design the code.

One approach is to find so-called “extreme” channels that can be used to predict
the LDPC code ensemble’s performance under iterative decoding. Khandekar [16]
showed that a code’s behavior on the BEC can be used to predict its behavior on
other channels. In particular, he showed that if for a BEC, the bit erasure probability
of an LDPC code ensemble converges to zero under iterative message-passing decoding
then the bit error probability will also converge to zero on any other MBIOS channel
with the same Bhattacharyya parameter (B-parameter). Among the family of equi-
capacity MBIOS channels, the BEC exhibits the smallest B-parameter whereas the
binary symmetric channel (BSC) exhibits the greatest B-parameter [4]. Based on
this observation, it was suggested that it may be possible to design a code for an
arbitrary MBIOS channel by designing it for a BEC with a matching B-parameter.
Further evidence of the extremality of the BEC and BSC can be found, e.g., in a study
by Sutskover et al. (see [41] and [42]), which is based on an information-combining
approach ([17]) to predict the behavior of LDPC code ensembles over various channels;
they showed that the behavior of an LDPC code ensemble over a BEC and BSC can

be used to provide bounds on its behavior over other MBIOS channels under iterative



message-passing decoding. These works all use bounds that stem from the reduction
of the density evolution equation to a single parameter. Such bounds first appeared
in [3], albeit not from a universality standpoint.

Several researchers have noticed that LDPC codes exhibit similar performance
under iterative message-passing decoding over a set of channels with similar param-
eters. Numerical evidence that equi-capacity and equi-B-parameters exhibit similar
thresholds is provided in [4], and thus it was conjectured that the performance of an
LDPC code over one MBIOS channel can be approximated by its performance on a
different MBIOS channel but with the same capacity or B-parameter. Franceschini et
al. ([7]), also provide supporting numerical evidence that LDPC code ensembles be-
have similarly on equi-capacity MBIOS channels. In [25], the authors conjecture that
it is possible to design good LDPC codes based on a so-called “surrogate” channel,
such as the BEC, so that they will exhibit good performance over other channels. Re-
cently, Sanaei et al. ([31]) numerically designed some universal LDPC code ensembles
that achieve high fraction of capacity for a set of equi-capacity MBIOS channels. In
addition, based on some practical experiments, they have conjectured that an LDPC
code ensemble designed for two equi-capacity MBIOS channels will also converge
under iterative message-passing decoding over any convex combination of these two
channels?.

We briefly mention several other avenues of research regarding universal LDPC
codes; these works present approaches that are quite removed from the approach
to universality of this thesis, and are presented here for the sake of completeness.
Duyck, et al. [6] numerically optimized LDPC code ensembles to be universal over
Ricean multiple-access channels for all k-factors. Miyake and Maruyama [23] study
universal properties of fixed length LDPC codes under the minimum-entropy decod-
ing scheme. Universal codes with finite block lengths are addressed in [39]; that study
concentrates on the performance of such code ensembles, in terms of bounds on the
probability of error (and error exponents), for a class of channels the authors call “pe-
riodic erasure channels.” Factor-graph decoding over a family of channels related by
some unknown parameters was considered in [45], in which several factor-graph based

decoding schemes over channels with unknown parameters were defined and applied

2Ie., a channel formed by using one of these channels with probability #, 0 < 6 < 1, and the
other channel with probability 1 — 6.



to codes that can be represented by factor graphs, not necessarily LDPC codes. Fi-
nally, Yedla, et al. [48] consider the problem of universal joint source-channel coding;
in their setting, there are two correlated sources transmitting over two channels with

unknown parameters, to be jointly decoded by a single receiver.

1.3 This work

In this work, we consider the universality of LDPC code ensembles under both it-
erative message-passing decoding and ML decoding over MBIOS channels. For the
iterative (belief propagation) decoding case, we use density evolution to derive some
conditions for universality of LDPC code ensembles over various MBIOS channels.
These results serve to formulate an approach for the analytical design of universal
LDPC code ensembles. Moreover, a necessary condition for universality enables us
to formulate linear-programming upper bounds on the universal achievable rate of
LDPC code ensembles over families of MBIOS channels. Furthermore, we show that
for any code ensemble, one can classify channels as “good” or “bad” (in the sense
of asymptotically achieving vanishing bit-error-probability under belief propagation
decoding) based on the value of the B-parameter of the channel. This, in turn, leads
to bounds on the threshold of the code ensemble. Some of these results are also
extended for the family of irregular, repeat-accumulate (IRA) code ensembles. For
the ML decoding case, we show that the regular LDPC code ensembles can be made
universally capacity achieving both with and without puncturing over equi-capacity
MBIOS channels.

This thesis is structured as follows: Chapter 2 provides some preliminary material
and notation. Chapter 3 explores the universality of LDPC code ensembles under
belief propagation decoding, and Chapter 4 extends these results to IRA codes. Uni-
versality results for LDPC code ensembles under ML decoding are considered in
Chapter 5. Finally, in Chapter 6 we present a summary of this thesis and some
directions for future research.

The results in this research work are also presented in [36], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).
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Chapter 2
Preliminaries

This Chapter follows the notation in [29, Chapter 4], and briefly introduces some
preliminaries on memoryless binary-input output-symmetric (MBIOS) channels that
are relevant for the analysis in this research work.

Consider an MBIOS channel whose input and output are designated by X and
Y, respectively, and let py|x(:|-) be its transition probability. The associated log-
likelihood ratio (LLR) I(y) when the channel output is Y =y is given by

I(y) = In (pyx_@m>>

pyix(y[1)
The LLR associated with the random variable Y is defined as L = [(Y). Let a
designate the conditional probability density function (pdf) of the random variable L
given that the channel input is X = 0 (to be referred to as the L-density function).
This density function satisfies the symmetry property a(x) = e* a(—x) for every z € R
(see [29, Theorem 4.26]).
The following three functionals serve at the heart of the analysis presented in this

work (various other functionals are presented in [29, Section 4.1]).

Proposition 2.1 [Capacity functional] Consider an MBIOS channel whose sym-
metric L-density function is denoted by a. The capacity of this channel in units of

bits per channel use, C' £ C(a), is given by

C= /OO a(z) (1 —logy(1 +e™™)) du. (2.1)

—00
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This proposition is proved in [29, p. 193].

Definition 2.1 [The Bhattacharyya functional] The Bhattacharyya parameter
(B-parameter), B £ B(a) that is associated with the symmetric L-density function

a, is given by

B= /Oo a(z)e™? dx. (2.2)

—00

Definition 2.2 [The error probability functional] The bit error probability that

is associated with a symmetric L-density function a is given by

0~ 1 ot
E(a) :/ a(z)dr + 5/ a(x)dz
=5 / a(z) e 1343 dg.

The following propositions and inequalities establish some relationships between
the capacity, B-parameter, and the bit error probability associated with the same
symmetric L-density.

The following proposition relates the capacity with the B-paremeter of an MBIOS
channel. It is a direct consequence! of a proposition that was introduced in [2, Propo-

sition 1] (for a proof see [2, Appendix A]).

Proposition 2.2 For every MBIOS channel, let a be the L-density of the LLR at
the channel output for an equi-probable binary input, and let B and C designate the

B-parameter and channel capacity, respectively. Then, the following inequality holds:

Proposition 2.2 implies that for a perfect MBIOS channel, whose capacity, C, ap-

proaches 1 bit per channel use, the corresponding B-parameter tends to zero. On

1[2, Proposition 1] is specified for a general binary-input, discrete memoryless channel, and it
relates between the symmetric capacity and the B-Parameter. The extension for MBIOS channels
that are not necessarily discrete is immediate. MBIOS channels are symmetric, for which the
symmetric capacity is indeed the channel capacity; changing summations to integrals extends the

proof to possibly continuous channels.
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the other hand, for a very noisy channel, whose capacity is close to zero, we have
that the B-parameter tends to 1. This is consistent with the interpretation that the
B-parameter forms an upper bound on the error probability under ML decoding when
the channel is used only once to transmit a zero or a one.

Another property that relates the channel capacity and the B-parameter of an
MBIOS channel is presented in the following proposition, which was introduced in [32,
Lemma 8] (for a proof see [32, Appendix IV]). This proposition improves upon the

lower bound in Proposition 2.2.

Proposition 2.3 For every MBIOS channel, the sum of its channel capacity and its

B-parameter is greater than or equal to 1, i.e.,
B+C>1
and equality is achieved for a BEC.

Note that Proposition 2.3 implies that among all equi-capacity MBIOS channels, the

BEC possesses the minimal B-parameter.

Remark 2.1 From the lower bound of 2.2, it is implied that C+ B > 14+ (B—log,(1+
B)). Tt can easily be verified that f(B) = 1+ (B —logy(1 + B)) < 1 for B € [0, 1],
with equality only at the end points, i.e., B =0 or B = 1. To see this, we first note
that indeed f(0) = f(1) = 1. The derivative of f is f/(B) =1— ((1+ B)In2)™,
which has only one zero, at B = —1 + 1/In2 &~ 0.4427. This is easily determined
to be a minimum point of f, implying that f(B) < 1 for B € [0,1]. On the other
hand, proposition 2.3 states that B + C' > 1, thereby improving the lower bound in
Proposition 2.2.

The following inequalities relate the Bhattacharyya and error probability func-

tionals. Based on [29, Lemma 4.64], for an arbitrary symmetric L-density a we have

26 (a) < B(a) < 2,/(a) (1~ £(a)). (2.4)

Note that the lower and upper bounds on the B-parameter, as given in (2.4), are

satisfied with equality for a BEC and BSC, respectively.

13



Convolutions of densities in the so-called L-domain and G-domain?

are presented
in [29, p. 181], and are denoted by ® and &, respectively. Using the density evolution
approach for the asymptotic analysis of LDPC code ensembles over MBIOS channels,
where we let the block length tend to infinity, the ® convolution describes how the
distribution of the (statistically independent) messages changes at the variable node
side under BP decoding at every single iteration, whereas the E convolution describes
the change of this distribution at the parity-check node side.

A consequence of density evolution is the stability condition for LDPC code ensem-
bles under belief propagation (BP) decoding. This condition applies to the asymptotic
case where we let the block length tend to infinity, and it forms a necessary condition
for successful BP decoding in the sense that it requires that the fixed point of zero bit
error rate be stable. Consider an LDPC code ensemble with a pair of degree distribu-
tions (A, p) whose transmission takes place over an MBIOS channel, characterized by

its L-density function a. Then, the stability condition under BP decoding assumes
the form (see [29, Theorem 4.125])

B(a)X (0)p'(1) < 1. (2.5)

The reader is referred to [29, Section 4.9] for a proof.

2As mentioned at the beginning of this chapter, an L-density is the pdf of the LLR [(Y)
given that the channel input is X = 0. A G-density is the result of the transformation [(Y) —
(sgnl(Y),log coth(|l(Y)|/2)). The L and G-domains are, respectively, the domains of the L and G
densities.

14



Chapter 3

Universality under Belief

Propagation Decoding

In this chapter we consider universality under BP decoding. In Section 3.1 we de-
rive a condition for a sequence of LDPC code ensembles to asymptotically achieve
vanishing bit-error-probability under BP decoding. Using this condition we show
that it is possible to design LDPC code ensembles that will operate reliably over a
range of channels. We study this approach for two particular families of channels.
In Section 3.2 we use the condition developed in Section 3.1 to derive a necessary
condition for universality of LDPC code ensembles under BP decoding. Using this
condition, we derive universal lower bounds on the achievable gap to capacity based
on linear-programming. We conclude this chapter with Section 3.3, in which we show
that the B-parameter of the channel can be used as a universal condition for “good”

or “bad” communications under BP decoding.

3.1 Universal Achievability Results

In the following, we consider the suitability of LDPC code ensembles to operate
reliably over a set of MBIOS channels under BP decoding. We rely here on the
density evolution approach, and our goal is to construct LDPC code ensembles that
achieve vanishing bit error probability, in the asymptotic case where the block length
tends to infinity, uniformly over a set of MBIOS channels.

To this end, let us consider first an arbitrary MBIOS channel, and let ay denote the
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pdf of the LLR at the channel output given that the channel input is zero. Let A and
p designate the degree distributions of the variable and parity-checks, respectively,
from the edge perspective. Based on density evolution, the densities at every iteration

of the BP decoder satisfy the recursive equation

al—a0®A(F”<paKm4D)>, [=1,2,... (3.1)

where the mapping I' and its inverse I'"! are introduced in [28, p. 627], and denote
the transformation of densities from the L-domain to the G-domain and vice-versa.
The densities a; are symmetric functions for every I > 0, i.e., a;(x) = e*a;(—xz) for
all z € R. Let ; = B(q;) for | > 0 where B(a) designates the B-parameter that
is associated with the L-density a. Based on the proof of sufficiency in the stability
condition (see [29, p. 234]), it follows that

2 < Blag) M1 = p(1 —z-1)), 1=1,2,... (3.2)

This inequality is proved directly in [11, Theorem 4.2] and also in [15, Theorem 2.
From (2.4), a necessary and sufficient condition for an LDPC code ensemble to asymp-
totically obtain vanishing bit error probability as the number of iterations grows is
that lim;_,., x; = 0.

Let us now consider an arbitrary set of MBIOS channels, and let A designate the
corresponding set of its L-densities. Suppose that one wishes to design an LDPC code
ensemble with degree distributions (A, p) in order to asymptotically achieve vanishing
bit error probability under BP decoding for every channel in this set. Let us designate
by B the maximal B-parameter over the MBIOS channels of the considered set, i.e.,

A
B = rglez}i(B(a). (3.3)

Let us consider the recursive equation
y=BA1-p(l—y_1)), (=1,2,... (3.4)

with the initial value yo = B. This recursive equation refers to the density evolution
of a BEC whose erasure probability is equal to B. By comparing (3.2) and (3.4),
it is straightforward to show (e.g., by induction) that 0 < z; < y; for every [ > 0
and a € A. If the pair of degree distributions (), p) is selected in a way where
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lim; .y = 0, then we get that lim;_,,,x; = 0 in (3.2) for every MBIOS channel
from the set A. Hence, the universality of the LDPC code ensemble whose degree
distribution is (A, p) follows with respect to the considered set of channels.

One can thus rely on (3.4) to construct a sequence of LDPC code ensembles
which achieves vanishing bit error probability, under BP decoding, for all the MBIOS
channels of the considered set. In particular, to this end one can use the well-known
explicit constructions of capacity-achieving sequences of LDPC code ensembles for
the BEC (see, e.g., [24] and references therein). By this approach, the asymptotic
design rate of this capacity-achieving sequence of LDPC code ensembles is equal to
the capacity of the BEC,

Rq=1-B (3.5)

where B is given in (3.3). We study the following particular cases of this approach.

3.1.1 Universal LDPC Code Ensembles for Equi-Capacity
MBIOS Channels

Among all MBIOS channels which exhibit a given capacity C', the B-parameter that
is associated with the L-densities of this set of channels attains its maximal and
minimal values for the BSC and BEC, respectively (this follows readily from (2.4)).
The B-parameter of a BSC whose crossover probability is p is equal to \/m ,
and the capacity of this channel is equal to C' = 1 — hy(p). By referring to the of
set all equi-capacity MBIOS channels, one therefore gets from (3.3) that the maximal

B-parameter over this set, B, is given by

B = \/ah}(1-C) (1 ;' (1-C)) (3.6)

where h, ! designates the inverse of the binary entropy function on base 2. From (3.5),
the asymptotic design rate of the corresponding sequence of LDPC code ensembles
is equal to Rq = 1 — B. As a consequence of Proposition 2.3, it follows that indeed
Rq < O, which is necessary for reliable communication. The fraction of the channel

capacity that is achievable by this approach,
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is therefore equal to

1—/4hy' (1= C) (1 = hy'(1 = 0O)
m(C) = \/ C’( )

Lemma 3.1 The function g is monotonic increasing over the interval (0, 1], and

(3.7)

élino p1(C) =1n2 =~ 69.3%, élgll i (C) = 1.

Proof: See Appendix A. |

This implies that as the value of the capacity is increased, a larger fraction of the
channel capacity is achievable uniformly for the entire considered set of equi-capacity
MBIOS channels, and the two extremes are 69.3% and 100% when the capacity varies
between zero and 1 bits per channel use. For a value of the channel capacity which
approaches 1, the channels are almost noiseless, so almost no coding is required.
Hence, the uniform attainment of nearly 100% of the capacity for the entire set of
channels is well expected. However, as evidenced in Fig. 3.1, this convergence of the
achievable fraction of capacity is rather slow as we let the code rate tend to 1. To see
this, note that if C' is close to 1

1—2h'(1=C
i (C) =~ é ( )

which tends to 1 quite slowly (e.g., for C' = 0.95 bits per channel use, this approxi-

mation is equal to 0.895 which indeed coincides with Fig. 3.1).

The above analysis implies that at least 69.3% of the capacity of any MBIOS
channel can be achieved by designing a capacity-achieving sequence of LDPC code
ensembles for a BEC; the erasure probability of this BEC is set to be equal to the
B-parameter of a BSC whose capacity matches our channel.

This presents an analytical approach for the design of universal LDPC code en-
sembles for equi-capacity MBIOS channels where a provable (non-vanishing) fraction
of capacity is universally achieved, and the value of this fraction gets larger as the
value of capacity is increased. We note, however, that numerical optimization via
density evolution enables to design universal LDPC code ensembles in [31] achieving
a significantly larger fraction of the channel capacity, though the approach considered

here is purely analytical, and it is not subject to numerical optimizations.
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3.1.2 Universal LDPC Code Ensembles for BEC and BI-
AWGNC with the Same Capacity

We consider here the achievable fraction of capacity when one wishes to design an
LDPC code ensemble which asymptotically achieves vanishing bit error probability
under BP decoding for both the BEC and the binary-input AWGN channel (BI-
AWGNC) with the same capacity. Since among all equi-capacity MBIOS channels,
the BEC possesses the minimal B-parameter (see Proposition 2.3), then the param-
eter B in (3.3) corresponds to the B-parameter of the BIAWGNC. The conversion
from the channel capacity to the B-parameter for this channel is done numerically
by first calculating the noise variance o2 via the following expression for its capacity,
which is based on (2.1) (see [29, p. 194]):

B 1 2 1 2 o (F) e 1420
o thig |(Zo1)a(d) - e 3 )

and then substituting the value of 0 to obtain the B-parameter B = e 57 (based

Y

on (2.2)). From (3.5), the asymptotic achievable fraction of the capacity is equal to

15(C) = %. (3.8)

Since the universality in this example applies to a subset of the equi-capacity
MBIOS channels, the inequality ps(C) > u1(C) is expected to hold for 0 < C' < 1.
This is exemplified in Fig. 3.1. Our results so far are summarized in the following
theorem. To this end, we denote by BEC(¢) the binary erasure channel whose erasure

probability is e:

Theorem 3.1 [Universality of LDPC Codes under BP Decoding for Equi-
Capacity MBIOS Channels| Consider a set A of MBIOS channels that exhibit
a given capacity C, and let B denote the maximal B-parameter over this set (see
(3.3)). Let {(n, A, p)} form a capacity-achieving sequence of LDPC code ensembles
for BEC(B), achieving vanishing bit erasure probability under BP decoding. Then,
this sequence universally achieves vanishing bit error probability under BP decoding
for the entire set A, and the design rate of this sequence forms a fraction that is at

least % of the channel capacity. As a consequence, the following results hold:
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e For the entire set of equi-capacity MBIOS channels, the universal achievable
design rate forms at least a fraction p;(C') of capacity (see (3.7)). Moreover, p;
forms a monotonic increasing function of the capacity C' (see Fig. 3.1), getting
the extreme values In2 = 69.3% and 100% at the endpoints where C' — 0 or
C — 1, respectively.

e For some sub-classes of equi-capacity MBIOS channels, the results for the uni-
versal achievable design rate significantly improve (see, e.g., (3.8) and ps in
Fig. 3.1).

Fig. 3.1 compares the achievable fractions of capacity, u; and s as a function of

the channel capacity.

3.2 Universal Lower Bound on the Achievable Gap
to Capacity

The stability condition B(a)X (0)p/(1) < 1 forms a necessary condition for asymptot-
ically achieving vanishing bit error probability under BP decoding when the trans-
mission takes place over an MBIOS channel.

We wish to find an upper bound on the achievable design rate of universal LDPC
code ensembles over a set A of MBIOS channels, or alternatively, a universal lower
bound on the achievable gap (in rate) to capacity. From the stability condition in
(2.5) and also from (3.3), the inequality

BN(0)/(1) <1 (3.9)

forms a necessary condition for achieving this goal universally over the set A.

We consider in the following right-regular LDPC code ensembles, where d. desig-
nates the degree of the parity-check nodes (i.e., p(z) = z%~1).

Following the notation in [29, p. 181], let aEb denote the density which is the result
of transforming both a and b from the L-domain to the G-domain, then performing
the convolution in the G-domain, and then transforming the outcome back to the
L-domain. As mentioned in Chapter 2, the operator & describes the change of the
distributions at the check node side under BP decoding.
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Figure 3.1: Universal achievable fraction of capacity under BP decoding for two sets
of MBIOS channels which exhibit a given capacity (see Theorem 3.1). The values of
(1 in (3.7) and po in (3.8) correspond, respectively, to the entire set of equi-capacity
MBIOS channels, and the subset of a BEC and BIAWGNC with capacity C' bits per

channel use.
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In the following, we introduce an additional necessary condition for universally
achieving vanishing bit error probability under BP decoding with respect to a set A
of MBIOS channels.

Theorem 3.2 [A Necessary Condition for Universality of LDPC Code En-
sembles under BP Decoding] Let {(n, A, p)} be a right-regular sequence of LDPC
code ensembles, universally achieving vanishing bit error probability under BP de-
coding for a set of MBIOS channels A. Then, the following condition holds

BAv1—=p(1—2%) <z, Vaze(0,B] (3.10)
where B designates the maximal B-parameter over the set A.
Proof: For the derivation of this condition, we rely on the following inequality:

Lemma 3.2 Let a®* 2 ¢ ®Ma® - -- @ a denote the operator where a is convolved by
itself k—1 times (i.e., a appears k times on the right-hand side of this equality), where
the convolution here is in the G-domain (see [29, p. 181]). Then, for a symmetric
L-density a with B(a) = f,

B(a®) > /1 — (1 — B2)k (3.11)
for any integer k > 2.

Proof: Let a and b denote two symmetric L-densities with B(a) = 3, and B(b) = 3,
then from [29, Problem 4.62]

B2+ B — 525 < Blamb) < fu+ By — By (3.12)

where the upper and lower bounds are achieved with equality if @ and b are from the

family BEC or BSC, respectively. By setting a = b, we get the inequality in (3.11)
for k = 2. The proof for a general k£ > 2 is completed by mathematical induction.
Let us assume that (3.11) holds for a certain k& > 2, then from (3.12)

B(ak—i-l) — B(ak a)
> \/B(a®%)2 + B(a)? — B(a®*)2 B(a)?
= \/1 - B(a®)?) (1 — B(a)?)
- \/1 — (1 - Bla®)2)(1 - 32)
> \/1 — (1 — g2)k+1
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which then implies that (3.11) also holds for k + 1. n

Corollary 3.1 For a right-regular LDPC code ensemble

B(F1<p(F(a)))> > /1 p(1 — B(a)?). (3.13)

Hence, by defining z; £ B(a;) for all [ in the density evolution equation in (3.1),

we get the following chain of equalities and inequalities

r; = B(a)
) Bao) B(A (F‘l(P(”‘”‘l)))»
Y Bao) (B (r (p“(‘”‘l)))))

(g B(ap) )\<\/1 —p(1 = Blai_1)?) )
— Blao) >\<\/1 —p(1—a}y)) (3.14)

where equality (a) follows from the recursive density evolution equation in (3.1) and

since for two symmetric L-densities a and b
B(a ® b) = B(a) B(b), (3.15)

equality (b) follows since the linearity of the convolution operator and the last equality
yield that

B(Aa)) = B (Z Aia%—”) =Y AB(a®Y) = AB(a)! = A (B(a)),

(3.16)
and inequality (c) follows from (3.13). By definition, the initial value z, is equal to
the B-parameter of the symmetric L-density of the MBIOS channel. From (3.14), it

follows that if the sequence {x;} tends asymptotically to zero, then the sequence
zl:B(ag))\< 1—p(1—z,2_1)), 1=1,2,... (3.17)

with the initial value zy = B(ay), should also tend to zero. Note that the sequence {z;}

is not the same as {x;}: the sequence {x,;}, as shown in (3.14), is greater than or equal
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to the right-hand-side of (3.17). Further note that from (2.4), the convergence of the
sequence {x;} forms a necessary and sufficient condition for achieving vanishing bit
error probability as we let the number of iterations grow (recall that by the density
evolution approach, we first let the block length tend to infinity, so that the tree
assumption holds with probability 1 for any fixed number of iterations, and then we
let the number of iterations grow).

Consider a sequence of right-regular LDPC code ensembles that universally achieves
vanishing bit error probability under BP decoding over a set A of MBIOS channels.
Let B be the maximal B-parameter over the entire set A (see (3.3)), then we obtain

from (3.17) that the sequence defined recursively by
zl:B)\< 1—p(1—z,2_1)), 1=1,2,... (3.18)

with the initial value zo = B tends asymptotically to zero. Therefore, the satisfiability
of the condition in (3.10) forms a necessary condition for universality. This completes

the proof of Theorem 3.2. |

For an extension of condition (3.10) for general LDPC code ensembles (not necessarily
right-regular), see Appendix B.

In order to relate the condition in Theorem 3.2 to the stability condition, we
calculate the derivative of the left-hand side of (3.10)

%{B)\( 1—p(1—x2)>}
:BX( 1—p(1—x2)> x(l—p(l—xz))_% P (1 —2?)

and then require that this derivative be strictly less than 1 at the fixed point z = 0.
Since d. designates the fixed right degree of the right-regular LDPC code ensemble,

. B 22\ 1 T
tm (1=p(—a%) " = i V1= (1= 22)deT
B 1
VA -1
and therefore one gets the condition
BN (0)p'(1
% <1 (3.19)

24



Interestingly, this coincides with the stability condition (2.5) up to a scaling factor
that is equal to the reciprocal of the square root of d. — 1; this scaling factor in
(3.19) yields a weaker condition as compared to the stability condition. However,
the condition in (3.10) provides a constraint on the interval (0, B], and not just at a
neighborhood of the fixed point at zero.

Let d*** designate the maximal degree of the variable nodes. Since the design

rate of the right-regular LDPC code ensemble is equal to

1
Rg=1-————"' (3.20)

de 3125 %
then the maximization of Ry is equivalent to maximizing ng;x AT
Suppose that it is required to universally achieve vanishing bit error probability
under BP decoding as the block length tends to infinity over a set A of equi-capacity
MBIOS channels with capacity C. This requirement also implies that the bit error
probability under MAP decoding vanishes. Thus, by combining [32, Eqs. (43), (44)
and (53)], it follows that the design rate satisfies the inequality

1-C

()

and therefore, as the parity-check degree (d.) is decreased, Rq becomes more bounded

0<Ry<1-— (3.21)

away from capacity. Combining (3.20) and (3.21) gives that

max
dv

1 A 1 1-C%
— <NV g “h . 22
dC—Zz’_(l—C)dc 2( 2 ) (3.22)

1=2
dvmax

By a maximization of Y 2¢ subject to
. 2 1
1=

1. the necessary condition for vanishing bit error probability in Theorem 3.2,

2. the satisfiability of the stability condition for all the MBIOS channels in the set
A (see (3.9)),

3. the inequality constraints in (3.22) that follow from the information-theoretic

bounds in [32],
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one obtains a linear programming (LP) universal upper bound on the achievable
rate of LDPC code ensembles over the set A of equi-capacity MBIOS channels with
capacity C under BP decoding. This gives the following LP bound where, practically,
the values of x € (0, B] in the first inequality constraint are quantized uniformly over
this interval in order to get a finite number of inequality constraints in the LP problem
(to be referred to as the ‘LP1 bound’):

max
dV

.. s
maximize ) 3
i=2
subject to

(BA(V1—p(1—2%)) <z, Vael(0,B

Blp/(1) <1
S =1
i=2

N>0, i=2,3,...

d‘l?ax de
1 Ad 1 1-C2
©S LT <wor <T>

\ =2

Due to (3.20), LP1 also defines an upper bound on the design rate. This upper bound
can also be translated into a universal lower bound on the achievable gap to capacity,
e=1—Rq/C.

This LP problem is solved numerically with the aid of the CVX Matlab-based
modeling system for convex optimization (see [9]). Numerical results for the lower
bound on the achievable gap to capacity are provided in Table 3.1 for the cases
where p(x) = 27, 2% and 2! (i.e., the parity-check degree is fixed to 8, 10, and 12,
respectively), and the maximal degree of the variable nodes is set to d** = 200.

In order to possibly improve the bound, let us consider the particular case where
the set A forms a set of equi-capacity MBIOS channels that also includes the BEC.
However, in this case, the LDPC code ensembles are not restricted to be right-regular.
For a BEC, the condition for vanishing bit erasure probability under BP decoding

assumes the form
(1-C)A1=-p(l—2)) <z, VO<z<1-C. (3.23)
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This condition is used instead of the necessary condition (3.10)'. Since in this LP the
LDPC code ensemble is not assumed to be right-regular, the condition (3.22) that is
a result of combining [32, Eqs. (43), (44) and (53)] and (3.20) assumes the form

d:’]ﬂax m
1 < Z & < v ho 1-c= ’
ap ~ =i~ (1-C)ar 2
where ag is the average right degree of the LDPC code ensemble.

In this particular case where the set A includes the BEC, one gets the following
LP problem (to be referred to as the ‘LP2 bound’):

dmax
V.
maximize )
i=2
subject to

Ai
i

(1-CON1-p(1l—2)) <z, YVO<z<1-C

Blp/(1) <1

o0

v AR
1 i 1 1-C™2
— < ; S — )aR : h2 < 2 >

\ =2

where the values of x € (0, 1—C] are quantized uniformly over this interval in order to
get a finite number of inequality constraints in the LP problem; our implementation
converts the first inequality constraint above to 1000 inequality constraints where x
is equally spaced, and it gets the values z; = 0.001(1 — C)k for £k = 1,...,1000 (it
was verified numerically that increasing the number of inequality constraints beyond
one thousand, by a more refined uniform quantization of  over the interval (0, 1—C],
does not affect the numerical results of the LP2 bound). Numerical results for the
lower bound on the achievable gap to capacity are provided in Table 3.2 for the same
setting as in Table 3.1%.

1Tt was verified numerically that adding condition (3.10) to the LP does not change the result.
Thus, this condition is conjectured to be redundant in light of (3.23).
2Even though in the LP2 bound the LDPC code ensembles are not restricted to be right regular,
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By comparing Tables 3.1 and 3.2, the values of the LP1 and LP2 bounds coincide
for large values of the capacity C, whereas the LP2 bound shows an improved (larger)
lower bound as compared to the LP1 bound for lower values of C. Note also that the
two lower bounds become more significant (i.e., they become greater) as the value
of capacity is increased. It is mentioned that the possible improvement in the LP2
bound stems from the fact that it applies to a set of equi-capacity MBIOS channels
that includes the BEC, whereas the LP1 bound applies to any set of equi-capacity
MBIOS channels.

It was observed numerically that the LP2 bound on the achievable gap to capacity
is sensitive the value of d'**, especially for large values of d.. For example, for C' = %
and d. = 12, when d™** = 200, the LP2 lower bound is equal to 1.94 - 1072 if | but
when d™® = 500 the LP2 lower bound becomes 7.38 - 1073.

for the purpose of comparing the results of the LP2 bound with those of the LP1 bound, we provide
the numerical results for the same setting as for the LP1 bound.
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Capacity | Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
() d. =38 d. =10 d.=12 | d. =38 d. =10 d.=12 | d.=38 . =10 d. =12
% 2.83-107% 7.05-107%* 1.76-107*|2.83-10% 7.05-10~* 1.76-10"*|2.83-10~% 7.05-10~* 1.76-10~*
% 9.09-1072 1.79-1072 7.84-107*|7.90-1072 1.43-10"% 7.84-1073|5.56-1072 1.43-1072 7.84-1073
% 2.06-10"' 1.57-10"* 1.20-107%'|1.73-107' 1.33-107' 1.03-107' | 1.67-10"%' 1.11-10"! 7.99.-1072

Table 3.1: Lower bound on the universal achievable gap to capacity (¢ = 1 — %) for equi-capacity MBIOS channels
under BP decoding; the degree of the parity-check nodes is fixed (d.), and the maximal degree of the variable nodes
is set to d'® = 200. These numerical results refer to the LP1 bound.

Capacity | Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
(C) d. =8 d. =10 d. =12 d. =38 d. =10 d. =12 d. =38 d. =10 d. =12
% 1.50-1072 9.01-107% 1.94-1072|1.25-107% 6.76-107% 1.73-1072 | 7.34-1073 1.79-107% 1.22-1072
% 9.09-1072 4.24-107% 2.75-107%2]7.90-1072 3.99-1072 2.42-1072|6.59-107% 3.56-1072 1.93-1072
% 2.06-10"Y 1.57-107' 1.20-107'|1.73-107' 1.33-10"' 1.03-107'|1.67-10"' 1.11-10"' 7.99.10"2

Table 3.2: Lower bound on the universal achievable gap to capacity (¢ & 1 — %) for equi-capacity MBIOS channels
under BP decoding; the degree of the parity-check nodes is fixed (d.), and the maximal degree of the variable nodes
is set to d'®* = 200. These numerical results refer to the LP2 bound.




3.3 Universal Conditions for Reliable Communi-

cations under Belief Propagation Decoding

We prove in this section the following theorem and exemplify its use:

Theorem 3.3 [Universal Conditions on the B-parameter for Good/ Bad
Communications under BP Decoding] Let {(n, ), p)} be a sequence of LDPC
code ensembles whose block lengths tend to infinity. The following universal proper-
ties hold under BP decoding;:

e This sequence achieves vanishing bit error probability under BP decoding for

every MBIOS channel whose B-parameter is less than

BO(/\7P) 2 inf -

€] A(1—p(1 —z)) (3.24)

e For a right-reqular sequence, it does not achieve reliable communications over
any MBIOS channel whose B-parameter is greater than
inf < .
w€01] A(y/1 — p(1 — 2?))
For every MBIOS channel whose B-parameter B satisfies B > Bj(\, p), BP de-

coding is not reliable in the sense that the left-to-right message error probability

Bi(\ p) & (3.25)

(i.e., the average probability of error for a message emanating from a variable

node to a parity-check node) is greater than the positive value

1 x ’
(5 max{w € (0,1] : N0 ) < B}) (3.26)

irrespective of the number of iterations performed by the BP decoder.

Proof: We start by proving the first part of the theorem. Let {a;} be the sequence
of symmetric L-densities that are obtained from the density evolution equation (3.1)
(where [ > 0 denotes the number of iterations). From (2.4), it follows that a neces-
sary and sufficient condition for obtaining vanishing bit error probability under BP
decoding is that the B-parameter that is associated with the pdf a; tends to zero, i.e.,

lim B(a;) = 0. (3.27)

l—00
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From (3.2), it follows that if the sequence {y;} as defined in (3.4) by the recursive
equation

y=BN1—-p(1-y_1)), =12,

with the initial condition yy = B tends to zero, then also the sequence {z;} where
X = B (al)

tends to zero (since 0 < z; < y; for every integer [ > 0, see (3.4) and the paragraph
that follows). The sequence {y;} refers to the density evolution analysis for a BEC
whose channel erasure probability is B. The threshold value, which determines a
necessary and sufficient condition for the convergence of the sequence {y;} to zero,
yields that if B < By(\, p) then lim;_,o, y; = 0 (this follows from [29, Theorem 3.59]).
Hence, for every MBIOS channel, if the B-parameter is less than By(A, p), then the
property in (3.27) is satisfied, and therefore the bit error probability vanishes under
BP decoding. This completes the proof of the first part.

In order to prove the second part of the theorem, which refers to a sequence of
right-regular LDPC code ensembles, we rely on inequality (3.14). If the equality
in (3.27) holds, then it follows from (3.14) that the sequence {z} in (3.18) should
necessarily tend to zero. Hence, from (2.4), if the sequence that is defined in (3.18)

via the recursive equation

5= B)\(\/l —p(l—22)), =12, ..

stays bounded away from zero, with the initial value zg = B, then the communica-

tion is not reliable. More explicitly, for every MBIOS channel whose B-parameter is
greater than Bj(\, p), the sequence {£(a;)} that represents the left-to-right message
error probabilities under BP decoding stays bounded away from zero (irrespective of
the number of iterations). In order to proceed, the following lemma considers the

convergence of the sequence {z}.

Lemma 3.3 Let B;(\, p) be defined as in (3.25). If B < By(A, p) then the sequence
{z1} in (3.18) tends to zero, and if B > Bj(\, p) then the sequence {z} is lower
bounded by the positive constant

2(B) émax{xe 0,1] : N 1_;(1_x2>) gB}. (3.28)
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Proof: See Appendix C. |

From (3.14),
B(al)éwlz,zl, lZO,l,

and therefore it follows from Lemma 3.3 that for every MBIOS channel whose B-
parameter is greater than Bj (A, p)

B(a;) > z(B), 1=0,1,....

From (2.4),

B(CLZ) S 2\/5(@[)(1 — 5(@[)) S 2 E(Cll)

= E(a) > <@)2 . (@)2

and therefore the left-to-right message error probability cannot be reduced below the
positive value as above, irrespective of the number of iterations of the BP decoder.

This completes the proof of Theorem 3.3. |

Corollary 3.2 For every MBIOS channel with B-parameter B > By(\, p), let z(B)
be defined as in (3.28). Then, the (average) left-to-right message error probability is
bounded away from zero by the universal bound

N2  lim <x(B))2 (3.29)

B—B1(A\p)* 2

irrespective of the number of iterations of the BP decoder.

Proof: By definition, z(B) in (3.28) is an increasing function of B, and therefore
we take the limit B — Bj(A, p), where the limit is from the right side, in order to
obtain a lower bound on the left-to-right message error probability for the case where
B > By(\ p). u

Corollary 3.3 Let {(n, A, p)} be a sequence of right-regular LDPC code ensembles
whose block lengths tend to infinity. Then, the left-to-right message error probability
stays bounded away from zero under BP decoding for every MBIOS channel whose

B-parameter is greater than

Ba(\, p) émin{Bl(A,p),m,\/l—Rﬁ} (3.30)
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where B; is introduced in (3.25), and

1
plx)dx
Rdél_f01(>

Jo AMz) dz

designates the design rate.

Proof: If the B-parameter B is greater than B;(J, p), then the statement follows from
the second part of Theorem 3.3. Also, if B > m
BP decoding is not reliable because the stability condition is not satisfied. Finally,
if B > /1 — R2 then it follows from the right-hand side of (2.3) that Ry > C

and error-free communication cannot be achieved when the design rate exceeds the

, then the communication under

channel capacity. Therefore, BP decoding is not reliable for any MBIOS channel

whose B-parameter is greater than By in (3.30). m

Remark 3.1 In essence, the results of this chapter stem from one dimensional bounds
based on the density evolution equation that utilize the B-parameter (namely, inequal-
ities (3.2) and (3.14)). This approach is not new, and was introduced in [3]. In that
paper, the authors derived iterative bounds on the expectation of messages trans-
ferred in BP decoding. These bounds enabled them to lower- and upper-bound the

performance of BP decoding.

Remark 3.2 Inequalities (3.2) and (3.14) were first proved by Wang, et al. in [46].
They mention that these inequalities can be used iteratively to derive upper and lower
bounds on the decoding threshold based on the initial Bhattacharyya parameter of the
channel, and that closed-form solutions for these bounds can be obtained, but do not
derive them explicitly. In this work, we have independently shown these inequalities
and have also explicitly derived a closed-form solution of the bounds. Moreover, we
have shown a lower bound on the decoding error probability when the Bhattacharyya
parameter of the channel exceeds the value in (3.30).

Although here we concentrate only on channels with symmetric outputs, we note
that [46, Theorem 4] extended inequalities (3.2) and (3.14) also to memoryless chan-
nels with binary input and non-symmetric output, under the assumption that the

input distribution is uniform.
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Remark 3.3 Note that if the B-parameter is above Ba(\, p) (see (3.30)), then Corol-
lary 3.3 does not specify an explicit positive lower bound on the left-to-right message
error probability under BP decoding. However, if B > Bj(A,p) (where it readily
follows from (3.30) that Bi(A, p) > Ba(A, p)), then the second part of Theorem 3.3
determines an explicit positive lower bound on the left-to-right message error prob-
ability that is valid universally for all MBIOS channels. As shown in Examples 3.1
and 3.2 that follow, the value of this lower bound 7 (see (3.29)) is typically large, ir-
respective of the number of iterations of the BP decoder, and this lower bound holds

for all MBIOS channels whose B-parameter is above Bi (A, p).

Remark 3.4 All channels in the convex hull® of equi-capacity MBIOS channels have
the same capacity. Similarly, all channels in the convex hull of equi-B-parameter
MBIOS channels have the same B-parameter. This is due to the linearity of the
capacity and Bhattacharyya functionals in the L-density function, see (2.1) and (2.2).
Therefore, the condition for good channels, under BP decoding, in the sense that
B < By(A, p) (see the first part of Theorem 3.3) or the condition for bad channels in
the sense that B > Bs(\, p) (see the second part of Theorem 3.3 and Corollaries 3.2
and 3.3) are both preserved, respectively, for the convex hull of good or bad channels.
Although this conclusion does not prove [31, Conjecture 1] for equi-capacity MBIOS
channels (since it does not cover the case where B is between By and Bs in case that

By < B,), it supports this conjecture in the cases where B < By or B > Bs.

Remark 3.5 From the two parts of Theorem 3.3, it follows directly that for right-
regular codes, Bi(A,p) > By(\,p). For a direct proof of this inequality, see Ap-
pendix D.

In the following, we exemplify the use of Theorem 3.3 and its corollaries:

Example 3.1 [Regular LDPC Code Ensembles] In Table 3.3, we show the nu-
merical values of By and By in Theorem 3.3, and the value of n in Corollary 3.2 for
some regular LDPC code ensembles whose design rate is one-half. The value of B,
corresponds to the threshold for the BEC under BP decoding, and the value of B;

3The convex hull of a set A of channels consists of all the channels that are convex combinations
of channels in 4. A convex combination of several channels is the result of using each channel with
probability ;, 0 < 6; < 1, such that ). 0, = 1.
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(see (3.25)) refers to the value of the B-parameter where above it, the left-to-right
message error probability is at least 7, no matter how many iterations of the BP de-

coder are performed. For these regular LDPC code ensembles, Ay = 0, and therefore

LDPC BO Bl n
(3,6) | 0.4294 | 0.6553 | 6.50 - 1072

(4,8) |0.3834 | 0.6192 | 6.58 - 102
(5,10) | 0.3416 | 0.5884 | 6.18 - 1072

Table 3.3: The numerical values of By and B; in Theorem 3.3, and the value of 1 in
Corollary 3.2 for some regular LDPC code ensembles whose design rate is one-half.

the stability condition is useless. Also, since the design rate of these ensembles is
equal to one-half, then /1 — R% = \/75 ~ 0.8660, hence the values of By in (3.30)

coincide with B; for these ensembles.

Example 3.2 [Optimized Right-Regular LDPC Code Ensembles for the
BEC, and their Universal Properties| In Table 3.4, right-regular LDPC code
ensembles are optimized for the BEC under BP decoding; to this end, a linear pro-
gram is solved as described in [29, Section 3.18] for a design rate of one-half (Rq = 1)

and for a maximal degree of the variable nodes of one hundred (d*** = 100).
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9¢

NOEDI P p(x) = pix'™" | By By B, n

Ao = 0.4127, A3 =0.1762

Ay = 0.1177, A7 = 0.1202 pe =1 0.4816 | 0.4846 | 0.7066 | 8.45-10~2
As = 0.1731

o = 0.2879, Ay = 0.1222

A = 0.0905, Ag = 0.1174

A7 = 0.0300, A2 = 0.0807 ps =1 0.4962 | 0.4962 | 0.7146 | 1.02-10~*
)\13 = 00831, )\32 = 00050
)\33 - 01831

X2 = 0.2226, \; = 0.1013
A1 = 0.0504, \s = 0.0646
X6 = 0.0445, Ajp = 0.1219 pro =1 0.4988 | 0.4992 | 0.7123 | 1.08-10~!
Aip = 0.0117, Aoy = 0.0903
Aas = 0.0678, Aigo = 0.2248

Table 3.4: The degree distributions (from the edge perspective), numerical values of By and B; in Theorem 3.3,
the value of 1 in Corollary 3.2, and the value of By in Corollary 3.3 for some optimized right-regular LDPC code
ensembles whose design rate is one-half with a maximal degree of the variable nodes that is set to 100.



We observe from Table 3.4 that for these ensembles, By ~ B,. Hence, for these
optimized LDPC code ensembles, the first part of Theorem 3.3 states that these LDPC
code ensembles are reliable under BP decoding, in the sense of achieving vanishing bit
error probability, for every MBIOS channel whose B-parameter is below By; on the
other hand, Corollary 3.3 implies that these code ensembles are not reliable under BP
decoding for every MBIOS channel whose B-parameter is slightly above By or greater
than this value. This is a universal result that applies to all MBIOS channels, and it
separates them into two sets of “good” or “bad” channels for which the reliability of
these code ensembles under BP decoding solely depends on the B-parameter of the
communication channel without any relevance to its channel model (as long as it is
MBIOS, and it exhibits a given B-parameter).

In contrast to the results in Table 3.3 that apply to regular LDPC code ensembles,
for the right-regular LDPC code ensembles studied in this example, the value of
By is significantly greater than By, which here is given by the stability condition.
In continuation to Remark 3.3, the lower bound on the left-to-right message error
probabilities when the B-parameter is greater than By is rather large (around 0.1),
whereas such a measure is not provided here for the unreliability of the messages

when the B-parameter is between B; and Bs.

The results of this thesis imply that a family of degraded channels can be param-
eterized by the B-parameter. This is also supported by [29, Theorem 4.76], which
states that a degraded channel has a higher B-parameter than the original (see also
Proposition 2.2 in this thesis). Moreover, in many cases there is a simple one-to-one
correspondence between the channel parameter and the B-parameter. For example,

for a BEC with erasure probability €, we have B = ¢; for a BSC with crossover prob-

ability p, we have B = /4p(1 — p); and for a BIAWGN channel with noise variance
o2, we have B = ¢ 57,
In order to obtain bounds on any LDPC code ensemble, not necessarily right-

regular, a simple modification of Theorem 3.3 and Corollary 3.3 yields the following;:

Corollary 3.4 Let {(n, A, p)} be a sequence of (not necessarily right-regular) LDPC
code ensembles whose block lengths tend to infinity. Then

e This sequence achieves vanishing bit error probability under BP decoding for

37



every MBIOS channel whose B-parameter is less than

Bo(\,p) 2 inf - .

e The left-to-right message error probability of this sequence stays bounded away

from zero under BP decoding for every MBIOS channel whose B-parameter is

( min {Bl()\,p), m, V1= Rﬁ} )

if the sequence is right-regular

ook )

if the sequence is not right-regular

greater than

BS(/\v p) é

\

where By is introduced in (3.25), and R4 designates the design rate.

It follows that for any family of MBIOS channels there exists a By, between By and
B (its exact value is dependent on the family) such that BP converges for all channels
of this family with B < By, and does not converge for channels of the family with
B > Byy,. Hence, By(A, p) and Bs(\, p) provide universal lower and upper bounds on
the threshold B-parameter. In general, different channel families will have different
thresholds. It should be noted that the lower bound is tight for the BEC. Furthermore,
this universal bound is non-iterative, simple, and easy to compute.

Similar bounds on the Bhattacharyya parameters have been derived in [46]. In
that paper, the authors have derived the same inequalities on the Bhattacharyya
parameter evolution during BP decoding that have led to the bounds on the threshold
in this section. Therefore, the lower bound By(A, p) and the upper bound B (A, p)
are not new. In this thesis, however, we have combined the upper bound Bj (A, p)
with other upper bounds, such as the stability condition, to arrive at a tighter upper
bound in some cases. Moreover, we have also demonstrated that these bounds can
be tight in some cases, as shown in Table 3.4.

Other works, such as [17], [29, Section 4.10.2], and [41] used an information-
combining approach to also provide universal bounds on the threshold. These bounds
give upper and lower bounds on the capacity of the channel, another natural param-

eter for channel degradation (a degraded channel has lower capacity). These bounds

38



are significantly more difficult to compute, requiring either an iterative process or
involving computations that are numerically unstable for high left degrees.

In Table 3.5, we compare the bounds suggested by this approach with the bounds
of [41] for some of the ensembles considered in this thesis. In order to make the
comparison, we translate the bounds on the B-parameter to bounds on the channel
parameters for a BSC and a BIAWGN channel. It is exemplified that the bounds
in [41] are superior for the regular LDPC code ensembles, but the bounds of the
approach presented here are more informative for the irregular LDPC code ensembles
shown in Table 3.5.
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0¥

AMz) =>, 't plx) =, pix'™? Bounds based on B | Bounds based on C'
0.4294 < B < 0.6553 | 0.4744 < C' < 0.6350
Ag =1 ps =1 BSC: 0.0485 < p < 0.1223 | 0.0698 < p < 0.1187
BIAWGN: | 0.7691 < 0 < 1.0877 | 0.8026 < ¢ < 1.0180
0.3834 < B < 0.6192 | 0.5160 < C' < 0.6630
A =1 ps =1 BSC: 0.0382 < p < 0.1074 | 0.0624 < p < 0.1048
BIAWGN: | 0.7222 < 0 < 1.0214 | 0.7707 < 0 < 0.9553
0.3416 < B < 0.5844 | 0.5564 < C' < 0.6970
As =1 p1o =1 BSC: 0.0301 < p < 0.0943 | 0.0540 < p < 0.0921
BIAWGN: | 0.6822 < 0 < 0.9648 | 0.7333 < o < 0.8996
Ao = 0.4127, A3 = 0.1762 0.4816 < B < 0.4846 | 0.4147 < C' < 0.8980
Ay = 0.1177, A7 = 0.1202 pe =1 BSC: 0.0618 < p < 0.0626 | 0.0133 < p < 0.1404
As = 0.1731 BIAWGN: | 0.8272 < 0 < 0.8308 | 0.5182 < ¢ < 1.1209

A2 = 0.2879, A3 = 0.1222
Ar = 0.0905, A\¢ =0.1174 0.4962 < B <0.4962 | 0.3989 < C' < 0.8910
A7 = 0.0300, A2 = 0.0807 ps =1 BSC: 0.0659 < p <0.0659 | 0.0144 < p < 0.1465
A1z = 0.0831, A3 = 0.0050 BIAWGN: | 0.8446 < 0 < 0.8447 | 0.5265 < 0 < 1.1513

/\33 == 01831

Table 3.5: Comparison of universal bounds on thresholds for various LDPC code ensembles. The bounds based on
the B-parameter are computed based on the approach presented in this thesis; the bounds based on the capacity are
computed according to [41].



Comparing these information-combining results by Land et al. [17], and by Sut-
skover et al. ([41, 42]) with our bounds, there is one conceptual difference: for B > By,
Theorem 3.3 and Corollary 3.2 provide an explicit lower bound on the left-to-right
message error probability that is irrespective of the number of iterations, whereas
this is not the case in these related works. Secondly, for the regular LDPC code
ensembles, for which we have By = B;, we also have an explicit positive lower bound
on the left-to-right message error probability for the case where the B-parameter is
larger than Bs (e.g., as shown in Table 3.3, for the (3,6) LDPC code ensemble, a lower
bound on the left-to-right message error probability around 6.5% applies to the cases
where p > 0.1223 or o > 1.088 for the BSC and the binary-input AWGN channel,
respectively).

The observation made in Example 3.2, regarding the reliability of the optimized
right-regular LDPC code ensembles over the entire set of MBIOS channels where
this result solely depends on the B-parameter of the communication channel (but not
on the specific channel model of the MBIOS channel) calls for analysis. Since these
LDPC code ensembles were optimized numerically (via linear programming), closed
forms for the degree distributions are not available, and we turn instead to consider
the sequences of right-regular LDPC code ensembles as suggested by Shokrollahi [40].
In this respect, the following theorem demonstrates a universality property under
BP decoding with respect to the entire set of MBIOS channels that exhibit a given
B-parameter; the following theorem shows that not only the stability condition is
common for the considered set of channels, but also a universality property exists for
this set.

Theorem 3.4 [Universality of LDPC Code Ensembles under BP Decoding
for MBIOS Channels with a Fixed B-Parameter| Consider the set of MBIOS
channels that exhibit a fixed B-parameter (B). Then:

e Every capacity-achieving sequence designed for BEC(B), universally achieves
the following fraction of capacity for the considered set of channels:
N 1-B

ps(B) = L (1_@>,

(3.31)

where hy denotes the binary entropy function to the base 2. The function us

is monotonic decreasing in B; it gets the values In2 ~ 69.3% and 100% for
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the extreme cases where B — 1 (i.e., a very noisy channel) and B — 0 (i.e., a

perfect channel), respectively.

e There exists an explicit construction of a sequence of right-regular LDPC code
ensembles for which B satisfies

2

dC —2 % 1 7r2
B<By<By<1- <d 1) ez-106 ) (1 - B) (3.32)

so By and B, can be made arbitrarily close to B for large d.. Here d. denotes
the fixed degree of parity-check nodes, By and B are introduced in (3.24) and
(3.30) respectively, and v & 0.5772 denotes Euler’s constant.

Proof: Among all MBIOS channels which exhibit a given B-parameter B, the
capacity is maximized or minimized for a BSC and BEC, respectively. For a BEC,
C =1 — B, and therefore the capacity is achieved (i.e., Rq = C) because of (3.5).

For a BSC whose crossover probability is p,
C=1-hy(p), B=+/4p(1-p)

and therefore

=1t

2
From (3.5), the fraction of capacity that is universally achieved for the entire set of
MBIOS channels which exhibit a given B-parameter B satisfies
1-B
1— hy (—H;*BQ)

Rq
< =<1 3.33
<M g 3:39)

where the upper and lower bounds are obtained, respectively, for a BEC and BSC
with a B-parameter B. Let us check the two extreme cases where B =0 and B — 1
(referring, respectively, to an ideal channel and a very noisy channel). In the case
where B = 0, the upper and lower bounds coincide, and are equal to 1; hence, capacity
is achievable. For examining the case where B — 1, we rely on the following Taylor

series expansion of the binary entropy function around = = $ (see [47, p. 575)):

o

1 (1 — 22)%
=1- <z<l .34
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which enables to calculate the limit of the left-hand side in (3.33) when B — 1 (from
below). This gives

) 1-B
hmﬁ -
Bo1- 1 _p, (17\/;3 )

. 1-B

= lim = 5

B—1= Z (1— B?)?
21n2 —~ q(2q_ 1)

lim =

= m -
B=1 21n2)

= In2.

Moreover, it is easy to verify with (3.34) that the lower bound on %4 in (3.33) forms a
monotonic decreasing function of B (where 0 < B < 1); it varies from 1 to In2 =~ 0.693
as the value of B is increased from zero to 1 bit per channel use. This shows that, for
the entire set of MBIOS channels which exhibit a given B-parameter B, the achievable
fraction (3.5) of capacity is at least 69.3%; this result is obtained by designing a
capacity-achieving sequence of LDPC code ensembles for a BEC whose B-parameter
matches our channel (as above). Interestingly, these two extreme values (i.e., 69.3%
and 100%) coincide with those obtained in Theorem 3.1 for the entire set of equi-
capacity MBIOS channels.

To prove the second part of the Theorem, we consider a sequence of right-regular
LDPC code ensembles with a fixed right-degree d., and parameters of the degree
distributions that are selected according to [33, Theorem 2.3| for a BEC with channel
erasure probability B (see also [29, Section 3.15] and [32, Appendix VI]). These
sequences are capacity-achieving as we let the right degree d. tend to infinity. From
[33, Theorems 2.1 and 2.3], this sequence is constructed to achieve at least a fraction
1 —¢ of the capacity of the BEC under BP decoding with a right degree d. that scales
logarithmically with the reciprocal of the gap to capacity, i.e., it behaves like log %

For a BEC, the B-parameter of the channel is equal to the channel erasure prob-
ability. The sequence of right-regular LDPC code ensembles is designed to achieve
vanishing bit erasure probability under BP decoding for a BEC whose channel erasure
probability is set to B (since, by assumption, the parameters (o and N) of its degree

distributions are selected according to [33, Theorem 2.3]). Hence, the threshold of
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this sequence, By, under BP decoding is greater than or equal to B. This proves the
left-hand side of inequality (3.32).

We derive in the following the upper bound on By in this inequality, based on [32,
Appendix VI|. More explicitly, let ¢(a, N) be the function (see [32, Eq. (116)])

‘rr2 71'2
(o, N) 2 (1—a)% (% r+ak) (3.35)
for 0 < a < 1 and an integer N > 1 (on the right-hand side of this equality, v ~ 0.5772
denotes Euler’s constant). The fraction of edges attached to degree-2 variable nodes,

for this right-regular sequence, satisfies (see [32, Eq. (117)])

« (0%
Ao < — :
I—ca,N)(1-B) ~°=B (3-36)
where o £ 1. From (3.30), (3.35) and (3.36)
1
B, <
ST X(0)p(1)
_ o
=1
<1l—-¢(a,N)(1-B
a2 1

This completes the proof of (3.32). Following the first part of Theorem 3.3 and
Corollary 3.3, it follows that in the limit where d. — 0o, By < 1— (1 — B) = B, so
that (3.32) yields that By = By = B. Hence,

e the BP decoder achieves vanishing bit error probability for every MBIOS chan-

nel whose B-parameter is less than B,

e it is unreliable (i.e., the left-to-right message error probability is bounded away

from zero) for every MBIOS channel whose B-parameter is greater than B.

This completes the proof of Theorem 3.4. |
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Remark 3.6 Another way to prove the first part of the above theorem is via use of
the approach of sub-section 3.1. In the setting of Theorem 3.4, the family of MBIOS
channels being considered is the one that exhibits the same B-parameter (regardless
of capacity). Over this family, the BSC and BEC exhibit the maximal and minimal
capacities, respectively. Following the approach of sub-section 3.1, we construct a
capacity-achieving sequence of LDPC ensembles for a BEC with erasure probability
B. The design rate of this ensemble is Rq = 1 — B. Since the BSC exhibits the
maximal capacity over this set of MBIOS channels, the universally achievable fraction
of capacity is %, where C' is the capacity of a BSC with B-parameter B. Using the
expressions for Rq and C' we obtain that the universally achievable fraction of capacity
is indeed ps3(B).

Table 3.6 shows the resulting achievable fraction of capacity in (3.31) as a function
of the B-parameter of the considered set of MBIOS channels.

B | u3(B)

0 100%
0.250 | 85.0%
0.333 | 82.0%
0.500 | 77.5%
0.750 | 72.7%
1.000 | 69.3%

Table 3.6: Universal achievable fraction of capacity under BP decoding for the entire
set of MBIOS channels which exhibit a given B-parameter B (see Theorem 3.4).

Corollary 3.5 In the limit where d. — oo, the BP decoder in Theorem 3.4 achieves
vanishing bit error probability for all MBIOS channels whose B-parameter is less than
B, and it is unstable for every MBIOS channel whose B-parameter is greater than B.
For finite d., the values of By and B, differ from B by at most

o (20) )

and this difference tends uniformly to zero for 0 < B < 1 as we let d. tend to infinity.
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Proof: The first part of this corollary, for infinite d., is immediate from (3.32). For
finite d., subtracting B from (3.32) yields

s

N
0<By—B<B,—B<(l-B) 1-(2‘3 1) e (%) | (3.37)

Bernoulli’s inequality states that (1 + )" > 1+ rz for x > —1, » > 1. Thus,

2 2
de—2\® 1 \© 72 /6

=1 >1— .
(1) =(am) =5 (39

Moreover, for every y > 0 we have eV > 1 + y, so that

1 (x2_ 2/6 —
eii(F) > 14 %, (3.39)

Using (3.37)—(3.39) gives

OSBO—BSBQ—BS(1_3><1_(1_%) (1+%)>

(gt (F ) @)

From the above inequality it is clear that as we let d. — oo, the differences By — B

and By — B tend to zero uniformly. |

Example 3.3 For ensemble no. 2 in Table 3.4, whose design rate is Ry = % bits
per channel use, the threshold under BP decoding corresponds uniformly to the B-
parameter B = 0.4962 for every MBIOS channel. For the BEC, this corresponds
to capacity of C' = 1 — B = 0.5038 bits per channel use, and therefore 99.3% of
the capacity of the BEC is achieved under BP decoding with vanishing bit erasure
probability. For the BIAWGN channel, this corresponds to channel capacity C' =
0.5977 bits per channel use, and therefore this code ensemble achieves 83.4% of the
capacity for this channel. The smallest fraction of capacity under BP decoding is
achieved for the BSC. The B-parameter B = 0.4962 corresponds to C' = 0.6496 for
the BSC, which means that 77.0% of capacity is achieved under BP decoding.
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Example 3.4 In this example, we consider a right-regular LDPC code ensemble,
whose design rate is Rq = 0.9 bits per channel use, and which closely approaches
the capacity of the BEC under BP decoding. To this end, we set the degree of the
parity-check nodes to be 40, and the maximal variable node degree is set to 200. The
following degree distributions are obtained by linear programming with the approach
in [29, Section 3.18]:

Az) =0.2638x 4 0.12592% + 0.10882% + 0.05512° 4 0.15892° + 0.0278x"°
+0.259821¢ |

pla) =’
From (3.24), (3.25), and (3.30)
By =0.0972, B; =0.3185, By =0.0972

and therefore, since By = By, then for every MBIOS channel, this LDPC code ensem-
ble achieves vanishing bit error probability under BP decoding if the B-parameter is
below B = 0.0972, and it is unstable if the B-parameter exceeds this value. This en-
ables to calculate the threshold under BP decoding by transforming the B-parameter
to the proper channel parameter. For the BEC, this corresponds to capacity of
C =1— B =0.9028 bits per channel use, and therefore 99.7% of the capacity of the
BEC is asymptotically obtained under BP decoding with vanishing bit erasure prob-
ability. For the BIAWGN channel, this corresponds to channel capacity C' = 0.9400
bits per channel use, and therefore this code ensemble achieves 95.7% of the capacity
for this channel. The smallest fraction of capacity under BP decoding is achieved for
the BSC, and it coincides with the lower bound ps(B) = 92.5% as given in (3.31).

Example 3.5 We note that the approach presented in the examples above is not
necessarily the best approach for obtaining universal LDPC code ensembles. Nu-
merically optimized code ensembles may lead to better performance under BP over
some channels. To demonstrate this, we consider the following LDPC code ensemble,

obtained using [1]:
Az) =0.2440222 + 0.22497327 + 0.04765262° + 0.2257562° + 0.02707272"
+0.1738772" 4 0.05155542%° + 0.005091342% |

p(x) =2°.
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This code is numerically optimized for the BIAWGN channel, with a design rate of
one-half; its threshold under BP decoding is ¢ = 0.966293. This corresponds to
capacity of C' = 0.5084 bits per channel use. Therefore, this code achieves 98.35% of
the capacity of the BIAWGN channel. The threshold of this code under BP decoding
for the BEC computes to be B = 0.4741, which corresponds to a capacity of C' =
1 — B = 0.5259 bits per channel use. I.e., this code achieves 95.08% of the capacity
for the BEC.

The ensemble above and the ensemble considered in Example 3.3 share the same
design rate. We see that the code ensemble considered here, when used over a BI-
AWGN channel, is superior to the ensemble of example 3.3, achieving a much higher
fraction of capacity. The performance of the two ensembles over the BEC, however,
is similar, with a slight advantage to the ensemble of Example 3.3, recognizing that
it was designed for a BEC.

This observation is also supported by the numerical results presented in [25]. In
that work, the authors compared how LDPC code ensembles designed for one MBIOS
channel performed over other MBIOS channels. The channels considered there were
the BEC, the BIAWGN, and the flat-fading binary input Rayleigh channel. Their
results show that the BEC can indeed be used as a so-called “surrogate” channel for
the design of good LDPC code ensembles, while recognizing that better results can be
obtained, at the expense of a higher computational load, with numerical optimization
for the desired channel.

While the approach presented here may not be the optimal approach, it is analyt-
1cal and easy to compute, and thus provides insight. For instance, we have shown how
this approach can be used to obtain bounds on the thresholds of ensembles under BP
decoding over any channel, which, as exemplified in Examples 3.3 and 3.4 above, are

tight for some ensembles.

Remark 3.7 Universality results for LDPC code ensembles have been derived in
this chapter with vanishing bt error probability under BP decoding. An extension of
these results for vanishing block error probability can be made based on the results
of [15] and [19]. These works showed that for a specific MBIOS channel, an LDPC
code ensemble with Ay = 0 has the same threshold under vanishing block and bit

error probabilities?. The threshold for vanishing block error probability, similar to

“4In fact, [15] gives a stronger condition, also enabling Ao > 0 for ensembles with certain structures.
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the threshold for vanishing bit error probability, is defined as the maximal channel
parameter for which the block error probability will converge to zero. This result is
based on the union bound, Pg < nF,, where Pg is the block error probability, P, is
the bit error probability, and n is the block length. The conditions on Ay ensure that
the bit error probability decays fast enough, thus causing the block error probability
to vanish as well.

An extension of this result to universality over a multitude of MBIOS channels is
now straightforward. As an example, let us demonstrate this by extending the results
of Theorem 3.1. In the setting of this theorem, we consider a set A of MBIOS chan-
nels exhibiting the same capacity, C, and maximal B-parameter B. If the capacity-
achieving sequence of LDPC code ensembles {(n, A, p)} for BEC(B) also satisfies the
above-mentioned condition on As, then this sequence is not only universal over this
set in terms of vanishing bit error probability, but also in terms of vanishing block
error probability.

Similarly, by imposing on Ay the conditions from [15] and [19], the other results
of this chapter can be extended in a straight-forward manner for universality under

vanishing block error probability.
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Chapter 4

Universality for Irregular

Repeat-Accumulate Codes

Irregular Repeat-Accumulate (IRA) code ensembles were introduced in [13], [14] as a
family of code ensembles defined on graphs that have a natural linear-time encoding
algorithm. This family is, in fact, a special subclass of irregular LDPC code ensembles,
and was shown to achieve capacity under BP decoding over the BEC (see, e.g., [14],
[26], [34]).

In this Chapter we use the approach of Chapter 3 to derive universality results
for IRA code ensembles. This is made possible due to the fact that the density-
evolution approach can also be used to analyze IRA code ensembles. In Section 4.1
we introduce IRA code ensembles and present the density evolution equations for
them. Then, in Sections 4.2 and 4.3 we extend some of the results of Chapter 3 to
IRA code ensembles.

4.1 Definition of IRA code ensembles

Figure 4.1 shows a Tanner graph of an IRA code with repetition profile { fo, f3,..., fs}
and right degree a, where f; > 0, . f; = 1, and a is a positive integer. A Tanner
graph has two types of nodes: variable nodes, which are marked with circles, and
check nodes, which are marked with squares. In an IRA code, the variable nodes are
further divided into two types: information nodes on the left-hand side and parity

nodes on the right-hand side. For a systematic IRA code, both the information bits
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and the parity bits are submitted over the channel. When the IRA code is non-
systematic, only the parity bits are submitted; we can view this as puncturing all of
the information bits of a systematic IRA code. Another way to view non-systematic
IRA codes is to think of them as if the information bits are transmitted over a channel
with capacity zero whereas the parity bits are transmitted over the actual channel
(i.e., we can view this is a change in the channel rather than a change in the code).
An IRA code has k information nodes and r parity nodes. Each information node
is connected to a number of check nodes; the fraction of information nodes connected
to ¢ check nodes is f;. There are r check nodes, each connected to a information
nodes. Each check node is further connected to two parity nodes (the parity node
xo is virtual and does not constitute part of the code. We set it to 0 for the reason

explained below).

Check
nodes L4 Xg = 0

~ -_—
Arbitrary Permutation

Information Parity
nodes nodes

Figure 4.1: Tanner graph for an IRA code with repetition profile { fo, fs, ..., fs} and
right degree a.

For a fixed permutation, the Tanner graph represents a systematic binary linear
code. The k information bits, (uj,us,...,u), are represented by the information
nodes, and the r parity nodes are (zy,xs,...,2,). The parity bits are computed
as follows. First, we set xo = 0. The information bits are repeated a number of
times, based on the repetition profile. They are then interleaved according to the

permutation, and are fed into an accumulator, initialized with zy = 0, that outputs
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one bit for every a input symbols. The accumulator outputs, x;,2 = 1,...,r are given
by .
T; = T;—1 + Zv(i_l)aﬂ-, 1=1,2,...,r
j=1
where v;,j = 1,2,...,k are the information nodes. The design rate of a systematic
IRA code is Ry = a/(a + )_,if;). In the non-systematic case, the information bits
are not transmitted, so the design rate of the code becomes Ry* =a/ ). if;.

The code is decoded using Belief-Propagation decoding. The nodes transfer mes-
sages over the graph edges, based on the messages received from their neighbors; the
messages represent log-likelihood ratios. An iteration consists of all variable nodes
(information and parity nodes) sending their messages over the graph edges to the
check nodes, and then the check nodes sending their messages over the graph back to
the variable nodes. In each iteration, therefore, all variable nodes and all check nodes
are activated alternately and in parallel. The initial messages sent by the variable
nodes represent the received symbols from the channel. The computation of the mes-
sages is precisely the same as for BP of standard LDPC codes (see [29, section 2.5.2]).
The same decoder is used for the systematic and non-systematic cases. In the non-
systematic case, the information bits are not transmitted over the channel, so they
are initialized with zero LLRs. As above, we can also think of the non-systematic case
as if the information bits are transmitted over a channel with zero capacity, which
leads to the same conclusion about the initialization of the decoder.

The density evolution technique enables to calculate the BER performance of
BP decoding averaged over the IRA code ensemble for MBIOS channels. In fact,
the derivation of the density evolution equations for IRA code ensembles parallels
that of standard LDPC code ensembles. Let A; be the fraction of edges between the
information and check nodes that are adjacent to an information node of degree i
(i.e., we momentarily ignore the parity nodes, and view the remaining graph as a
standard LDPC code, and define \; as usual), and further define A\(z) = >, Az 1.
The relationship between f; and \; is given by [14]

B Zj )‘j/]"

Denote by a; (@;) the L-density of the messages transferred from the information

fi
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nodes (parity nodes) to the check nodes at the I iteration, and by b; (b;) the L-
density of the messages transferred from the check nodes to the information nodes

(parity nodes) at the (!

iteration. Let ag be the L-density of the channel observation
messages. Under these definitions, the density evolution equations for systematic IRA

code ensembles are ([30]):

a; = ag ® )\(bl) (4.1)
CNLI =ag® Bl (42)
b= (F(El_l)2 F(al_l)(“_1)> (4.3)
b= (F(El_l) F(al_l)“> , (4.4)

where ® and ® represent convolutions of distributions in the L and G domains,
respectively, and I and I'"! are the transformations from the L to the G domain and
vice versa.

In the non-systematic case, there are no received channel symbols entering the

information nodes, so equation (4.1) becomes:
ar = A(by). (4.5)

The remaining density evolution equations for non-systematic IRA codes are the same

as for the systematic case.

Remark 4.1 Both systematic and non-systematic IRA codes have been shown to be
capacity-achieving when their degree distributions are properly chosen. However, as
shown in [26] and [34], non-systematic IRA codes are superior to systematic IRA codes
in that bounded decoding and encoding complexity per information bit for message-
passing iterative decoding over the BEC is possible for non-systematic capacity-
achieving IRA codes but not for systematic capacity-achieving IRA codes. Therefore,

in this chapter we develop results both for the systematic and non-systematic cases.

4.2 Universal Achievability for IRA Codes

We now follow in the footsteps of section 3.1 in order to obtain parallel results on

the universal achievability of IRA code ensembles over various families of MBIOS
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channels. First, let us derive a necessary and sufficient condition for convergence of a
sequence of IRA code ensembles. To this end, we apply the Bhattacharyya functional
B in (2.2) onto the density evolution equations (4.1) — (4.4). Denoting

i = B(a)

and using the multiplicativity of the B-parameter functional for a convolution of
densities in the L-domain, (3.15), and the right-hand side of (3.12) for convolution of
densities in the G-domain, we obtain for the systematic case:
x; = By M(B(ly))
i, = By B(b))
B(b) <1—(1—&-1)*(1 —x-1)*"
B(b) <1 —(1—&1)(1 —z4)%,

where By £ B(ag). These equations also apply to the non-systematic case, with the

topmost equation replaced with
Adopting the notation

By systematic case

A A
BO -
1 non-systematic case,

we can address both cases jointly using
T = BO)\(B(bl))

Note that Ty = B(ag) = By, and similarly zo = By. The left degree polynomial A
is monotone increasing; therefore, we can replace B(b;) and B(b;) with their upper

bounds in the expressions for x; and z;, to obtain

2 < BoA (1= (1= #-1)(1 — )™ Y) (4.6)
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Recall that a necessary and sufficient condition for BP decoding to achieve vanishing
bit error probability is that z; — 0, Z; — 0 (see (3.27)). Since the information nodes
represent the actual decoded message, it is, in fact, sufficient that only z; — 0 in
order to achieve vanishing bit-error probability under BP decoding. This holds both
for the systematic and non-systematic cases.

As in Section 3.1, let us now consider an arbitrary set of MBIOS channels, with L-
densities in some set .A. The goal is to design an IRA code ensemble with right-degree
a and left degree distribution A that will achieve vanishing bit error probability over
every channel in the set. Let us define B as in (3.3), i.e., B designates the maximal
B-parameter over the MBIOS channels in the set. Consider the sequences y;,
(l=1,2,...), defined by the recursion

y=BA1—(1—51)*1—y_1)"?) (4.8)
=B 1—-1=g-1)1—-u-1)" (4.9)

with initial conditions gy = B, yy = B, and where

Be B systematic case
1  non-systematic case.

Note that this recursion refers to the density evolution equations for an IRA code
ensemble used over a BEC (both for the systematic and non-systematic cases). Com-
paring (4.6) and (4.7) with (4.8) and (4.9), it is clear that 0 < z; <y, 0 < 3 < @
for every [ > 0 and any MBIOS channel in A. Therefore, if A and a are selected such
that y; — 0 then we will also have x; — 0 for every channel in the set A, making the
code universal over this set of MBIOS channels.

Since capacity-achieving sequences of degree distributions of IRA ensembles over
the BEC are known (see, e.g., [13], [14] for the systematic case, and [26] for the
non-systematic case), a capacity-achieving sequence of IRA code ensembles designed
for a BEC with erasure probability B will be universal under BP decoding for every
channel in the considered set of MBIOS channels. The asymptotic design rate of
this capacity-achieving sequence of IRA codes ensembles is equal to Ry = 1 — B.
Therefore, in a matter completely analogous to Section 3.1, by considering sets of

MBIOS channels that exhibit the same capacity, we obtain the following theorem:
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Theorem 4.1 [Universality of IRA Codes under BP Decoding for Equi-
Capacity MBIOS Channels| Consider a set A of MBIOS channels that exhibit a
given capacity C, and let B denote the maximal B-parameter over this set (see (3.3)).
Let {(n,A(z),p(z) = *7)} form a capacity-achieving sequence of (systematic or
non-systematic) IRA code ensembles for BEC(B), achieving vanishing bit erasure
probability under BP decoding. Then, this sequence universally achieves vanishing
bit error probability under BP decoding for the entire set A, and the design rate of

this sequence forms a fraction that is at least % of the channel capacity.

Remark 4.2 As in Section 3.1, we can compute the universal achievable fraction of
capacity using this approach for specific families of equi-capacity MBIOS channels.
Comparing Theorems 4.1 and 3.1, we see that the universal achievable fraction of
capacity for IRA code ensembles is the same as that for LDPC code ensembles.

Therefore, Fig. 3.1 applies here as well.

Remark 4.3 The results above can also be extended to IRA code ensembles that
do not have a constant right degree. The analysis follows in the same vein, but the
resulting density evolution equations are somewhat more cumbersome, involving right
degree polynomials both from the node and the edge perspectives. Since IRA codes
are often designed with a constant right degree!, we have opted to provide here the
analysis only for this case. The derivation of the more general case is similar and is

left to the interested reader.

4.3 Bounds on the Bhattacharyya Parameter for
Convergence of a sequence of IRA code en-

sembles

The following theorem is analogous to Theorem 3.3 for LDPC code ensembles.

Theorem 4.2 Let {(n, A(z),p(z) = 2*7')} be a sequence of (systematic or non-

systematic) IRA code ensembles with right degree a and left degree distribution A

'Some explicit constructions of capacity-achieving check-regular IRA code ensembles for the BEC
are provided in the literature (see, e.g., [26, Theorem 2]).
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whose block lengths tend to infinity. The following universal properties hold under
BP decoding:

e This sequence achieves vanishing bit error probability under BP decoding for

every MBIOS channel whose B-parameter is less than

1-B 2
By(\,a) & su —B)|1-— (—> 1 — )01
oA a) Be(g?l]{y < 1—B(1l—y) ( v)

(4.10)
has no solution y in (0, 1]}

e This sequence does not achieve reliable communications over any MBIOS chan-

nels whose B-parameter is greater than

Bi(\a) 2 B[ 4/1 ( - B )2(1 2)a-1
,a) = Sup 2= — —z)
' Be(0,1] 1—B*(1—2%)°

has no solution z in (0, 1], }

(4.11)

where

Ba B systematic case

1  non-systematic case.

Proof: To prove the first part of the theorem, consider the recursion given by (4.6)
and (4.7). Let B > By; clearly,

2 < BA(1— (1= 30)2 (1 —20)™ ),
.i’l S B (1 - (1 - i’lfl)(l - l'lfl)a) .

Observe that 0 < z; < y; and 0 < 7; < ¥; where y; and g; are defined according
to (4.8) and (4.9), with B denoting any B-parameter greater than or equal to By and
initial conditions g = B, yo = B. Thus, if {y;, 71} converge to 0 then also z; — 0
and the sequence of IRA code ensembles converges for any MBIOS channel with B-
parameter less than or equal to B. Therefore, if we denote by By(A, a) the maximal

B-parameter such that the recursion defined by (4.8) and (4.9) with initial condition
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o = Bo(A, a), yo = Bo(/\, a) converges to 0, then the sequence of IRA code ensembles
{(n, \(z), p(z) = z*~ 1)} will converge for any MBIOS channel whose B-parameter is
less than or equal to By(\, a).

The expression in (4.10) for By(A,a) stems from a fixed-point characterization
of (4.8) and (4.9), as derived in appendix E. This completes the proof of the first
part of the theorem.

To prove the second part, we rely on the inequality (3.13). Applying the B-
parameter functional onto (4.3) and (4.4) and using (3.13) we obtain

\/1 —(L=3 )2 (1 —af )",

where, as above, we have defined 7, = B(q;) and #; £ B(@). Applying the B-
parameter functional onto (4.1) and (4.2) (and (4.5) for the non-systematic case)

and using these inequalities, we obtain:

2 > By (\/1 — (=71 - x?*l)aA) ’

> BO\/l — (=2 )1 == y)e,

where By = B(ap). It therefore follows that if the sequences {z;,Z;} tend asymptoti-

cally to zero, then the sequences

2 = Bo) (\/1— _ 2 (1—,2[2_1)‘1*1), (4.12)

5= Bo\/l— — 2 (1 -2 ), (4.13)

with initial value Zyp = By and zg = BO should also tend to zero. Recall that x; — 0
forms a necessary and sufficient condition for achieving vanishing bit error probability
under BP as we let the number of iterations grow. Therefore, the convergence of
{21, 21} to zero forms a necessary condition for the sequence of IRA code ensembles
to achieve vanishing bit error probability under BP decoding. Hence, if {z;, Z;} does
not converge to zero, then z; is bounded away from zero. The expression in (4.11) for
B (A, a) stems from a fixed-point characterization of (4.12) and (4.13); its derivation
is completely analogous to the derivation in appendix E, and is thus omitted here.

This completes the proof of the theorem. |
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Corollary 4.1 Let {(n,\(z), p(z) = z°7')} be a sequence of systematic IRA code
ensembles whose block lengths tend to infinity. Then, the message error probability
stays bounded away from zero under BP decoding for every MBIOS channel whose

B-parameter is greater than

—(I+Xa—1)) +/(1+ Xafa—1))2+4(1 + Xo(a + 1))
2)\2(@"‘1) ’

By(\,a) £ min{Bl(/\, a),

Ji7]
(4.14)

where By is introduced in (4.11), and R4 designates the design rate.

Proof: If the parameter B is greater than B; (A, a) the statement follows from the
second part of Theorem 4.2. The stability condition for systematic IRA ensembles,
which is another necessary condition for convergence, is given by

B Y(B™'-1)
a+1+ B (a—-1)

9 <

as proved in [30, Theorem 1]. Rearranging this inequality yields that a necessary

condition for convergence is that
(a+1)XB*+ (1+ X(a—1))B -1 <0. (4.15)

The left-hand-side is a convex quadratic polynomial in B with zeros

—(1+X(a—1) £ VA +X(a—1)2+4(1+ X(a+1))
2X2(a+1)

Zip =

Therefore, the condition (4.15) is equivalent to Z; < B < Zs, where Z; is the zero with
the negative sign in front of the square root, and Z, is the other zero; in particular,
Z1 < 0and Zy > 0. Since B > 0 by definition, an equivalent condition is that B < Zs.

Therefore, the stability condition can be written as

—(1+Xa(a—1)) + /(1 + Mafa—1))2 +4(1 + Xo(a + 1))
2A2(CL+1) ’

B <

and when this condition is violated, the message error probability stays bounded away
from zero. Finally, the case where B > /1 — R? is the same as in Corollary 3.3. =
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Chapter 5

Universality under

Maximum-Likelihood Decoding

In Chapter 3 we considered the universality of LDPC code ensembles under BP decod-
ing. Though maximum-likelihood (ML) decoding is in general prohibitively complex,
we show in the following that universality can be achieved under ML decoding for the
entire set of equi-capacity MBIOS channels. The universality results proved in Chap-
ter 3 under BP decoding automatically hold under ML decoding, but the universality
results that are proved in this chapter under ML decoding are stronger in the sense
that capacity can be approached arbitrarily closely for the entire set of channels un-
der consideration with vanishing block error probability. In Section 5.1 we show that
Gallager’s regular LDPC code ensembles can be made universal under ML decoding.
In Section 5.2 we show that randomly punctured regular LDPC code ensembles can

also be made universal.

5.1 Universality of Gallager’s Regular LDPC Code

Ensembles

In his monograph, Gallager introduced ensembles of regular LDPC codes, and also
considered their performance under ML decoding via their distance properties (see
[8, Chapters 2 and 3]). In the following, we rely on [33], and demonstrate that a

proper selection of Gallager’s regular LDPC code ensembles can be made to approach
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arbitrarily closely the channel capacity for the entire set of equi-capacity MBIOS

channels with vanishing block error probability.

Theorem 5.1 [Universality of Regular LDPC Code Ensembles under ML
Decoding for Equi-Capacity MBIOS Channels| Under ML decoding, Gallager’s
regular LDPC code ensembles can be made universal for the set A of MBIOS channels
that exhibit a given capacity C. More explicitly, for any € > 0 (that can be made
arbitrarily small), there exists a sequence of these code ensembles whose design rate
forms at least a fraction 1 — ¢ of the channel capacity with vanishing block error
probability for the entire set A. Moreover, the asymptotic parity-check density of

this sequence scales like log %

Proof: The proof of the first part of this theorem follows along the lines of the proof of
[33, Theorem 2.2 by noticing that the way where the capacity-approaching sequence
of regular LDPC code ensembles is determined only depends on the channel capacity.
This therefore makes this sequence universal for the entire set of equi-capacity MBIOS
channels A, and it asymptotically achieves (as we let the block length of this sequence
tend to infinity) vanishing block error probability under ML decoding with a design
rate that is at least a fraction 1 — € of the channel capacity. The asymptotic parity-
check density scales like log %, which is a consequence of the upper and lower bounds
on the parity-check density in [33, Theorem 2.2] and [33, Theorem 2.1], respectively,
which both scale like log % |

Example 5.1 In order to exemplify Theorem 5.1, consider lower bounds on the error
exponents of some expurgated Gallager’s regular LDPC code ensembles under ML
decoding. Figure 5.1 shows lower bounds on the error exponent for several expurgated
Gallager’s LDPC code ensembles of length n = 100000 and design rate % The
expurgation followed the approach in [8, Chapter 2|. The bounds were computed for
three MBIOS channels of different capacities. For the BSC and BEC, the Shulman-
Feder bound was used (see [35, section 4.4.1]). For the BIAWGN channel, the error
exponent was computed based on [44, Theorem 3.1]. The distance spectra of the
ensembles were computed according to the asymptotic results in [8, Chapter 2]. It
is noted that for this block length, the asymptotic results are very close to the exact

distance spectra (see [43]). It is evident from Figure 5.1 that as we increase the degrees
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of the variable and check nodes while maintaining a constant design rate, the point
where the error exponent vanishes gets closer to the channel capacity, regardless
of the MBIOS channel in question. Thus, this demonstrates that this sequence of
ensembles becomes universal under maximum-likelihood decoding for equi-capacity
MBIOS channels.

For short block lengths, we compare the lower bound for the expurgated (6,12)
ensemble and block length n = 1008 computed using the exact distance spectrum [43]
and the upper bound from [8, Chapter 2]. Figure 5.2 shows the comparison. Clearly,
the vanishing point of the error exponent is closer to capacity when computed using
the exact distance spectrum. The calculation of the lower bound on the error exponent
that uses the upper bound on the distance spectrum provides, however, a reasonable
estimate of the lower bound on the error exponent that is calculated via the exact

distance spectrum.
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Figure 5.1: Lower bounds on the error exponent for expurgated Gallager’s LDPC code ensembles on various MBIOS
channels. The results were computed for block length n = 100000, and for codes with constant design rate 1/2 and
increasing variable and check node degrees.
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Figure 5.2: A comparison of the lower bounds on the error exponent of some expurgated Gallager’s LDPC code
ensembles for various MBIOS channels. The results were computed for the expurgated (6,12) ensemble with block

length n = 1008, using both the exact distance spectrum as found in [43] (left-hand plot) and the upper bound from
[8, Chapter 2] (right-hand plot).



5.2 Universality of Punctured Regular LDPC Code

Ensembles

The performance of punctured LDPC code ensembles under BP decoding was ad-
dressed extensively (see, e.g., in [10] and [27]). The potential performance of punc-
tured LDPC code ensembles under ML decoding was studied, e.g., in [12] and [37].
These works show the remarkable performance of some punctured LDPC code en-
sembles for various channel models. In the following, we rely on [12], and consider
the universality of some randomly punctured regular LDPC code ensembles under
ML decoding over the set of equi-capacity MBIOS channels.

Consider a linear block code, which will be referred to as a mother code. By
introducing the option of possibly puncturing various fractions of the code bits of
the mother code, one generates a set of new linear block codes with some higher
rates. The advantage of puncturing lies in the flexibility of the selected rates of the
punctured codes, and in the ability to use the same decoder as for the mother code to
decode all of these punctured codes. Specifically, by puncturing ng bits of a mother
code of length n and rate R, one obtains a punctured code of length n(1 —g) and rate
at most 1TRq- A lower rate occurs whenever at least two different codewords of the
mother code are mapped to the same codeword after puncturing; this phenomenon is
called rate reduction (see [12, Section IIIJ).

In [12], the authors analyze the performance of punctured LDPC code ensembles
under ML decoding. Specifically, they consider puncturing Gallager’s ensemble of
regular (n, j, k) LDPC codes, and provide conditions on the original ensemble (before
puncturing) for asymptotically obtaining zero rate reduction with probability 1 as we
let the block length n tend to infinity. Consider an ensemble whose design rate is Ry,
then in the case where there is no rate reduction due to puncturing, the design rate
of the punctured ensemble is 1Rqu. It is also shown in [12] that under the condition
of zero rate reduction, if the original sequence of code ensembles achieves a fraction
1 — ¢ of capacity (note that Theorem 5.1 ensures the existence of such a sequence),
then so does the sequence of punctured code ensembles. This leads to the following

theorem:

Theorem 5.2 [Universality of Punctured Regular LDPC Code Ensembles
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under ML Decoding for Equi-Capacity MBIOS Channels] Under ML decod-
ing, punctured regular LDPC code ensembles can be made universal for the set of
MBIOS channels that exhibit a given capacity. More explicitly, let € > 0 (which can
be set arbitrarily close to zero), and consider a sequence of regular (n,j, k) LDPC
code ensembles whose design rate Rq forms a fraction of at least 1 — ¢ of the capacity
C. Assume that this sequence achieves vanishing block error probability under ML
decoding for the entire set of MBIOS channels A which exhibit a channel capacity
C'. Random puncturing of a fraction ¢ of code bits from this sequence of ensembles
produces a new sequence of punctured code ensembles with any desired design rate

R!, > R4 with the following properties:

e [t achieves vanishing block error probability under ML decoding over the entire

. . . . o C
set of equi-capacity MBIOS channels with capacity C’ = gt

e It achieves a fraction of at least 1 — e of the capacity C".

Proof: From Theorem 5.1, there exists a sequence of regular LDPC code ensembles
that universally achieves, under ML decoding, a fraction 1 — ¢ of the channel capac-
ity with vanishing block error probability for the entire set A. The idea is to first
construct such a sequence with a low enough design rate, and then increase the de-
sign rate via (random) puncturing to obtain the new universal code ensemble. More
specifically, according to [12, Theorem 1], if the design rate of the mother ensemble is
low enough, then the rate reduction due to puncturing is zero. Note that the proof of
this theorem is based solely on the distance properties of the original (mother) code
ensemble and the desired design rate. Since the proofs of [12, Theorems 2 and 3] rely
only on the capacity of the MBIOS channel and the condition for zero rate reduction,
this implies that the new sequence of punctured LDPC code ensembles has vanishing
block error probability under ML decoding over all MBIOS channels with capacity
C'= %}. Note that since
R}, Ry C

I O9u-g-1-¢ ¢

then this new sequence of punctured LDPC code ensembles has a design rate that is

at least a fraction 1 — ¢ of C". ]
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Chapter 6

Summary and Outlook

6.1 Contribution of this Thesis

In this thesis, we have considered the universality of LDPC code ensembles under both
BP and ML decoding over families of MBIOS channels. We have focused on obtaining
closed-form analytical results, even though better performance can be obtained by
numerical design of LDPC code ensembles (see, e.g. [4], [7], [25], [31] and also the
discussion in Example 3.5 of this thesis).

Under BP decoding we derived an analytical method to design LDPC code en-
sembles that achieve vanishing bit error probability over every channel in a family of
MBIOS channels. This method is based on a necessary and sufficient condition for an
LDPC code ensemble to achieve vanishing bit error probability under BP decoding;
this condition is a consequence of applying the B functional (2.2) to the density evolu-
tion equation (3.1). We derived an expression for the universal achievable fraction of
capacity over the family obtained using this method, ans applied it to several families
of MBIOS channels, such as the family of equi-capacity MBIOS channels. Thus, we
showed that at least 69.3% of capacity is uniformly achievable for these families.

We also derived a necessary condition for a sequence of LDPC code ensembles
to universally achieve vanishing bit error probability under BP decoding over an
arbitrary set of MBIOS channels. This condition forms the basis for a linear pro-
gramming universal upper bound on the achievable rate of LDPC code ensembles
over a set of equi-capacity MBIOS channels. This bound can also be translated into

a lower bound on the achievable gap to capacity. Additionally, by considering sets of
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MBIOS channels that also include the BEC, we were able to improve the bound in
some cases.

The analytical design method and the necessary condition above were then used
to derive universal conditions for reliable communication under BP decoding. In par-
ticular, we showed that an LDPC code ensemble will achieve vanishing bit error prob-
ability under BP decoding when used over any MBIOS channel whose B-parameter
is less than a certain value, and will achieve a positive bit error probability when
the B-parameter exceeds a certain (other) value. These bounds support [31, Conjec-
ture 1], yet due to the gap between the two bounds, they do not prove it. Although
a form of these bounds was previously published in [46], they were independently
derived here in an easy-to-compute closed form, and the lower bound on the bit error
probability when the B-parameter exceeds the bound in (3.30) is new. We com-
puted these bounds for several LDPC code ensembles, both regular and irregular,
and showed that in some cases they coincide. We also showed that these bounds can
be translated into bounds on the threshold under BP decoding, and compared them
to previously published bounds based on an information combining approach [41]. In
some cases, our bounds were more informative. In addition to analyzing the numer-
ically designed degree distributions, we also computed the bounds for the family of
analytically designed capacity-approaching right-regular degree distributions on the
BEC in [29, Example 3.88], and showed that these LDPC code ensembles can achieve
universality over the set of MBIOS channels with the same B-parameter. Although
numerically designed LDPC code ensembles can achieve better performance than the
codes designed using our approach (see, e.g., [7], [25], and [31]), our approach is
analytical, easily computable, and guarantees universality. The universality results
that were derived for vanishing bit error probability can be extended to universally
achieving vanishing block error probability subject to the conditions on the degree
distributions in [15] and [19].

The universality results of LDPC codes under BP decoding can be extended to
other families of codes defined on graphs that can be analyzed using density evolu-
tion type equations. We demonstrated this by considering the family of IRA code
ensembles ([13], [14]). As for LDPC code ensembles, we derived an analytical method
to design IRA code ensembles that will universally achieve vanishing bit error prob-

ability over a set of MBIOS channels, and determined the universally achievable
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fraction of capacity obtained using this method. Then, we derived conditions on the
B-parameter for reliable communication under BP decoding that are analogous to the
ones for LDPC code ensembles.

Universality under ML decoding was also considered. We used the results of [33] to
show that Gallager’s regular LDPC code ensembles can be made universally capacity
achieving over the set of equi-capacity MBIOS channels (in the sense of vanishing
block error probability). It is noted that the ML decoding results are an improvement
over the BP decoding case, where the universally achievable fraction of capacity over
the family of equi-capacity MBIOS channels depended on the channel capacity and
could be as low as 69.3%. We exemplified this result for a particular sequence of
expurgated regular LDPC code ensembles by showing that as the right degree is
increased, all the while maintaining the same design rate, the point where the error
exponent vanishes approaches capacity for different MBIOS channels. Finally, we
used [12] to extend this result to randomly punctured LDPC code ensembles as well.

The results in this research work are also presented in [36], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).

6.2 Topics for Future Research

In this section, we propose some directions for future research:

e The LP bounds derived in Section 3 are not tight in general, since the univer-
sal achievable gap to capacity does not always decrease for increasing values of
d. (contrary to the expected experimental behavior of optimized LDPC code
ensembles under BP decoding). Finding some new constraints in these opti-
mization problems may enhance the tightness of these bounds. Moreover, our
bounds refer to fixed right-degree ensembles (note that typically LDPC code
ensembles are designed to be right-regular or almost right-regular). Extending
the bounds to the case where the parity-check degree is not fixed is also of

interest.

e The Bhattacharyya parameter (B-parameter) for equi-capacity MBIOS chan-
nels can vary in a large range. As a result, the universal LDPC code ensembles

designed in this work achieve, e.g., 75% of capacity if the channel capacity is 0.5
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bit per channel use (see Fig. 3.1). Nonetheless, the fact that these ensembles
are provably universal and are designed by simple analytical tools is important.
Since, in practice, numerical optimizations enable to design LDPC code ensem-
bles which universally achieve a larger fraction of capacity for some classes of
equi-capacity MBIOS channels (see [31]), further analysis in this direction is of

interest.

The ideas of universality in this paper can be developed to consider other sets of
communication channels (for example, the universality of LDPC code ensembles
for the set of MBIOS channels with the same uncoded bit error probability is
considered in Appendix F).

The approach for universality in Section 3 of this paper stems on the asymptotic
analysis of BP decoding via density evolution; it has resulted in an analytical
design of a universal decoder that is based on code design for a BEC. This
universal LDPC code ensemble converges but does not achieve full capacity
when used over other channels in the family it was designed for, as Fig. 3.1
demonstrates. That said, one should not infer that this is the penalty of uni-
versality, as these results are merely an artifact of the approach presented here.
Numerical evidence in [7] and [25] suggests that better results are possible (see
also Example 3.5 in this paper). One possible approach to obtain better an-
alytical results may rely on analytic properties of GEXIT charts [21], instead
of the suggested approach in this paper that relies on density evolution for the
BEC as a starting point for the analysis. Another possible approach may be
to investigate universal LDPC code ensemble design under other suboptimal
decoding methods for LDPC codes (e.g., a study of the universality of LDPC

code ensembles under LP decoding).

Although ML decoding is prohibitively complex for codes of large blocklength,
the fact that (regular) LDPC code ensembles are capacity-achieving under ML
decoding for the set of equi-capacity MBIOS channels is interesting (see Theo-
rems 5.1 and 5.2). As a continuation of the previous item, it would be interesting
to investigate the tradeoff between performance and complexity for some near-
ML decoding algorithms that provide a better tradeoff between performance

and complexity than the ML decoding algorithm.
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Appendix A

Proof of Lemma 3.1

In the following, we prove the monotonicity of 1y (see (3.7)) over the interval [0, 1),
and then calculate the limits of p;(C') as the channel capacity C' tends either to zero
or 1 bit per channel use.

Let x £ hy'(1 — C), then we get from (3.7) that

- VI =9

1-— hg(x)

m(C) =

We note that pu, as a function of x, monotonically decreases when 0 < x < % This is

readily seen by taking the derivative of u; with respect to x, which remains negative

when 0 < o < % The substitution of the Taylor series expansion of the binary
1

entropy function around z = 5 (see [47, p. 575])

o

1 (1 —2x)%
ho(z) = 1 — 0<z<1
2(7) 2m2§:q@q—n’ ==

g=1
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in the denominator gives

1—/1—(1—2z)

0 === g
21n2q:Z1 q(2q_1)
(1—2x)? 2In2
14T (1—20)2 &K (1—22)%
Z q(2¢ — 1)
B 21n2 1
41— (1 —20)2 & (1 —2a)2e D)
Z q(2q — 1)

If C is increased from 0 to 1, then x, which was defined above as z = hy (1 — O),

decreases from % to 0 and therefore p;(C') is increasing with C, and

Lim yu(C) = 1.

On the other hand, the limit of u1(C) when we let the capacity tend to zero is equal

to
2In2 1
lim 1 (C) = lim =
C—0 a3 14 +/1 — (1 — 21)2 Z Ag=1)
g 2q—1)
1

= In2 hm =
x—>2 Z (1 — 21‘)2((171)
~ al2g-1)
= In2.

This completes the proof of Lemma 3.1.
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Appendix B

Extension of (3.10) for general
LDPC code ensembles

The condition in (3.10) is stated for a right-regular channel. For a general right-degree

This condition can be readily extended to the case at hand, although it takes a more
involved form. As in (3.14) we begin with (3.1) to obtain

B(A Mo 1)))))
A(B al_l)))>>
(g

> BMOM(Z: piy/1-(1 - B(az_m)“), (B.1)

where equality (a) follows from the recursive density evolution equation in (3.1) and

distribution

$l

the multiplicativity of the B-functional over convolution in the L-domain (3.15), equal-

ities (b) and (c) follow from the linearity of the convolution operator and of the
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B-functional (see (3.16)), and inequality (d) follows from (3.13).
The extension of (3.10) for a general LDPC code ensemble readily follows by
replacing z; in (3.17) with

(sz\/l B(z_, )H>.

Thus, the extended (3.10) assumes the form

A(Z pi\/l—(l - x2)i‘1> <z, Vxel(0B) (B.2)
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Appendix C

Proof of Lemma 3.3

Let us consider the sequence

2= 20/\(\/1 —p(1 —212_1)), 1=1,2,...

for zo < By(\, p) where

. x
inf
x€(0,1] /\( 1—p(1— xZ))

Bl(/\a :0) é

is introduced in (3.25). By substituting = 1 on the right-hand side above, it follows
readily that Bi(\,p) < 1 and therefore z < 1. In the following, it is proved by
induction that the sequence is monotonic decreasing and bounded between 0 and 1:

let us assume that 0 < z,_; < 1 holds for a specific [ > 1, then
2 = zo)\(\/l —p(1— zlz_l))
< B\ p) Ay/1—p(1 = 22))

<z

where the last inequality follows from the definition of B; and the above assump-
tion for z_;. It therefore follows by induction that the sequence {z} is monotonic
decreasing and bounded between 0 and 1, hence it is a convergent sequence. Let
z* € [0,1] denote the limit of this sequence, then due to the continuity of A and p
over the interval [0, 1], it follows (by letting [ tend to infinity in the recursive equation

for the sequence {z}) that the limit z = z* satisfies the equation

z=2A (V1 = p(1 — 22)).
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For z € (0, 1]
A1 =p(1=22))
= 20A (V1= p(l —2%)) <z

z0<31§

and therefore the limit z should be necessarily zero for the case where the initial value
2o i less than Bi(A, p).

For the proof of the second part of the lemma, we consider the case where
Bi(A, p) < zp < 1. From the way By is defined in (3.25), it follows that the set

T

Fop £ {x € (0,1] : )\( = —xz)) < Zo} (C.1)

is non-empty. Let z(z) designate the maximal value of this set (note that 0 < x(zg) <

1).

Let us define the function g(u,v) = uX(y/1 — p(1 — v?)) over the square {(u,v) :

0 <u<1,0<wv<1}. Note that the function g is monotonic increasing in its two
variables; the monotonicity in u is due to its linearity in u and since X is non-negative,
and the monotonicity in v is due to the monotonicity of the degree distribution A and
p over the interval [0, 1] and since they are mapped to the same interval. We show
in the following, by induction, that z; € [z(z9), 20 for every integer [ > 0. For [ = 0,
the inequality x(29) < zo < 1 holds since for = € (2o, 1]

T

A1 = p(1—2?))

Let us assume that 2, € [2(2)), 2] for a specific [ > 1 then

> x> 2.

2] = Q(ZO,ZZ—1)
(a)
Z 9(20733(20))

where inequality (a) is due to the monotonicity of g, and inequality (b) follows from

the way x(zo) is defined above (or, more generally, this inequality holds for every
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x € Fp where the set F,, is defined in (C.1)). Also, from the above assumption for

Z1—1

21 = g(20, 21-1)
S g(Z0> 1)

g ZO
and therefore, it follows by induction that
x(20) <z <z, 1=0,1,...

and the sequence {2} is bounded away from zero (since x(z) > 0). This completes

the proof of Lemma 3.3.
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Appendix D

Proof of the Inequality in
Remark 3.5

From the definitions of By and By in (3.24) and (3.25), respectively, in order to prove
that B(A, p) > Bo(A, p), it is sufficient to show that

AMyV1=p(1=2%) <A1-p(l-1)), Vzel01]

Since A(0) =0, A(1) = 1, and X is monotonic increasing over the interval [0, 1], then

this inequality is equivalent to
1—p(1—22)<1—p(1l—21), Vzel01].
By squaring and rearranging terms, we need to prove that
h(z) = p(1 —2*) +p*(1 —2) —2p(1 —2) >0, Vael0,1]

Note that h is zero at the endpoints of this interval (since p(0) = 0 and p(1) = 1).
From the assumption of right-regularity then p(x) = 2%~'. Let v £ d. — 1 (where
v > 1), then

hiz) = (1—22) + (1 —2)® —2(1 — z)

(14+2)"+ (1 —a)
2

-1

=2(1—=x)

where the last transition follows from the non-negativity of both terms over the in-

terval x € [0, 1] (the second term is non-negative due to the convexity of the function
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f(z) = 27 for x > 0 (note that v > 1)). This completes the proof of the inequality in
Remark 3.5.
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Appendix E

Fixed Point Analysis of (4.8)
and (4.9)

At a fixed point of (4.8) and (4.9), y; = y;-1 =y and g, = ;-1 = §. Rearranging (4.9)
at the fixed point yields

. 1-B
YTIoBA -y
Plugging this into (4.8) yields the fixed-point equation
A 1-B 1\’
=B\ |[1—-(—7+—— 1—y) ). E.1
y ( (= pny) 0w ) (B.1)

Convergence to zero is obtained if and only if the equation above has no solution y
in (0, 1]. Denote

1-B ?
By2l—|—Fs—— ] (1—y)*!

so that (E.1) becomes y = BA(f(y, B)). This is a non-decreasing function in both y

and B, since
df(y, B) 21 -B)(1—(1—y)*) (1 - y)a—l

— >0
0B 1By -

0f(y.B) _(1=B)(a—1+Bla+D(1-y)) (1 -y _
9y 1By -

where the inequalities are due to 0 < y, B < 1 and a > 1. One solution of (E.1) is
y = 0. If this is the only solution y in [0, 1] for some B, then, since A(-) is monotone

increasing, this will also be the only solution of (E.1) for any smaller B.
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Appendix F

Universality for MBIOS channels
with the same uncoded bit error

probability

In this appendix we show how the approach of Section 3.1 can be used for the set A
of MBIOS channels that exhibit the same uncoded bit probability of error, €.

It readily follows from (2.4) that over A, the BSC exhibits the maximal B-
parameter and the BEC exhibits the minimal B-parameter. Therefore, here B in (3.3)
assumes the form

B =451 - &).

We design a capacity-achieving sequence of LDPC code ensembles for a BEC with
erasure probability B, so that the design rate of this ensemble is Rq = 1 — B. Over
this set, the channel with the maximal capacity is the BSC, with C' = 1 — hy(E).
Therefore, the universally achievable fraction of capacity over this set following the

approach of Section 3.1 is given by

L 1=2/E1-¢)

Let us analyze the achievable fraction of capacity for the extreme cases of a noise-
less channel (£ = 0 or £ = 1, where in the latter case we simply flip the detections)

and very noisy channel (£ — 0.5). Clearly, when & = 0 or £ = 1, we have uy = 1,
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meaning that capacity is achievable. When & — 0.5, we have

1im1_2'€(1_€):1n2 lim 1-2¢
£—0.5 1 —hy(E) €05\ /£(1 — &) In (%)
=1In2 lim =2

=05 [ _91(1-28)In((1-E)/€)
2\/5(1—5)

=1In2.

Thus, over this set of channels, the extreme values of p4 () are 1 for a noiseless channel
and 69.3% for a very noisy channel. We note that this coincides with the extreme
values of the achievable fraction of capacity for the two other families considered in
Chapter 3 of this thesis: the family of equi-capacity MBIOS channels and the family
of equi-B-parameter MBIOS channels (see Theorems 3.1 and 3.4).
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