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Introduction

f -Divergences

Probability theory, information theory, learning theory, statistical
signal processing and many other disciplines, greatly benefit from
divergence measures.
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Introduction

f -Divergences

Probability theory, information theory, learning theory, statistical
signal processing and many other disciplines, greatly benefit from
divergence measures.

f -divergences (Csiszár, 1963) form a large class of divergence
measures, indexed by convex functions f , which include as special
cases:

I I-divergences (relative entropies);
I χ2-divergence;
I squared Hellinger distance;
I total variation distance;
I DeGroot statistical information;
I etc.
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Introduction

f -Divergences

Probability theory, information theory, learning theory, statistical
signal processing and many other disciplines, greatly benefit from
divergence measures.

f -divergences (Csiszár, 1963) form a large class of divergence
measures, indexed by convex functions f , which include as special
cases:

I I-divergences (relative entropies);
I χ2-divergence;
I squared Hellinger distance;
I total variation distance;
I DeGroot statistical information;
I etc.

f -divergences satisfy the data processing inequality.
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Introduction

f -Informativities

f -Informativities (Csiszár, 1972) form a generalization of the mutual
information:

KL divergence =⇒ Shannon’s Mutual Information;

In general, f -divergence =⇒ f -informativity.
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Introduction

The Origins

I. Csiszár, “Eine Informationstheoretische Ungleichung und ihre Anwendung
auf den Bewis der Ergodizität von Markhoffschen Ketten,” Publ. Math.
Inst. Hungar. Acad. Sci., vol. 8, pp. 85–108, Jan. 1963.

I. Csiszár, “A note on Jensen’s inequality,’ Studia Scientiarum
Mathematicarum Hungarica, vol. 1, pp. 185–188, 1966.

I. Csiszár, “Information-type measures of difference of probability
distributions and indirect observations,” Studia Scientiarum
Mathematicarum Hungarica, vol. 2, pp. 299–318, Jan. 1967.

I. Csiszár, “On topological properties of f -divergences,” Studia Scientiarum
Mathematicarum Hungarica, vol. 2, pp. 329–339, Jan. 1967.

I. Csiszár, “A class of measures of informativity of observation channels,”
Periodica Mathematicarum Hungarica, vol. 2, pp. 191–213, Mar. 1972.

S. M. Ali and S. D. Silvey, “A general class of coefficients of divergence of
one distribution from another,” Journal of the Royal Statistics Society,
series B, vol. 28, no. 1, pp. 131–142, Jan. 1966.
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Introduction

Scope of this talk

Properties, and applications of f -divergences and f -informativities.
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f -Divergences

Notation

C denotes the set of convex functions f : (0,∞) 7→ R with f(1) = 0;

P and Q are probability measures;

P,Q� µ (e.g., µ = 1
2(P +Q)), and p := dP

dµ , q := dQ
dµ .
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f -Divergences

Notation

C denotes the set of convex functions f : (0,∞) 7→ R with f(1) = 0;

P and Q are probability measures;

P,Q� µ (e.g., µ = 1
2(P +Q)), and p := dP

dµ , q := dQ
dµ .

f -Divergence: Definition

The f -divergence from P to Q is given, independently of µ, by

Df (P‖Q) :=

∫
q f
(p
q

)
dµ (1)

with the convention that

f(0) := lim
t↓0

f(t), (2)

0f
(0

0

)
:= 0, 0f

(a
0

)
:= lim

t↓0
tf
(a
t

)
= a lim

u→∞

f(u)

u
, a > 0. (3)
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f -Divergences

f -divergences: Examples

Relative entropy

f(t) = t log t, t > 0 =⇒ Df (P‖Q) = D(P‖Q), (4)

f(t) = − log t, t > 0 =⇒ Df (P‖Q) = D(Q‖P ). (5)
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f -Divergences

f -divergences: Examples

Relative entropy

f(t) = t log t, t > 0 =⇒ Df (P‖Q) = D(P‖Q), (4)

f(t) = − log t, t > 0 =⇒ Df (P‖Q) = D(Q‖P ). (5)

Total variation (TV) distance

f(t) = |t− 1|, t ≥ 0 (6)

⇒Df (P‖Q) = |P −Q| :=
∫ ∣∣∣dPdµ − dQ

dµ

∣∣∣ dµ, P,Q� µ. (7)
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f -Divergences

f -divergences: Examples

Relative entropy

f(t) = t log t, t > 0 =⇒ Df (P‖Q) = D(P‖Q), (4)

f(t) = − log t, t > 0 =⇒ Df (P‖Q) = D(Q‖P ). (5)

Total variation (TV) distance

f(t) = |t− 1|, t ≥ 0 (6)

⇒Df (P‖Q) = |P −Q| :=
∫ ∣∣∣dPdµ − dQ

dµ

∣∣∣ dµ, P,Q� µ. (7)

Power divergence of order α ∈ (0, 1) ∪ (1,∞):

fα(t) =
tα − α(t− 1)− 1

α(α− 1)
, t ≥ 0 (8)

⇒Iα(P‖Q) := Dfα(P‖Q) := 1
α(α−1)

(∫ (
dP
dµ

)α (
dQ
dµ

)1−α
dµ− 1

)
.
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f -Divergences

f -divergences: Examples (cont.)

χ2-divergence:

χ2(P‖Q) :=

∫
(p− q)2

q
dµ = 1

2 I2(P‖Q). (9)
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f -Divergences

f -divergences: Examples (cont.)

χ2-divergence:

χ2(P‖Q) :=

∫
(p− q)2

q
dµ = 1

2 I2(P‖Q). (9)

Relative entropies: continuous extension at α = 0 and α = 1 yield

I1(P‖Q) = 1
log e D(P‖Q), I0(P‖Q) = 1

log e D(Q‖P ). (10)
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f -Divergences

f -divergences: Examples (cont.)

χ2-divergence:

χ2(P‖Q) :=

∫
(p− q)2

q
dµ = 1

2 I2(P‖Q). (9)

Relative entropies: continuous extension at α = 0 and α = 1 yield

I1(P‖Q) = 1
log e D(P‖Q), I0(P‖Q) = 1

log e D(Q‖P ). (10)

Squared Hellinger distance:

H 2(P‖Q) := 1
2

∫
(
√
p−√q)2 dµ = 1−

∫
√
pq dµ = 1

4 I 1
2
(P‖Q). (11)
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f -Divergences

f -divergences: Examples (cont.)

χ2-divergence:

χ2(P‖Q) :=

∫
(p− q)2

q
dµ = 1

2 I2(P‖Q). (9)

Relative entropies: continuous extension at α = 0 and α = 1 yield

I1(P‖Q) = 1
log e D(P‖Q), I0(P‖Q) = 1

log e D(Q‖P ). (10)

Squared Hellinger distance:

H 2(P‖Q) := 1
2

∫
(
√
p−√q)2 dµ = 1−

∫
√
pq dµ = 1

4 I 1
2
(P‖Q). (11)

Rényi divergence of order α ∈ (0, 1) ∪ (1,∞):

Dα(P‖Q) =
1

α− 1
log
(
1 + α(α− 1) Iα(P‖Q)

)
. (12)
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f -Divergences and Dependence Measures

Measures of Dependence (Rényi 1959, Csiszár 1967)

Rényi formulated postulates for dependence measures between two random

variables, and studied properties of such measures.
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f -Divergences and Dependence Measures

Measures of Dependence (Rényi 1959, Csiszár 1967)

Rényi formulated postulates for dependence measures between two random
variables, and studied properties of such measures.

Csiszár suggested using f -divergences as dependence measures:

Df (PXY ‖PX × PY ) fulfills the postulates by Rényi if f ∈ C is strictly

convex at 1, and lim
t→∞

f(t)
t = +∞.
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f -Divergences and Dependence Measures

Measures of Dependence (Rényi 1959, Csiszár 1967)

Rényi formulated postulates for dependence measures between two random
variables, and studied properties of such measures.

Csiszár suggested using f -divergences as dependence measures:
Df (PXY ‖PX × PY ) fulfills the postulates by Rényi if f ∈ C is strictly

convex at 1, and lim
t→∞

f(t)
t = +∞.

I Mutual information:

f(t) = t log t, (t > 0) =⇒ Df (PXY ‖PX × PY ) = I(X;Y ). (13)

I Mean square contingency: f(t) = (t− 1)2, (t ≥ 0)

=⇒ Df (PXY ‖PX × PY ) = χ2(PXY ‖PX × PY ) := φ2(X,Y ). (14)
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Properties of f -divergences

Reflexivity: If f ∈ C, then Df (P‖Q) ≥ 0.

If f is also strictly convex at 1, then Df (P‖Q) = 0 ⇐⇒ P = Q.

Convexity: Df (P‖Q) is convex in (P,Q).

Uniqueness: f and g-divergences are identical if and only if there exists a
constant c ∈ R such that

f(t)− g(t) = c (t− 1), t > 0.

Symmetry: let f∗ be the ∗-conjugate function of f ∈ C, given by

f∗(t) = t f
(

1
t

)
(15)

for all t > 0. Then, f∗ ∈ C, and

Df (P‖Q) = Df∗(Q‖P ). (16)
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Properties of f -divergences

Distance Metrics

No f -divergence, except for positive constant multiples of the total
variation distance, is a distance metric (Gulliver et al., “Confliction of
the convexity and metric properties in f -divergences,” 2007).
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Properties of f -divergences

Distance Metrics

No f -divergence, except for positive constant multiples of the total
variation distance, is a distance metric (Gulliver et al., “Confliction of
the convexity and metric properties in f -divergences,” 2007).

Csiszár and Fischer considered powers of symmetrized α divergences
for α ∈ (0, 1) which are distance metrics:

fα(t) = 1 + t− (tα + t1−α), t > 0.
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Properties of f -divergences

Distance Metrics

No f -divergence, except for positive constant multiples of the total
variation distance, is a distance metric (Gulliver et al., “Confliction of
the convexity and metric properties in f -divergences,” 2007).

Csiszár and Fischer considered powers of symmetrized α divergences
for α ∈ (0, 1) which are distance metrics:

fα(t) = 1 + t− (tα + t1−α), t > 0.

Kafka et al. (1991): If f = f∗ and f(t)(1− tβ)
− 1
β is monotonically

non-decreasing on t ∈ [0, 1), then Dβ
f (P‖Q) is a distance metric.

Ostreicher-Vajda (2003) and Vajda (2009) studied explicit
f -divergences satisfying the above conditions by Kafka et al.

Square-roots of f -divergences which are bounded distance metrics:
I d1(P,Q) =

√
H 2(P‖Q);

I d2(P,Q) =
√
D
(
P‖ 12 (P +Q)

)
+D

(
Q‖ 12 (P +Q)

)
.
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Properties of f -divergences

Data Processing Inequality (Csiszár, 1967)

Let

f ∈ C;

(X ,X ) and (Y,Y ) be measurable spaces;

P and Q be probability measures on X ;

for all x ∈ X , K(·|x) is a probability measure that is Y -measurable;

KP and KQ are prob. measures on Y such that, for every B ∈ Y ,

KP (B) :=

∫
X
K(B|x) dP (x), KQ(B) :=

∫
X
K(B|x) dQ(x).

Then,

Df (KP‖KQ) ≤ Df (P‖Q). (17)
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Properties of f -divergences

Range of Values Theorem (Vajda, 1972)

The range of an f -divergence is given by

0 ≤ Df (P‖Q) ≤ f(0) + f∗(0) (18)

where

f∗(0) := lim
t↓0

f∗(t) = lim
u→∞

f(u)

u
, (19)

and
I Df (P‖Q) = 0 if P = Q;

I Df (P‖Q) = f(0) + f∗(0) if P ⊥ Q (i.e., supp(P ) ∩ supp(Q) = ∅);

I every value in this range is attainable by a suitable pair of (P,Q).
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Properties of f -divergences

Strengthened Version (Feldman and Österreicher, 1989)

sup
P 6=Q

Df (P‖Q)

|P −Q|
= 1

2

(
f(0) + f∗(0)

)
. (20)

Sup. is arbitrarily approached by (P,Q) defined on a ternary alphabet.
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Properties of f -divergences

Strengthened Version (Feldman and Österreicher, 1989)

sup
P 6=Q

Df (P‖Q)

|P −Q|
= 1

2

(
f(0) + f∗(0)

)
. (20)

Sup. is arbitrarily approached by (P,Q) defined on a ternary alphabet.

Implication

Df (P‖Q) ≤ 1
2

(
f(0) + f∗(0)

)
|P −Q| (21)

if f(0), f∗(0) <∞.
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Properties of f -divergences

Local Behavior of f -divergences (Csiszár, 1967)

If f ∈ C is strictly convex at 1, then ∃ ψf : [0,∞)→ [0,∞) such that

lim
x↓0

ψf (x) = 0;

|P −Q| ≤ ψf
(
Df (P‖Q)

)
.
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Properties of f -divergences

Local Behavior of f -divergences (Csiszár, 1967)

If f ∈ C is strictly convex at 1, then ∃ ψf : [0,∞)→ [0,∞) such that

lim
x↓0

ψf (x) = 0;

|P −Q| ≤ ψf
(
Df (P‖Q)

)
.

Corollary

If f ∈ C is strictly convex at 1, then

lim
n→∞

Df (Pn‖Qn) = 0 ⇒ lim
n→∞

|Pn −Qn| = 0. (22)

Special case:
Convergence to 0 in relative entropy =⇒ Convergence to 0 in TV distance.
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Properties of f -divergences

Local Behavior of f -divergences (Pardo and Vajda, 2003)

Let

{Pn} be a sequence of probability measures on (A,F );

the sequence {Pn} converge to a prob. measure Q in the sense that

lim
n→∞

ess sup dPn
dQ (Y ) = 1, Y ∼ Q (23)

where Pn � Q for all sufficiently large n.

f be convex on (0,∞), and f ′′ be continuous at 1.

Then,

lim
n→∞

Df (Pn‖Q)

χ2(Pn‖Q)
= 1

2 f
′′(1), lim

n→∞
χ2(Pn‖Q) = 0. (24)

M. Pardo and I. Vajda, “On asymptotic properties of information-theoretic
divergences,” IEEE T-IT, vol. 49, pp. 1860–1868, July 2003.
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Properties of f -divergences

Local Behavior: Example

Pn → Q =⇒ lim
n→∞

D(Pn‖Q)

χ2(Pn‖Q)
= 1

2 log e. (25)

Proof

Let
f(t) = t log t.

Then,
Df (Pn‖Q) = D(Pn‖Q), f ′′(1) = log e.
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Properties of f -divergences

Local Behavior of Relative Entropy (Csiszár, 1975)

In one of his famous papers, Csiszár proved that

lim
λ↓0

1
λ D(λP + (1− λ)Q ‖Q) = 0. (26)

Reference

I. Csiszár, “I-divergence geometry of probability distributions and
minimization problems,” Annals of Probability, vol. 3, no. 1, pp. 146–158,
1975.
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Properties of f -divergences

Local Behavior of f -divergences (I.S., 2018)

As a continuation to Csiszár’s result (1975), we strengthened it as follows:
Let

P and Q be prob. measures on (A,F ), and suppose that

ess sup dP
dQ (Y ) <∞, Y ∼ Q; (27)

f ∈ C, and its second derivative is continuous at 1.

Then,

lim
λ↓0

1
λ2
Df (λP + (1− λ)Q ‖Q) = lim

λ↓0
1
λ2
Df (Q ‖λP + (1− λ)Q) (28)

= 1
2f
′′(1)χ2(P‖Q). (29)

I. Sason, “On f -Divergences: integral representations, local behavior, and
inequalities,” Entropy, May 2018.
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Relative Entropy and Chi-Squared Divergence

D(P‖Q) and χ2(P‖Q) (I.S.)

Let P and Q be probability measures. Then,

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− λ)P + λQ)

dλ

λ
, (30)

1
2 χ

2(Q‖P ) =

∫ 1

0
χ2((1− λ)P + λQ ‖P )

dλ

λ
. (31)
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f -divergence Inequalities

Csiszár-Kemperman-Kullback-Pinsker inequality (∼1967)

D(P‖Q) ≥ 1
2 |P −Q|

2 log e.
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f -divergence Inequalities

A Simple Proof (I.S.)

By invoking the Cauchy-Schwartz, it readily follows that

χ2(P‖Q) ≥ |P −Q|2. (32)

Using (32), we get

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− λ)P + λQ)

dλ

λ

≥
∫ 1

0

∣∣P − ((1− λ)P + λQ
)∣∣2︸ ︷︷ ︸

=λ2 |P−Q|2

dλ

λ

= |P −Q|2
∫ 1

0
λ dλ

= 1
2 |P −Q|

2.
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f -divergence Inequalities

Other Simple Proofs

Apart of the Csiszár-Kemperman-Kullback-Pinsker inequality, the identity

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− λ)P + λQ)

dλ

λ

enables us to prove several (new and old) f -divergence inequalities:

D(P‖Q) ≤ 1
3 χ

2(P‖Q) + 1
6 χ

2(Q‖P ), (33)

D(P‖Q) ≤ 1
2 χ

2(P‖Q) + 1
4 |P −Q|. (34)
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f -divergence Inequalities

Pinsker-Type Inequalities for f -divergences

Theorem (Csiszár, 1966)

Let f ∈ C be twice differentiable, and let r0 ∈ (0, 1) and a > 0 satisfy

f ′′(u) ≥ a > 0, ∀u ∈ (1− r0, 1 + r0). (35)

Let δ ≤ r2
0. Then,

Df (P‖Q) ≤ δ =⇒ |P −Q| ≤ c
√
δ, (c := 2

a + 1). (36)

f(t) = t ln t for t > 0, and r0 = 1
2 , a = 2

3 ⇒ |P −Q| ≤ 4
√
D(P‖Q) nats.

1-to-1 correspondence Iα ↔ Dα =⇒ extendable to the Rényi divergence.

I. Csiszár, “A note on Jensen’s inequality,’ Studia Scient. Math. Hungarica, 1966.
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Reverse Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

inf
P 6=Q

D(P‖Q)

|P −Q|2
= 1

2 log e =⇒ D(P‖Q) ≥ 1
2 |P −Q|

2 log e. (37)
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Reverse Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

inf
P 6=Q

D(P‖Q)

|P −Q|2
= 1

2 log e =⇒ D(P‖Q) ≥ 1
2 |P −Q|

2 log e. (37)

Question

Is there a reverse Pinsker inequality which provides an upper bound on the
relative entropy as a function of the TV distance ?
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Reverse Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

inf
P 6=Q

D(P‖Q)

|P −Q|2
= 1

2 log e =⇒ D(P‖Q) ≥ 1
2 |P −Q|

2 log e. (37)

Question

Is there a reverse Pinsker inequality which provides an upper bound on the
relative entropy as a function of the TV distance ?

No, for every ε > 0, ∃ (P,Q) s.t. |P −Q| ≤ ε, D(P‖Q) =∞. /
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Reverse Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

inf
P 6=Q

D(P‖Q)

|P −Q|2
= 1

2 log e =⇒ D(P‖Q) ≥ 1
2 |P −Q|

2 log e. (37)

Question

Is there a reverse Pinsker inequality which provides an upper bound on the
relative entropy as a function of the TV distance ?

No, for every ε > 0, ∃ (P,Q) s.t. |P −Q| ≤ ε, D(P‖Q) =∞. /

However, we can obtain a reverse Pinsker inequality when the relative
information is bounded. ,
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Reverse Pinsker’s Inequality

Reverse Pinsker Inequality: Finite Alphabet (Csiszár & Talata, 2006)

If A is a finite set, P and Q are probability measures defined on A, and
Qmin := min

x∈A
Q(x) > 0, then

D(P‖Q) ≤ log e

Qmin
· |P −Q|2. (38)

Recent Applications of (38)

I. Csiszár and Z. Talata, “Context tree estimation for not necessarily finite memory
processes, via BIC and MDL,” IEEE T-IT, Mar. 2006.

V. Kostina and S. Verdú, “Channels with cost constraints: strong converse and
dispersion,” IEEE T-IT, May 2015.

K. Marton, Distance-divergence inequalities: rate of decrease of divergence (from
stationary distribution) for Gibbs samplers, ISIT 2013 Shannon lecture, July 2013.

M. Tomamichel and V. Y. F. Tan, “A tight upper bound for the third-order
asymptotics for most discrete memoryless channels,” IEEE T-IT, Nov. 2013.
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Reverse Pinsker’s Inequality

β1 and β2

Given a pair of probability measures (P,Q) on the same measurable space,
denote β1, β2 ∈ [0, 1] by

β1 = exp
(
− ess sup ıP‖Q(Y )

)
, (39)

β2 = ess inf exp
(
ıP‖Q(Y )

)
(40)

with Y ∼ Q.
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Reverse Pinsker’s Inequality

A Reverse Pinsker Inequality (I.S. and S. Verdú, 2016)

If β1 ∈ (0, 1) and β2 ∈ [0, 1), then,

D(P‖Q) ≤ 1
2

(
ϕ(β−1

1 )− ϕ(β2)
)
|P −Q| (41)

where ϕ : [0,∞) 7→ [0,∞) is given by

ϕ(t) =


0 t = 0

t log t

t− 1
t ∈ (0, 1) ∪ (1,∞)

log e t = 1.

(42)
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2
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
0 t = 0

t log t

t− 1
t ∈ (0, 1) ∪ (1,∞)

log e t = 1.

(42)

Generalized to Rényi divergences of order α ∈ (0,∞).

I.S. and S. Verdú, “f -divergence inequalities,” IEEE T-IT, Nov. 2016.
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Reverse Pinsker’s Inequality

A Reverse Pinsker Inequality (Binette, 2018)

For fixed δ ∈ [0, 2], β1, β2 ∈ [0, 1], let D(δ, β1, β2) denote the set of all
probability measures P and Q with

|P −Q| = δ, (43)

β1 = exp
(
− ess sup ıP‖Q(Y )

)
, (44)

β2 = ess inf exp
(
ıP‖Q(Y )

)
(45)

where Y ∼ Q. Then,

max
(P,Q)∈D(δ,β1,β2)

Df (P‖Q) = 1
2 δ

(
f(β−1

1 )

β−1
1 − 1

+
f(β2)

1− β2

)
(46)

and the maximum is attained by P and Q defined on a set of size 3.
Specialized to the result for relative entropy with a similar proof’s concept.

O. Binette, “Note on reverse Pinsker inequalities,” May 15, 2018.
[Online]. Available at https://arxiv.org/abs/1805.05135.
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f -Informativity

f -Informativity (Csiszár 1972)

I. Csiszár, “A class of measures of informativity of observation channels,”
Periodica Mathematicarum Hungarica, vol. 2, pp. 191–213, Mar. 1972.

f -informativity measures generalize Shannon’s mutual information, and
Gallager’s function E0 in the random coding error exponent.
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f -Informativity

f -Informativity (Cont.)

Let

f ∈ C;

P = {Pθ : θ ∈ Θ} be a family of probability measures defined on X ;

w be a probability measure defined on Θ.

The f -informativity, If (w,P), is defined as

If (w,P) := inf
Q

∫
Θ
Df (Pθ‖Q) dw(θ) (47)

where the infimum is taken over all probability measures Q on X .
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f -Informativity

Special Case of f -informativity: Mutual Information

Let f(t) = t log t for t > 0, then Df (·‖·) = D(·‖·), and

If (w,P) := inf
Q

∫
Θ
D(Pθ‖Q) dw(θ)

=

∫
Θ
D(Pθ‖Q∗) dw(θ) (48)

with
Q∗(x) :=

∫
Θ
Pθ(x) dw(θ), ∀x ∈ X . (49)

This follows from the identity by Topsøe (Stud. Sci. Math. Hung., 1967):∫
Θ
D(Pθ‖Q) dw(θ) =

∫
Θ
D(Pθ‖Q∗) dw(θ) +D(Q∗‖Q). (50)

Hence, the f -informativity is specialized to the mutual information:

If (w,P) = I(X; θ). (51)

Csiszár’s Conference Rényi Institute, Budapest, Hungary June 4–5, 2018 32 / 42



f -Informativity

Properties

In the Bayesian case, f -informativities share several useful properties of
the mutual information, such as the data processing inequality.
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f -Informativity

Absolute f -Informativity (f -Radius)

ρf (P) = inf
Q

sup
θ∈Θ

Df (Pθ‖Q). (52)

Hence,

0 ≤ If (w,P) ≤ ρf (P), (53)

so, the non-negative f -informativity is upper bounded by the f -radius.
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f -Informativity

Absolute f -Informativity (f -Radius)

ρf (P) = inf
Q

sup
θ∈Θ

Df (Pθ‖Q). (52)

Hence,

0 ≤ If (w,P) ≤ ρf (P), (53)

so, the non-negative f -informativity is upper bounded by the f -radius.

For observation channels without prior probabilities, f -informativities
have the geometric interpretation of a radius.

In view of the redundancy-capacity theorem, the f -radius is a
generalization of the channel capacity (let f(t) = t log t for t > 0).
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Application: Parameter Estimation

Parameter Estimation: Basic Model

The estimand is an unknown parameter θ;

Θ is the parameter space for θ;

X is the sample space for the observed data X;

P = {Pθ : θ ∈ Θ} is the model for the data X conditioned on θ;

A is the action space for the estimation θ̂, based on the data X;

L : Θ×A 7→ [0,∞) is a loss function for estimating θ by θ̂.
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Application: Parameter Estimation

Estimator

Let T : X 7→ A be an arbitrary mapping where θ̂ = T (x) for x ∈ X .
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Application: Parameter Estimation

Estimator

Let T : X 7→ A be an arbitrary mapping where θ̂ = T (x) for x ∈ X .

Risks

Minimax risk: expected loss for the best estimator & worst prior

Rminimax(L; Θ) := inf
T : X 7→A

sup
θ∈Θ

E
[
L
(
θ, T (X)

)]
(54)

where the expectation is taken over X ∼ Pθ.

Bayes risk: expected loss for the best estimator with a prior w on Θ

RBayes(w,L; Θ) := inf
T : X 7→A

∫
Θ

E
[
L
(
θ, T (X)

)]
dw(θ). (55)
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Application: Parameter Estimation

Estimator

Let T : X 7→ A be an arbitrary mapping where θ̂ = T (x) for x ∈ X .

Risks

Minimax risk: expected loss for the best estimator & worst prior

Rminimax(L; Θ) := inf
T : X 7→A

sup
θ∈Θ

E
[
L
(
θ, T (X)

)]
(54)

where the expectation is taken over X ∼ Pθ.

Bayes risk: expected loss for the best estimator with a prior w on Θ

RBayes(w,L; Θ) := inf
T : X 7→A

∫
Θ

E
[
L
(
θ, T (X)

)]
dw(θ). (55)

=⇒ Rminimax(L; Θ) ≥ RBayes(w,L; Θ) ∀ prior w.

Csiszár’s Conference Rényi Institute, Budapest, Hungary June 4–5, 2018 36 / 42



Application: Parameter Estimation

Bayes Risk

If the prior distribution w is known, then the Bayes estimator attains
the Bayes risk; ,

In general, however, the Bayes estimator is computationally hard to
evaluate =⇒ Bayes risk has, often, no closed-form expression. /

Bayes Risk Lower Bound

A lower bound on the Bayes risk

characterizes the fundamental limit of any estimator given the prior
knowledge;

serves as a lower bound on the minimax risk (for the worst prior).

Csiszár’s Conference Rényi Institute, Budapest, Hungary June 4–5, 2018 37 / 42



Application: Parameter Estimation

Bayes Risk Lower Bounds (Cont.)

Approach

Derivation of Bayes risk lower bounds relies heavily on the data
processing inequality for f -divergences.

First derived for 0− 1 loss functions, and then extended to an
arbitrary non-negative loss function.

Reference

X. Chen, A. Guntuboyina, and Y. Zhang, “On Bayes risk lower bounds,”
Journal of Machine Learning Research, vol. 17, pp. 1–58, Dec. 2016.
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Application: Parameter Estimation

Notation

Let f ∈ C, and define the function φf : [0, 1]2 7→ R as follows:

φf (a, b) :=


bf
(a
b

)
+ (1− b)f

(
1− a
1− b

)
, (a, b) ∈ [0, 1]× (0, 1)

af∗(0) + f(1− a), (a, b) ∈ [0, 1]× {0}

f(a) + (1− a)f∗(0), (a, b) ∈ [0, 1]× {1}.
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Application: Parameter Estimation

Bayes Risk Lower Bounds for Arbitrary Non-Negative Loss Functions

For arbitrary

f ∈ C;

upper bound If on the f -informativity If (w,P),

let uf : [0,∞) 7→
[

1
2 , 1
]

be the monotonically non-decreasing function:

uf (x) := inf
{

1
2 ≤ b ≤ 1 : φf

(
1
2 , b
)
> x

}
, x ≥ 0 (56)

and if φf
(

1
2 , b
)
≤ x for every b ∈

[
1
2 , 1
]
, then uf (x) := 1. Then,

RBayes(w,L; Θ) ≥ 1
2 sup

{
t > 0 : sup

a∈A
w
(
Bt(a, L)

)
< 1− uf

(
If
)}

(57)

where, for a ∈ A and t > 0,

Bt(a, L) :=
{
θ ∈ Θ : L(θ, a) < t

}
. (58)
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Application: Parameter Estimation

Bayes Risk Lower Bounds (Cont., Chen et al., 2016)

Specialization to specific f -divergences yields the following lower bounds:

Relative entropy (f(t) = t log t for t > 0):

RBayes(w,L; Θ)

≥ 1
2 sup

{
t > 0 : sup

a∈A
w
(
Bt(a, L)

)
< 1

2 −
1
2

√
1− exp

(
−2IKL

)}
(59)

χ2 divergence (f(t) = t2 − 1 for t > 0):

RBayes(w,L; Θ)

≥ 1
2 sup

{
t > 0 : sup

a∈A
w
(
Bt(a, L)

)
< 1

2 −
1
2

√
Iχ2

1 + Iχ2

}
. (60)
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Summary

f -Divergences and f -Informativities: Theory and Applications

I-divergence (relative entropy), and generalization to f -divergences;
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Csiszár’s Conference Rényi Institute, Budapest, Hungary June 4–5, 2018 42 / 42



Summary

f -Divergences and f -Informativities: Theory and Applications

I-divergence (relative entropy), and generalization to f -divergences;

Mutual information, and generalization by means of f -informativities;

Risk lower bounds in estimation and learning problems;

Exact locus of the joint range of f -divergences & tensorization;

Contraction coefficients, and strong data processing inequalities;

Statistical DeGroot information & important links to f -divergences;

Integral & variational representations of f -divergences & applications;

Sufficiency and ε-sufficiency of observation channels & implications;

Zakai & Ziv’s extension of rate-distortion theory with f -divergences;

Asymptotic methods in statistical decision theory with f -divergences;

Robustness of f -divergence based estimators.
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Best wishes ! Legjobbakat kvánom !
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