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Abstract

Our study begins with the error performance analysis of non-binary codes. The

performance of non-binary linear block codes is studied via the derivation of new

upper bounds on the block error probability under maximum-likelihood decoding.

The transmission of these codes is assumed to take place over a memoryless and

symmetric channel. The new bounds, which are based on the Gallager bounding

technique and their variations, are applied to regular ensembles of non-binary low-

density parity-check codes. These upper bounds are also compared with sphere-

packing lower bounds. Our study indicates that the new upper bounds are useful

for the performance evaluation of coded communication systems which incorporate

non-binary coding techniques.

Secondly, erasure and list decoding of linear block codes are concerned. A message

independence property and some new upper bounds on the performance are derived

for erasure, list and decision-feedback schemes with linear block codes transmitted

over memoryless symmetric channels. Similar to the classical work of Forney, we

focused on the derivation of some Gallager-type bounds on the achievable tradeoffs

for these coding schemes, where the main novelty is the suitability of the bounds

for both random and structured linear block codes (or ensembles). The bounds are

applicable to finite-length codes and the asymptotic case of infinite block length, and

they are applied to low-density parity-check code ensembles.

Next, a modified Viterbi algorithm with erasures and list-decoding is introduced.

This algorithm is shown to yield the optimal decoding rule of Forney with erasures

and variable list-size. For the case of decoding with erasures, the optimal algorithm

is compared to the simple algorithm of Yamamoto and Itoh. The comparison shows

a remarkable similarity in simulated performance, but with a considerably reduced

decoding complexity.

Finally, two applications for the method of channel polarization are studied. Polar

coding, recently introduced by Arikan, is a structured coding technique which is shown

to approach capacity for every output-symmetric discrete memoryless channel. The

theory of polar coding is still in its early days. Consequently, no known polar coding

1



ABSTRACT 2

schemes have been shown to compete well with the state of the art of other modern

coding schemes. Nevertheless, it has already been shown that channel polarization

techniques may be applied for various multi-user information-theoretic problems. The

application of channel polarization is investigated in our research for two different

communication problems: signaling over parallel channels, and secure communication

over the wire-tap channel.



Notation

• x – Scalar.

• x – Row vector.

• X – Set.

• E(X) – Expectation of X .

• Pr(E) – Probability of E.

• ∅ – Empty set.

3



Abbreviations

• ARQ – Automatic repeat request
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Chapter 1

Introduction

The theoretical foundations of communication theory were laid at the mid of the

twentieth century by the celebrated paper of C. E. Shannon [98]. Two dual problems

are conceived and solved in this paper: the problem of source coding, and the problem

of channel coding. The goal of the channel coding problem is to achieve reliable

communication at the maximal rate over a noisy channel. This goal is satisfied by

introducing some redundancy to the transmitted sequence. This operation is carried

by the channel encoder. The redundancy in the transmitted signal supports the

decoding of the transmitted sequence. This dissertation is focused solely on the

channel coding problem.

One of the most fascinating results introduced by Shannon is that information can

be communicated with arbitrarily small distortion at rates arbitrarily close to capac-

ity. This result completely contradicts all that could have been intuitively understood

from the state of the art of the communication theory and practice of Shannon’s time.

Shannon’s solution to the channel coding problem relies on using random block codes.

This technique is referred to in the literature as the random coding technique, and

it serves as one of the fundamental tools of information theory. Nevertheless, fully-

random block codes are of little practical interest (mainly due to complexity and delay

concerns). The pursuit after practical coding schemes which reliably operate close to

the channel capacity limit, contributed to more than 60 years of research in coding

theory. Information and coding theorists spread their interest between the following

core subjects:

• Understanding the fundamental limits in coded communications.

• Formulation and adaptation of coding schemes to support various communica-

tion models and achieving their fundamental limits.

6
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• Development and analysis of algorithmic techniques operating over the formu-

lated coding schemes.

1.1 A Glimpse to Channel Coding

A short introduction to the theory of channel coding is provided. The modest goal

of this introduction is merely to mention the coding schemes, terms, and techniques

that are of some interest in the following chapters.

Consider the problem of reliable transmission of digital information over a noisy

channel. The channel encoder introduces some redundancy to the digital information

before its transmission over a noisy channel. This redundancy supports the decoding

process at the receiver. The set of possible coded sequences, generated by the channel

encoder, is called the channel code or the the codebook. The term error-correcting

code (or forward error-correcting code) is very common, as one of the key purposes

of channel codes is to provide the means of error correction capabilities. Some codes

support the less demanding purpose of error detection, in order to facilitate automatic

mechanisms for repeat requests.

Much of the interest in coding theory is devoted to linear codes. These codes

may facilitate substantial algebraic structures, while still maintaining the potential of

achieving reliable communications at rates arbitrarily close to channel capacity (see,

e.g., [46, Section 6.2] and [111, Section 3.10]). Linear block codes can be represented

by a generator matrix whose rows form the basis vectors of the linear code. Alterna-

tively, the code may be defined by a parity-check matrix whose rows form a basis of

the vector space which is orthogonal to the code. The algebraic structure of linear

codes allows the introduction of practical encoding and decoding algorithms.

Early influential examples of linear block codes include the well-known codes of

Golay [47] and Hamming [49]. Other important families of linear block codes are

the Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (RS), and generalized RS

(GRS) codes (see, e.g., [15], [71], [89] and references therein). These codes possess el-

egant and sophisticated algebraic structures. Hence, these codes are referred to in the

coding literature as algebraic codes. The field of algebraic coding theory contributed

to many of the successes of coding theory in its early decades. Algebraic codes are an

immanent part of many important applications in both communication systems and

storage.

Convolutional codes, invented by Elias in 1955, are one of the key machineries

of communication systems [35]. These codes have a linear structure, and can be
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described by a discrete time finite-state machine. Based on their tree structure, con-

volutional codes can be decoded using sequential decoding algorithms [38], [118]. The

recognition of the practical usage of convolutional codes was further increased with

the introduction of Massey’s threshold decoding algorithms (and its variations) [76].

Convolutional codes possess the pleasing feature of having a trellis-graph structure

(see, e.g., [101]). The trellis structure enables the introduction of practical and op-

timal decoding algorithms. For detailed description on the structure and techniques

related to convolutional coding, see [60], [71] and references therein. The vast spread

of convolutional codes in practice is due to two important contributions: The Viterbi

algorithm (VA) and concatenated coding schemes. The VA was introduced by Viterbi

in 1967 [42], [108]. The algorithm is popular in many coding and signal processing ap-

plications, as it yields the maximum-likelihood (ML) solution while being amenable to

practical implementations. Concatenated coding, introduced by Forney in 1966 [43],

is a coding technique incorporating two relatively short codes which are combined

to construct an efficient and strong (relatively long) code. The serially concatenated

scheme of a convolutional codes with an RS code is one of the most popular coding

schemes in the pre Turbo-era (see [22], [71], and references therein).

Turbo coding, introduced by Berrou, Glavieux, and Thitimajshima in 1993, is

the first channel coding scheme demonstrated to operate reliably over the Additive

White Gaussian Noise (AWGN) channel within 1 dB from capacity [13]. The original

turbo structure comprises a parallel concatenation of convolutional component codes

where one of the code is an interleaved version of the other. This structure allows

to construct structured but random-like codes. The turbo decoding algorithm is

based on iterative soft-decoding of each of the code components. Each component is

decoded based on the BCJR algorithm, introduced in 1974 by Bahl, Cocke, Jelinek,

and Raviv [7]. The BCJR algorithm allows for optimal symbol-wise decoding of codes

which possess a trellis structure. Being a soft-in soft-out (SISO) algorithm, the BCJR

algorithm provides soft reliability information on each of the decoded symbols based

on soft a-priori reliability inputs on these symbols. The turbo principle is based

on iterative exchanging and refinement of these soft values between the two SISO

decoding algorithms of each of the two component codes.

The discovery of turbo codes started the modern era of the channel coding theory.

Among its important contributions is the rediscovery of Gallager’s Low-density parity-

check (LDPC) codes [44]. LDPC codes are linear block codes, which possess a sparse

structure. The sparse structure of LDPC codes supports the use of practical iterative

decoding algorithms. Various structured LDPC and other turbo-like codes and their

related iterative decoding techniques were reported in the last decade. Many of these
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channel coding techniques show remarkable performance near the ultimate channel

capacity limit with tolerable complexity. For a detailed study of modern coding

theory, the reader is referred to [86], [90], and references therein.

Channel codes for bandwidth-limited channels comprise a valuable part of cod-

ing theory and practice. Important families of non-binary codes for communicat-

ing over bandwidth-limited channels are based on lattices [21], trellis-coded modula-

tion [14], [106], multilevel coding [59], and bit-interleaved coded modulation [2], [121].

Modern coding schemes and techniques were also incorporated to construct spectral-

efficient schemes (see, e.g., [10], [11], [12], [25], [33], [72], [85], [87], [112], [113], and

references therein).

1.2 Performance Analysis of Coded Communica-

tion Systems

A substantial part of coding theory is dedicated to the performance analysis of coded

communication systems. The analysis of error performance is of particular interest

where both the fundamental limitations on the decoding error probability in general,

and the error performance of structured coding schemes are studied.

Error performance characteristics of coded communication systems rarely admit

exact closed-form expressions. Consequently, the performance of these systems is usu-

ally analyzed via upper and lower bounds on the decoding error probability. Modern

coding schemes perform reliably at rates which are close to the channel capacity,

whereas union bounds are useless for codes of moderate to large block lengths at

rates above the channel cut-off rate. The limitation of the union bound therefore

motivates the introduction of some improved bounding techniques which can also

be efficiently calculated. Although the performance analysis of specific codes is in

general prohibitively complex, this kind of analysis is tractable for various code en-

sembles for which the derivation of some of their basic features (e.g., the average

distance spectrum) lends itself to analysis.

1.2.1 Error Performance under Maximum-Likelihood (ML)

Decoding

The 1965 Gallager bound [45] is one of the well-known upper bounds on the decoding

error probability of ensembles of fully random block codes, and it is informative at

all rates below the channel capacity limit. Emerging from this bounding technique,

the bounds of Duman and Salehi (see [31] and [32]) possess the pleasing feature that
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they are amenable to analysis for codes or ensembles for which the (average) distance

spectra are available.

The bounds of Duman and Salehi, in particular its second version (called hereafter

the ‘DS2 bound’), are generalized in [26], [94], and [96] for various memoryless com-

munication systems. Moreover, the DS2 bound facilitates the derivation of a large

class of previously reported bounds (or their Chernoff versions), as shown in [94]

and [96]. Gallager-based bounds for binary linear block codes whose communication

takes place over fading channels are provided in [58], [93] and [119]. The Shulman and

Feder bound (SFB) [100] forms an extension of the 1965 Gallager bound which can

be also applied to structured codes or ensembles. An adaptation of the SFB to non-

binary linear block codes was reported in [11] for the case of coding with a random

coset mechanism (see, e.g., [11], [12], [46], and [57]), and for the case of transmis-

sion over modulo-additive noise channels (see [37]). Generalizations of Gallager-type

bounds, among them the DS2 bound, for the case of binary linear block codes whose

transmission take places over parallel channels are provided in [73] and [92].

The 1959 sphere-packing (SP59) bound of Shannon [99] is a lower bound on the

decoding error probability of block codes whose transmission takes place over the ad-

ditive white Gaussian noise (AWGN) channel with equal-energy signaling. The 1967

sphere-packing bound of Shannon, Gallager and Berlekamp [97] forms an alternative

lower bound on the decoding error probability of block codes which applies to dis-

crete memoryless channels. An improved sphere-packing (ISP) bound, which holds

for all memoryless symmetric channels, was recently derived in [115] by improving

the bounds in [97] and [107].

For a comprehensive tutorial on the performance analysis of binary linear block

codes under maximum-likelihood (ML) decoding, the reader is referred to [94] and

references therein.

1.2.2 Error Performance under Generalized Decoding

Exponential error bounds for the fully-random block code ensemble were derived and

studied by Forney [41], referring to the following two situations:

1. A decoder is allowed not to make a decision on a received signal, or rejecting all

estimates; this output is called an erasure. When a decision is made, the event

where the decoder decision is incorrect is called an undetected error.

2. A decoder is allowed to make more than one estimate of the received signal.

The output of this decoder forms a list of codewords, and the event where the

transmitted message is not on the list is called a list error event.
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Following [109], decoding rules for these two situations are called in the following

parts of this dissertation generalized decoding rules. As explained in [41], erasure and

list options may be useful when the transmitted data contains some redundancy, when

a feedback channel is available, or when several stages of coding (e.g., concatenated

codes) are used. The size of the decoded list in [41] is allowed to vary according to

the received signal. This decoding rule differs from [36] and [117] where the size of

the list is predetermined and fixed.

Consider the case of decoding with erasures (the first situation). By allowing

a decoder to increase the probability of erasures, the undetected error probability

can be reduced. In the case of list decoding (the second situation), by increasing

the decoder list, the list error probability can be reduced. The optimum decoding

rules with respect to these tradeoffs were provided in [41] and they were analyzed

via the derivation of exponential bounds for the fully-random block code ensemble.

Sub-optimal decoding rules are analyzed in [9], [52], and [54], via a similar bounding

technique, and the random coding error exponents under optimal and sub-optimal

decoding rules are compared. It is noted that the considered decoding rules are

studied with respect to a given code, and finding the optimal codes for these scenarios

remains an open problem.

The performance analysis under generalized decoding rules with erasures enables

the study of coded communications with a noiseless decision feedback. Specifically,

it is assumed that erasures are followed by a repeat-request acknowledgment over

a noiseless and immediate feedback channel. Such schemes are often referred to as

hybrid automatic repeat request (ARQ) systems. Unlike the channel capacity of

single-user discrete memoryless channels (DMC), which is not affected by feedback

(see for example [23, p. 216]), a significant improvement is demonstrated in [41] for

the error exponents of the concerned coded schemes. In this respect, the reader is

also referred to [48] where the error exponents of hybrid ARQ schemes with limited

retransmissions are studied. The effect of feedback was also considered in [19], and it

was shown to significantly reduce the block error probability for DMCs.

1.3 Polar Coding

Channel coding via the method of channel polarization was recently provided by

Arikan in [4]. On a binary-input DMC, polarization ends up with either ‘good bits’,

i.e., binary channels whose capacity approaches 1 bit per channel use, or ‘wasted bits’,

i.e., channels whose capacity approaches zero. The fraction of the good bits is equal

to the mutual information with equiprobable inputs (which equals the capacity for
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the case of a memoryless symmetric channel). The rate of channel polarization and

additional characterization of polar codes were studied in [6], [63] [64] and [91].

For a single-user channel-coding problem, the polar coding scheme is based on

transmitting the uncoded information bits over the capacity approaching channels

(when we interpret the polarization as a kind of a precoding or pre-processing). At

the same time, fixed and predetermined bits are transmitted over the channels whose

capacity approaches zero. These predetermined bits are essential part of the successive

decoding process of polar codes. Hence, these fixed and predetermined bits should

not be ignored. In a physically degraded setting, as mentioned in [4], an order of

polarization is maintained in the sense that ‘good’ bits for the degraded channel,

must also be ‘good’ for the better channel.

1.4 Motivation and Related Work

1.4.1 Error Performance of Non-Binary Codes under ML De-

coding

The drawback of the union bound (for codes of moderate to large block lengths the

union bound diverges above the channel cut-off rate) motivates the derivation of

upper bounds on the decoding error probability of non-binary codes. In particular,

the derivation of Gallager-type bounds for non-binary linear block codes (or code

ensembles) whose transmission takes place over memoryless symmetric channels are

considered.

The definition of symmetry for channels whose input is non-binary should gener-

alize the common definition of memoryless binary-input output-symmetric (MBIOS)

channels. It is well known that for MBIOS channels, the decoding error probability

under ML decoding is independent of the transmitted message (see, e.g., [111]). Many

of the bounding techniques for binary linear block codes under ML decoding are based

on this message independence property. Hence, the motivation for investigation of

the possible generalization of this result for non-binary codes is clear.

The study of non-binary LDPC code ensembles further motivates the derivation

of the suggested bounds. The performance analysis of binary LDPC ensembles in [44]

is carried under the assumption that the channel is MBIOS. In contrast to the binary

case, the performance analysis provided in [44] for non-binary LDPC code ensembles

is carried under a symmetry assumption which is tailored to the specific bounding

technique that was introduced in [44]. The asymptotic error performance of several

non-binary LDPC structures is studied in [11] under ML decoding. Their asymptotic
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performance under iterative decoding was studied in [12], and further bounds on the

thresholds of non-binary LDPC code ensembles were studied in [85] and [113]. It was

assumed in [11] that the transmission takes place over channels with a random coset

mechanism which enables to dismiss the channel symmetry condition required in [44].

The decoding error probability of various non-binary LDPC code constructions was

studied empirically in the literature (see, e.g., [25]).

1.4.2 Error Performance of Structured Codes under Gener-

alized Decoding

Much of the current literature on performance analysis of coded communications is

focused on maximum-likelihood (ML) decoding (see, e.g., [94] and references therein).

Lower bounds on the error exponents for fully-random block codes under generalized

decoding rules were derived in [9], [41], [77], and [109]. Error exponents are provided

in [103] and [104] for random codes with a constant composition under some subop-

timal decoding rules. An upper bound on the error exponent under fixed-size list-

decoding was provided in [97]. The error performance under fixed-size list-decoding

was studied for specific codes in [8], [17] and [68] where the communication takes

place over an AWGN channel. Additional (suboptimal) decoding rules with erasures

were analyzed in [28] and [29].

Consider the case where a given structured code (or code ensemble) is transmitted

over a DMC. A vast amount of performance analysis techniques are available under

ML decoding. On the other hand, for the case of generalized decoding (either optimal

a’la Forney or other suboptimal decoding rules) only few general analysis techniques

exist. This gap motivates the study of a possible adaptation of analysis techniques for

the case of generalized decoding. Specifically, upper bounds on the error probability

under generalized decoding algorithms are of interest.

As mentioned in Section 1.4.1, many of the bounding techniques under ML de-

coding rely on a message independence property. Specifically, the error probability

of binary linear block codes whose transmission takes place over MBIOS channels is

known to be independent of the transmitted codeword. Hence, the motivation for the

study of corresponding message independence properties under generalized decoding

rules emerges.
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1.4.3 Optimal Erasure and List Decoding of Convolutional

Codes

The VA is known to yield the ML sequence estimation for a finite-state Markov

process that is observed via a memoryless channel. For the particular case of coded

communications with convolutional codes, the output of the VA coincides with the

ML decision. The simplicity and low complexity of the VA lead to its wide spread as

one of the key techniques in communication theory and practice (see, e.g., [110], [22],

and references therein).

Many generalizations and adaptations of the VA were reported in the literature,

both in coding theory and signal processing. In this dissertation, applications of list

decoding and ARQ schemes are concerned. List decoding generalizations of the VA

were reported in [20], [50], [70], [81], [88], [95], and [102]. Adaptations of the VA to

support hybrid ARQ schemes were reported in [51], [53], [67], and [120]. These results

motivate the pursuit for a variation on the VA, where optimal decoding a’la Forney is

considered. Specifically, a feasible implementation of Forney’s optimal decoding rule

with erasures (and possible variable list-size) is studied for the case of convolutional

codes.

1.4.4 Applications of Polar Codes

The theory and practice in polar coding is still in its early days. Nevertheless, the

method of channel polarization and its related techniques have already been intro-

duced in several important problems of information theory. Applications of polar

codes for basic multi-terminal models such as the degraded broadcast channel and

the multiple-access channel, were studied in [62]. Polar codes were also found to

be optimal for lossy source coding [62], [65]. Applications of polar coding to binary

Wyner-Ziv and the binary Gelfand-Pinsker problems were provided in [65]. The com-

pound capacity of polarization codes (under successive cancelation decoding) was

studied in [55]. The variety of these possible applications motivates the study of

further applications where the channel polarization technique can be used.

1.5 This Dissertation

Chapter 2 is focused on the performance analysis of non-binary linear block codes

under ML decoding. A definition of symmetry is stated for memoryless channels

with non-binary input alphabets. Under the considered symmetry condition, it is

proved that the conditional error probability under ML decoding is independent of
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the transmitted codeword. This result generalizes the well-known message indepen-

dence property for MBIOS channels. Moreover, this result is in agreement with [39]

and [40] which prove the same result under linear-programming decoding. The rest

of Chapter 2 is devoted to the derivation of upper bounds on the error performance

of non-binary linear block codes under ML decoding. The upper bounds on the error

performance derived in this chapter are applied to non-binary regular LDPC code

ensembles of Gallager [44], and their error performance is studied for various commu-

nication channel models. The exact complete composition spectra for these LDPC

code ensembles are also provided (instead of the upper bound in [44]), and this ex-

act analysis forms a generalization of the analysis in [18] and [105]. In addition, the

derived upper bounds are compared to sphere-packing lower bounds on the decoding

error probability for various code ensembles.

Chapter 3 considers upper bounds on the error probabilities under generalized de-

coding rules. The provided bounds are suitable for linear block codes whose transmis-

sion takes place over memoryless symmetric channels. These bounds are accompanied

by some message-independence results for the considered generalized decoding rules.

Both optimal and suboptimal decoding rules are considered. When variable-size list-

decoding is considered, upper bounds on the expected size of the decoded list and

the associated error probability under list decoding are jointly derived. In addition,

upper bounds on the list error probability are introduced for linear block codes where

the size of the list is fixed. The bounds derived in this chapter are applicable to

the performance analysis of specific codes and ensembles via their (average) distance

spectra. The bounds are suitable for finite block lengths and also for asymptotic

analysis. The provided results are exemplified for two coding schemes: Fully-random

linear block codes, and regular binary and non-binary LDPC code ensembles with fi-

nite block lengths. Applications of the provided bounds for the study of hybrid-ARQ

schemes are also exemplified.

Chapter 4 studies some generalizations of the VA for list-decoding and decoding

with erasures. A modification of the VA is introduced, which coincides with the

optimal decoding rule of Forney for the cases at hand. Although presented for the

decoding of convolutional codes, the provided algorithm is suitable for the more gen-

eral case where finite-state Markov processes are observed via memoryless channels.

The simulated performance of the proposed modification is compared in this chapter

with the simulated performance of two suboptimal decoding algorithms with erasures:

the likelihood-ratio (LR) test decoding rule, and a simple decoding scheme with re-

peat requests that was introduced by Yamamoto and Itoh in [120]. Even though the
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decoding scheme in [120] is remarkably simple, the comparison shows good similar-

ity between the performance of the simple scheme to the optimal one. On the other

hand, the performance of the decoding algorithm based on the LR test is considerably

degraded in comparison with that of the optimal performance.

In Chapter 5 channel polarization is applied for the wire-tap communication

model. The wire-tap channel model is a multi-user communication model involv-

ing a single transmitter, and two receivers: one of the legitimate-user and one of the

eavesdropper. The maximal rate under which secure and reliable communication is

possible is called the secrecy capacity. Our study shows that the secrecy capacity can

be achieved by proper application of the channel polarization method for degraded

and symmetric channels. It is proved that for every rate below the channel secrecy

capacity, there exists a suitable polar code for which reliable and secure communica-

tion are achieved under successive cancelation decoding. Moreover, our polar coding

scheme is shown to achieve the entire rate-equivocation region for the considered

channel model.

In Chapter 6 channel polarization is applied for signaling over parallel channels.

It is shown that using the method of channel polarization, the capacity of signaling

over arbitrarily-permuted memoryless and symmetric parallel-channels is achievable

under an assumption of channel degradation. A channel coding scheme and its cor-

responding successive cancelation decoding algorithm are proposed. The proposed

scheme incorporates the method of channel polarization with an algebraic maximum-

distance separable codes. The achievable rates of the provided scheme are also studied

in the general case where the assumption on channel degradation is removed.



Chapter 2

Performance Bounds for

Non-Binary Linear Block Codes

over Memoryless Symmetric

Channels

Chapter Overview

The performance of non-binary linear block codes is studied in this chapter via the

derivation of new upper bounds on the block error probability under ML decod-

ing. The transmission of these codes is assumed to take place over a memoryless

and symmetric channel. The new bounds, which are based on the Gallager bounds

and their variations, are applied to the Gallager ensembles of non-binary and regu-

lar LDPC codes. These upper bounds are also compared with sphere-packing lower

bounds. This study indicates that the new upper bounds are useful for the per-

formance evaluation of coded communication systems which incorporate non-binary

coding techniques.

The general concept used in this chapter is based on a partitioning of the orig-

inal ensemble into two subsets of codebooks according to their minimal Hamming

distance. For the set of codebooks whose minimal distances are below a certain value

(which is later determined in order to achieve a tight bound), a simple union bound

is used which only depends on their distance properties. As for the complementary

set of codebooks (whose minimal Hamming distance is larger than the above value),

a Gallager-type bound on the decoding error probability is used; the latter bound

depends both on the distance properties of the ensemble and the communication

17
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channel, and it relies on a generalization of the DS2 bound to non-binary linear block

code ensembles. The chapter is based on the following paper:

E. Hof, I. Sason, and S. Shamai (Shitz), “Performance bounds for non-binary lin-

ear block codes over memoryless symmetric channels,” IEEE Trans. on Information

Theory, vol. 55, no. 3, pp. 977–996, March 2009.

This chapter is structured as follows: the symmetry requirements and the message

independence proposition are provided in Section 2.1. The proposed bounding ap-

proach is introduced in Section 2.2, and these bounds are exemplified for the Gallager

LDPC code ensembles over a q-ary symmetric and AWGN channels. Variations of

these bounds are also derived and exemplified in Section 2.3 for fully-interleaved fad-

ing channels with perfect casual state information (CSI) at the receiver. Section 2.4

concludes the discussion. Various technical details are relegated to the appendices.

2.1 Channel Symmetry and Message Independence

Let X = {x0, x1, . . . , xq−1} be a given alphabet with cardinality q. We assume an

addition operation (+) over the alphabet X for which {X ,+} forms an Abelian group.

Let x0 = 0 be the additive identity of this group. In addition, let Y be a given discrete

(or continuous) alphabet. We assume a memoryless channel, and denote the channel

transition probability (or probability density, respectively) function by p(y|x), where
x ∈ X and y ∈ Y .

Definition 2.1 (Channel symmetry) A memoryless channel which is character-

ized by a transition probability p, an input-alphabet X and a discrete output alphabet

Y is symmetric if there exists a function T : Y ×X → Y which satisfies the following

properties:

1. For every x ∈ X , the function T (·, x) : Y → Y is bijective.

2. For every x1, x2 ∈ X and y ∈ Y , the following equality holds:

p(y|x1) = p(T (y, x2 − x1)|x2). (2.1)

Remark 2.1 For channels whose output alphabet is continuous, an additional re-

quirement on the mapping T is that its Jacobian is equal to 1.1 In this case, the

1It is possible to use a generalized definition for both discrete and continuous output alphabets
using the notion of unitary functions as done for example in [115, Section III-A].
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condition in (2.1) implies that
∫

p(y|x1) dy =
∫

p(T (y, x2 − x1)|x2) dy.

Example 2.1 (MBIOS channels) For the particular case of channels with a binary-

input alphabet, and whose output alphabet Y is the set of real numbers, setting

T (y, x) =

{

y if x = 0

−y if x = 1

then Definition 2.1 coincides with the standard definition of MBIOS channels. The

meaning of the function T is better understood via the setting of MBIOS channels.

Referring to (2.1), the transition probability given a channel input x1 is equal to the

transition probability given another input x2 where the sign of the output is changed

if the two binary inputs are different.

Example 2.2 (Random coset mechanism followed by an arbitrary channel)

In [11], [46] and [57], the transmission of block codes takes place over an arbitrary

memoryless channel followed by a random coset mechanism. That is, instead of

transmitting the coded message x, the vector x+v is transmitted where v is a random

vector and the addition is carried out symbol-wise. The random vector v is called

the coset, and it is known to both the transmitter and the receiver. When coding

schemes with a random coset mechanism are applied to an arbitrary memoryless

channel, the symmetry of the equivalent channel is guaranteed. To see this, consider

the equivalent channel that includes the addition of the coset symbols followed by

the original channel, and whose observations are pairs (y, v), where v is the random

coset symbol added to the transmitted coded symbol, and y is the (original) channel

output. Assuming a memoryless channel, the symmetry is guaranteed by setting

T ((y, v), x) = (y, v − x), y ∈ Y , x, v ∈ X

where X and Y are the input and output alphabets, respectively. Notice that T
is now defined over (Y × X ) × X , where Y × X forms the output alphabet of the

equivalent channel.

Based on Definition 2.1, we get the following lemma:

Lemma 2.1 let x1, x2, x3 be arbitrary symbols in X , and let p be a transition

probability law of a memoryless symmetric channel. Then,

p
(

T
(

T (y, x1), x2
)

|x3
)

= p
(

T (y, x1 + x2)|x3
)

(2.2)

where T is the mapping satisfying the symmetry properties in Definition 2.1.
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Proof: See Appendix 2.A.

For MBIOS channels, the capacity is attained with a uniform input distribu-

tion. In addition, random coding with a uniform (and memoryless) distribution at-

tains the optimum random-coding error exponent provided by Gallager (see [45],

[46], and [111]). The following lemma generalizes these results for the case of dis-

crete, memoryless, and symmetric channels according to Definition 2.1 (a similar

result follows for the case of memoryless symmetric channels with continuous output-

alphabets).

Lemma 2.2 Let Q be a probability function over the input alphabet X , and let p

be a transition probability function of a discrete symmetric and memoryless chan-

nel. Then, the mutual information I(Q), between the channel input (with an input

probability distribution Q) and the channel output, given by

I(Q) =
∑

y∈Y

∑

x∈X

Q(x)p(y|x) ln
(

p(y|x)
∑

x′∈X Q(x
′)p(y|x′)

)

and the Gallager function E0(ρ,Q) [46], defined by

E0(ρ,Q) , − ln





∑

y∈Y

(

∑

x∈X

Q(x)p(y|x) 1
1+ρ

)1+ρ


 , ρ ≥ 0

are maximized (for every ρ ≥ 0) by a uniform distribution.

Proof: The proof follows trivially by applying [111, Theorems 3.2.2 and 3.2.3] to

the case at hand.

Lemma 2.2 is also valid for symmetric DMCs in the sense defined by Gallager

in [46, p. 94] (as shown in the following definition):

Definition 2.2 (Gallager’s definition for symmetric DMC [46]) A DMC is

defined to be symmetric if the set of outputs can be partitioned into subsets in such

a way that for each subset the matrix of transition probabilities (using inputs as rows

and outputs of the subset as columns) has the property that each row is a permutation

of each other row and each column (if more than 1) is a permutation of each other

column.

Remark 2.2 It is easily verified that a symmetric DMC according to Definition 2.1,

is symmetric according to Definition 2.2 of Gallager.
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Consider linear block codes over the non-binary alphabet X . Specifically, let G be

a k×n matrix with components over the alphabet X . Then, the linear block code with

a generator matrix G, denoted by C = {xm}q
k

m=1 where xm = (xm,1, . . . , xm,n), is the

set of all qk linear combinations of the rows of G. The conditional error probability

of the m-th message is given according to

Pe|m =
∑

y∈Λc
m

p(y|xm)

where Λm forms the decision region for the m-th codeword, and the superscript ‘c’

stands for the complementary set. The decision region of the m-th codeword under

ML decoding gets the form

Λm =
{

y : p(y|xm) > p(y|xm′), ∀ m′ 6= m
}

and ties are resolved randomly with equal probability. A well-known result for binary

linear block codes operating over MBIOS channels is that their error probability

under ML decoding is independent of the actual transmitted codeword. This result

enables a great simplification to the error performance analysis by assuming that the

all-zero codeword, designated by 0, is transmitted. The following proposition is a

generalization of this result for linear block codes communicated over memoryless

and symmetric channels whose input alphabet is discrete (for the case of linear-

programming decoding, see [40]):

Proposition 2.1 (Independence of the Conditional Error Probability on the

Transmitted Codeword for all Memoryless Symmetric Channels) Let C be

a linear block code whose transmission takes place over a memoryless and symmetric

channel according to Definition 2.1. Then, the block error probability under ML

decoding is independent of the transmitted codeword.

Proof: See Appendix 2.B.

The proof for the message independence property remains valid even if the channel

transition probability is different for each transmission. This enables the analysis in

Section 2.3 of q-ary PSK systems whose transmission takes place over fading channels

with perfect CSI at the transmitter. In addition, note that in contrast to Lemma 2.2,

Proposition 2.1 does not necessarily hold for symmetric DMCs in the broader sense,

as in Definition 2.2 due to Gallager. This is demonstrated in the following counter-

example:
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Example 2.3 (Channel symmetry according to Definition 2.2 doesn’t imply

symmetry according to Definition 2.1) Consider a DMC with the integer ring

Z4 (with arithmetic operations modulo-4) as common input and output alphabets,

and with the following transition probability matrix:

P = [pi,j] =













0.20 0.24 0.30 0.26

0.30 0.20 0.26 0.24

0.24 0.26 0.20 0.30

0.26 0.30 0.24 0.20













.

In this matrix, the element pi,j (where i, j ∈ {1, . . . , 4}) refers to the transition prob-

ability when the channel input is equal to i− 1 and the output is equal to j− 1. The

memoryless channel which corresponds to P is symmetric according to Definition 2.2

(notice that each row and column is a permutation of another row or column, re-

spectively). However, if the linear block code {00, 13, 22, 31} is transmitted over the

considered channel, then the resulting conditional error probabilities under ML decod-

ing are 0.7540, 0.7210, 0.5424 and 0.7210, respectively, and they therefore depend on

the transmitted codeword. To show this, we first need to determine the ML decoding

regions for the considered code and channel. This is accomplished by evaluating the

conditional probabilities of each possible output pair given each possible transmitted

codeword (e.g., p(03|31) = 0.26 · 0.24 = 0.0624). The decoding region for the all-zero

codeword 00 is the set {22, 23, 32} (note that the ‘00’ vector is not included in the

decision region of this codeword, and on the other hand, the vector ‘22’ which forms a

codeword is included in the decision region of the all-zero codeword). The conditional

error probability given that the all-zero codeword is transmitted is therefore equal to

1 − p(22|00) − p(23|00) − p(32|00) = 1 − 0.302 − 0.30 · 0.26 − 0.26 · 0.30 = 0.7540.

The rest of the conditional error probabilities are similarly evaluated. Hence, due to

Proposition 2.1, this channel is not symmetric according to Definition 2.1 although it

is symmetric according to Definition 2.2.

2.2 Gallager Bounds for Memoryless Symmetric

Channels and Some Applications

2.2.1 The DS2 bound

Let C be an (n, k) linear block code defined over the input-alphabet X with cardinality

q. Consider the conditional error probability under ML decoding given that the m-th

message is transmitted, denoted by Pe|m. The DS2 bound on the conditional error
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probability (see [31], [32], [94] and [96]) gets the form

Pe|m ≤
(

∑

y∈Yn

Gm
n (y)pn(y|xm)

)1−ρ

·
{

∑

m′ 6=m

∑

y∈Yn

Gm
n (y)

1− 1
ρpn(y|xm)

(

pn(y|xm′)

pn(y|xm)

)λ
}ρ

(2.3)

where Y is a discrete output-alphabet, Gm
n (y) is an arbitrary non-negative function of

y ∈ Yn, and 0 ≤ ρ ≤ 1 and λ ≥ 0 are arbitrary real-valued parameters. Here pn(y|x)
designates the transition probability of the channel where x ∈ C is the transmitted

codeword and y ∈ Yn is the received vector. Notice that the bound in (2.3) holds for

an arbitrary channel regardless of its input alphabet.

Consider now the class of memoryless symmetric channels with an input-alphabet

X . According to Proposition 2.1, Pe|m is independent of the transmitted message m.

We further assume that G0
n(y) is expressed in the following product form:

G0
n(y) =

n
∏

i=1

g(yi)

where g : Y → R+ is an arbitrary non-negative function which is defined over the set

Y . The following bound on the decoding error probability is obtained for a discrete

output alphabet (a similar proposition can be stated for channels with a continuous

output alphabet):

Proposition 2.2 Consider an (n, k) linear block code C whose transmission takes

place over a memoryless symmetric channel. Assume that the channel input and

output alphabets are X and Y , respectively, and let p be the transition probability

of the channel. Then the block error probability of the code C under ML decoding,

Pe, satisfies

Pe ≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ){

∑

m′ 6=0

n
∏

i=1

∑

y∈Y

g(y)1−
1
ρp(y|0)1−λp(y|xm′,i)

λ

}ρ

(2.4)

where g : Y → R+ is an arbitrary non-negative real function, λ ≥ 0, and 0 ≤ ρ ≤ 1

are arbitrary real-valued parameters.

Proof: See Appendix 2.C.
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2.2.2 Performance evaluation of ensembles of linear block

codes

Definition 2.3 (Composition of a vector) Let c be a vector whose components

are symbols in an alphabet X of size q. Let us assume without loss of generality

that X = {0, . . . , q − 1}. The composition of c, denoted by t = t(c), is a vector

t = (t0, t1, . . . , tq−1) where tx (for x ∈ X ) counts the number of symbols in c that are

equal to x.

Definition 2.4 (Complete composition spectrum) Let C be a linear block code

of length n over an alphabet X . The complete composition spectrum is the sequence

{|Ct|} where |Ct| is the number of codewords whose composition is t, and t ranges

over the set H of all possible compositions over X n.

The existence of the all-zero codeword is clear. Consequently, the set H denotes in

the followings the entire set of possible compositions except for the one of the all-zero

codeword. The following lemma considers the error probability under ML decoding

of an ensemble of linear block codes.

Lemma 2.3 Let E be an ensemble of linear block codes with block length n, and

let dmin be the random variable designating the minimum Hamming distance of a

randomly selected codebook C from this ensemble. Assume that there exist non-

negative numbers Dn and ǫn, such that

∑

{t∈H: n−t0≤Dn}

E
[

|Ct|
]

≤ ǫn (2.5)

where E
[

|Ct|
]

denotes the expected number of codewords in C with composition

t, and H denotes the entire set of compositions except for the one of the all-zero

codeword. Then, the block error probability under ML decoding satisfies

Pe ≤ Pr( error | dmin > Dn) + ǫn. (2.6)

Proof:

Pe = Pr( error | dmin > Dn) Pr(dmin > Dn)

+ Pr( error | dmin ≤ Dn) Pr(dmin ≤ Dn)

≤ Pr( error | dmin > Dn) + Pr(dmin ≤ Dn).
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Let C be a codebook, chosen uniformly at random from the code ensemble E , and
let wH(c) denote the Hamming weight of a codeword c ∈ C. Then, the union bound

gives that

Pr(dmin ≤ Dn) ≤
∑

{c6=0: wH(c)≤Dn}

Pr(c ∈ C)

=
∑

{t∈H: n−t0≤Dn}

∑

{c: t(c)=t}

E
[

1{c∈C}
]

=
∑

{t∈H: n−t0≤Dn}

E
[

|Ct|
]

(2.7)

where 1{c∈C} denotes the indicator of the event {c ∈ C}, and the last equality follows

by converting the inner summation to an expectation.

Later in this section, we obtain upper bounds for the first term on the RHS of (2.6).

These bounds are expressed in terms of the composition spectrum of the considered

code ensemble, and they serve to find a suitable tradeoff between the parameters Dn

and ǫn introduced in Lemma 2.3. More explicitly, since these two parameters are

related, one wishes to increase the parameter Dn while maintaining small values of

ǫn. The continuation to this section relies on Lemma 2.3 for the derivation of some

bounds, and exemplify their use to regular LDPC code ensembles.

The following theorem provides an upper bound on the decoding error probability

for ensembles of linear block codes whose transmission takes place over memoryless

symmetric channels.

Theorem 2.1 Under the assumptions and notation in Proposition 2.2 and Lemma 2.3,

the block error probability under ML decoding satisfies

Pe ≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)(

∑

t∈H: n−t0>Dn

E

[

|Ct|
∣

∣ dmin > Dn

]

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

+ ǫn (2.8)

where

sλ,ρ(x) ,
∑

y∈Y

g(y)1−
1
ρp(y|0)1−λp(y|x)λ, x ∈ X (2.9)

and E
[

|Ct| | dmin > Dn

]

denotes the conditional expected number of codewords whose

composition is equal to t (where the expectation is with respect to the choice of the

codebook C from the ensemble E) under the requirement that the minimal Hamming

weight of the randomly selected codebook is larger than Dn.
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Proof: From Proposition 2.2 and (2.9), we get the following upper bounding on

the first summand in (2.6):

Pr( error | dmin > Dn)

≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

E

[(

∑

t∈H

∑

c∈Ct

n
∏

i=1

sλ,ρ(ci)

)ρ ∣
∣

∣

∣

∣

dmin > Dn

]

where Ct is the set of all codewords in a codebook C whose composition is t. Notice

that the double summations on the RHS of the last inequality, over compositions

t and codewords c ∈ Ct, is equivalent to a single summation over all the non-zero

codewords. Using Jensen’s inequality, E[Xρ] ≤
(

E[X ]
)ρ

for 0 ≤ ρ ≤ 1, then

Pr( error | dmin > Dn)

≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·
(

∑

t∈H

E

[

∑

c∈Ct

∏

x∈X

(

sλ,ρ(x)
)tx

∣

∣

∣

∣

dmin > Dn

])ρ

=

(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·
(

∑

t∈H

E

[

∣

∣Ct
∣

∣

∣

∣

∣
dmin > Dn

]

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

. (2.10)

For all codewords whose composition t satisfies n− t0 ≤ Dn, their Hamming weight

is not larger than Dn. Hence

E

[

∣

∣Ct
∣

∣

∣

∣

∣
dmin > Dn

]

= 0, ∀ t ∈ H : n− t0 ≤ Dn (2.11)

and the bound in (2.8) follows from Lemma 2.3, and (2.10) and (2.11).

The following theorem is a particularization of Theorem 2.1:

Theorem 2.2 Under the assumptions and notation in Proposition 2.2 and Lemma 2.3,

the block error probability satisfies

Pe ≤ q
−nEr

(

R+
logq αq(C,Dn)

n

)

+ ǫn (2.12)

where n and R are the block length and code rate (measured in q-ary symbols per
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channel use), respectively, and

Er(R) , max
0≤ρ≤1

(E0(ρ)− ρR)

E0(ρ) ,− logq





∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)1+ρ




αq(C, Dn) , max
{t∈H: n−t0>Dn}







E

[

∣

∣Ct
∣

∣

∣

∣

∣
dmin > Dn

]

q−n(1−R)
(

n
t

)







. (2.13)

Proof: See Appendix 2.D.

A similar theorem can be stated for memoryless symmetric channels with continuous-

output alphabets, where sums are replaced by integrals.

The bound in Theorem 2.2 is based on two summands. The first is an adaptation

of the SFB to non-binary linear block codes which applies to the codebooks whose

minimum distance exceeds an arbitrary threshold Dn. The second term relates to

the probability that a randomly selected codebook from the ensemble has a minimum

Hamming distance which does not exceed Dn. As a result, the second term on the

RHS of (2.12) does not depend on the communication channel, but only on the code

ensemble and the arbitrary threshold Dn. This partitioning differs from [11] and [78]

where no such separation of codebooks is used. The SFB in [11] and [78] is combined

with a union bound which corresponds to all pairwise error probabilities of relevant

codewords and it depends on the communication channel. Following Example 2.2, the

SFB in [11] can be considered as a particular case of Theorem 2.2 (the same goes for

[37] where the considered modulo-additive noise channel is also symmetric according

to Definition 2.1).

In general, the conditional expectation of the composition spectrum given that the

minimum Hamming distance exceeds a certain positive thresholdDn (i.e., E
[

|Ct|
∣

∣dmin >

Dn

]

) is not available. Nevertheless, it is possible to use the inequality

E

[

|Ct|
]

≥ E

[

|Ct| | dmin > Dn

]

Pr(dmin > Dn)

≥ E

[

|Ct| | dmin > Dn

]

(1− ǫn). (2.14)

where the LHS of this inequality requires the knowledge of the expectation of the

complete composition spectrum E
[

|Ct|
]

. Applying (2.14) to the RHS of (2.8), gives

a looser version of the bounds in Theorem 2.1 and 2.2 but is more amenable to anal-

ysis. The inequality in (2.14) is valid when expurgation of codebooks is considered.

The expurgated ensemble is constructed by removing all codebooks whose minimum
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Hamming distance is not larger than Dn. Since all the codebooks in the expurgated

ensemble have a minimum distance greater than Dn, then the additive term ǫn on

the RHS of (2.8) vanishes.

Consider an ensemble of linear block codes, and choose a codebook from this en-

semble uniformly at random. We further assume that the probability that a vector

is a codeword only depends on its Hamming weight (so all vectors of a fixed com-

position are codewords with equal probability). As a result, the expected complete

composition spectrum E |Ct| satisfies

E

[

|Ct|
]

= P (n− t0)

(

n

t

)

(2.15)

where P (l) denotes the probability that a word whose Hamming weight is l, forms a

codeword in a randomly selected codebook from the ensemble. Assuming (2.15), the

evaluation of αq in Theorem 2.2 is considerably reduced.

In the following, we introduce an improvement over the bound in Theorem 2.2:

Theorem 2.3 Under the assumptions and notation in Proposition 2.2 and Lemma 2.3,

for ensembles satisfying (2.15), the block error probability satisfies

Pe ≤ A(ρ)n(1−ρ)

(

∑

Dn<l≤n

P (l)

1− ǫn

(

n

l

)

B(ρ)n−lC(ρ)l

)ρ

+ ǫn (2.16)

where 0 ≤ ρ ≤ 1, ǫn is defined in (2.6), and

A(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)1+ρ

B(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ−1(

1

q

∑

x∈X

p(y|x) 2
1+ρ

)

C(ρ) , qA(ρ)− B(ρ).

Proof: See Appendix 2.E.

Remark 2.3 For the particular case of binary linear block codes, the bound provided

in Theorem 2.3 does not require the symmetry assumption on the considered ensemble

in (2.15). For this case, the same derivation holds while setting

P (l) ,
E
[

|Cl|
]

(

n
l

) , Dn < l ≤ n

where E
[

|Cl|
]

denotes the expected number of codewords whose Hamming weight is

l.
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2.2.3 Performance of non-binary regular LDPC ensembles

The non-binary (c, d)-regular LDPC code ensemble, proposed by Gallager in [44, Ch.

5], is considered with the q-ary symmetric channel and the AWGN channel with a q-

ary PSK modulation (both channels are symmetric according to Definition 2.1). The

Gallager ensemble is defined using a sparse parity-check matrix with binary elements.

This matrix is regular, having c ones in each column and d ones in each row. The

LDPC ensemble is constructed as follows:

1. Divide the parity check matrix into c consecutive sub-matrices. All the sub-

matrices have n columns and cn
d
rows.

2. Fill the first sub-matrix with ones in a descending order.

3. All other sub-matrices are chosen as random permutations of the first sub-

matrix.

4. Parity-check equations are evaluated using a modulo-q arithmetics.

The following lemma is provided in [44] which implies an upper bound on the complete

composition spectrum satisfying the condition in (2.15):

Lemma 2.4 Consider the regular non-binary LDPC ensemble of Gallager. Let x be

a vector of weight l > 0. The probability P (l) that the vector x is a codeword of a

codebook which is selected uniformly at random from the ensemble, is upper bounded

by

P (l) ≤





exp
(

n
d

(

µq(s)− sµ′
q(s) + (d− 1) ln q

)

)

(

n
l

)

(q − 1)l





c

(2.17)

where

µq(s) , ln

(

(

1 + (q − 1)es
)d

+ (q − 1) (1− es)d

qd

)

and s is a real number given by the solution of the following equation

n

d
µ′
q(s) = l. (2.18)

Note, that the bound in (2.17) is valid for all s, not only for the one satisfying

(2.18) which yields the minimum bound in (2.17). Using the change of variables

s = ln 1−u
1+(q−1)u

, − 1
q−1

≤ u ≤ 1, in (2.18), results in the following polynomial equation:

(wq

n
− 1
)

ud + ud−1 + u+
wq

n(q − 1)
− 1 = 0.
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For q > 2, this equation has a single root in the interval
[

− 1
q−1

, 1
]

(the details

concerning the evaluation of the RHS of (2.17) for the binary case are provided in

[93]).

In the following, we obtain the exact composition spectrum of the regular LDPC

code ensembles of Gallager. This derivation serves to improve the tightness of the

bounds on the error probability. The provided analysis generalizes [105] to non-binary

codes. The exact enumeration for the binary case is already available in [18], as an

intermediate result, although its main interest is in asymptotic analysis (This analysis

can be traced even to Gallager [45]).

Lemma 2.5 Under the assumptions and notation in Lemma 2.4, the probability P (l)

satisfies

P (l) =

(

Al
(

n
l

)

(q − 1)l

)c

, 2 ≤ l ≤ n (2.19)

where

∑

2≤l≤n

AlX
l ,

(

A∗(X)
)

n
d (2.20)

A∗(X) , 1 +
1

q

d
∑

l=2

(

(q − 1)l + (q − 1)(−1)l
)

(

d

l

)

X l. (2.21)

Proof: See Appendix 2.F.

As suggested in [105], the numerical evaluation of the exponent in (2.20) is carried

out, in all the examples studied in this chapter, via the binary method (see [61, p.

441]). This method makes the evaluation of the high-order powers of a polynomial

relatively easy to compute.

The 1961 Gallager-Fano bound (see [94, 44]) and Lemma 2.4 imply an expo-

nential bound (in terms of the block length) on the decoding error probability for

the expurgated LDPC code ensemble. This expurgation removes all the codebooks

whose minimal Hamming distance is below a certain threshold which scales linearly

with the block length. This result is elaborated for the binary case by Miller and

Burshtein [78]).

The following examples consider the Gallager ensembles of non-binary and (8,

16) regular LDPC codes where these ensembles are expurgated by removing all the

codebooks whose minimum distance is not greater than a certain parameter Dn. The

examples study upper bounds on the decoding error probability of these expurgated

ensembles via the use of the upper bounds in Theorems 2.2 and 2.3. The exact

composition spectrum of the non-expurgated LDPC code ensemble is evaluated via
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Lemma 2.5, and then upper bounds on the composition spectrum of the expurgated

ensembles are calculated via (2.14).

Example 2.4 (q-ary symmetric channels) Bounds on the block error probabil-

ity for some expurgated LDPC code ensembles are presented in Figure 2.1 when the

transmission takes place over a q-ary symmetric channel and ML decoding is per-

formed. The performance bounds introduced in this chapter are compared with the

union bound, and we also exemplify the uselessness of the union bound beyond the

crossover probability which corresponds to the cutoff rate. More specifically, for a

q-ary symmetric channel, the cutoff rate is given by

R0 = 1− 2 logq

(

√

1− p+
√

p(q − 1)
)

so the crossover probability which follows by setting the value of R0 to the code rate

(which is one-half symbol per channel use in Figure 2.1) is equal to p = 0.0670 and p =

0.0739 for quaternary and octal input alphabets, respectively. The union bound shown

in the upper plot of Figure 2.1 (see plot (a)) has a sharp decline around the crossover

probability which corresponds to the cutoff rate of the q-ary symmetric channel (i.e.,

around p = 0.0670 for q = 4). Plot (a) also exemplifies the potential application

of the proposed bounds to assess the performance of efficient code ensembles which

perform reliably at rates exceeding the cutoff rate of the channel. Figure 2.1(b) is

focused on the improved bounds in Theorems 2.2 and 2.3, applied to the Gallager

(8, 16) regular and expurgated LDPC code ensemble with a quaternary alphabet and

block lengths of n = 1008 and 10080 symbols. The ensemble spectrum is upper

bounded via Lemma 2.4, and in addition it is exactly evaluated using Lemma 2.5;

both options are applied in this example so that the improvement provided by the

exact calculation of the composition spectrum is exemplified in this figure. The

various choices of the parameter Dn and the resulting ǫn, which serves as an upper

bound on the fraction of codebooks whose minimum distance is not larger than Dn,

are detailed in Table 2.1(a). Since Theorem 2.3 is tighter than Theorem 2.2, then the

minimal value of Dn for which Theorem 2.2 is useful is larger than the corresponding

value which is calculated in conjunction with Theorem 2.3. Moreover, the considered

bounds are further improved when the upper bound for the composition spectrum in

Lemma 2.4 is replaced with the exact calculation in Lemma 2.5. The inferiority of

the SFB in (2.12) is further pronounced for higher alphabets, as exemplified for octal

signaling in Figure 2.1(c) (where the details with regard to the choices of Dn and ǫn

values are given in Table 2.1(b)).
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Figure 2.1: Upper bounds on the block error probability of the Gallager (8, 16) reg-
ular and non-binary LDPC code ensembles with quaternary and octal input alpha-
bets. The transmission takes place over a q-ary symmetric channel where q = 4 in
plots (a) & (b) and q = 8 in plot (c). This figure refers to expurgated ensembles
whose block lengths are 1008 and 10, 080 symbols.



CHAPTER 2. PERFORMANCE BOUNDS FOR NON-BINARY CODES 33

Table 2.1: Parameters for Example 2.4

(a) Quaternary alphabet (q = 4).

Performance bound Block length n (symbols) Dn ǫn (Lemma 2.4) ǫn (Lemma 2.5)

Theorem 2.2 1008 173 0.1 10−11

Theorem 2.3 1008 99 10−4 10−11

Theorem 2.2 10008 1834 0.11 10−17

Theorem 2.3 10008 600 10−7 10−17

(b) Octal alphabet (q = 8).

Performance bound Block length n (symbols) Dn ǫn (Lemma 2.4) ǫn (Lemma 2.5)

Theorem 2.2 1008 191 10−5 10−14

Theorem 2.3 1008 119 10−5 10−14

Theorem 2.2 10080 1951 10−9 10−20

Theorem 2.3 10080 887 10−9 10−20

Example 2.5 (AWGN channels with a q-ary PSK modulation) Upper bounds

on the block error probability for for some expurgated LDPC code ensembles are

depicted in Figure 2.2 when the transmission takes place over the AWGN channel with

a q-ary PSK modulation. The alphabet size of these code ensembles is q = 4, 8, 16,

and 32, and the examined parameters Dn of the expurgation are given in Table 2.2.

It is evident that the SFB in Theorem 2.2 deteriorates as compared to the bound in

Theorem 2.3. This deterioration is more dominant by increasing the alphabet size q.

It is interesting to compare the studied bounds to the union bound which, for large

block lengths, diverges at the cutoff rate of the communication channel. For alphabet

cardinalities of q = 4 and q = 8, the cutoff rate corresponds to Es

N0
ratios of 2.46 dB

and 5.05 dB, respectively, which exemplify the superiority of both derivations over

the union bound. However, for alphabet cardinalities of q = 16 and q = 32, the

SFB deteriorates considerably comparing to the bound provided in Theorem 2.3 and

to the union bound which is depicted in Figure 2.2 and (d) (the SNR values which

correspond to the cutoff rate for q = 16 and 32 are equal to 7.57 dB and 10.31 dB,

respectively).

The reason for the deterioration of the SFB for large values of q is explained when

looking into the rate term 1
n
logq α (C, Dn). This term corresponds to the difference

between the spectrum of the considered ensemble and the multinomial spectrum of

the fully random code ensemble. This difference between the two composition spectra

is depicted in Figure 2.3 as a function of Dn

n
for alphabet sizes of q = 4, 8, 16, and

32, and for block lengths of n = 512, 1008, and 10080 symbols. From Figure 2.3, this

term is more pronounced by increasing the value of q. On the other hand, the bound

in Theorem 2.3 does not exhibit such deterioration.
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Table 2.2: Dn values for Example 2.5

Performance bound Block length n (symbols) Dn (q=4) Dn (q=8) Dn (q=16) Dn (q=32)

Theorem 2.2 1008 186 191 191 191
Theorem 2.3 1008 38 34 15 12
Theorem 2.2 10080 1851 1951 1951 1951
Theorem 2.3 10080 282 216 132 102
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Figure 2.2: Upper bounds on the block error probability under ML decoding of the
(8, 16)-regular LDPC ensembles of Gallager with alphabet size of q = 4, 8, 16, and 32,
whose transmission takes place over an AWGN channel with a q-ary PSK modulation.
This figure depicts the upper bounds on the block error probability for the expurgated
ensemble with block lengths of 1008 and 10, 080 symbols.
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Figure 2.3: The term 1
n
logq αq(C, Dn) in (2.12) for the regular (8,16) LDPC ensemble

of Gallager [44], depicted for alphabet sizes of q = 4, 8, 16, and 32, and block lengths
of n = 512, 1008, and 10080 symbols.

Remark 2.4 Divsalar’s bound [26, 27] is widely used when assessing the error per-

formance of binary turbo-like code ensembles over the binary-input AWGN channel

(see [94, Chapter 3.2.4] and references therein). This is due to the fact that the

bound is given in a closed form, and its calculation does not involve any numerical

integrations and parameter optimizations. The basic concept the bound is based on

is the following:

Pr(error) ≤ Pr(error,y ∈ R) + Pr(y 6∈ R)

where y is the received vector, and the region R is the n-dimensional sphere which

is centered at a point along the line connecting the origin to the all-zero codeword,

and whose radius is optimized analytically in order to get the tightest bound within

its form. This technique was generalized by the authors to the non-binary setup by

examining various regions in the complex observation space. In contrast to the binary

case, not all the parameters could be optimized analytically. Moreover, the resulting

bounds were not satisfactory as compared to the bounds presented in Example 2.5,

and are therefore omitted.

Example 2.6 (A Comparison to lower bounds on the decoding error proba-

bility) The upper bound in Theorem 2.3 is compared in Figure 2.4 to the SP59 lower

bound of Shannon [99], and the ISP lower bound in [115]. The regular LDPC code en-

sembles of Gallager are considered with octal alphabet cardinality and block lengths
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of 1008 and 10080 symbols, and the performance is studied over the AWGN channel

with an 8-ary PSK modulation. In Figure 2.4(a), the upper bound in Theorem 2.3 is

depicted for the Gallager (8,16) regular and expurgated LDPC code ensemble with

octal alphabet (the bound is evaluated with the same parameters as in Table 2.2).

In addition, the ultimate performance of a rate 0.5 code is assessed via the SP59 and

the ISP lower bounds on the decoding error probability. For a block length of 1008

symbols, a negligible difference exists between the two considered lower bounds, and

both of these bounds are about 0.5 dB away from the upper bound in Theorem 2.3 for

all range of interest. For the larger block length of 10080 symbols, the gain of the ISP

bound is about 0.25 dB as compared to the SP59 bound, and it is about 0.2 dB away

from the upper bound (see Figure 2.4(a)). The comparison between the upper and

lower bounds is further studied in Figure 2.4(b) for the Gallager (8,32) regular and

expurgated LDPC code ensembles with block lengths of 1024 and 10080 symbols and

octal alphabet. The design rate for these ensembles is 0.75 symbols per channel use.

The upper bound in Theorem 2.3 is depicted with Dn = 25 and 95, respective to the

studied block lengths. The ISP bound maintains its close proximity with the upper

bound. The SP59 bound on the other hand deteriorates considerably for this case,

and it is less informative than the capacity limit for both considered block lengths

(see Figure 2.4(b)).

2.3 Gallager-type bounds for fully-interleaved fad-

ing channels with prefect CSI at the receiver

In the section, the error probability of a linear block code C is considered under ML

decoding when transmission takes place over a fully-interleaved fading channel and

perfect CSI is available at the receiver. The fading is assumed to be a continuous

random variable (a similar framework is possible for the discrete case). Let A denote

the set of possible fading samples, and p(y, a|x) denote the conditional joint pdf of the
received sequence y = (y1, . . . , yn) ∈ Yn and the fading samples a = (a1, . . . , an) ∈ An

given that the transmitted codeword is x ∈ C. Due to an ideal symbol interleaving,

the channel is memoryless and accordingly

p(y, a|x) =
n
∏

i=1

p(yi|xi, ai)p(ai)

where p(y|x, a) is the single-letter conditional pdf of the channel, and p(a) is the pdf

of a fading sample. The following definition of symmetry is a generalization to the



CHAPTER 2. PERFORMANCE BOUNDS FOR NON-BINARY CODES 37

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
10

−8

10
−6

10
−4

10
−2

10
0

Es/N0[dB]

b
lo

ck
er

ro
r

p
ro

b
a
b
il
it
y

 

 
n = 1008, SP59
n = 1008, ISP
n = 1008, Th. 3
n = 10080, SP59
n = 10080, ISP
n = 10080, Th. 3
capacity threshold

(a) R = 0.5

6 6.5 7 7.5 8 8.5 9 9.5
10

−8

10
−6

10
−4

10
−2

10
0

Es/N0 [dB]

b
lo

ck
er

ro
r

p
ro

b
a
b
il
it
y

 

 
n = 1024, SP59
n = 1024, ISP
n = 1024, Th. 3
n = 10080, SP59
n = 10080, ISP
n = 10080, Th. 3
capacity threshold

(b) R = 0.75

Figure 2.4: A Comparison between the upper bound in Theorem 2.3 and the SP59
and ISP lower bounds on the decoding error probability for octal alphabet block codes
whose transmission takes place over an AWGN channel with 8-ary PSK modulation.
This figure depicts the upper and lower bounds on the block error probability for block
lengths of 1008 and 10, 080 symbols. The upper bounds are provided for expurgated
(8, 16) and (8, 32) regular LDPC code ensembles.
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one presented in Definition 2.1. This generalization is obtained by directly applying

Definition 2.1 to a channel whose observations are the pair of the considered channel

output and the fading sample.

Definition 2.5 Consider the fully-interleaved fading channel with an input-alphabet

X , and perfect CSI at the receiver. The channel, which is characterized by a transition

pdf p, is symmetric if for every a ∈ A, there exists a function Ta : Y ×X → Y which

satisfies the following properties:

1. For every x ∈ X , the function Ta(·, x) : Y → Y is bijective and with a Jacobian

1.

2. For every x1, x2 ∈ X , the following equality holds:

p(y|x1, a) = p(Ta(y, x2 − x1)|x2, a). (2.22)

Notice that this definition of symmetry is a weaker notion compared to a one

where there exists a function T : Y × X → Y meeting the condition in (2.22) for

every fading sample a ∈ A. Nevertheless, this weaker notion is sufficient in order to

prove that for the case at hand, the ML decoding error probability does not depend

on the actual transmitted message. This is clearly expected since Definition 2.5 is a

direct application of Definition 2.1 for the case at hand. The conditional decoding

error probability for the m-th message under ML decoding as is given by

Pe|m =

∫

a

∫

y∈Λc
m(a)

p(y, a|xm) dy da =

∫

a

p(a)

∫

y∈Λc
m(a)

p(y|xm, a) dy da (2.23)

where Λm(a) ⊆ Yn is the decision region under ML decoding given that the sequence

of fading samples is a ∈ An. The proof of the independence of the decoding error

probability on the transmitted codeword follows by showing that the inner integral in

(2.23) is independent of the transmitted message m (this is accomplished for every se-

quence of fading sample sequence a in the same way as of the proof in Appendix 2.B).

Theorem 2.4 Under the assumptions and notation in Lemma 2.3, consider the case

where transmission takes place over a symmetric, fully-interleaved fading channel

with perfect CSI at the receiver. Let the channel input and output alphabets be X
and Y , respectively, and let p be the transition pdf of the channel. Then, the block
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error probability under ML decoding satisfies

Pe ≤
J
∑

j=1

(

∑

t∈Hj : n−t0>Dn

E

[

|Ct|
∣

∣

∣
dmin > Dn

]

∏

x∈X

(
∫∫

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λjρj

ρj p(y, a|x)λj dy da

)tx
)ρj

+ ǫn (2.24)

where {Hj}Jj=1 with an arbitrary J ≥ 1 forms a partition of the set of composi-

tions (except for the one which corresponds to the all-zero codeword) to J subsets,

E

[

|Ct|
∣

∣ dmin > Dn

]

denotes the expectation of the complete composition spectrum

under the assumption that dmin > Dn, the functions ψj : Y × A → R are arbitrary

non-negative tilting probability measures, and 0 ≤ ρj ≤ 1 and λj ≥ 0.

Proof: See Appendix 2.G.

Consider an ensemble which satisfies the symmetry property in (2.15), and let

us choose J = n and Hj = {t : n − t0 = j}. By using calculus of variations, the

optimum tilting measures ψj for Dn < j ≤ n, are given by

ψj(y, a) = αj,0 p(y, a|0)
(

1 +
∑

x∈X∗

αj,x

(

p(y, a|x)
p(y, a|0)

)λj

)ρj

, λj ≥ 0, 0 ≤ ρj ≤ 1

where the parameters αj,x, x ∈ X ∗ are given by

αj,x ,

j
n

∫∫

ψj(y, a)
1− 1

ρj p(y, a|0)
1
ρj dy da

(1− j
n
)
∑

x∈X ∗

∫∫

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λjρj

ρj p(y, a|x)λj dy da

and αj,0 are determined such that ψj are probability measures. The numerical evalu-

ations of such bounds result in a tedious numerical process. It is therefore of interest

to seek for probability tilting measures for which the integration in (2.24) has a closed

form expression. Exponential upper bounds on the ML decoding error probability of

binary linear block codes that operate over the binary-input fully-interleaved Rician

fading channel with perfect CSI at the receiver were derived in [58]. These bounds

are reasonably tight in a certain portion of the rate region exceeding the cutoff rate,

and do not require numerical integrations involved in the evaluation of the optimal

DS2-based bound. In the following example, the technique in [58] is generalized

and applied to non-binary linear block codes whose transmission takes place over a

fully-interleaved Rician fading channel with a q-ary PSK modulation.
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Example 2.7 (A fully-interleaved Rician fading channel with PSK mod-

ulation) Consider the class of fully-interleaved Rician fading channels with an ad-

ditive white Gaussian noise. A codeword x = (x1, . . . , xn) with a block length n

and codeword symbols over the alphabet X = {0, 1, . . . , q − 1} is transmitted over

a discrete-time memoryless channel. The received sequence y = (y1, . . . , yn) ∈ Cn

satisfies

yk = Ak

√

2Es

N0
exp

(

2πi

q
xk

)

+Nk, k = 1, . . . , n. (2.25)

Here Ak is a Rician random variable with a parameter K, and Nk = N r
k+ jN

i
k, where

N r
k and N i

k are statistically independent Gaussian random variables with a zero mean

and a unit variance. The non-negative real-valued parameter K designates the power

ratio between the direct and the diffused paths, N0/2 is the two sided power density

spectrum of the additive white Gaussian noise, and Es is the energy per transmitted

coded symbol. The symmetry of the considered channel is guaranteed by the q-ary

PSK modulation and the AWGN noise. Following [58], a sub-optimal DS2 bound is

suggested for the case at hand. To this end, the exponential tilting measure

ψj(y, a) =

αj

2π
exp

(

−αj

2

∣

∣

∣
y − auj

√

2Es

N0

∣

∣

∣

2

− αv2j a
2Es

N0

)

p(a)

∫∞

0
p(a) exp

(

−αv2j a
2Es

N0

)

da
, y ∈ C, a ≥ 0 (2.26)

where, for 1 ≤ j ≤ J , vj and αj are non-negative real-valued parameters, and uj

is a complex-valued parameter. Substituting the exponential tilting measure ψj into

(2.24) provides an upper bound on the error probability which is expressed in a closed

form (see Appendix 2.H). The performance of the (8,16) regular non-binary LDPC

ensemble of Gallager [44] with block lengths of n = 1008 and n = 10080 symbols

is provided in Figure 2.5 using the bound in Theorem 2.4, in addition to the union

bound. The bound in (2.24) is evaluated with J = 6 and the partitioning of the set

of compositions is done according to their Hamming weights where the boundaries

of this partitioning are set to Hamming weights of 350, 425, 500, 575, and 600 for a

block length of 1008 symbols (the corresponding boundaries for a block length of 10080

symbols are set to 3500, 4250, 5000, 5750, and 6000). The performance bounds refer to

a quaternary input-alphabet q = 4 and a fully-interleaved Rayleigh fading channel (see

Figure 2.5(a)), and for octal input-alphabet q = 8 and a Rician fading channel with

K = 2 (see Figure 2.5(b)). In both plots the non-expurgated ensemble is considered,

while in plot (a) the performance for an expurgated ensemble with Dn = 100 (with

a corresponding ǫn = 10−5 in Theorem 2.4) is also presented for a block length of

1008 symbols. In both plots, the union bound diverges bellow the cutoff rate which

corresponds to Es/N0 thresholds of 5.1 dB and 7.18 dB respectively (the capacity
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corresponds to thresholds of 1.86 dB and 4.21 dB, respectively). Although the bound

in Theorem 2.4 is not informative (for the considered example) up to the ultimate

channel capacity, it is for a block length of 1008 symbols 0.9 dB and 1 dB better

than the union bound in Figure 2.5(a) and 1.2 dB and 1.3 dB in Figure 2.5(b) at

block error probabilities of 10−6, and 10−4, respectively (for a block length of 10080

symbols the bound in Theorem 2.4 is better than the union bound by 1.5 dB and 1.8

dB, for quaternary and octal alphabets, respectively, at the considered block error

probabilities).

Example 2.8 (A fully-interleaved Rayleigh fading channel with PSK mod-

ulation and maximal ratio combining) Consider the class of fully-interleaved

Rayleigh fading channels with maximal ratio combining (MRC) space diversity of

order L. The receiver sequence is as in (2.25) where the fading samples, Ak, are

distributed according to the following pdf:

p(a) =
2LLa2L−1 exp (−La2)

(L− 1)!
, a ≥ 0. (2.27)

Note that Es

N0
in (2.25) refers to the stage after the MRC module. A closed-form

expression for the upper bound on the block error rate, based on Theorem 2.4 and

an exponential tilting measure is suggested (see Appendix 2.I). Consider the (8,16)

regular and non-binary LDPC code ensemble of Gallager [44] with octal alphabet and

a block length of 1008 symbols. Upper bounds on the decoding error probability of this

ensemble with various diversity orders L are shown in Figure 2.6. The bound provided

in Theorem 2.4 is compared with the union bound for MRC diversity with L = 1 to

4 antennas. Both bounds coincide in the error floor region which is considerably low

for the considered ensemble. The union bound is informative only below the cutoff

rate, which corresponds to Es/N0 of 8.51, 6.76, 6.18, and 5.90 dB for L = 1, 2, 3

and 4 receiving antennas. The bound provided in Theorem 2.4 is not informative

up to the ultimate channel capacity (which corresponds to Es/N0 of 4.94, 4.00, 3.68,

and 3.30 dB, respectively). Nevertheless, the bound in Theorem 2.4 outperforms the

union bound by 1.33 dB at a block error rate of 10−4 when there is a single antenna

at the receiver, and by 1.02 dB when L = 4 receiving antennas are used.

Example 2.9 (A comparison of upper and lower bounds) The DS2 upper

bound in Theorem 2.4 is compared in this example to an improved sphere-packing

(ISP) lower bound on the ultimate error performance of finite-length codes (see [115]).

The bounds are compared for block codes whose transmission takes place over the fully
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Figure 2.5: Upper bounds on the block error probability under ML decoding for the
(8, 16)-regular LDPC ensemble of Gallager, whose transmission takes place over a
fully-interleaved Rician fading channel with q-ary PSK modulation and perfect CSI
at the receiver. Both plots refer to the non-expurgated ensemble, and the performance
of an expurgated ensemble with Dn = 100 is also presented in plot (a) for comparison.
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Th. 4, L = 1
Th. 4, L = 2
Th. 4, L = 3
Th. 4, L = 4
union, L = 1
union, L = 2
union, L = 3
union, L = 4

Figure 2.6: Upper bounds on the block error probability under ML decoding for the
(8, 16)-regular LDPC ensemble of Gallager with octal alphabet and a block length of
1008 symbols. The transmission takes place over a fully-interleaved Rayleigh fading
channel with 8-ary PSK modulation, perfect CSI and maximal ratio combining (MRC)
at the receiver. The figure depicts the performance for MRC diversity with L = 1 to
L = 4 antennas at the receiver.

interleaved Rayleigh fading channels with a quadrature-phase shift-keying (QPSK)

modulation and perfect CSI at the receiver. The DS2 bound is evaluated with the

sub-optimal exponential tilting measure in (2.26) for the (8,16) regular LDPC code

ensembles of Gallager with block lengths of 1008 and 10080 symbols. The bounds are

plotted in Figure 2.7 jointly with union bounds as a reference. The ultimate error

performance using a rate–0.5 code with the considered block lengths is evaluated using

the ISP lower bound [115]. For the two block lengths considered in this example,

the ISP bound is more informative than the capacity threshold for decoding error

probabilities below 10−2. For a block length of 1008 symbols, the gap between the

ISP lower bound and the sub-optimal DS2 upper bound is about 2.0 dB for a block

error rate of 10−4. For a block length of 10080 symbols, this gap is reduced to about

1.5 dB. Note that the use of the upper bound in Theorem 2.4 closes the 3 dB gap

between the union upper bound and the respective ISP lower bound to only 1.5 dB

while referring to a block length of 10080 symbols and a block error probability of

10−4.
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Th. 4, n = 1008
Th. 4, n = 10080
union, n = 1008
union,n = 10080
ISP, n = 1008
ISP, n = 10080
capacity threshold

Figure 2.7: A comparison between the DS2 and union upper bounds on the block error
probability under ML decoding for the (8, 16)-regular LDPC ensemble of Gallager (see
Example 2.7). The transmission takes place over fully-interleaved Rayleigh fading
channel with a QPSK modulation and perfect CSI at the receiver. The ISP lower
bounds on the decoding error probability are shown for block lengths of 1008 and
10080 symbols. The capacity limit for infinite block length is also presented as a
reference.

2.4 Summary and Conclusions

This chapter considers the performance of non-binary linear block codes whose trans-

mission takes place over memoryless symmetric channels. To this end, upper bounds

on the decoding error probability are derived for finite-length codes. The general

bounding approach is based on a partitioning of the original ensemble into two sub-

sets of codebooks, according to their minimal Hamming distance: The performance of

the set of codebooks with a relatively low minimum Hamming distance is assessed via

a simple union bound which only depends on the considered ensemble, whereas the

other set is evaluated using the second version of the Duman and Salehi (DS2) bound

(See Section 2.2.1). As a particular case of this bounding technique, an adaptation of

the Shulman-Feder bound (SFB) (see [100]) is provided for non-binary linear block

codes. The latter approach which is related to the adaptation of the SFB to the non-

binary setting is similar to the work of Bennatan and Burshtein [11] for a different

setting of coding with a random coset mechanism. Under a symmetry property of

the ensemble, the resulting bound is considerably simplified and even tightened. This

simplifying assumption, which holds in particular for the considered non-binary low-

density parity-check (LDPC) ensembles, yields a bound whose summations are over
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the Hamming weights of the non-zero codewords rather than their compositions (see

Theorem 2.3). The tightness of the bounds presented in this chapter is exemplified

for the non-binary regular LDPC ensembles of Gallager [44] where transmission takes

place over the q-ary symmetric channel and the AWGN channel with a q-ary PSK

modulation. The bound provided in Theorem 2.3 is attractive and show meaningful

results up to the ultimate capacity limit. In addition, it outperforms the adaptation

of the SFB in Theorem 2.2 for the non-binary setting which is even pronounced as

the cardinality of the code alphabet is increased.

The weakness of the union bound is exemplified in this chapter for regular LDPC

code ensembles, showing the necessity in the replacement of the union bound with

some improved upper bounds on the decoding error probability. On the other hand,

the bound provided in Theorem 2.3 is most attractive and shows meaningful results

at a significant portion of the rate region between the cutoff rate and the ultimate

channel capacity. The upper bound in Theorem 2.3 is compared to two lower bounds

on the ultimate error performance of finite-length block codes (which hold for general

block codes, either linear or non-linear): The 1959 sphere-packing (SP59) lower bound

of Shannon [99], and the lower bound derived in [115]. These comparisons show by

examples that recent sphere-packing bounds form a useful analytical tool for finite-

length block codes.

Appendices

2.A Proof of Lemma 2.1

Let x1, x2, x3 ∈ X , p be the transition probability of the channel, and T be the

mapping as in Lemma 2.1. Then, by setting x , x3 − x2, it follows from (2.1) that

for all y′ ∈ Y
p(y′|x) = p

(

T (y′, x2)|x2 + x
)

.

As a particular case, for y′ = T (y, x1) where y ∈ Y , we have

p
(

T (y, x1)|x
)

= p
(

T
(

T (y, x1), x2
)

|x2 + x
)

. (2.A.1)

Using (2.1) (repeatedly twice) on the LHS of (2.A.1) it follows that

p
(

T (y, x1)|x
)

= p(y|x− x1) = p
(

T (y, x3 − x+ x1)|x3
)

. (2.A.2)

which then yields from (2.A.1) and (2.A.2), jointly with the equality x3 − x = x2,

that

p(T (y, x1 + x2)|x3) = p
(

T
(

T (y, x1), x2
)

|x3
)

which coincides with (2.2).
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2.B Proof of Proposition 2.1

The following proof holds for channels with a discrete-output alphabet, and the gen-

eralization of the proof to continuous-output alphabet channels is trivial. Let p be

the symmetric transition probability function of the considered channel, and T be its

corresponding function according to Definition 2.1. The conditional error probability

of the m-th message, xm = (xm,1, xm,2, . . . , xm,n), under ML decoding is given by

Pe|m =
∑

y∈Λc
m

n
∏

i=1

p (yi|xm,i) =
∑

y∈Λc
m

∏

x∈X

∏

{i: xm,i=x}

p(yi|x)

=
∑

y∈Λc
m

∏

x∈X

∏

{i: xm,i=x}

p(T (yi,−x) |0)

where y = (y1, . . . , yn), and

Λc
m =

{

y :

n
∑

i=1

ln

(

p(yi|xm′,i)

p(yi|xm,i)

)

≥ 0, for some m′ 6= m

}

=











y :
∑

{x,x′∈X : x′ 6=x}

∑

{i: xm′,i=x′,xm,i=x}
ln

(

p(yi|x′)
p(yi|x)

)

≥ 0, for some m′ 6= m











=











y :
∑

{x,x′∈X : x′ 6=x}

∑

{i: xm′,i=x′,xm,i=x}
ln

(

p(T (yi,−x′)|0)
p(T (yi,−x)|0)

)

≥ 0, for some m′ 6= m











.

Using the change of variables

zi = T (yi,−xm,i), 1 ≤ i ≤ n

it follows that

Pe|m =
∑

z∈Λ̃c
m

n
∏

i=1

p(zi|0)

where

Λ̃c
m

=











z :
∑

{x,x′∈X : x′ 6=x}

∑

{i: xm′,i=x′,xm,i=x}
ln

(

p(T (zi, x− x′)|0)
p(zi|0)

)

≥ 0, for some m′ 6= m











=











z :
∑

δ∈X

∑

{i: xm,i−xm′,i=δ}
ln

(

p(T (zi, δ)|0)
p(zi|0)

)

≥ 0, for some m′ 6= m











.
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Since the code C is a linear space, then for every two codewords xm′ 6= xm in C, there
exists a third non-zero codeword xl in C where xl = xm′ − xm. Hence, for every

m = 1, 2, . . . ,M and for every z ∈ Λ̃c
m, there exists some l ∈ {1, 2, . . . ,M} for which

∑

δ∈X

∑

{i: −xl,i=δ}
ln

(

p(T (zi, δ)|0)
p(zi|0)

)

≥ 0.

Denote by x1 ∈ C the all-zero codeword, then it follows that

Λ̃c
m = Λ̃c

1, m = 1, 2, . . . , qk

which concludes the proof.

2.C Proof of Proposition 2.2

Since the channel is symmetric, we have from Proposition 2.1 and (2.3) that

Pe = Pe|0 ≤
(

∑

y∈Yn

G0
n(y)pn(y|0)

)1−ρ

·
{

∑

m′ 6=0

∑

y∈Yn

G0
n(y)

1− 1
ρpn(y|0)

(

pn(y|xm′)

pn(y|0)

)λ
}ρ

.

Next, setting G0
n(y) as in (2.4), for memoryless channels we have

Pe ≤
(

∑

y∈Yn

n
∏

i=1

g(yi)p(yi|0)
)1−ρ

·
{

∑

m′ 6=0

∑

y∈Yn

n
∏

i=1

g(yi)
1− 1

ρp(yi|0)
(

p(yi|xm′,i)

p(yi|0)

)λ
}ρ

which concludes the proof by replacing the sum of products with the corresponding

product of sums.

2.D Proof of Theorem 2.2

From (2.8)

Pr( error | dmin > Dn) ≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

q−nρ(1−R)

·
(

∑

t∈H: n−t0>Dn

E

[

∣

∣Ct
∣

∣

∣

∣

∣
dmin > Dn

]

q−n(1−R)
(

n
t

)

(

n

t

)

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ
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≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

q−nρ(1−R) ·



 max
t∈H: n−t0>Dn







E

[

∣

∣Ct
∣

∣

∣

∣

∣
dmin > Dn

]

q−n(1−R)
(

n
t

)











ρ

·
(

∑

t∈H: n−t0>Dn

(

n

t

)

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

where the last transition holds since
∑

i xiyi ≤ maxi xi
∑

i yi if {xi} and {yi} are

non-negative sequences. Let X ∗ , X \ {0}, from the definition of αq in (2.13) we get

Pr( error | dmin > Dn)

≤ q−nρ(1−R)
(

αq(C, Dn)
)ρ
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·





n
∑

l=Dn+1

(

n

l

)

(

sλ,ρ(0)
)n−l

∑

t1+...+tq−1=l

(

l

t1, . . . , tq−1

)

∏

x∈X ∗

(

sλ,ρ(x)
)tx





ρ

= q−nρ(1−R)
(

αq(C, Dn)
)ρ
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·





n
∑

l=Dn+1

(

n

l

)

(

sλ,ρ(0)
)n−l

(

∑

x∈X ∗

sλ,ρ(x)

)l




ρ

.

Consequently,

Pr( error | dmin > Dn)

≤ q−nρ(1−R)
(

αq(C, Dn)
)ρ
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)(

∑

x∈X

sλ,ρ(x)

)nρ

. (2.D.3)

Next, setting

g(y) =

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ

p(y|0)− ρ
1+ρ , λ =

1

1 + ρ
(2.D.4)

it follows that

∑

y∈Y

g(y)p(y|0) =
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ

p(y|0) 1
1+ρ . (2.D.5)

In addition, plugging (2.D.4) in (2.9), we get

sλ,ρ(x) =
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ−1

p(y|0) 1
1+ρp(y|x) 1

1+ρ
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which then implies from (2.D.5) that

∑

x∈X

sλ,ρ(x) = q
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ

p(y|0) 1
1+ρ

= q
∑

y∈Y

g(y)p(y|0). (2.D.6)

From (2.D.3) and (2.D.6), it follows that

Pr( error | dmin > Dn) ≤ qnρR
(

αq(C, Dn)
)ρ
(

∑

y∈Y

g(y)p(y|0)
)n

. (2.D.7)

To complete the proof, we need the following lemma:

Lemma 2.D.1 Setting g(y) as in (2.D.4), the following equality follows for all ξ:

∑

y∈Y

g(y)ξp(y|0) =
∑

y∈Y





(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ξρ

·
(

1

q

∑

x∈X

p(y|x)1−
ξρ
1+ρ

)



 . (2.D.8)

Proof: Since the channel is symmetric, then there exists a function T , as in

Definition 2.1, satisfying (2.1) and (2.2). As a result, setting g(y) as in (2.D.4) we

have

∑

y∈Y

g(y)ξp(y|0)

=
∑

y∈Y

((

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ

p(y|0)− ρ
1+ρ

)ξ

p(y|0)

=
∑

y∈Y

p(y|0)1− ξρ
1+ρ

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ξρ

(a)
=

1

q

∑

x′∈X

∑

y∈Y

p(y|0)1− ξρ
1+ρ

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ξρ

(b)
=

1

q

∑

x′∈X

∑

y∈Y

p(T (y, x′)|x′)1−
ξρ
1+ρ

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ξρ

(c)
=

1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1−
ξρ
1+ρ

(

1

q

∑

x∈X

p(T (y′,−x′)|x) 1
1+ρ

)ξρ

where in (a) an additional variable is added, (b) is based on (2.1), and (c) follows

since

p(T (T (y, x′),−x′)|x) = p(y|x) (2.D.9)
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for all x, x′ ∈ X and y ∈ Y . Next, using the closure of the (finite) input alphabet, it

follows that

∑

y∈Y

g(y)ξp(y|0)

(a)
=

1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1− ξρ
1+ρ

(

1

q

∑

x∈X

p(T (T (y′,−x′), x+ x′ − x)|x+ x′)
1

1+ρ

)ξρ

(b)
=

1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1− ξρ
1+ρ

(

1

q

∑

x∈X

p(y′|x+ x′)
1

1+ρ

)ξρ

=
1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1−
ξρ
1+ρ

(

1

q

∑

x′′∈X

p(y′|x′′) 1
1+ρ

)ξρ

=
∑

y′∈Y





(

1

q

∑

x′∈X

p(y′|x′)1− ξρ
1+ρ

)

·
(

1

q

∑

x′′∈X

p(y′|x′′) 1
1+ρ

)ξρ




where (a) follows from (2.1) and (b) follows from (2.2) and (2.D.9), both with x1 = x

and x2 = x+ x′. This concludes the proof.

From (2.D.7) and Lemma 2.D.1 (with ξ = 1 in (2.D.8)), we get after an optimiza-

tion over ρ (where 0 ≤ ρ ≤ 1):

Pr( error | dmin > Dn) ≤ q
−nEr

(

R+
logq αq(C,Dn)

n

)

. (2.D.10)

Finally, the proof of Theorem 2.2 follows from Lemma 2.3 and (2.D.10).

2.E Proof of Theorem 2.3

Under the conditions in Theorem 2.3, we get from (2.8), (2.14), and (2.15) that

Pr( error | dmin > Dn) ≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·





∑

n−t0>Dn

P (n− t0)

1− ǫn

(

n

t0

)

(

sλ,ρ(0)
)t0

∑

t1+...+tq−1=n−t0

(

n− t0
t1, . . . , tq−1

)

∏

x∈X ∗

(

sλ,ρ(x)
)tx





ρ

=

(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·
[

∑

n−t0>Dn

P (n− t0)

1− ǫn

(

n

t0

)

(

sλ,ρ(0)
)t0

(

∑

x∈X ∗

sλ,ρ(x)

)n−t0]ρ
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where X ∗ , X \ {0}. Next, setting λ and g(y) as defined in (2.D.4), then it follows

from (2.D.6) that

Pr( error | dmin > Dn) ≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)

·
[

∑

n−t0>Dn

P (n− t0)

1− ǫn

(

n

t0

)

(

sλ,ρ(0)
)t0

(

q
∑

y∈Y

g(y)p(y|0)− sλ,ρ(0)

)n−t0]ρ

.

(2.E.11)

The proof is completed by applying Lemma 2.D.1 in (2.E.11) with ξ = 1 for

∑

y∈Y

g(y)p(y|0)

and with ξ = 1− 1
ρ
for

sλ,ρ(0) =
∑

y∈Y

g(y)1−
1
ρp(y|0).

2.F Proof of Lemma 2.5

Denote by ax∗(l) the number of choices of l not necessarily distinct non-zero elements

in {1, . . . , q − 1} whose summation modulo q equals x∗ (where x∗ ∈ {0, . . . , q − 1}).
Then, for 1 ≤ l ≤ d, there are

(

d
l

)

ax∗(l) vectors x = (x1, . . . , xd), whose Hamming

weight is l, and which satisfy

x1 + · · ·+ xd = x∗ mod q.

The sequences {ax∗(l)} satisfy the following system of recursive equations:

ax∗(l) =

q−1
∑

x=1

a(x∗−x)mod q(l − 1), x∗ = 0, 1, . . . , q − 1 (2.F.12)

with the initial conditions a0 (1) = 0, and ax (1) = 1 for x ∈ {1, . . . , q − 1}. Using a

vector notation, the equations in (2.F.12) are written as



















a0(l)

a1(l)
...

aq−1(l)



















=



















0 1 · · · 1 1

1 0 1 · · · 1
...

. . .

1 · · · 1 0 1

1 · · · 1 0



















q×q



















a0(l − 1)

a1(l − 1)
...

aq−1(l − 1)





















CHAPTER 2. PERFORMANCE BOUNDS FOR NON-BINARY CODES 52

whose solution for l ≥ 1 is given by



















a0(l)

a1(l)
...

aq−1(l)



















=



















0 1 · · · 1 1

1 0 1 · · · 1
...

. . .

1 · · · 1 0 1

1 · · · 1 0



















l−1

q×q



















0

1
...

1



















q×1

. (2.F.13)

In proving the considered lemma, the main ingredient is obtaining the number of

vectors x satisfying the parity-check equation

x1 + · · ·+ xd = 0 mod q. (2.F.14)

Accordingly, only the sequence {a0(l)} is of interest. To obtain a closed form expres-

sion for this sequence, consider the following difference equation:

{

ul = (q − 1)
(

ul−1 + (−1)l
)

u1 = 0
. (2.F.15)

It can be verified by induction that the elements on the diagonal of the q × q matrix

on the RHS of (2.F.13), raised to the (l−1)-th power, are identical and equal to ul−1,

where the sequence {ul} is the solution of (2.F.15). Moreover, all other elements

outside the diagonal, are equal to ul−1 + (−1)l. As a result, it follows from (2.F.13)

that

a0(l) = (q − 1)
(

ul−1 + (−1)l
)

, l ≥ 1, a0(1) = 0.

which implies from (2.F.15) that a0(l) = ul for l ≥ 1. Solving the difference equation

in (2.F.15), gives

a0(l) =
(q − 1)l + (q − 1)(−1)l

q
, l ≥ 1.

Hence, the enumerator for the number of vectors x satisfying the parity-check equation

in (2.F.14), is given by A∗(X) in (2.21). As a result, the enumerator of the first sub-

matrix in the considered ensemble is given in (2.20) (this is similar to the idea provided

in [105] for the binary case). Finally, (2.19) is established in [44] which concludes the

proof of Lemma 2.5.
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2.G Proof of Theorem 2.4

Using the DS2 bound for the case at hand, it follows that

P ( error |dmin > Dn)

= E

[
∫∫

(y,a):p(y,a|x)≥p(y,a|0) for some x 6=0∈C

p(y, a|0) dy da
∣

∣

∣
dmin > Dn

]

≤ E





∫∫

y,a

p(y, a|0)
J
∑

j=1





∑

t∈Hj

∑

x∈Ct

(

p(y, a|x)
p(y, a|0)

)λj





ρj

dy da
∣

∣

∣
dmin > Dn





=

J
∑

j=1

E

[

∫∫

y,a

ψj(y, a)

·





∑

t∈Hj

∑

x∈Ct

ψj(y, a)
− 1

ρj p(y, a|0)
1−λjρj

ρj p(y, a|x)λj





ρj

dy da
∣

∣

∣
dmin > Dn

]

(2.G.16)

where the statistical expectation is taken over all the codebooks whose Hamming

minimum distance is larger than Dn. From (2.G.16), using Jensen’s inequality we

have

P ( error |dmin > Dn)

≤
J
∑

j=1

E









∑

t∈Hj

∑

x∈Ct

∫∫

y,a

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λjρj

ρj p(y, a|x)λj





ρj

dy da
∣

∣

∣
dmin > Dn



 .

Setting ψj(y, a) =
∏

i ψj(yi, ai), since the channel is memoryless we have

P ( error |dmin > Dn)

≤
J
∑

j=1

E









∑

t∈Hj

∑

x∈Ct

∫∫

y,a

n
∏

i=1

ψj(yi, ai)
− 1

ρj p(yi, ai|0)
1−λjρj

ρj p(yi, ai|xi)λj dyi dai





ρj
∣

∣

∣
dmin > Dn





=

J
∑

j=1

E









∑

t∈Hj

|Ct|

∏

x∈X

(
∫∫

y,a

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λjρj

ρj p(y, a|x)λj dy da

)tx





ρj
∣

∣

∣
dmin > Dn



 .

The proof is concluded by using Jensen’s inequality (for the statistical expectation)

and Lemma 2.3.
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2.H A Closed-form expression for the integral in

Theorem 2.4 when applied to Example 2.7

Similarly to [58], we will pursue a closed-form expression by examining an exponential

tilting probability measure ψ as in (2.26). Note that the joint pdf p(y, a|x) to receive

the noisy observation y ∈ C with a fading sample a ≥ 0, given that the transmitted

symbol is x ∈ X , is given according to

p(y, a|x) = 1

2π
exp

(

−1

2

∣

∣y − aµ(x)
∣

∣

2
)

p(a),

where

p(a) = 2(1 +K)a exp
(

−(1 +K)a2 −K
)

I0

(

2a
√

K(K + 1)
)

, a ≥ 0,

is the pdf of the Rician fading sample a ∈ A with a parameter K, and µ(x) ,
√

2Es

N0
exp

(

2πi
q
x
)

is the q-ary PSK modulation mapping applied in the considered

scheme. In addition, ψj in (2.26) is easily verified to be a probability measure. As-

suming that 1 +K + β > 0 (which is the case since α ≥ 0), the denominator of ψ as

in (2.26) equals

∫ ∞

0

p(a) exp

(

−αv
2a2Es

N0

)

da =
1 +K

1 +K + β
exp

(

− βK

1 +K + β

)

.

Straightforward (though tedious) calculations show that for every x ∈ X
∫ ∞

a=0

∫

y∈C

ψ(y, a)1−
1
ρp(y, a|0) 1−λρ

ρ p(y, a|x)λ dy da

=
ρ

1− α(1− ρ)

(

1 +K

α(1 +K + β)
exp

(

− βK

1 +K + β

)

)
1
ρ
−1

· 1 +K

1 +K + γx
exp

(

− γxK

1 +K + γx

)

where

β ,
αv2Es

N0

γx , β

(

1− 1

ρ

)

− ρEs
(

1− α(1− ρ)
)

N0

∣

∣

∣

∣

αu

(

1− 1

ρ

)

+
1− λρ

ρ
+ λe

2πi
q

x

∣

∣

∣

∣

2

+
Es

N0

(

α |u|2
(

1− 1

ρ

)

+
1

ρ

)

.
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2.I A Closed-form expression for the integral in

Theorem 2.4 when applied to Example 2.8

The following exponential tilting measure is applied:

ψ(y, a) =
αp(a)

2π

(

1 +
β

L

√

2Es

N0

)L

exp



−α
2

∣

∣

∣

∣

∣

y − a

√

2Es

N0
u

∣

∣

∣

∣

∣

2

− βa2
√

2Es

N0



 (2.I.17)

where y is complex-valued, a, α, β ≥ 0, are real-valued parameters, u is a complex-

valued parameter, and p(a) is the pdf of the fading, given in (2.27). The integral in

(2.24) with the proposed tilting measure in (2.I.17) is calculated via straightforward

calculus, and it is obtained that for every x ∈ X
∫ ∞

a=0

∫

y∈C

ψ(y, a)1−
1
ρp(y, a|0) 1−λρ

ρ p(y, a|x)λ dy da

=
ρα1− 1

ρLL

1− α (1− ρ)

(

1 +
β

L

√

2Es

N0

)L
(

1− 1
ρ

)

(

L+ β

(

1− 1

ρ

)
√

2Es

N0

+

(

1− 1

ρ

)

α
∣

∣u
∣

∣

2
Es

N0

+
Es

ρN0

− ρEs

N0 (1− α (1− ρ))

∣

∣

∣

∣

αu

(

1− 1

ρ

)

+
1− λρ

ρ
+ λ exp

(

2πix

q

)∣

∣

∣

∣

2
)−L

.



Chapter 3

Performance Bounds for Erasure,

List and Decision Feedback

Schemes with Linear Block Codes

Chapter Overview

A message independence property and some new performance upper bounds are de-

rived in this chapter for erasure, list and decision-feedback schemes with linear block

codes transmitted over memoryless symmetric channels. Similar to the classical work

of Forney, this chapter is focused on the derivation of some Gallager-type bounds

on the achievable tradeoffs for these coding schemes, where the main novelty is the

suitability of the bounds for both random and structured linear block codes (or code

ensembles). The bounds are applicable to finite-length codes and to the asymptotic

case of infinite block length, and they are applied to low-density parity-check code

ensembles. The chapter is based on the following paper:

E. Hof, I. Sason, and S. Shamai (Shitz), “Performance Bounds for Erasure, List and

Decision Feedback Schemes with Linear Block Codes,” IEEE Trans. on Information

Theory, vol. 56, no. 8, pp. 3754–3778, August 2010.

This chapter is structured as follows: The definitions generalized decoding rules,

and some of their basic properties, are provided in Section 3.1. New upper bounds

under the generalized decoding rules in [41] are derived in Section 3.2. Error perfor-

mance of suboptimal decoding rules are provided in Sections 3.4 and 3.5. Section 3.6

concludes the discussion. Some technical details are relegated to the appendices.

56
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3.1 Channel Symmetry, Generalized Decoding, and

Message Independence

In this section we introduce some definitions, examples, and statements related to

channel symmetry, Forney’s generalized decoding rule [41], and sub-optimal versions

([9] and [41]), as well as list decoding rules ([36] and [117]). A message independence

property is stated for these decoding rules, which is used for the simplification of

the analysis. The notation in Section 2.1 is assumed. In addition, a memoryless

symmetric channel is assumed (see Definition 2.1), whose transition probability (or

probability density, respectively) function is denoted by p(y|x), where x ∈ X and

y ∈ Y .

Let C = {xm}q
k

m=1 be a linear block code whose generator matrix is a k×n full-rank

matrix with entries over X . The decoding rules studied in this chapter are specified

in terms of decision regions Λm, 1 ≤ m ≤ qk, which are all subsets of Yn. The

conditional error probability of the m-th message is given by

Pe|m =
∑

y∈Λc
m

p(y|xm) (3.1)

where Λm forms the decision region for the m-th codeword, and the superscript ‘c’

stands for the complementary set. The decision region of the m-th codeword under

ML decoding gets the form

Λm =
{

y : p(y|xm) > p(y|xm′), ∀ m′ 6= m
}

(3.2)

where ties are resolved randomly with equal probability. Assuming equal a-priori

probabilities for the transmitted messages, the ML decoding rule minimizes the error

probability given in (3.1). A well-known result for binary linear block codes operating

over MBIOS channels is that their error probability under ML decoding is independent

of the transmitted codeword. This enables a great simplification in the analysis by

assuming that the all-zero codeword is transmitted. This result is generalized in

Chapter 2 for non-binary linear block codes whose transmission takes place over

memoryless symmetric channels with discrete input alphabet.

When generalized decoding rules are considered, the decision regions Λm are not

necessarily disjoint nor they include all the possible received vectors. The former case

corresponds to decoding rules with a possibly variable list-size, and the latter case

corresponds to decoding with erasures. A list is produced by the decoder where the

received vector may possibly belong to more than one decision region. An erasure
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event is declared by the decoder when the received vector does not belong to any

decision region. These concepts were first introduced in [41]. When generalized

decoding rules are allowed, the conditional block error probability Pe|m in (3.1) stands

for the probability of either an undetected error or an erasure. When the decision

regions are disjoint, the conditional undetected error probability is given by

Pue|m =
∑

m′ 6=m

∑

y∈Λm′

p(y|xm). (3.3)

In addition, let Px|m denote the conditional probability of an erasure event given that

xm is transmitted. Then

Px|m = Pe|m − Pue|m.

In the case where list decoding is considered, the decision regions are not disjoint, and

Pue|m as given in (3.3) is no longer a probability. However the RHS of (3.3) equals

the conditional expectation of the number of incorrect codewords in the list (the

same notation, Pue|m, is used in both cases to simplify the statement of the following

results). The optimum decoding rule with respect to the tradeoff between the error

and the undetected error event is derived in [41].

Definition 3.1 (Forney’s generalized decoding) Consider a block code over an

alphabet X , and let {xm} denote its codebook. The generalized decoding rule is

defined by the following decision regions:

Λm =

{

y ∈ Yn :
Pr(y,xm)

∑

m′ 6=m Pr(y,xm′)
≥ enT

}

(3.4)

where m is the index of the codeword, T ∈ R is a parameter, Pr(y,xm) denotes the

joint probability that xm is the transmitted codeword and y is the received vector,

and the summation is over all codewords except for xm.

Remark 3.1 The decision region in (3.4) can be expressed equivalently in the form

Λm =

{

y ∈ Yn : Pr(xm|y) ≥
enT

1 + enT

}

. (3.5)

Note that for T = 0, this decision region includes all the vectors y ∈ Yn for which

Pr(xm|y) ≥ 1
2
. The a-posteriori probability of xm, given that y ∈ Λm is received, is

therefore larger than the a-posteriori probability for any other codeword. Hence, if a

codeword is selected according to the decoder with the decision regions in (3.5) with

T = 0, then the same decision is made by a MAP decoder (as no other codeword

can get an a-posteriori probability larger than 1
2
). This implies that the undetected
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error exponent for the decoder in (3.5) with T = 0 cannot be smaller than the error

exponent of an ML decoder with equally-likely codewords. Interestingly, as will be

shown later, we get the same lower bound on the error exponents for both decoders.

Moreover, it is shown that for T = 0 the bounds for the undetected error event and

erasures coincides.

Remark 3.2 The threshold parameter T in (3.4) controls the tradeoff between era-

sures and undetected errors (or average list size and decoding error). Setting T > 0

guarantees that the decision regions Λm are disjoint.

Proposition 3.1 (Forney’s generalized decoding [41]) Assume that the decod-

ing of a block code is carried according to the generalized decoding rule in Defini-

tion 3.1. Then, there is no other decoding rule that simultaneously gives a lower

error probability and a lower undetected error probability (or an average number of

incorrect codewords when list decoding is considered).

The following proposition generalizes the message independence property for the

case of generalized decoding:

Proposition 3.2 (Message independence property for optimal generalized

decoding) Let C be a linear block code whose transmission takes place over a mem-

oryless and symmetric channel. Then, the block error probability and the undetected

error probability, under the generalized decoding rule in Definition 3.1, are indepen-

dent of the transmitted codeword.

Proof: See Appendix 3.A.

Remark 3.3 In the case where list decoding is considered (i.e., the decision regions

are not disjoint), then Proposition 3.2 holds when we refer to the conditional expec-

tation of the number of incorrect messages in the list produced by the generalized

decoding rule, instead of the undetected error probability.

The following suboptimal decoding rule is suggested in [41] for the case of decoding

with erasures:

Definition 3.2 (Likelihood Ratio (LR) Decoding) Consider a block code over

the alphabet X , and let {xm} denote its codebook. The LR decoding rule is defined

by the following decision regions:

ΛLR
m =

{

y ∈ Yn :
Pr(y,xm)

Pr(y,xm2)
≥ enT

}

(3.6)
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where m is a codeword index, T > 0 is a parameter, Pr(y,xm) denotes the joint

probability that xm is the transmitted codeword and y is the received vector, and

m2 = m2(y) denotes the second most probable codeword for each received vector y.

Remark 3.4 It is observed in [41] that the LR decoding rule may be a good ap-

proximation to the optimal regions in (3.4), since the second most likely codeword

is usually much more probable than the rest of the codewords (excluding the most

probable codeword). It is also noted in [41] that this suboptimal decoding rule is of

practical utility.

Example 3.1 (Suboptimal generalized decoding) Consider the transmission of

a binary linear block code over a BSC. Given a received vector y ∈ {0, 1}n, the

decoded codeword is x if and only if

dH(x
′,y)− dH(x,y) > 2τn (3.7)

for all codewords x′ 6= x, where dH(x,y) denoted the Hamming distance between x,

and y, and τ ≥ 0 is an arbitrary parameter. Otherwise, an erasure is declared. It is

easily verified that this rule is a particular case of (3.6). The error exponents for this

setting are studied in [9].

The following proposition obtains a message independence property for the sub-

optimal decoding rule in Definition 3.2:

Proposition 3.3 (Message independence property for (suboptimal) LR de-

coding) Let C be a linear block code whose transmission takes place over a memo-

ryless and symmetric channel. Then, the block error probability and the undetected

error probability, under the suboptimal decoding rule in (3.6), are independent of the

transmitted codeword.

Proof: See Appendix 3.B.

The following definition considers list decoding with a fixed size. Such a decoding

rule is based on a fixed size of the list (instead of a variable list size which characterizes

the decoding rule in Definition 3.1 with T < 0).

Definition 3.3 (Fixed-size list-decoding) Consider a block code over an alphabet

X , and let {xm} denote its codebook. Given a fixed list size L, the list-decoder is a

mapping from the set of all possible received vectors Yn to the set of all possible lists

of L codewords. This mapping produces the list whose likelihoods are the highest
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among all other codewords. That is, given a received vector y, a codeword xm is in

the list if p(y|xm) > p(y|xm′) for all m′ 6= m except for at most L− 1 other possible

codewords.

Assuming that the codeword xm is transmitted, a block error event is occurred by

the fixed-size list-decoding rule in Definition 3.3, if the list produced by the decoder

does not include the transmitted codeword xm. The following proposition is analogous

to the message independence property in Propositions 3.2 and 3.3:

Proposition 3.4 (Message independence property for fixed-size list decod-

ing) Let C be a linear block code whose transmission takes place over a memoryless

and symmetric channel. Then, the block error probability, under the fixed-size list-

decoding is independent of the transmitted codeword.

Proof: See Appendix 3.C.

3.2 Upper Bounds under optimal generalized de-

coding

The transmission of block codes (not necessarily linear) is first considered. In addi-

tion, throughout the chapter, all codewords are assumed to have a uniform a-priori

probability.

Proposition 3.5 Consider the transmission of a code C with a block length n andM

codewords, and let p(y|x) designate the transition probability of the channel where

x ∈ C is the transmitted codeword and y ∈ Yn is the received vector. Then, the

conditional block error probability (Pe|m) and the average undetected error probability

(Pue) under the generalized decoding rule in (3.4) satisfy

Pe|m ≤ ensTDB(m,G
m
n , s, ρ) (3.8)

Pue ≤ en(s−1)T 1

M

M
∑

m=1

DB(m,G
m
n , s, ρ) (3.9)

where 0 ≤ s ≤ ρ ≤ 1 are real-valued parameters, Gm
n is an arbitrary non-negative

function over Yn which possibly depends on the codeword xm, 1 ≤ m ≤M , and

DB(m,G
m
n , s, ρ) ,

(

∑

y

Gm
n (y)p(y|xm)

)1−ρ

(

∑

m′ 6=m

∑

y

p(y|xm)G
m
n (y)

1− 1
ρ

(

p(y|xm′)

p(y|xm)

)
s
ρ

)ρ

. (3.10)
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Proof: See Appendix 3.D.

Remark 3.5 Bounds (3.8) and (3.9) in Proposition 3.5 may be considered as a gener-

alization of the DS2 bound ([26], [96], [94]). In fact, setting T = 0 in (3.8) reproduces

the DS2 bound under ML decoding. Note however that for T = 0, the decision re-

gions in (3.4) do not coincide with those under ML decoding (e.g., in the former case

there are erasures).

The following corollary is a particularization of Proposition 3.5 for fully random

block codes whose transmission takes place over memoryless channels. The corollary

reproduces the exponential upper bounds as in [41, Th. 2].

Corollary 3.1 (Random coding error exponents under optimum general-

ized decoding) Consider the transmission of block codes over a memoryless com-

munication channel with a transition probability law p. Then, under the notation in

Proposition 3.5, there exists a block code which simultaneously satisfies

Pe ≤ e−nE1(R,T ) (3.11)

Pue ≤ e−nE2(R,T ) (3.12)

where R = lnM/n is the code rate (in nats per channel use),

E1(R, T ) , max
0≤s≤ρ≤1, qX

(

E0(s, ρ, qX)− ρR − sT
)

(3.13)

E2(R, T ) , E1(R, T ) + T

E0(s, ρ, qX) , − ln
∑

y∈Y

{(

∑

x∈X

qX(x)p(y|x)1−s

)(

∑

x∈X

qX(x)p(y|x)
s
ρ

)ρ}

(3.14)

and qX is a probability distribution over X .

Proof: See Appendix 3.E.

The bounds in Corollary 3.1 are derived in [41] without relying on tilting measures.

The current derivation relies on the DS2 bound which makes use of tilting measures

and Jensen’s inequality. It is noted in [41] that setting T = 0 in Corollary 3.1, provides

the random coding error exponent of Gallager [45]. Hence, as is mentioned in [41],

the random coding error exponent is attainable not only under ML decoding, but also

under the generalized decoding rule in (3.4) with T = 0. The following proposition

is a particularization of Proposition 3.5 for linear block codes.
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Proposition 3.6 Consider an (n, k) linear block code C whose transmission takes

place over a memoryless symmetric channel. Assume that the channel input and

output alphabets are X and Y , respectively, and let p be the transition probability of

the channel. Then, the block error probability Pe and the undetected error probability

Pue under the generalized decoding rule in (3.4), satisfy

Pe ≤ ensTD(g, s, ρ) (3.15)

Pue ≤ e−n(1−s)TD(g, s, ρ) (3.16)

where g : Y → R is an arbitrary non-negative real-valued function, 0 ≤ s ≤ ρ ≤ 1 are

arbitrary parameters, and

D(g, s, ρ) ,

(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)(

∑

m′ 6=0

n
∏

i=1

∑

y∈Y

g(y)1−
1
ρp(y|0)

(

p(y|xm′,i)

p(y|0)

) s
ρ

)ρ

.

(3.17)

Proof: See Appendix 3.F.

Remark 3.6 When the decision regions are not disjoint (i.e., a list decoder is consid-

ered), Pue in (3.16) does not denote a probability but the expected number of incorrect

codewords in the decoded list. The block error probability Pe in (3.15) refers, in this

case, to the list decoding error probability.

Remark 3.7 The parameters s and ρ in Proposition 3.6 may be chosen separately for

the bounds in (3.15) and (3.16). However, the optimized choice of the two parameters

is identical in both bounds (since they only differ in the multiplicative term e−nT ).

The mathematical structure of the bound provided in the following corollary is

similar to the Shulman-Feder bound (SFB) in [100]. Because of this reason, this

bound may be considered as a generalization of the SFB for the generalized decoding

rule in (3.4). To simplify the notation, the corollary is provided for the case of a

binary linear block code whose transmission takes place over an MBIOS channel (the

generalization of the bounds to non-binary linear block codes is performed similarly

to the approach in the proof of Theorem 2.2).

Corollary 3.2 Consider an (n, k) binary linear block code C whose transmission

takes place over an MBIOS channel with a transition probability law p. Then, the

block error probability Pe and the undetected error probability Pue under the gener-

alized decoding rule in (3.4) satisfy

Pe ≤ e−n(E(ρ,R,C)− ρT
1+ρ) (3.18)

Pue ≤ e−n(E(ρ,R,C)+ T
1+ρ) (3.19)
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where 0 ≤ ρ ≤ 1 is an arbitrary real-valued parameter, R ,
(

k
n

)

· ln 2 is the code rate

(in nats per channel use),

E (ρ, R, C) , E0(ρ)− ρ

(

R +
ln(α(C))

n

)

(3.20)

E0 (ρ) , − ln

(

∑

y

(

1

2
p(y|0) 1

1+ρ +
1

2
p(y|1) 1

1+ρ

)1+ρ
)

(3.21)

α(C) , max
1≤i≤n

|Ci|
2−(n−k)

(

n
i

) (3.22)

and |Ci| denotes the number of codewords whose Hamming weight is i.

Proof: Setting s = ρ
1+ρ

, and

g(y) =

(

1

2
p(y|0) 1

1+ρ +
1

2
p(y|1) 1

1+ρ

)ρ

p(y|0)− ρ
1+ρ (3.23)

in the bounds of Proposition 3.6, the proof follows in the same way as in [94, Ch.

4.4.1].

Remark 3.8 In the case where the performance of an ensemble of linear block codes

is of interest, repeating the derivation of Corollary 3.2 leads to the same upper bounds

as in (3.18) and (3.19), where the cardinality |Ci| in (3.22) is replaced with its statis-

tical expectation over the considered ensemble, and the codebooks of this ensemble

are chosen uniformly at random.

Example 3.2 (Error exponents of fully random binary linear block codes)

Consider the transmission of fully random binary linear (n, k) block codes over a

memoryless symmetric channel. For this particular case, the term α(C) in (3.22)

equals 1. As a result, it follows from Corollary 3.2 that the exponent of the block

error probability (including erasures and undetected errors), denoted by Ee, satisfies

Ee ≥ max
0≤ρ≤1

(

E0(ρ)− ρR − ρT

1 + ρ

)

(3.24)

where E0(ρ) is defined in (3.21), R is the code rate (in nats per channel use), and

T is the parameter of the generalized decoding rule in Definition 3.1. Setting T = 0

in (3.24) reproduces the (non-expurgated) random coding error exponent of Gal-

lager [45]. This observation was first made by Forney for the ensemble of fully random

block codes [41]. The undetected error exponent, denoted by Eue, satisfies

Eue ≥ T + max
0≤ρ≤1

(

E0(ρ)− ρR− ρT

1 + ρ

)

.
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The lower bounds on the two error exponents are shown in Figures 3.1 and 3.2 for

the case of transmission over a BSC with a crossover probability of p = 0.11, and

for a binary-input AWGN channel with Es/N0 = −2.8 dB, respectively (both values

refer to the capacity limit for a rate of one-half bits per channel use). The bounds are

sketched as a function of the code rate (in nats per channel use). The lower bounds

on the error exponents for the case of decoding with erasures (T ≥ 0) are provided in

Figures 3.1(a) and 3.2(a) for T = 0, 0.025, 0.05, 0.1 and 0.15. For the case of decoding

with a variable list-size (T < 0), the lower bounds on the error exponents are provided

in Figures 3.1(b) and 3.2(b) for T = 0,−0.05, and −0.1. In addition, lower bounds

on the exponent EN , −(lnN)/n, where N is the number of incorrect codewords

in the decoded list, are also provided for this case. Note that the exponent EN is

negative above some rate. The figures show the region for which the exponent EN is

non-negative; the negative part of EN , for which an upper bound on the size of the

decoded list grows exponentially with the block length, is removed.

Recall the definitions of vector compositions, and complete composition spectrum

in Chapter 2 (see Definitions 2.3 and 2.4).

Corollary 3.3 Consider an ensemble E of (n, k) linear block codes whose transmis-

sion takes place over a memoryless symmetric channel. Let P (l) denote the probability

that a vector whose Hamming weight is l, forms a codeword in a randomly selected

codebook from E . Assume that the average composition spectrum over all the codes

C, uniformly selected at random from E satisfies

E

[

|Ct|
]

= P (n− t0)

(

n

t

)

. (3.25)

Then, under the notation in Proposition 3.6, the block error probability Pe and the

undetected error probability Pue, satisfy

Pe ≤ e
nρT
1+ρ ·Ds(ρ, C) (3.26)

Pue ≤ e−
nT
1+ρ ·Ds(ρ, C) (3.27)
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Figure 3.1: Lower bounds on the error exponents and list-size exponents for the
ensemble of fully-random binary linear block codes whose transmission takes place
over a BSC with a crossover probability of p = 0.11. The lower bounds in Corollary 3.2
are sketched in plots (a) and (b), for the generalized decoding rule in (3.4) with
erasures (i.e., T ≥ 0) and with a variable list-size (i.e., T < 0), respectively.
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Figure 3.2: Lower bounds on the error exponents and list-size exponents for the en-
semble of fully-random binary linear block codes whose transmission takes place over
a binary-input AWGN channel with Es/N0 = −2.8 dB. The lower bounds in Corol-
lary 3.2 are sketched in plots (a) and (b), for the generalized decoding rule in (3.4)
with erasures (i.e., T ≥ 0) and with a variable list-size (i.e., T < 0), respectively.
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where 0 ≤ ρ ≤ 1, and

Ds(ρ, C) , A(ρ)n(1−ρ)

(

∑

1≤l≤n

P (l)

(

n

l

)

B(ρ)n−lC(ρ)l

)ρ

(3.28)

A(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)1+ρ

(3.29)

B(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x) 1
1+ρ

)ρ−1(

1

q

∑

x∈X

p(y|x) 2
1+ρ

)

(3.30)

C(ρ) , qA(ρ)− B(ρ). (3.31)

Proof: Setting s = ρ
1+ρ

and choosing the tilting measure g in (3.23), the proof

follows from Proposition 3.6 in the same way as in Theorem 2.3.

Remark 3.9 For an ensemble of binary linear block codes, the condition in (3.25)

is not mandatory. Repeating the derivation results in the same bounds as in Corol-

lary 3.3 where the term P (l)
(

n
l

)

in (3.28) is replaced with the expected complete

composition spectrum of the ensemble.

Remark 3.10 The bounds in Corollary 3.3 are tighter than those in Corollary 3.2.

Hence, for a finite block length, the bounds in Corollary 3.3 are more attractive even

though they lack the appealing exponential structure of the bounds in Corollary 3.2.

Remark 3.11 As a particular case of Remark 3.5, setting T = 0 in (3.26) reproduces

the upper bound on the decoding error probability of non-binary linear block codes

under ML decoding in Theorem 2.3.

The following comments concerns the numerical results shown in the examples

throughout this chapter:

1. Expurgation of codebooks: The examples presented in this chapter consider the

performance of some expurgated ensembles of regular LDPC codes under gen-

eralized decoding rules. Specifically, an expurgation of the codebooks whose

minimum Hamming distance is not larger than a specific value Dn is assumed.

As a result, the expected complete composition spectrum E [|Ct| |dmin > Dn] of a

codebook which is chosen uniformly at random from the expurgated ensemble,

satisfies the following upper bound:

E
[

|Ct| |dmin > Dn

]

≤ E
[

|Ct|
]

1− ǫn
(3.32)
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where E
[

|Ct|
]

is the expected composition spectrum of the original (non-expurgated)

ensemble, and
∑

t: n−t0≤Dn

E
[

|Ct|
]

≤ ǫn. (3.33)

The fraction of the removed codebooks is upper bounded by ǫn. In the following

examples, the value of ǫn is negligible. For the (6,12) regular binary ensemble

with block lengths of n = 504 and 2004 bits, ǫn = 3.6002·10−5, and 5.5058·10−8,

for Dn = 40 and 160 bits, respectively. For the (8,16) regular octal alphabet

ensemble with a block length of n = 1008 symbols and Dn = 80 symbols, ǫn is

around 10−14.

2. Performance over the AWGN channel: For the AWGN channel, the results

in this chapter are provided as function of the signal-to-noise ratio Es

N0
where

Es is the energy per transmitted coded symbols, and N0

2
is the two-sided power

spectral density of the additive white noise. This comment concerns both binary

and non-binary codes.

Example 3.3 (Error performance of binary regular LDPC code ensembles

under generalized decoding with erasures) Consider an expurgation of the bi-

nary and regular (6,12) LDPC code ensemble of Gallager [44] with a block length

of n = 2004 bits. In this expurgated ensemble, all the codebooks whose minimum

distance is not larger than Dn = 160 are removed. Upper bounds on the block error

probability and the undetected error probability, under Forney’s generalized decod-

ing with erasures, are studied based on Corollary 3.3. The composition spectrum is

upper bounded via (3.32) and (3.33), where the composition spectrum of the original

(non-expurgated) regular LDPC code ensemble is evaluated using the method pro-

vided in [18], [105]. The bounds are provided for several non-negative values of T in

Figures. 3.3(a) and 3.3(b), assuming that the transmission takes place over a BSC

and a binary-input AWGN channel, respectively. Note that if T = 0, the resulting

bounds on the block error probability and the undetected error probability coincide,

and they also provide an upper bound on the ML decoding error probability. The

results indicate that by allowing an error probability that may be slightly higher than

the upper bound on the error probability under ML decoding, significant improve-

ment is guaranteed for the undetected error probability. Consider for example the

error performance where the transmission takes place over a BSC with a crossover

probability of 0.088. The upper bound on the error probability under ML decoding

is around 7.5 · 10−3 (see Figures. 3.3(a)). By allowing the total error probability to

be less than 2 · 10−2, the undetected errors are guaranteed to be less than 2 · 10−4 and

5 · 10−6 for T = 0.002 and 0.004, respectively.
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Example 3.4 (Error performance of binary regular LDPC code ensembles

under generalized decoding with a variable-size list) The performance of the

same expurgated ensemble as in Example 3.3 is studied here under Forney’s general-

ized decoding with a variable list-size. Upper bounds on the block error probability

and the expected number of incorrect codewords in the list, are evaluated based on

the bounds in Corollary 3.3 for several non-positive values of T . These bounds are

provided in Figures. 3.4(a), and 3.4(b), assuming a transmission over a BSC or a

binary-input AWGN channels, respectively. It is evident that only a slight improve-

ment in the error performance is possible by using the generalized decoding rule. Take

for example the case of transmission over a BSC: for crossover probabilities where the

block error probability under ML decoding is below 0.09, the expected number of

incorrect codewords is low. In fact, the upper bound on the expected number of

incorrect codewords for such crossover probabilities, is less than one which implies

that the list is likely to include only the correct codeword. However, for crossover

probabilities for which the probability of the list error event is larger, the upper bound

on the size of the decoded list grows considerably above 1 (see Figure. 3.4(a)).

Example 3.5 (Generalized decoding of non-binary regular LDPC code en-

sembles) Consider an expurgation of Gallager’s ensemble of (8,16) regular LDPC

codes [44] with an octal alphabet, and a block length of 1008 symbols. Consider

the case where the expurgated ensemble excludes all the codebooks whose minimum

distance is not larger than Dn = 80. The upper bounds on the error probabilities,

under the generalized decoding rule in (3.4), are studied based on the upper bounds

provided in Corollary 3.3. The (average) composition spectrum is upper bounded via

(3.32) and (3.33), and the composition spectrum of the original ensemble is evaluated

using the method provided in [34]. For the case of decoding with erasures, upper

bounds on the block error and undetected error probabilities are provided, whereas

for decoding with a variable list size, an upper bound on the expected number of

incorrect codewords in the list and an upper bound on the block error probability are

provided. These bounds are shown in Figures. 3.5(a) and 3.5(b), assuming that the

transmission takes place over an 8-ary discrete memoryless symmetric channel, and

an AWGN channel with 8-PSK modulation, respectively. It is evident that the upper

bound on the block error probability for the case of decoding with erasures, referring

to T = 0.01 in Figures. 3.5(a) and 3.5(b), slightly deteriorates as compared to the

block error probability under ML decoding (where the bound presented for T = 0

coincides with the bound under ML decoding). However, a remarkable improvement

is shown in these figures with resect to the undetected error probability (referring to
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Figure 3.3: Upper bounds on the block error and undetected block error probabilities
under the generalized decoding rule in (3.4) with erasures (T ≥ 0). An expurgation of
the binary and regular (6,12) LDPC code ensemble of Gallager is considered, where
the block length is 2004 bits, and the parameter Dn which refers to the expurgation
is set to 160 (see Example 3.3). The transmission in plots (a) and (b) is assumed to
take place over a BSC, and a binary-input AWGN channels, respectively.



CHAPTER 3. BOUNDS FOR GENERALIZED DECODING 72

0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

10
−6

10
−4

10
−2

10
0

10
2

crossover probability

er
ro

r
p
ro

b
a
b
il
it
y,

li
st

si
ze

 

 

T = 0
P

e
  T = −0.002

P
e
  T = −0.004

N
L
  T = −0.002

N
L
  T = −0.004

(a) Transmission over a BSC

−2.6 −2.4 −2.2 −2 −1.8 −1.6
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Es/N0 [dB]

er
ro

r
p
ro

b
a
b
il
it
y,

li
st

si
ze

 

 

T = 0
P

e
  T = − 0.002

P
e
  T = − 0.004

N
L
  T = − 0.002

N
L
  T = − 0.004

(b) Transmission over a binary-input AWGN channel

Figure 3.4: Upper bounds on the block error probability and expected size of incorrect
codewords in the decoded list, under the generalized decoding rule in (3.4) with
variable-size list (T ≤ 0). An expurgation of the binary and regular (6,12) LDPC
code ensemble of Gallager is considered, where the block length is 2004 bits, and
the parameter Dn which refers to the expurgation is set to 160 (see Example 3.3).
The transmission in plots (a) and (b) is assumed to take place over a BSC, and a
binary-input AWGN channels, respectively.
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Pue for T = 0.01 in both figures). For the variable-size list decoding which refers to

T = 0.01 in (3.4), only a slight improvement is provided in the probability of error.

3.3 Applications to performance analysis of hybrid-

ARQ systems

3.3.1 Preliminaries

Coded communication systems with one-bit noiseless feedback are considered where

a generalized decoding rule with erasures is applied at the receiver. Each decoding

erasure is communicated via the feedback to the transmitter, which then retransmits

its message. It is first assumed that each transmitted block is decoded separately.

Such a hybrid-ARQ system is described and studied in [41], where the error exponents

for random coding are provided. For the case where deadlines are assumed, the error

exponents for random coding are provided in [48].

The following discussion is provided in [41] and [48], and it is surveyed here for

the sake of completeness.

Since Forney’s generalized decoding rule (3.4) with a positive value of T is used

in the context of erasures, the resulting decision regions at the receiver are disjoint,

and the erasure probability Px for a single block transmission is given by

Px = Pe − Pue

where Pe and Pue are, respectively, the (total) block error probability and undetected

error probability for a single block transmission. The erasure probability is studied

via an upper bound on the error probability Pe. Assuming a noiseless and immediate

feedback, for the case where no deadlines are considered, the expected rate of the

considered system equals

(1− Px)R (3.34)

where R is the rate of the codebook used (in units of bits per channel use) for a single

block transmission. The error probability of this scheme is given by

Pue

1− Px
. (3.35)

Note that the replacement of Px in (3.34) and (3.35) with an upper bound on Pe,

provides a lower bound on the expected rate and an upper bound on the error prob-

ability.
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Figure 3.5: Upper bounds on the decoding error probabilities and number of incor-
rect codewords in the decoded list for an expurgated ensemble of LDPC codes. The
considered ensemble refers to the octal-alphabet regular (8,16) LDPC code ensemble
of Gallager with a block length of 1008 symbols, and where the parameter Dn which
refers to the expurgation is set to 80 (see Example 3.5). The upper bounds in Corol-
lary 3.3 are provided in plots (a) and (b), assuming that the transmission takes place
over an 8-ary discrete memoryless symmetric channel, and an AWGN channel with
8-ary PSK modulation, respectively.
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For the case where deadlines are considered, let Q (Q ≥ 1) be the maximal num-

ber of block retransmissions (including the first transmitted block). Each transmitted

block is decoded separately using Forney’s generalized decoding rule with erasures.

Such a scheme is termed memoryless in [48] (note that the ARQ scheme without

deadlines, studied in [41], is also memoryless in this sense). In cases where Q con-

sequent block transmissions occur, then the generalized decoding rule is replaced for

the last (Q-th) retransmitted block with an ML decoder. As a result, the expected

rate and error probability, denoted by R(Q) and Pe(Q), respectively, satisfy

R(Q) =
R

∑Q−1
k=0 (Px)

k

=
R (1− Px)

1− (Px)
Q

(3.36)

and

Pe(Q) =

Q−1
∑

k=1

(Px)
k−1 Pue + (Px)

Q−1 PML
e

=

(

1− (Px)
Q−1
)

Pue

1− Px

+ (Px)
Q−1 PML

e (3.37)

where PML
e is the block error probability under ML decoding for the considered code

(while referring to the decoding of the last retransmitted block separately). Note that

in the limit where Q→ ∞ (no deadlines), then (3.36) and (3.37) tend asymptotically

to (3.34) and (3.35), respectively. Replacing Px in (3.36) and (3.37) with an upper

bound on the (total) error probability Pe, results in a lower bound on the expected

rate, and an upper bound on the error probability, respectively.

In hybrid incremental-redundancy ARQ schemes, a repeat request triggers the

transmission of a new block of n coded symbols which is not necessarily equal to the

former block (even though the transmission of the same message is concerned). The

decoder, instead of processing only the last block, decodes the message by observing

the entire blocks received so far for the concerned message. For such cases, the

expected rate, denoted by RIR(Q), satisfies the following lower bound [48, Eq. (24)]:

RIR(Q) ≥ R

1 + (Q− 1)Px
. (3.38)

This bound coincides with (3.36) if Q = 2. However, for Q > 2, the bound in

(3.38) is loosened because of the specific derivation used in [48]. Assuming that an

ML decoder is used after the last retransmitted block, the error probability for the

IR-ARQ scheme, denoted by P IR
e (Q), is upper bounded by [48, Eq. (25)]:

P IR
e (Q) ≤

Q−1
∑

k=1

Pue(k) + PML
e (Q) (3.39)
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where Pue(k) denotes the undetected error probability of the generalized decoding

rule, which operates on the received observations of k consequent transmitted blocks

(1 ≤ k ≤ Q−1), and PML
e (Q) denotes the error probability under ML decoding, based

on the entire transmission of Q blocks (the ML decoder is used only if Q blocks are

needed to be transmitted for the same message). Note that the dominant summand

in (3.39) is Pue(1), i.e., the undetected error probability of the first transmitted block.

3.3.2 Examples

In the following examples, upper bounds on the error performance and lower bounds

on the expected rates of some hybrid-ARQ systems are studied. These bounds are

based on the bounds in Corollary 3.3 and the results in Section 3.3.1. As mentioned,

each block of coded symbols in the IR-ARQ scheme may include new coded symbols.

Nevertheless, for all examples in this section where IR-ARQ schemes are considered,

a retransmission of equal coded blocks is assumed.

Example 3.6 (Hybrid-ARQ schemes over BSC) Consider the expurgated en-

semble of binary regular LDPC codes in Example 3.3, whose transmission takes place

over a BSC. Lower bounds on the expected rates are presented for several values of

the decoding parameter T in Figure 3.6(a). For memoryless systems without dead-

lines, the provided lower bound on the expected rate in (3.34) drops to zero as the

crossover probability of the BSC approaches the capacity limit (which is 0.11 for a

design rate of R = 1
2
bits per channel use). For schemes with deadlines of Q = 2 and 4

transmissions, the lower bounds on the expected rate in (3.36) drop to R
Q

= 1
4
and

1
8
, respectively, as the crossover probability of the BSC approaches the capacity limit

(which is the limit of (3.36) when we let Px tend to 1). Schemes with incremental

redundancy are also considered. Note that the lower bound on the expected rates for

memoryless schemes with deadline of Q = 2, also applies to schemes with incremental

redundancy, the lower bound in (3.38) coincides with the equality in (3.36) for Q = 2.

For the case of Q = 4, the loosened lower bound on the expected rate for incremental

redundancy schemes in (3.38) is also provided. Upper bounds on the decoding error

probabilities for the considered schemes are provided in Figure 3.6(b). The upper

bound for a block error probability with T = 0 and where no feedback is available

(a single transmission, Q = 1) is also provided. Note that this bound is valid for

the block error probability under ML decoding. Comparing this upper bound (for

T = 0 and Q = 1), with the upper bounds for T = 0.002 and 0.004, shows that the

introduction of one-bit immediate and noiseless feedback allows for a considerable
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improvements in the error performance. This improvement is achieved while main-

taining reasonable rate drops (at least for crossover probabilities below the threshold

for which the rate starts dropping considerably). Moreover, the improvement is of

interest even for the simplified memoryless-ARQ schemes with moderate deadlines

(of Q = 2 and 4 block transmissions).

Example 3.7 (Hybrid-ARQ schemes over binary-input AWGN channels)

Consider the expurgated, binary, and regular LDPC code ensemble in Example 3.3,

and the hybrid-ARQ scheme used in Example 3.6. Lower bounds on the expected

rates, and upper bounds on the error probabilities for such schemes are provided

in Figures. 3.7(a), and 3.7(b), respectively, assuming that transmission takes place

over a binary-input AWGN channel. The results show that if the SNR is above a

threshold for which the expected rate does not deteriorate considerably, a substan-

tial improvement in the decoding error probability is possible. This improvement is

achieved while maintaining a negligible rate loss, even for the simplified memoryless

schemes with moderate deadlines (e.g., Q = 2 and 4). Take for example the case

where Es/N0 = −2.1 dB. For this setting, the upper bound on the error probability

under ML decoding without retransmissions (T = 0, Q = 1) is slightly above 10−2.

By introducing a one bit noiseless feedback, the upper bounds on the error probability

for all considered schemes with T = 0.004 are in the range of 10−4 − −10−5 while

maintaining a small rate loss (the rate loss for the memoryless scheme with deadlines

of Q = 2 transmissions is below 3.2%).

Example 3.8 (Hybrid-ARQ schemes over AWGN channels with non-binary

LDPC codes) Hybrid ARQ schemes over the AWGN channel with 8-PSK modu-

lation is considered where the expurgated and octal-alphabet LDPC code ensemble

in Example 3.5 is used. Lower bounds on the expected rate and upper bounds on

the decoding error probability are shown in Figures. 3.8(a) and 3.8(b), respectively.

Schemes with and without deadlines are considered. The results show that the lower

bounds on the expected rates drop considerably, below Es/N0 = 3.6 dB. However,

above this SNR, the introduction of a single-bit, noiseless and immediate feedback

allows to achieve remarkable improvements in the error performance. Take for exam-

ple the case where Es/N0 = 3.62 dB where the upper bound on the error probability

under ML decoding without feedback (see the curve for T = 0 and Q = 1) is around

10−2. For the same channel, if no deadlines are assumed, the upper bounds on the

error probability are around 2 · 10−6. When deadlines of Q = 2 and 4 total retrans-

missions (including the first transmission) are assumed, the upper bounds on the
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Figure 3.6: Performance bounds of hybrid-ARQ schemes for the expurgated, binary
and regular (6,12) LDPC code ensemble of Gallager with a block length of n = 2004
bits (see Example 3.3). The transmissions are assumed to take place over the BSC. In
plot (a), lower bounds on the expected rates for memoryless hybrid-ARQ schemes with
and without deadlines (see (3.36), and (3.34), respectively) are shown for T = 0.002
and 0.004 (and deadlines of Q = 2 and 4 transmissions). In plot (b), upper bounds on
the error probability are provided for the considered schemes. For the case of Q = 2,
lower bounds on the expected rate and upper bounds on the decoding error probability
are also provided in plots (a) and (b), respectively, assuming incremental-redundancy
ARQ at the decoder (see (3.38)).
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Figure 3.7: Performance bounds of hybrid-ARQ schemes for the expurgated, binary
and regular (6,12) LDPC code ensemble of Gallager with a block length of n = 2004
bits (see Example 3.3). The transmissions are assumed to take place over binary-
input AWGN channels. In plot (a), lower bounds on the expected rates for memoryless
hybrid-ARQ schemes with and without deadlines (see (3.36), and (3.34), respectively)
are shown for T = 0.002 and 0.004 (and deadlines of Q = 2 and 4 transmissions).
In plot (b), upper bounds on the error probability are provided for the considered
schemes. For the case of Q = 2, the lower bounds on the expected rate and upper
bounds on the decoding error probability are also provided in plots (a) and (b),
respectively, assuming incremental-redundancy ARQ at the decoder (see (3.38)).
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Figure 3.8: Performance bounds of hybrid-ARQ schemes based on an expurgated,
octal-alphabet and regular (8,16) LDPC code ensemble with a block length of n =
1008 symbols (see Example 3.5). The transmission is assumed to take place over an
AWGN channel with 8-PSK modulation. In plot (a), lower bounds on the expected
rates for memoryless hybrid-ARQ schemes with and without deadlines (see (3.36),
and (3.34), respectively) are shown for T = 0.01 (and possible deadlines of Q = 2
and 4 transmissions). In plot (b) upper bounds on the error probability are provided
for the considered schemes.
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error probability for the same channel are 6 · 10−4 and 3 · 10−6, respectively. For all

considered schemes, the expected rate deteriorates at this point by no more than 4%.

Immediate and noiseless one-bit feedback is assumed in Examples 3.6-3.8. The re-

striction to immediate feedback is loosened in most network applications where some

sort of a multiple-access protocol is introduced. As a result of the applied protocol,

the transmitter is informed regarding the one-bit feedback with some delay that is

guaranteed (by the protocol) to be before the next time slot of the retransmission.

As for the condition of noiseless feedback, loosening this condition results in an in-

evitable synchronization errors (see, e.g., a similar observation in [30]). Since the

hybrid-ARQ schemes presented in this section require only one-bit feedback, even if

these synchronization errors should be kept low in comparison with the block error

performance, they are typically achievable with relatively low resources.

3.4 Upper Bounds under suboptimal decoding with

erasures

In this section, upper bounds on decoding error probabilities are derived for the

suboptimal decoding rule in (3.6).

Proposition 3.7 Consider the transmission of a block code C of block length n

and M codewords, and let p(y|x) designate the transition probability of the channel

where x ∈ C is the transmitted codeword and y ∈ Yn is the received vector. Then,

the conditional block error probability Pe|m, and the conditional undetected error

probability Pue|m, under the suboptimal decoding rule in (3.6) satisfy

Pe|m ≤ ensTDB(m,G
m
n , s, ρ), 0 ≤ s ≤ ρ ≤ 1 (3.40)

Pue|m ≤ e−nsTDB(m,G
m
n , s, ρ), 0 ≤ s ≤ ρ ≤ 1 (3.41)

where DB(m,G
m
n , s, ρ) is defined in (3.10), and Gm

n is an arbitrary non-negative func-

tion over Yn which possibly depends on the codeword xm, 1 ≤ m ≤M .

Proof: See Appendix 3.G.

Remark 3.12 The upper bound on the block error probability in (3.40) coincides

with the upper bound on the total error probability provided in (3.8) under the

optimal generalized decoding rule. On the other hand, the upper bounds on the un-

detected error probabilities under the optimal and suboptimal decoding rules in (3.9)

and (3.41), respectively, are different.
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The following corollary is a particularization of Proposition 3.7 for the ensemble

of fully random block codes of length n and rate R whose transmission takes place

over memoryless channels:

Corollary 3.4 Consider the transmission of block codes over a memoryless commu-

nication channel. Then, there exists a block code satisfying

Pe ≤ e−nE1(R,T )

Pue ≤ e−nE∗
2 (R,T )

where R , lnM
n

is the code rate (in nats per channel use), E1(R, T ) is defined in (3.13),

E∗
2(R, T ) , max

0≤s≤ρ≤1, qX

(

E0(s, ρ, qX)− ρR + sT
)

E0 is as defined in (3.14), and qX is an arbitrary probability distribution over X .

Proof: The proof follows the same arguments as the proof of Corollary 3.1.

The following bound is provided for the case of binary linear block codes whose

transmission takes place over an MBIOS channel (the generalization of the bound to

non-binary linear block codes, as provided in Chapter 2, is direct):

Corollary 3.5 Consider an (n, k) binary linear block code C whose transmission

takes place over an MBIOS channel with a transition probability law p. Then the

block error probability Pe, and the undetected error probability Pue, under the gen-

eralized decoding rule in (3.6) satisfy

Pe ≤ e−n(E(ρ,R,C)− ρT
1+ρ), 0 ≤ ρ ≤ 1 (3.42)

Pue ≤ e−n(E(ρ,R,C)+ ρT
1+ρ), 0 ≤ ρ ≤ 1 (3.43)

where R is the code rate (in nats per channel use), and E (ρ, R, C) is defined in (3.20).

Proof: The proof follows from Proposition 3.7, and its derivation is similar to the

way where Corollary 3.2 is derived from Proposition 3.6.

Remark 3.13 As in Corollary 3.2, the bounds of Corollary 3.5 resemble to the SFB,

and they may therefore be considered as a generalization of the SFB for the case at

hand.
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Remark 3.14 For all rates below some (finite) rate thresholds, the bounds in Corol-

lary 3.5 on the decoding error for linear block codes under the suboptimal LR rule in

Definition 3.2, coincide with those under the optimal decoding rule in Definition 3.1.

To see this, observe first that the upper bounds in (3.18) and (3.42) are identical.

It is left to consider the upper bounds in (3.19) and (3.43) on the undetected error

probability. Note first that E0(ρ)− ρR (E0 is defined in (3.21)) is a concave function

of 0 ≤ ρ ≤ 1, and it is optimized for rates below E ′
0(1) at ρ = 1 (see, e.g., [111,

p. 135]). Moreover, ρ
1+ρ

is a monotonic increasing function of 0 ≤ ρ ≤ 1. This implies

that if T
4
< E ′

0(1), then at all rates below E ′
0(1) − ln(α(C))

n
− T

4
, the error exponents

of the upper bounds in (3.19) and (3.43) are both maximized at ρ = 1, and they

therefore coincide. A similar observation is provided in [54, p. 82] for the ensemble

of fully random block codes. Specifically, it is observed in [54] that up to some rate

threshold, the upper bounds under the suboptimal LR decoding rule for the ensemble

of fully-random block codes coincide exponentially with those provided by Forney in

[41].

Example 3.9 (Error exponents of fully random binary linear block codes)

Fully random binary and linear (n, k) block codes are considered where, as mentioned

in Example 3.2, α(C) = 1 (see (3.22)). For the particular case of transmission over a

BSC, the error exponents for the considered ensemble are studied in [9] and [16]. The

lower bounds on the block error exponents and the undetected error exponents from

[9] and [16] are compared in Figures 3.9(a), and 3.9(b), respectively, to the bounds

provided in Corollary 3.5. The bounds are derived for a BSC with a crossover prob-

ability of p = 0.07 and a decoding parameter τ = 0.03 (see (3.7) where these are the

same parameters studied in [9, Figure 1]). The error exponent provided by Gallager

for the case of ML decoding is also provided for comparison, in addition to the unde-

tected error exponent under the optimal generalized decoding rule. Apart from low

rates, where the bounds in [9] and [16] outperform those provided in Corollary 3.5,

the latter bounds on the error exponents lie in between the two previously reported

bounds from [9] and [16] (see Figure 3.9). Moreover, in the rate region beyond the

critical rate, where the bound in [9] outperform the bound in [16], the derived bounds

perform in close proximity to the tightest known bound. The superiority of the un-

detected error exponent under the optimal decoding rule is clearly pronounced. This

comparison is further studied in Figure. 3.10 where the lower bounds on the unde-

tected error exponents under the optimal and suboptimal generalized-decoding rules

are provided for the same parameters as in Example 3.2 (T = 0, 0.025, 0.05, 0.1 and

0.15), assuming that transmission takes place over a BSC with a crossover proba-

bility of p = 0.11, and over binary-input AWGN channel with Es/N0 = −2.8 dB.
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For the case where T = 0, both considered exponents, for optimal and suboptimal

generalized-decoding rules, coincide with each other and with the (non-expurgated)

random coding error exponent of Gallager [45]. As observed in Remark 3.14, it is

evident that for low to moderate code rates, the bounds under optimal and subopti-

mal generalized decoding rules coincide. However, as the coding rates approach the

channel capacity, the lower bounds on the undetected block error exponents under

the suboptimal generalized-decoding, are considerably loosened in comparison to the

lower bound under the optimal generalized decoding.

Corollary 3.6 Under the assumptions and notation in Corollary 3.3, the block er-

ror probability Pe and the undetected error probability Pue under the suboptimal

decoding rule in (3.6), satisfy

Pe ≤ e
nρT
1+ρ ·Ds(ρ, C), 0 ≤ ρ ≤ 1 (3.44)

Pue ≤ e−
nρT
1+ρ ·Ds(ρ, C), 0 ≤ ρ ≤ 1 (3.45)

where Ds(ρ, C) is defined in (3.28).

Proof: Setting s = ρ
1+ρ

, Gm
n (y) =

∏n
i=1 g(yi) where g is as defined in (3.23), the

proof follows from Proposition 3.7 in the same way as the proof of Theorem 2.3.

Consider the particular case of binary linear block codes whose transmission takes

place over the binary-input AWGN channel with BPSK modulation. The bound of

Divsalar (see [26] and [94, Sec. 3.2.4]) provides a closed-form expression for an upper

bound on the block error probability under ML decoding. The following proposition

provides a similar bound under the LR decoding rule in Definition 3.2:

Proposition 3.8 Consider the transmission of a binary linear block code over the

AWGN channel with BPSK modulation, then the error and undetected error proba-

bilities under the LR decoding in (3.6) satisfy

Pe ≤
n
∑

d=dmin

min







exp

(

−nEe

(

d

n
,
Es

N0

))

, |Cd|Q





√

2Esd

N0

− nT

2
√

2dEs

N0











(3.46)

Pue ≤
n
∑

d=dmin

min







exp

(

−nEue

(

d

n
,
Es

N0

))

, |Cd|Q





√

2Esd

N0

+
nT

2
√

2dEs

N0











(3.47)

where dmin is the minimum Hamming distance of the code, n is the block length of

the code, |Ci| is the number of codewords whose Hamming weight equals i, T is the
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Figure 3.9: Lower bounds on the block error exponents of fully-random binary linear
block codes whose transmission takes place over a BSC with a crossover probabil-
ity of p = 0.07, under the suboptimal decoding rule in (3.7) with τ = 0.03. The
lower bounds on the undetected block error exponents in [9, Theorem 2], [16] (see
also [9, Theorem 1]), and Corollary 3.5 (see (3.43)) are provided in plot (a), together
with Gallager’s random-coding error exponent under ML decoding [45], and the lower
bound on the undetected error exponent in Corollary 3.2 (see (3.19)) under the op-
timal generalized decoding rule. The lower bounds on the error exponents in [9,
Theorem 2], [16], and Corollary 3.5 (see (3.42)) are provided in plot (b) (the lower
bound of Gallager for the random-coding error exponent under ML decoding is also
provided for comparison).
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Figure 3.10: Lower bounds on the undetected error exponents of fully-random binary
linear block codes under the suboptimal generalized decoding rule in (3.6). The
bounds based on Corollary 3.5, are provided in plots (a) and (b), assuming that the
transmission takes place over a BSC with a crossover probability of p = 0.11, and a
binary-input AWGN channel with Es/N0 = −2.8 dB, respectively. The lower bounds
on the error exponents under the optimum generalized decoding rule in (3.4), studied
in Example 3.2, are also provided for comparison.

decoding parameter in (3.6), Es is the energy per transmitted (coded) symbol, N0

2
is



CHAPTER 3. BOUNDS FOR GENERALIZED DECODING 87

the two-sided power spectral density of the white Gaussian noise, and

Ee

(

δ,
Es

N0

)

, ED

(

δ,
Es

N0

)

− Tξ

2
,

Eue

(

δ,
Es

N0

)

, ED

(

δ,
Es

N0

)

+
Tξ

2

ED

(

δ,
Es

N0

)

, −rn(δ) +
1

2
ln
(

β + (1− β)e2rn(δ)
)

+
βδ

1− (1− β)δ

Es

N0

β ,

√

√

√

√

Es

N0

2(1− δ)

δ(1− e−2rn(δ))
+

(

1− δ

δ

)2
(

(

1 +
Es

N0

)2

− 1

)

− 1− δ

δ

(

1 +
Es

N0

)

rn(δ) ,
ln |Cd|
n

, δ ,
d

n

ξ ,
β

β + (1− β)(1− δ)
.

Proof: See Appendix 3.H.

Example 3.10 (Error performance of expurgated binary and regular LDPC

code ensembles under suboptimal generalized decoding with erasures) Con-

sider an expurgation of the binary and regular LDPC code ensembles in Example 3.3

(with block lengths of 504 and 2004 bits). The upper bound in (3.45), on the unde-

tected error probability under the generalized decoding rule with erasures in (3.6), is

provided in Figures 3.11(a) and 3.11(b), assuming that the transmission takes place

over a BSC and a binary-input AWGN channel, respectively. The upper bounds

under the optimal generalized decoding rule are also provided for a comparison, in

addition to the upper bound under the generalized decoding rule with T = 0 (which

coincides with the upper bound on the error probability under ML decoding). It is

evident that the resulting bounds under the suboptimal generalized decoding rule

are loosened in comparison to the bounds under the optimal generalized decoding

rule. This result is expected from the previous example where the undetected error

exponents are studied for fully-random linear block codes. In Figure 3.12, the upper

bounds on the undetected error probability in Corollary 3.6 are compared with those

provided in Proposition 3.8. The provided bounds are for the binary regular and ex-

purgated LDPC code ensembles in Example 3.3 (with block lengths of 504 and 2004

bits), and for a similar ensemble with a block length of 10008 bits and Dn = 800.

The parameter T in (3.6) is chosen, for this comparison, to be 0.0198, 0.0050, and

9.992 · 10−4, respective to the considered block lengths. It is evident that the sim-

ple bound in (3.47) is loosened in comparison to the bound in (3.45), but only by a

relatively small difference.
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opt., n = 504 T = 0.015
opt., n = 2004 T = 0.004
sub., n = 504 T = 0.015
sub., n = 2004 T = 0.004

(b) Transmission over a binary-input AWGN channel

Figure 3.11: Upper bounds on the undetected error probabilities of some expurgated
ensembles of binary and regular (6,12) LDPC codes under the optimal and sub-
optimal generalized decoding rules in (3.4) and (3.6), respectively. The upper bound
in Corollary 3.6 is shown in plots (a) and (b), assuming that the transmission takes
place over a BSC and a binary-input AWGN channel, respectively. The upper bounds
in Corollary 3.3, studied in Examples 3.3 and 3.4, are also provided for comparison.

3.5 Upper bounds under fixed-size list decoding

In this section, upper bounds on the block error probability are derived for the fixed-

size list decoding (see Definition 3.3). As mentioned in Section 3.1, the block error
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Cor. 6, n = 504
Cor. 6, n = 2004
Cor. 6, n = 10008
Prop. 8, n = 504
Prop. 8, n = 2004
Prop. 8, n = 10008

Figure 3.12: A comparison between the upper bounds in (3.45) and (3.47), on the
undetected error probability under the LR generalized decoding rule in (3.6). The
comparison is provided for binary expurgated and regular (6,12) LDPC code ensem-
bles of Gallager with block lengths of 504, 2004 and 10008 bits whose transmissions
take place over binary-input AWGN channels with BPSK modulation.

event in this case corresponds to the possibility that the decoded list does not include

the transmitted codeword.

Proposition 3.9 Consider the transmission of a block code C with M codewords

of length n, and let p(y|x) designate the transition probability of the channel where

x ∈ C is the transmitted codeword and y ∈ Yn is the received vector. Consider the

case where a fixed-size list decoder is used where the size of the list is denoted by

L. Then, the conditional block error probability Pe|m, given that the m-th message

is transmitted satisfies

Pe|m ≤
(

∑

y

Gm
n (y)p(y|xm)

)1−ρ

(

1

L

∑

m′ 6=m

∑

y

p(y|xm)G
m
N(y)

1− 1
ρ

(

p(y|xm′)

p(y|xm)

)
s
ρ

)ρ

. (3.48)

where 0 ≤ s ≤ ρ ≤ 1 are real-valued parameters, and Gm
n is an arbitrary non-negative

function over Yn which possibly depends on the codeword xm, for 1 ≤ m ≤M .

Proof: See Appendix 3.I.
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The following corollary is a particularization of Proposition 3.9 for the ensemble

of fully-random block codes, with fixed block length and rate, whose transmission

takes place over a memoryless channel:

Corollary 3.7 Consider the transmission of a block code C over a memoryless com-

munication channel. Then, under the notation in Proposition 3.9, there exists a block

code whose block error probability Pe under fixed-size list decoding satisfies

Pe ≤ e−nEr(R− 1
n
lnL) (3.49)

where R , lnM
n

is the code rate (in nats per channel use),

Er(R) , max
0≤ρ≤1, qX

(

E0(ρ, qX)− ρR
)

(3.50)

E0(ρ, qX) , − ln





∑

y∈Y

(

∑

x∈X

qX(x)p(y|x)
1

1+ρ

)1+ρ




and qX is a probability distribution over the input alphabet X .

Proof: Fix a probability distribution qX over X , and consider the ensemble

of random block codes where each codeword is chosen independently according to

qX(x) =
∏n

i=1 qX(xi). First, we apply the bound in (3.48) for a specific realization of

a codebook, with s = ρ
1+ρ

and

Gm
n (y) ,

(

∑

x

qX(x)

(

p(y|x)
p(y|xm)

)
s
ρ

)ρ

.

The proof follows by a random coding argument, and by choosing the optimal prob-

ability distribution qX .

Remark 3.15 (On comparison of the error exponent in Corollary 3.7 with

previously known results) The upper bound in Corollary 3.7 is compared to three

previously known results:

1. The sphere-packing bound: The sphere-packing lower bound in [97, eq. 1.6]

provides an exponential lower bound on the error probability for fixed-size list-

decoding of block codes. The bound in Corollary 3.7 and the sphere-packing

bound exponentially coincide for all rates above the critical rate (where the

maximization of the random coding error exponent is achieved for 0 ≤ ρ ≤ 1).
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2. Asymptotic upper bound: Consider the case where the size of the de-

coded list grows exponentially with the blocklength, and denote the exponential

growth rate of the decoded list by l (i.e., L = enl for some l > 0). The following

asymptotic upper bound is provided in [24, p. 196, ex. 27] for the case at hand:

lim sup
n→∞

1

n
lnPe ≤ −Er(R − l). (3.51)

It is easily verified that the bound in Corollary 3.7 asymptotically coincides

with the bound in (3.51).

3. A variation on the Gallager bound: The following exponential upper bound

on the error probability is provided in [46, p. 538, ex. 5.20] for given block

length and list size (the same assumptions and notation as in Corollary 3.7 are

considered):

Pe ≤ e−nEr(R,L)

where

Er(R,L) , max
0≤ρ≤L, qX

(

E0(ρ, qX)− ρR
)

. (3.52)

The error exponents in (3.49) and (3.52) differ in the following aspects:

(a) For a fixed list-size L, the error exponent in (3.49) depends on the block

length n while the error exponent in (3.52) does not.

(b) The maximization of ρ in (3.49) is carried over the interval [0, 1] while

in (3.52) it is [0, L].

(c) The bound in (3.49) includes an explicit rate reduction term, which de-

pends on the list size.

(d) The derivation of the bound in (3.49) is based on a particularization of the

DS2 bound in Proposition 3.9 for fully-random block codes. On the other

hand, the derivation of the bound in (3.52) is based on a modification of

the random coding bound [45] for the case at hand.

The two bounds in (3.49) and (3.52) are compared in Figure 3.13. Transmission

of fully-random block codes over a BSC with a crossover of p = 0.11 are con-

sidered, where equiprobable qX(x) =
1
2
, x ∈ X , is assumed. The error exponent

Er(R,L) in (3.52) is plotted for a list size of L = 16 codewords. In addition,

the exponent Er(R− 1
n
lnL) is provided for the same list size and block lengths

of 128, 256 and 1024 bits. It is observed that for low rates the bound in (3.52)

outperforms the bound in (3.49). For moderate rates, the bound in (3.49)

outperforms the bound in (3.52). The gap between the plotted exponents is
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Figure 3.13: A comparison between the upper bounds in Corollary 3.7 and [46, p.
538, ex. 5.20]. Transmission of a fully-random binary block codes (with independent
equiprobable selection of coded bits) over a BSC with a cross over probability of
p = 0.11 is assumed. The exponent term Er(R,L) in(3.52) is plotted for a list size
of L = 16 codewords. The exponent Er(R − 1

n
lnL) in (3.49) is plotted for the same

list-size and blocklengths of 128, 256 and 1024 bits.

negligible as the block length increases (even for a moderate block length of

1024 bits).

The following bound is provided for the case of binary linear block codes whose

transmission takes place over an MBIOS channel:

Corollary 3.8 Consider an (n, k) binary linear block code C whose transmission

takes place over an MBIOS channel. Then, the block error probability Pe under

fixed-size list-decoding, satisfies

Pe ≤ e
−nEr

(

R+ 1
n
ln
(

α(C)
L

)

)

(3.53)

where

Er(R) , max
0≤ρ≤1

(

E0(ρ)− ρR
)

and R is the code rate (in nats per channel use), L is the list size, and E0(ρ) and

α(C) are defined in (3.21) and (3.22), respectively.

Proof: According to Proposition 3.4, it is necessary to analyze only the con-

ditional error event assuming that the all-zero codeword is transmitted. Setting
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G0
n(y) =

∏n
i=1 g(yi) in (3.48), it follows that

Pe ≤
(

∑

y∈Y

g(y)p(y|0)
)n(1−ρ)





1

L

n
∑

i=1

|Ci|
(

∑

y∈Y

g(y)1−
1
ρp(y|0)

)n−i(
∑

y∈Y

g(y)1−
1
ρp(y|1)λp(y|0)1−λ

)i




ρ

(3.54)

where |Ci| denotes the number of codewords whose Hamming distance is i, 1 ≤ i ≤ n.

The proof follows from (3.54) by setting λ = 1
1+ρ

where g is as defined in (3.23) (see

similar derivation in [94, Section 4.4.1]).

Remark 3.16 For the particular case of fully-random linear block codes, the bound

in (3.53) coincides with the bound in Corollary 3.7 for fully-random block codes.

Remark 3.17 The bound in Corollary 3.8 resembles to the SFB [100], and therefore

may be considered as a generalization of the SFB for the case at hand.

Remark 3.18 The bound in (3.54) can be generalized to non-binary linear block

codes using a similar derivation as in Chapter 2. Note, however, that in Chapter 2,

non-binary codes are studied under ML decoding and not list-decoding. Nevertheless,

the similarity of the bound in (3.48) to the upper bounds derived in Chapter 2 allows

to use the same arguments for the case at hand (see Appendix 3.I).

Corollary 3.9 Under the assumptions and notation in Corollary 3.3, the block error

probability probability Pe under fixed-size list-decoding where L denotes the size of

the list, satisfies

Pe ≤ A(ρ)n(1−ρ)

(

1

L

∑

1≤l≤n

P (l)

(

n

l

)

B(ρ)n−lC(ρ)l

)ρ

(3.55)

where A(ρ), B(ρ), and C(ρ) are defined in (3.29)–(3.31).

Proof: Setting s = ρ
1+ρ

and Gm
n (y) =

∏n
i=1 g(yi) where g is defined in (3.23), the

proof follows from Proposition 3.9 in the same way as the proof of Theorem 2.3.

Remark 3.19 In the derivation of the bound in (3.53), a sum is upper bounded by

a product of the maximal summand with the number of summands. This operation

is avoided in the derivation of the bound in (3.55). Hence, the bound in Corollary 3.9

is tighter than the one in Corollary 3.8.
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Remark 3.20 For the particular case of binary linear block codes, the symmetry con-

dition in (3.25) is not mandatory and the bound in Corollary 3.9 follows by replacing

the term P (l)
(

n
l

)

with the distance spectrum of the considered code (ensemble).

Example 3.11 (Error performance of an expurgated ensemble of binary

and regular LDPC codes under fixed-size list decoding) Consider the expur-

gation of Gallager’s ensemble of binary and regular (6,12) LDPC codes with a block

length of 2004 bits (see Example 3.3). Upper bounds on the block error probabil-

ity under fixed-size list-decoding are shown in Figures 3.14(a) and 3.14(b), assuming

that the transmission takes place over a BSC and a binary-input AWGN channel,

respectively. The upper bound in Corollary 3.9 is evaluated for list sizes of L = 1,

16, and 128 codewords. Note that the upper bound for L = 1 corresponds to ML

decoding. The bounds on the error probability show some marginal improvement by

increasing the considered list size from L = 1 to 128.

Example 3.12 (Error performance of an expurgated ensemble of non-binary

and regular LDPC codes under fixed-size list decoding) Consider the expur-

gation of Gallager’s ensemble of regular (8,16) LDPC codes with octal alphabet and

a block length of 1008 symbols (see Example 3.5). Upper bounds on the block error

probability under fixed-size list decoding are shown in Figures 3.15(a) and 3.15(b),

assuming that the transmission takes place over an 8-ary discrete memoryless sym-

metric channel and an AWGN channel with 8-PSK modulation, respectively. The

bound in Corollary 3.9 is evaluated for list sizes of L = 1, 16, and 128 codewords.

similarly to the case of binary code ensembles, only marginal improvement in the

error performance is observed by increasing the value of L from 1 to 128.

3.6 Summary and Conclusions

This chapter considers performance bounds for several generalized decoding rules

over memoryless symmetric channels. Three types of generalized decoding rules are

considered:

1. The optimal generalized decoding rule in [41] with erasures and variable list

sizes.

2. The suboptimal likelihood-ratio (LR) decoding rule with erasures (see [9] and

[41]).
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(a) Transmission over a BSC
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(b) Transmission over a binary-input AWGN channel

Figure 3.14: Upper bounds on the error probability for an expurgation of Gallager’s
ensemble of binary and regular (6,12) LDPC codes with a block length of 2004 bits
(see Example 3.3). A list decoder is assumed where the size of the list is set to L.
The upper bound in Corollary 3.9 is provided for some values of L. The bounds are
shown in plots (a) and (b), respectively, for the case where the transmission takes
place over a BSC and a binary-input AWGN channel.
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(a) Transmission over an 8-ary discrete memoryless symmetric channel
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(b) Transmission over an AWGN channel with 8-PSK modulation

Figure 3.15: Upper bounds on the error probability for an expurgation of Gallager’s
ensemble of regular (8,16) LDPC codes with octal alphabet and a block length of
1008 symbols (see Example 3.5). A list decoder is considered where the size of the
list is set to L. The upper bound in Corollary 3.9 is provided in plots (a) and (b)
for several values of L, assuming that the transmission takes place over an 8-ary dis-
crete memoryless symmetric channel and an AWGN channel with 8-PSK modulation,
respectively.
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3. A fixed-size list decoding rule (see [36] and [117]) where the decoder outputs a

list which includes the L most probable codewords (where the value of L is set

a-priori).

The independence of the error performance on the transmitted codeword is proved in

Propositions 3.2-3.4 for the considered decoding rules.

Upper bounds on the decoding error probability are provided. These bounds are

suitable for the analysis of structured and random codes (or code ensembles) over

memoryless symmetric channels. Both binary and non-binary code ensembles are

studied in this chapter under generalized decoding rules. When binary codes are

considered, the bounds are based on the distance spectra of the codes, and when

non-binary ensembles are studied, the complete composition spectra are required

under the symmetry assumption in (3.25). For the case of LR decoding of binary

linear block codes, a derivation of a closed-form expression is provided via a similar

derivation to [26] which applies to ML decoding.

Several particular cases of the provided bounds are studied. The random coding

error exponents in [41] are reproduced. In addition, error exponents under the sub-

optimal LR decoding rule with erasures are also derived. These error exponents are

derived by applying the new bounds to fully random block codes. Next, a derivation

of the error exponents of fully random linear block codes under optimal and subop-

timal (LR) generalized decoding is provided. The resulting error exponents under

the suboptimal LR decoding rule are compared with a recent improvement in [9],

where the ensemble of binary fully random linear block codes over binary symmetric

channels (BSC) is studied. This comparison shows good match with the provided

error exponents with the results in [9]. In addition, it is shown that the error ex-

ponents for the fully random linear block codes under the suboptimal LR decoding

rule, coincide for low rates with the corresponding error exponents under the optimal

decoding rule. This is similar to an observation in [54], where the ensemble of fully

random block codes is considered. A lower bound on the error exponent under fixed-

size list-decoding is also studied as an application. This bound is compared to the

sphere-packing lower bound on the error probability [97], and two additional upper

bounds on the error probability, provided in [24] and [46].

Applications of the bounds for the performance analysis of structured code en-

sembles are further exemplified for some expurgated ensembles of (binary and non-

binary) regular low-density parity-check (LDPC) codes. The error performance under

some generalized decoding rules for these LDPC code ensembles is studied assuming

that the transmission takes place over memoryless symmetric channels. The applica-

tion of the provided bounds for the study of hybrid automatic-repeat request (ARQ)
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schemes is also demonstrated. The possibility of further investigating and optimizing

the trade-offs between undetected error and erasures is suggested for further study in

the context of linear block codes, based on the derived bounds.

Appendices

3.A Proof of Proposition 3.2

The following proof holds for memoryless symmetric channels with discrete-output

alphabets, and the generalization to continuous-output alphabets is direct.

Assuming that all the codewords are sent with equal probability, the decision

regions in (3.4) satisfy

Λm
(a)
=

{

y :
p(y|xm)

∑

m′ 6=m p(y|xm′)
≥ enT

}

(b)
=

{

y :

∏n
i=1 p(yi|xm,i)

∑

m′ 6=m

∏n
i=1 p(yi|xm′,i)

≥ enT

}

(c)
=

{

y :

∏n
i=1 p(T (yi,−xm,i)|0)

∑

m′ 6=m

∏n
i=1 p(T (yi,−xm′,i)|0)

≥ enT

}

(3.A.1)

where (a) follows from (3.4) and the equal a-priori message probability assumption,

(b) holds since the channel is memoryless, and (c) follows from the symmetry of the

channel (see (2.1)). Let z = (z1, . . . , zn) be defined as

zi , T (yi,−xm,i), 1 ≤ i ≤ n (3.A.2)

where m is the index of the transmitted codeword. From Lemma 2.1, it follows that

y ∈ Λm if and only if z ∈ Λ̃m where

Λ̃m ,

{

z ∈ Yn :

∏n
i=1 p(zi|0)

∑

m′ 6=m

∏n
i=1 p(T (zi, xm,i − xm′,i)|0)

≥ enT

}

, 1 ≤ m ≤ qk.

Using the linearity of the code, it follows that

Λ̃m =

{

z ∈ Yn :

∏n
i=1 p(zi|0)

∑

l 6=0

∏n
i=1 p(T (zi, xl,i)|0)

≥ enT

}

.

Since the set Λ̃m is independent of the index m, then

Λ̃m = Λ̃1 for all 1 ≤ m ≤ qk. (3.A.3)
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As a result, the conditional block error probability of the m-th message in (3.1)

satisfies

Pe|m =
∑

z∈Λ̃c
m

p(z|0)

(a)
=
∑

z∈Λ̃c
1

p(z|0)

where (a) follows from (3.A.3). This concludes the proof of the message independence

property for the block error event.

We continue in proving the message independence property for the undetected

error event (or the expected number of incorrect codewords when list decoding is

considered). Assuming a memoryless symmetric channel, it follows from (2.1) and

(3.3) that

Pue|m =
∑

m′ 6=m

∑

y∈Λm′

p(y|xm)

=
∑

m′ 6=m

∑

y∈Λm′

n
∏

i=1

p
(

T (yi,−xm,i)|0
)

(3.A.4)

where from (3.A.1)

Λm′ =

{

y :

∏n
i=1 p(T (yi,−xm′,i)|0)

∑

m′′ 6=m′

∏n
i=1 p(T (yi,−xm′′,i)|0)

≥ enT

}

.

Let z be a vector defined as in (3.A.2), then from Lemma 2.1

p
(

T (yi,−xm′,i)|0
)

= p
(

T (zi, xm,i − xm′,i|0
)

, i = 1, . . . , n.

Hence, given that xm is the transmitted codeword, then y ∈ Λm′ for some m′ 6= m if

and only if z ∈ Γm,m′ where

Γm,m′ ,

{

z ∈ Yn :

∏n
i=1 p(T (zi, xm,i − xm′,i)|0)

∑

m′′ 6=m′

∏n
i=1 p(T (zi, xm,i − xm′′,i)|0)

≥ enT

}

. (3.A.5)

From (3.A.2), the conditional undetected error probability in (3.A.4) is rewritten in

the form

Pue|m =
∑

m′ 6=m

∑

z∈Γm,m′

p(z|0). (3.A.6)

Using the linearity of the code, then xm,i − xm′′,i =
(

xm,i − xm′,i

)

+
(

xm′,i − xm′′,i

)

=

xl1,i + xl2,i for some indices l1 and l2 which correspond to non-zero codewords. Let
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x , xl1 and x̃ = xl2 , then the conditional undetected error probability in (3.A.6) is

expressed equivalently in the form

Pue|m =
∑

x∈C
x 6=0

∑

z∈Γ(x)

p(z|0)

where, based on (3.A.5),

Γ(x) ,







z ∈ Yn :

∏n
i=1 p(T (zi, xi)|0)

∑

x̃∈C
x̃6=0

∏n
i=1 p(T (zi, xi + x̃i)|0)

≥ enT







.

This proves the independence property for the undetected error event, and it concludes

the proof of Proposition 3.2.

3.B Proof of Proposition 3.3

Similarly to Appendix 3.A, also the following proof considers memoryless symmetric

channels with discrete-output alphabets, where the generalization to continuous out-

put alphabets is direct. Let p be the transition probability function of the considered

channel, C be an (n, k) linear block code over an alphabet whose cardinality is q, and

T be a mapping as specified in Definition 2.1. It is assumed that all the codewords

of C are sent with equal probability. For an arbitrary set Λ ⊆ Yn and a codeword

xm ∈ C, let

Zm(Λ) ,
{

z ∈ Yn :
(

T (z1, xm,1), T (z2, xm,2), . . . , T (zn, xm,n)
)

∈ Λ
}

. (3.B.7)

In addition, we use the notation ΛLR(xm) for the decision region ΛLR
m in (3.6) of the

codeword xm. Note that for the concerned decoding rule with T > 0, the decision

regions are disjoint. The following technical lemma is introduced:

Lemma 3.B.1 Let Zm be the mapping defined in (3.B.7), and ΛLR
m be the decision

region in (3.6). Then,

Zm

(

ΛLR
m′

)

= ΛLR(xm′ − xm), ∀ m,m′ ∈ {1, . . . , qk}. (3.B.8)

Proof: Let us choose z ∈ Zm

(

ΛLR
m′

)

, and let y = (y1, . . . , yn) be defined via the

equality

yi = T (zi, xm,i), i = 1, . . . , n. (3.B.9)

From (3.6) and (3.B.7)
p(y|xm′)

p(y|xm′
2
)
≥ enT
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where xm′ and xm′
2
are the most probable codewords, in a descending order, for y as

a received vector. Using the symmetry of the channel, it follows from (2.1) that

p(y|xm′) = p(z|xm′ − xm).

As a result, xm′ − xm is the most probable codeword if z is the received vector

(otherwise, if there exists a codeword x 6= xm′ − xm which is more probable, then

there exists a more probable codeword for y which is different from xm′). The same

argument shows that xm′
2
− xm is the second most probable codeword for z, and

p(z|xm′ − xm)

p(z|xm′
2
− xm)

≥ enT .

This verifies that z ∈ ΛLR(xm′ − xm) which shows that Zm

(

ΛLR
m′

)

⊆ ΛLR(xm′ − xm).

To show the opposite inclusion, which then yields that these two sets are equal, let

z ∈ ΛLR(xm′ − xm). This implies that the codeword xm′ − xm is the most probable

codeword if z is the received vector, and

p(z|xm′ − xm)

p(z|xm′′
2
)

≥ enT

where xm′′
2
is the second most probable codeword for z. Again, using the symmetry

of the channel, for a vector y as in (3.B.9), it follows that xm′ is the most probable

codeword for y, xm′′
2
+ xm is the second most probable codeword for y, and

p(y|xm′)

p(y|xm′′
2
+ xm)

≥ enT .

As a result, z ∈ Zm

(

ΛLR
m′

)

, which yields that ΛLR(xm′ − xm) ⊆ Zm

(

ΛLR
m′

)

. This

concludes the proof of (3.B.8).

From (3.B.9), the conditional block error probability satisfies

Pe|m =
∑

y 6∈ΛLR
m

p(y|xm)

(a)
=

∑

z6∈Zm(ΛLR
m )

p(z|0)

(b)
=

∑

z6∈ΛLR(0)

p(z|0)

where (a) follows from (2.1) and (3.B.9), and (b) follows from (3.B.8). This proves the

message independence property for the conditional block error probability. Using the
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same arguments, the message independence property is established for the conditional

undetected error probability:

Pue|m =
∑

m′ 6=m

∑

y∈ΛLR
m′

p(y|xm)

=
∑

m′ 6=m

∑

z∈Zm(ΛLR
m′ )

p(z|0)

=
∑

m′ 6=m

∑

z∈ΛLR(xm′−xm)

p(z|0)

=
∑

x ∈ C
x 6= 0

∑

z∈ΛLR(x)

p(z|0)

where the second equality follows from (3.B.9) and since the mapping T is bijective,

the third equality follows from (3.B.8), and the last equality follows from the linearity

of the code.

3.C Proof of Proposition 3.4

Considering ties as error events1, the conditional block error probability for a list of

size L satisfies

Pe|m =
∑

y∈ΛL
m

p(y|xm) (3.C.10)

where

ΛL
m ,

{

y ∈ Yn : ∃{mi}Li=1 s.t. mi 6= m, p(y|xmi
) ≥ p(y|xm) ∀ 1 ≤ i ≤ L

}

(3.C.11)

is the complementary of the decision region of xm ∈ C under list decoding of fixed-size

L (here {mi}Li=1 is a sequence of distinct integers), i.e., if y ∈ ΛL
m then the codeword

xm is not included in the list for a received vector y. Using the change of variables in

(3.B.9), it follows from (3.C.10) that for linear block codes whose transmission takes

place over memoryless symmetric channels

Pe|m =
∑

z∈Zm(ΛL
m)

p(z|0)

where Zm

(

ΛL
m

)

is as defined in (3.B.7). The following lemma concludes the proof of

Proposition 3.4:

1Such a pessimistic assumption is reasonable, see also a similar assumption in [111, p. 59].
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Lemma 3.C.2 Let Zm be a mapping defined in (3.B.7), and ΛL
m be the decoding

region of xm ∈ C under list decoding with a fixed size L. Then,

Zm

(

ΛL
m

)

= ΛL
1

for all 1 ≤ m ≤ qk, where ΛL
1 is the complementary of the decision region of the

all-zero codeword x1 = 0 under list decoding of size L.

Proof: Let us choose z ∈ Z
(

ΛL
m

)

. From (3.B.7), there exists y ∈ ΛL
m where

yi = T (zi, xm,i), i = 1, . . . , n (3.C.12)

and T is a specified in Definition 2.1. From (3.C.11), there exists a list of L distinct

codewords, {xmi
}Li=1, for which

p(y|xmi
) > p(y|xm), i = 1, . . . , L. (3.C.13)

Using the symmetry of the channel, it follows that

p(z|xmi
− xm) ≥ p(z|0). (3.C.14)

This assures that z ∈ ΛL
1 , which shows that Zm

(

ΛL
m

)

⊆ ΛL
1 .

Next, in order to show the opposite inclusion, let z ∈ ΛL
1 . Then, there exists a list

of L non-zero codewords {xmi
}Li=1, mi 6= 1, satisfying

p(z|xmi
) ≥ p(z|0)

and therefore from the symmetry of the mapping T and the equality in (3.C.12), we

get

p(y|xmi
+ xm) ≥ p(y|xm)

It assures that z ∈ Zm

(

ΛL
m

)

which implies that ΛL
1 ⊆ Zm

(

ΛL
m

)

. This two inclusions

complete the proof of the lemma.

3.D Proof of Proposition 3.5

Let Λm be the generalized decision region as defined in (3.4). For y /∈ Λm, it follows

that

1 = enT e−nT ≤ enT

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)

. (3.D.15)
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Let s and ρ satisfy 0 ≤ s ≤ ρ ≤ 1, and recall the following inequality (see [111,

p.197]):

∑

i

ai ≤
(

∑

i

aλi

)
1
λ

(3.D.16)

which holds if ai ≥ 0 and 0 < λ ≤ 1. Setting

ai =
p(y|xi)

p(y|xm)
, λ =

s

ρ

it follows from (3.1), (3.D.15) and (3.D.16) that the conditional error probability of

the m-th message satisfies

Pe|m ≤ enTs
∑

y∈Λc
m

p(y|xm)

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

(3.D.17)

≤ enTs
∑

y∈Λc
m

p(y|xm)

(

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s
ρ

)ρ

.

Let ψm
n (y) designate an arbitrary probability tilting measure (which may depend

on the transmitted codeword), then it follows that

Pe|m ≤ enTs
∑

y

ψm
n (y)ψm

n (y)
−1p(y|xm)

(

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s
ρ

)ρ

≤ enTs
∑

y

ψm
n (y)

(

ψm
n (y)−

1
ρp(y|xm)

1
ρ

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s
ρ

)ρ

.

Next, invoking Jensen’s inequality gives

Pe|m ≤ enTs

(

∑

y

ψm
n (y)1−

1
ρp(y|xm)

1
ρ

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s
ρ

)ρ

.

This concludes the proof of (3.8) by setting

ψm
n (y) =

Gm
n (y)p(y|xm)

∑

yG
m
n (y)p(y|xm)

(3.D.18)

where Gm
n (y) is an arbitrary non-negative function.

An undetected error event occurs if the received vector is included in the decision

region of a codeword which differs from the transmitted codeword. Consequently, the

average undetected error event satisfies

Pue =
1

M

M
∑

m=1

∑

y∈Λm

∑

m′ 6=m

p(y|xm′). (3.D.19)
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Note that in the case where list decoding is considered (i.e., the decision regions are

not disjoint), the LHS of (3.D.19) is no longer a probability. However, for the latter

case this expression equals the expected number of incorrect codewords in the decoded

list. It follows from (3.D.19) that for 0 ≤ s ≤ 1, the undetected error probability

satisfies

Pue =
1

M

M
∑

m=1

∑

y∈Λm

p(y|xm)

(

∑

m′ 6=m p(y|xm′)

p(y|xm)

)s(∑

m′ 6=m p(y|xm′)

p(y|xm)

)1−s

≤ enT (s−1) 1

M

M
∑

m=1

∑

y

p(y|xm)

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

(3.D.20)

where the last inequality holds since for y ∈ Λm and 0 ≤ s ≤ 1

(

p(y|xm)
∑

m′ 6=m p(y|xm′)

)1−s

≥ enT (1−s).

The rest of the proof follows in a similar way to the derivation of (3.8) when comparing

the bound in (3.D.17) with (3.D.20).

3.E Proof of Corollary 3.1

Consider the ensemble of fully random block codes of length n symbols where the

M = enR codewords of a codebook are chosen independently at random according to

the probability distribution qX on X n.

Let D{xi}Mi=1
(m,Gm

n , s, ρ) denote the functional DB(m,G
m
n , s, ρ) in (3.10) where

the dependence on a specific codebook {xi}Mi=1 is expressed explicitly. Given a fixed

codeword xm for the m-th message, the expectation over the other M − 1 codewords

on the right-hand side of (3.8) gives that for 0 ≤ s ≤ ρ ≤ 1

∑

{xi}Mi=1\{xm}

(

∏

i 6=m

qX(xi)

)

D{xi}Mi=1
(m,Gm

n , s, ρ)

(a)

≤
(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





∑

m′ 6=m

∑

xm′

qX(xm′)
∑

y

p(y|xm)G
m
N(y)

1− 1
ρ

(

p(y|xm′)

p(y|xm)

)
s
ρ





ρ
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= (M − 1)ρ

(

∑

y

Gm
n (y)p(y|xm)

)1−ρ

(

∑

x′

qX(x
′)
∑

y

p(y|xm)G
m
N(y)

1− 1
ρ

(

p(y|x′)

p(y|xm)

)
s
ρ

)ρ

(3.E.21)

where (a) follows from (3.10) and by invoking Jensen’s inequality. Next, by substi-

tuting the non-negative function

Gm
n (y) ,

(

∑

x

qX(x)

(

p(y|x)
p(y|xm)

)
s
ρ

)ρ

in (3.E.21), one obtains that for 0 ≤ s ≤ ρ ≤ 1 and m = 1, . . . ,M

∑

{xi}Mi=1\{xm}

(

∏

i 6=m

qX(xi)

)

D{xi}Mi=1
(m,Gm

n , s, ρ)

≤ (M − 1)ρ
∑

y

p(y|xm)

(

∑

x′

qX(x
′)

(

p(y|x′)

p(y|xm)

)
s
ρ

)ρ

.

By averaging D{xi}Mi=1
(m,Gm

n , s, ρ) over theM codewords, we get that for every index

m (1 ≤ m ≤ M)

∑

{xi}Mi=1

(

M
∏

i=1

qX(xi)

)

D{xi}Mi=1
(m,Gm

n , s, ρ)

=
∑

xm

qX(xm)
∑

{xi}Mi=1\{xm}

(

∏

i 6=m

qX(xi)

)

D{xi}Mi=1
(m,Gm

n , s, ρ)

≤ (M − 1)ρ
∑

y

∑

xm

qX(xm)p(y|xm)

(

∑

x′

qX(x
′)

(

p(y|x′)

p(y|xm)

)
s
ρ

)ρ

= (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x
′)p(y|x′)

s
ρ

)ρ}

. (3.E.22)

Since the right-hand side of (3.E.22) does not depend on the index m, then this

bound also applies to the expectation of the quantity 1
M

∑M
m=1D{xi}Mi=1

(m,Gm
n , s, ρ).

Therefore, there exists a block code for which the value of this quantity is not larger

than the average over the considered ensemble, i.e.,

1

M

M
∑

m=1

D{xi}Mi=1
(m,Gm

n , s, ρ)

≤ (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x
′)p(y|x′)

s
ρ

)ρ}

. (3.E.23)
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From (3.8), (3.9) and (3.E.23), it follows that the above block code satisfies simulta-

neously

Pe =
1

M

M
∑

m=1

Pe|m

≤ ensT · 1

M

M
∑

m=1

D{xi}Mi=1
(m,Gm

n , s, ρ)

≤ ensT (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x
′)p(y|x′)

s
ρ

)ρ}

< en(sT+ρR)
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x
′)p(y|x′)

s
ρ

)ρ}

= e−n
(

E0(s,ρ,qX)−ρR−sT
)

and

Pue < en
(

(s−1)T+ρR
)

∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x
′)p(y|x′)

s
ρ

)ρ}

= e−n
(

E0(s,ρ,qX)−ρR−(s−1)T
)

where the last two equalities follow from (3.14), and since the input distribution and

the channel are assumed to be memoryless, i.e.,

p(y|x) =
n
∏

i=1

p(yi|xi), qX(x) =

n
∏

i=1

qX(xi).

The proof of Corollary 3.1 is completed by optimizing the bounds over the parameters

ρ and s (where 0 ≤ s ≤ ρ ≤ 1) and the input distribution qX . This gives the exponents

E1 and E2 in (3.13) for the upper bounds on Pe and Pue, respectively.

3.F Proof of Proposition 3.6

The bounds in Proposition 3.6 are derived from Proposition 3.5 as follows: setting

p(y|x) =
n
∏

i=1

p(yi|xi)

and

Gm
n (y) =

n
∏

i=1

g(yi)
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in (3.10), and relying on the useful rule for interchanging sum and product signs
∑

y

∏n
i=1 f(yi) =

∏n
i=1

∑

yi
f(yi), one gets from (3.8) the RHS of (3.15) as an up-

per bound on Pe|0. Since the considered block code is linear and the communication

channel is memoryless and symmetric, the bound in (3.15) follows from the message

independence property in Proposition 3.2. The derivation of the bound in (3.16)

relies on (3.9) where it is first proved that for a linear block code whose transmis-

sion takes place over a memoryless symmetric channel, the resulting expression for

DB(m,G
m
n , s, ρ) is independent of m. To this end, let T be a mapping as defined in

Definition 2.1, then for all 1 ≤ i ≤ n

∑

m′ 6=m

∑

y∈Y

g(y)1−
1
ρp(y|xm,i)

(

p(y|xm′,i)

p(y|xm,i)

)
s
ρ

=
∑

m′ 6=m

∑

y∈Y

g(y)1−
1
ρp(T (y,−xm,i)|0)

(

p(T (y,−xm,i)|xm′,i − xm,i)

p(T (y,−xm,i)|0)

)
s
ρ

=
∑

l 6=0

∑

z∈Y

g(y)1−
1
ρp(z|0)

(

p(z|xl,i)
p(z|0)

)
s
ρ

.

As a result, it follows that for a memoryless and symmetric channel

1

M

M
∑

m=1

DB(m,G
m
n , s, ρ) = D(g, s, ρ) (3.F.24)

where D(g, s, ρ) is introduced in (3.17). The proof of the upper bound on Pue as given

in (3.16) is completed by substituting (3.F.24) in (3.16).

3.G Proof of Proposition 3.7

Proof of the upper bound on the conditional error probability

in (3.40)

Let ΛLR
m designate the decision region in (3.6), then the conditional error probability

is equal to

Pe|m =
∑

y 6∈ΛLR
m

p(y|xm).

For y 6∈ ΛLR
m , the decision rule in (3.6) implies that

p(y|xm)

p(y|xm2)
< enT

where xm2 is the second most probable codeword, and therefore

enT
∑

m′ 6=m

p(y|xm′)

p(y|xm)
> 1.
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Let s ≥ 0, then for y 6∈ ΛLR
m

enTs

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

> 1

and the conditional block error probability satisfies

Pe|m ≤ ensT
∑

y

p(y|xm)

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

. (3.G.25)

The bound in (3.40) follows from (3.G.25), using the arguments following (3.D.17).

Proof of the upper bound on the conditional undetected error

probability in (3.41)

The conditional undetected error probability is given by

Pue|m =
∑

y∈L

p(y|xm)

where

L ,
{

y : ∃m′ 6= m, p(y|xm′) ≥ enTp(y|xm′
2
)
}

and xm′
2
is the second most probable codeword for p(y|x). Since p(y|xm′

2
) ≥ p(y|xm),

then

L ⊆
{

y : ∃m′ 6= m, p(y|xm′) ≥ enTp(y|xm)
}

and therefore

y ∈ L ⇒ ∃m′ 6= m,
p(y|xm′)

p(y|xm)
· e−nT ≥ 1

⇒ e−nT
∑

m′ 6=m

p(y|xm′)

p(y|xm)
≥ 1

⇒ ∀ s ≥ 0, e−nTs

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

≥ 1

As a result, the conditional undetected block error probability satisfies, for all s ≥ 0,

the following upper bound:

Pue|m ≤ e−nsT
∑

y

p(y|xm)

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

.

The rest of the proof of (3.41) is, again, similar to the derivation following (3.D.17).
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3.H Proof of Proposition 3.8

The derivation of the bounds in Proposition 3.8 is primarily identical to the analysis

in [26] and [94, Section 3.2.4], for which the reader is referred for a complete treatment

of the analysis under ML decoding. We assume a BPSK modulation over AWGN

channel with energy Es per transmitted coded symbol, and a white Gaussian noise

with two-sided power spectral density of N0

2
. Hence, the received vector y satisfies

y = γx+ n (3.H.26)

where γ ,

√

2Es

N0
, x ∈ C ⊆ {−1,+1}n is the transmitted codeword (with BPSK

modulation), and n is a normal random vector with independent coordinates (all

with zero mean and unit variance). Setting

Ee(d) ,

{

y ∈ Yn :
maxx∈Cd\{x0} p(y|x)

p(y|x0)
· enT ≥ 1

}

.

where Cd is the set of all codewords whose Hamming weight is d, and x0 is the all-zero

codeword, it follows from (3.6) and the union bound that the conditional decoding

error probability is upper bounded by

Pe|0 ≤
n
∑

d=dmin

Pr (Ee(d)) (3.H.27)

where dmin denotes the minimal Hamming distance of C. Consider the following

inequality on the probability of an error event:

Pr(E) ≤ Pr(E,y ∈ R) + Pr(y 6∈ R) (3.H.28)

where E denotes an error event, y ∈ Yn is the received vector, and R ⊆ Yn.

From (3.H.27) and (3.H.28), it follows that

Pe|0 ≤
n
∑

d=dmin

(

Pr
(

Ee(d),y ∈ R
)

+ Pr
(

y 6∈ R
)

)

. (3.H.29)

Using the union bound, we have

Pr
(

Ee(d),y ∈ R
)

≤
∑

x∈Cd

Pr

(

p(y|x)
p(y|x0)

enT ≥ 1, y ∈ R
)

(a)
=
∑

x∈Cd

Pr

(

〈y,x〉 ≥ 〈y,x0〉 −
nT

γ
, y ∈ R

)

(3.H.30)

where equality (a) follows from (3.H.26), and 〈x,y〉 ,
∑n

i=1 xiyi denotes the scalar

multiplication of the vectors x and y. Similarly to the derivation of bound in [26]

(under ML decoding), we choose

R ,

{

y : ‖y − ηγx0‖2 ≤ nr2
}

(3.H.31)
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where η and r are arbitrary parameters which are subject to optimization. In addition,

define

Z , 〈y,x〉 − 〈y,x0〉
W , ‖y − ηγx0‖2 − nr2

then it follows from (3.H.30) and (3.H.31), using the Chernoff bound that

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ e
tnT
γ |Cd|E

[

etZ+uW
]

+ E

[

esW
]

(3.H.32)

for all t ≥ 0, u ≤ 0, and s ≥ 0. Evaluating the expectations in (3.H.32) and setting

t = γ
2
(1− 2uη), we have similarly to [26] and [94, Section 3.2.4]:

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ e
nT (1−ruη)

2 |Cd| e−nur2 (f1 (γ, u, η))
n−d (f2 (γ, u, η))

d

+ e−nsr2 (f1 (γ, s, η))
n (3.H.33)

where

f1 (γ, α, η) ,
e

(1−η)2γ2α
1−2α

√
1− 2α

f2 (γ, α, η) ,
e−

γ2(1−2αη2)
2√

1− 2α
, α <

1

2
.

Optimizing the term enr
2
on the right-hand side of (3.H.33), gives

Pr
(

Ee(d),y ∈ R
)

+Pr
(

y 6∈ R
)

≤ 2h2( s
s−u)A− u

s−uB
s

s−u , 0 < s <
1

2
, u ≤ 0 (3.H.34)

where

A , (f1 (γ, s, η))
n

B , e
nT (1−ruη)

2 |Cd| (f1 (γ, u, η))n−d (f2 (γ, u, η))
d

and h2 designates the binary entropy function on base 2. Using the change of variables

ρ ,
s

s− u

β , ρ(1 − 2u)

ξ , ρ(1 − 2uη)

where 0 ≤ ρ ≤ 1, 0 ≤ β ≤ 1, and ξ ≥ 0, the bound in (3.H.34) transforms to

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ 2h2(ρ)e−nE(Es/N0,d/n,β,ρ,ξ)+
nTξ
2 (3.H.35)
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where

E(c, δ, β, ρ, ξ)

, −ρrn(δ)−
ρ

2
ln

(

ρ

β

)

− 1− ρ

2
ln

(

1− ρ

1− β

)

+ c

(

1− (1− δ)
ξ2

β
− (1− ξ)2

1− β

)

.

The parameters ρ, β and ξ are optimized in [26], [94] such that the error exponent

E(c, δ, β, ρ, ξ) is maximized2 (note that the bound for T = 0 coincides with the bound

which refers to ML decoding), setting the optimal parameters yields the first argument

in (3.46). The second term inside the minimization on the right-hand side of (3.46)

follows from a union bound on the error probability

Pe ≤
n
∑

d=dmin

∑

x∈Cd

Pr

(

p(y|x)
p(y|x0)

enT ≥ 1

)

where for every codeword x ∈ Cd

Pr

(

p(y|x)
p(y|x0)

enT ≥ 1

)

= Q

(

γ
√
d− nT

2γ
√
d

)

.

The derivation of the upper bound on the undetected error probability follows some

similar arguments, and is therefore omitted.

3.I Proof of Proposition 3.9

The main ingredient for proving the DS2 bound on the block error probability under

ML decoding (and also the well known random-coding bound) is that for a received

vector y which is not included in the decision region Λm as given in (3.2), the following

inequality holds:

1 ≤
(

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ
)ρ

, λ, ρ ≥ 0. (3.I.36)

When an error event under fixed-size (L) list decoding is considered, there exists L

distinct codewords, all different from the transmitted codeword, whose a-posterior

probability is larger than the one of the transmitted codeword. Hence, the sum on

the right-hand side of (3.I.36) is divided by L. Specifically for a received vector y

2It is possible to obtain the optimized ρ and ξ when maximizing the entire exponent
E(c, δ, β, ρ, ξ) + Tξ

2 . To this end, ξ needs to be shifted by −T
2 and the optimal ρ remains without

change. The parameter β is required to be numerically optimized over 0 ≤ β ≤ 1. Nevertheless, the
resulting bound gives only a marginal gain over the bound which maximizes E(c, δ, β, ρ, ξ) without
the addition of Tξ

2 .
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that results in an error event, the following inequality is satisfied:

1 ≤
(

1

L

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ
)ρ

, λ, ρ ≥ 0 (3.I.37)

Following the derivation of the DS2 bound in [94, p. 96] where the right-hand side

of (3.I.36) is replaced with (3.I.37) leads to the derivation of the bound in Proposi-

tion 3.9. This derivation is repeated for the sake of completeness. For an arbitrarily

chosen probability measure ψm
n (y) it follows that:

Pe|m ≤
∑

y

ψm
n (y)

(

ψm
n (y)

)−1
p(y|xm)

(

1

L

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ
)ρ

=
∑

y

ψm
n (y)

(

(

ψm
n (y)

)− 1
ρ
(

p(y|xm)
)

1
ρ
1

L

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ
)ρ

≤
(

∑

m′ 6=m

∑

y

(

ψm
n (y)

)1− 1
ρ
(

p(y|xm)
)

1
ρ
1

L

(

p(y|xm′)

p(y|xm)

)λ
)ρ

where the last inequality follows from Jensen’s inequality. Plugging ψm
n (y) as in

(3.D.18) concludes the proof.



Chapter 4

Optimal Erasure and List Decoding

Schemes of Convolutional Codes

Chapter Overview

A modified Viterbi Algorithm (VA) with erasures and list-decoding is introduced.

This algorithm is shown to yield the optimal decoding rule of Forney with erasures

and variable list-size (see Definition 3.1). For the case of decoding with erasures, the

optimal algorithm is compared to the simple algorithm of Yamamoto and Itoh [120].

The comparison shows a remarkable similarity in simulated performance. The chap-

ter is based on the following paper:

E. Hof, I. Sason, and S. Shamai (Shitz), “‘Optimal generalized decoding of convolu-

tional codes,” Proceedings of the Tenth International Symposium on Communication

Theory and Applications, pp. 6–10, Ambleside, UK, July 2009.

This chapter is structured as follows: Section 4.1 proposes a modification to the

VA, and Section 4.2 presents some numerical results for the optimal decoding of

convolutional codes with erasures.

4.1 Optimal generalized decoding of convolutional

codes over memoryless channels

In this section, a modified VA is presented for optimal decoding of convolutional

codes with erasures. In addition, it is proved that this modification coincides with

the optimal decoding rule in (3.4).
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Assuming that all codewords are transmitted with equal a-priori probability, the

joint probabilities in (3.4) can be replaced with conditional probabilities, and the

decoding regions in (3.4) are given by:

Λm =

{

y ∈ YN :
Pr(y|xm)

∑

m′ 6=m Pr(y|xm′)
≥ eNT

}

. (4.1)

The standard VA provides the ML decision and its corresponding likelihood metric

for the case at hand. Consequently, it remains to evaluate the denominator in (4.1)

which is involved in the specification of the decision regions in [41].

Remark 4.1 Since

Pr(y,xm)
∑

m′ 6=m Pr(y,xm′)
=

Pr(y,xm)

Pr(y)− Pr(y,xm)

the denominator of the LHS of the inequality in (3.4) can also be evaluated using the

forward part of the Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [7].

A convolutional code C with k inputs and n outputs for every time unit, and of

memory length m is considered. The information sequence u = (u1, . . .uB), of length

kB symbols, is encoded (followed by a termination sequence) to form the codeword

x = (x1, . . .xB+m) of length n(B +m) symbols. We assume a memoryless channel,

and denote the received sequence by y. Each encoding operation, where k new inputs

are introduced and n coded symbol outputs are transmitted at every time unit, is

considered as a single time step. Let the metric for each branch in the trellis graph

of C be

µ(yt|xt) , ln
(

p(yt|xt)
)

, 1 ≤ t ≤ B +m (4.2)

where yt is the vector of n received samples at the decoder for the time step t, and xt

is the vector of coded symbols which corresponds to the considered branch at time t.

In addition, we define the (cumulative) metric for each path in the trellis of C by

µ(yt|xt) ,
t
∑

i=1

µ(yi|xi)

where yt = (y1, . . . ,yt) is the vector of nt received samples up to time step t, xt =

(x1, . . . ,xt) is the vector of nt coded symbols of the considered path, and the sum is

taken over all the t branches of this path. The set of nodes at a given time step t,

which correspond to the possible encoder states in this time step, is denoted by V(t).
For each node v in the trellis, the set of branches entering v is denoted by Bv. The

originating node of a trellis branch b, is denoted by v−1
b , and the vector of output

coded symbols of b is denoted by x(b).
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A detailed description of the proposed algorithm is provided in Fig. 4.1. For the

sake of simplicity, the algorithm in Fig. 4.1 is provided for the particular case of

decoding a terminated convolutional code with erasures (T > 0). Steps 1(a) and (b)

in Fig. 4.1 form the initialization actions for the standard VA. Starting from time

step t = m, there exists a single surviving path in the trellis for each state whose

cumulative metric is updated and stored. While proceeding along the trellis, steps

2(a)-2(d) in Fig. 4.1 are the familiar add-compare-select steps of the standard VA; for

each state, the surviving path metric is chosen according to the maximal accumulate

metric. Steps 1(c), 2(e) and 2(f) in Fig. 4.1 are the introduced modification. These

steps allow the recursive evaluation of the sum in the denominator of (4.1). After

this recursive evaluation along the trellis, the surviving path is selected, and the

information bits are reconstructed according to the generalized decision rule in (4.1);

else, an erasure is declared.

The following theorem assures that the suggested algorithm coincides with For-

ney’s generalized decoding rule, as given in Definition 3.1:

Theorem 4.1 Consider the decoding of a terminated convolutional code using the

algorithm in Fig. 4.1. Assuming that xm is the codeword which corresponds to the

surviving path, then the generalized metric µG satisfies:

eµG =
∑

m′ 6=m

Pr(y|xm′).

Proof: Let K(v) denote the set of all possible paths entering a node v in the

trellis graph of C, except for the surviving path for v. We prove by induction that

the generalized metric µG(v) evaluated at v ∈ V(t) satisfies

eµG(v) =
∑

k∈K(v)

Pr(yt|xt
k) (4.3)

where yt is the received vector up to time t (included), and xt
k is the vector of the

first nt symbols of the k-th codeword. First, we check that (4.3) follows for t = m

where each state v ∈ V(m) has a single entering path. Hence, the sum in (4.3) is

void (i.e., K(v) = ∅) which coincides with the setting µG(v) = −∞ for all v ∈ V(m)

(step 1(c) in Fig. 4.1). Assume by induction that (4.3) holds for t = τ − 1 ≥ m,

and it is required to prove that (4.3) also holds for the next time step t = τ . Let

Ks(v) ⊆ K(v) denote all the paths in K(v) entering v via the same branch as the

survivor. For t = τ , consider the temporary result after step 2(e) in Fig 4.1, and

assume that the algorithm is currently handling the state v ∈ V(τ). Following the
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1. For each state v ∈ V(m):

(a) Set the single path entering v as the survivor s(v).

(b) Evaluate the surviving entering path metric µ(v).

(c) Set the generalized metric µG(v) = −∞.

2. Iterations over m+ 1 ≤ t ≤ L+m. For each state v ∈ V(t) do:

(a) Evaluate for each entering branch b ∈ B(v):

µb = µ̃b + µ(v−1
b )

where µ̃b is the branch metric of b, and µ(v−1
b ) is the path metric of the

survivor at the source node v−1
b of b.

(b) Find the entering branch with the maximal path metric:

b∗ = arg max
b∈B(v)

µb.

(c) Set an updated survivor: s(v) =
(

s(v−1
b∗ ),x(b∗)

)

.

(d) Set an updated survivor path metric: µ(v) = µb∗ .

(e) Evaluate a temporary generalized metric:

µG(v) = µG(v
−1
b∗ ) + µ̃b∗

where µG(v
−1
b∗ ) is the generalized metric evaluated at the previous node

v−1
b∗ of the survivor path, and µ̃b∗ is the branch metric of the last branch
of the survivor path.

(f) For each of the rest of the entering branches b ∈ B(v) \ {b∗} do:

i. Evaluate

ζ , µ̃b+max
(

µG(v
−1
b ), µ(v−1

b )
)

+ln
(

1+exp
(

−
∣

∣µG(v
−1
b )− µ(v−1

b )
∣

∣

)

)

where µ̃b is the branch metric of b, µG(v
−1
b ) and µ(v−1

b ) are the
generalized and standard path metrics at the initial node v−1

b of the
branch b.

ii. Update the generalized metric:

µG(v) = max
(

µG(v), ζ
)

+ ln
(

1 + exp
(

− |µG(v)− ζ|
)

)

.

3. If µ− µG > n(B +m)T , return the survivor in the single node in V(B +m).
Else, return an erasure.

Figure 4.1: Modified VA for optimal generalized decoding (with erasures) of termi-
nated convolutional codes.
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induction assumption, the temporary value of the generalized metric µG(v) satisfies

eµG(v) = eµ̃b∗ · eµG(v−1
b∗

)

(a)
= eµ̃b∗

∑

k∈K(v−1
b∗

)

Pr(yτ−1|xτ−1
k )

(b)
=

∑

k∈Ks(v)

Pr(yτ |xτ
k) (4.4)

where yt is the received vector up to time step t, xt
k is vector of the first nt symbols of

the codeword corresponding to a path k in the trellis graph, b∗ is the entering branch

of the maximizing path metric in step 2(b) of the algorithm, v−1
b∗ is the source node of

b∗. Equality (a) follows by the induction assumption for t = τ − 1, and equality (b)

follows from the memoryless property of the channel and the definition of the branch

metric in (4.2).

Next, let b be a branch which is handled by the algorithm in step 2(f.i), and denote

by Kb(v) ⊆ K(v) the set of all the paths in K(v) entering v via the branch b. After

step 2(f.i) terminates, the variable ζ satisfies:

eζ
(a)
= eµG(v−1

b
)+µ̃b + eµ(v

−1
b

)+µ̃b

(b)
=

∑

k∈Kb(v)

Pr(yτ |xτ
k) (4.5)

where yτ forms the received vector up to time step τ , and xτ
k forms the sequence of the

first nτ symbols of the codeword corresponding to a path k in the trellis, equality (a)

follows from the equality

ln(ea + eb) = max(a, b) + ln
(

1 + e−|a−b|
)

(4.6)

and equality (b) follows from the induction assumption, using the same arguments

leading to (4.4). Finally, from (4.4)-(4.6), the update in step 2(f.ii) guarantees that

(4.3) follows for t = τ . Hence, by induction (4.3) follows for all t ≥ m.

Remark 4.2 The complexity of the proposed algorithm is linear in the block length

B, and is exponential in the constraint length m of the code. This is the same

complexity characteristics as in the case of the standard VA.

Remark 4.3 (On generalized decoding with variable-size list) Consider the

problem of generalized decoding with a variable list-size according to the optimal

decoding rule in (3.4) (with T < 0). According to the random coding analysis in

[41] for low rates, the decoded list size is small (it typically includes one codeword);
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however, for higher code rates, the decoded list is likely to increase exponentially with

the block length. Consequently, when practical decoding is of interest, some fixed

limit on the decoded list is set. The following two options are suggested: the first, is

to apply the (parallel) list VA as in [95] with the evaluation of the generalized metric

as applied in the algorithm stated in Fig. 4.1. At the final step, only the survivors

satisfying the condition in step 3, are left in the decoded list. As long as the size of the

decoded list of the optimal decoding rule in Definition 3.1 is below the predetermined

size-limit, Theorem 4.1 assures that the suggested modification coincides with the

optimal decoding rule in [41]. The second option is to apply the evaluation of the

generalized metrics in a serial implementation of the list VA (see, e.g., [70], [95], [81]).

The serial implementation of the list VA iteratively produces a sequence of probable

codewords where each iteration produces the next most probable path in the trellis

graph of the code. After each iteration, the generalized metric of the decoded path is

checked to satisfy the condition in step 3 of the algorithm, and the iterations stop if

the condition fails. This scheme iteratively produces the list of codewords according

to the optimal decoding rule in Definition 3.1. Since an exponentially amount of

iterations is not practical, the algorithm needs to be stopped after a predetermined

upper limit on the number of possible iterations. The resulting decoded list equals

to the list under the optimal decoding rule only if the size of the optimal list is not

larger than the predetermined limit.

Remark 4.4 (On knowledge of channel state information) Let x and y be

vectors of size N over the channel input and output alphabets, respectively. The

path metric

µ(y|x) , ln
(

p(y|x)
)

.

may be replaced with an erroneous metric µ′ which does not rely on the complete

channel state information. Consequently, for some applications, the implementation

of the VA does not require complete channel state information at the receiver. Take

for example a BSC with a crossover probability p. For this case:

µ(y|x) = dH(y,x) ln

(

p

1− p

)

+N ln(1− p)

where dH(y,x) is the Hamming distance between x and y. Another example is the

AWGN channel with energy Es per transmitted symbol and a two-sided density noise

power spectrum N0/2, where we have:

µ(y|x) = 2Es

N0

yTx−
(

Es

N0

(

yTy +N
)

− N

2
ln

Es

πN0

)

.
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A weakness of the proposed algorithm is that its proof of optimality according to

Theorem 4.1 does not necessarily follow if the metric µ is replaced with an erroneous

metric. The implication of this observation is that the proposed algorithm may re-

quire complete channel state information to guarantee its optimality according to

Theorem 4.1.

4.2 Examples

The performance of the (2,1,4) convolutional code with generator polynomials g1(D) =

1+D+D3+D4 and g2(D) = 1+D3+D4 is simulated under some generalized decod-

ing algorithms with erasures. This code is used in the GSM Phase 2 system for the

full-rate data traffic channel [1]. The results are provided for information sequence

of 240 bits, with additional 4 bits of termination sequence (these bits are called “tail

bits” in [1] where the same parameters are used). It is assumed that the transmis-

sion takes place over an AWGN channel with a binary phase shift keying (BPSK)

modulation. Exact likelihood metrics are used in this simulation assuming complete

channel state information at the decoder, i.e., the metric used in the simulation is

µ(y|x) = 2Es

N0
yTx. Denote T ∗ , n(B + m)T , then the threshold eNT in (3.4) and

(3.6), is equal to eT
∗
. In the following simulated results, the error performance for

different values of the threshold parameter T ∗ are plotted. Note however, that when

T ∗ is fixed with the applied metric, it follows that a different receiver is simulated for

each SNR value. In Figure 4.2(a), the undetected bit error rates under the optimal

generalized decoding algorithm in Figure 4.1 (based on the optimal decoding rule of

Forney [41]), with T ∗ = 1 and 7, are provided. In addition, the bit error rate of

the standard VA and the undetected bit error rate of the LR decoding in (3.6) with

T ∗ = 31 and 42, and under the decoding algorithm of Yamamoto-Itho (this algorithm

uses a threshold A (see [120, Section II]), the same T ∗ values of the optimal algorithm

are used for A.) (YI) [120] , are provided for comparison. The corresponding block

erasure rates for the simulated algorithms are provided in Figure 4.2(b). It is evi-

dent that the estimated performance of the optimal algorithm outperforms the one

of the LR decoding rule. The undetected error performance of the optimal algorithm

with T ∗ = 1, resembles the undetected bit error rates of the LR decoding rule with

T ∗ = 31 and 42. However, the corresponding erasure rates under optimal decoding

clearly outperform the suboptimal erasure rates under the LR decoding rule. More-

over, the optimal algorithm with T ∗ = 7, which results in similar erasure rates as

the LR decoding rule with T ∗ = 31, whereas its undetected bit error rates clearly

outperforms the undetected bit error rates under the LR decoding rule. Comparing
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the simulated performance of the optimal algorithm with the YI decoding algorithm

shows a remarkable improvement as compared to the LR decoding rule, and a good

match with the simulated performance under the optimal decoding rule. For high

SNR values, both decoding algorithms show the almost the same performance. For

low SNR values, the gain of the optimal algorithm as compared with the YI algorithm

is marginal. Take for example the results for T ∗ = 7 where both decoding algorithms

have almost the same erasure rates, while only a slight improvement of the undetected

bit error rate is observed for the optimal algorithm (in low SNR values).

4.3 Summary and Conclusions

An optimal algorithm is provided based on the generalized decision regions of For-

ney [41]. This algorithm allows for a practical generalized decoding of convolutional

codes with erasures and variable list-sizes. The simulated performance of the pro-

posed algorithm is compared with two suboptimal erasure decoding algorithms: the

LR decoding rule in (3.6), and an algorithm by Yamamoto and Itoh (YI) [120]. The

difference between the simulated performance of the optimal decoding algorithm and

the YI algorithm is negligible. Moreover, the implementation of the YI algorithm is

simpler and it yields a remarkable reduction in decoding complexity. The performance

of the LR decoding rule, on the other hand, are substantially inferior.
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Figure 4.2: Error performance of a (2,1,4) convolutional code under generalized de-
coding with erasures. Undetected bit error rates, and erasure rates, are provided in
plots (a) and (b), respectively, under the optimal decoding in Figure 4.1, the LR
decoding rule in (3.6), and for the Yamamoto-Itoh (YI) decoding algorithm [120].
The bit error rate under ML decoding (using the standard VA) is also provided. The
results are provided for information sequence of 240 bits, with additional 4 bits of
termination sequence



Chapter 5

Secrecy-Achieving Polar-Coding

Chapter Overview

A secrecy polar scheme is provided in this chapter for the two-user wire-tap channel

model. A secret message needs to be transmitted reliably to a legitimate user. At the

same time, this message must be kept secret from the eavesdropper. It is assumed

that the marginal channel to the eavesdropper is physically degraded with respect

to the marginal channel to the legitimate user. The proposed secrecy polar scheme

for the degraded case is based on transmitting random bits on the ‘good bits’ of the

degraded eavesdropper channel. These random bits are independent of the secret

message. The ‘good bits’ for the degraded eavesdropper channel are also ‘good’ for

the legitimate user. Consequently, these random bits can be decoded reliably at the

legitimate user. The rest of the ‘good’ bits for the legitimate user are dedicated for

the secret message.

Transmitting random bits on the ‘good bits’ of the eavesdropper, all the possible

information rates that can be detected by the eavesdropper are exhausted. Otherwise,

the standard channel capacity could have been beaten. Thus the ‘good bits’ associ-

ated with the secret message for the legitimate channel, must be perfectly secret (at

least in the weak sense). Note that this result is satisfied immaterial of whether the

eavesdropper adheres to successive decoding or to optimal decoding (as otherwise, its

capacity could have been beaten). The chapter is based on the following paper:

E. Hof and S. Shamai (Shitz), “Secrecy-Achieving Polar-Coding,” submitted to the

IEEE Trans. on Information Theory, May 2010. This work is presented in part in the

2010 IEEE Information Theory Workshop (ITW 2010), Dublin, Irland, September

2010 (Invited talk).
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Additional independent works on this subject are provided in [3] [66] [75].

This chapter is structured as follows: In Section 6.1 preliminary introduction

is provided. In Section 6.1.1 the wire-tap communication model is introduced in

addition to some basic definitions and results in information-theoretic security. Polar

codes are introduced in Section 5.1.2. The polar secrecy scheme is detailed and

studied in Section 6.3. A conjecture on possible polarization properties is stated in

Section 5.3, along with a resulting adaptation of the polar secrecy scheme for non-

degraded wiretap channels. A list of possible further generalizations is provided in

Section 5.4.

5.1 Preliminaries

5.1.1 The Wire-Tap Communication Model

We consider the communication model in Figure 5.1. A coded system is presented

which transmits a confidential message U to a legitimate user. The message U is

chosen uniformly from a set of size M . Next, the message is encoded to a codeword

X with a blocklength n over an alphabet X . The resulting code-rate is R = 1
n
logM .

The codeword X is transmitted over a DMC P , with an input alphabet X , and output

alphabets Y and Z. Let P (y, z|x) denote the probability of receiving the vectors

y ∈ Yn, and z ∈ Zn, at the legitimate user and the eavesdropper, respectively, given

that a codeword x ∈ X n is transmitted. Based on the assumption that the channel

is memoryless, it follows that

P (y, z|x) =
n
∏

k=1

P (yk, zk|xk)

where (with some abuse of notation) P (y, z|x) denotes the probability of receiving the

symbols y ∈ Y and z ∈ Z, at the legitimate user and the eavesdropper, respectively,

given that the symbol x ∈ X is transmitted. Moreover, let G(y|x) and Q(z|x) denote
the marginal probabilities for receiving the symbols y ∈ Y and z ∈ Z, at the legitimate

user and the eavesdropper, respectively, given that the symbol x ∈ X is transmitted.

Both G(y|x) and Q(z|x) are transition probability laws of DMCs, called the marginal

channels of the legitimate user and the eavesdropper, respectively. In addition, the

probability to receive the symbol z ∈ Z at the eavesdropper, given that the symbol

y ∈ Y is received at the legitimate user is denoted by D(z|y).
The channel output vectors Y and Z, both of length n, are received by the le-

gitimate user and the eavesdropper, respectively. The legitimate user decodes the
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Encoder
Channel

U
X

PY,Z|X

Y

Message Decoder Û

Z

Legitimate user

Eavesdropper

Figure 5.1: A wire-tap communication model.

received vector Y resulting in the decoded message Û . The objectives of the con-

sidered coding system is to obtain both secure and reliable communication. These

objectives are to be accomplished simultaneously using a single codebook Cn. The

reliability of the system is measured via the average error probability Pe(Cn) of the

decoded message

Pe(Cn) =
1

M

M
∑

m=1

Pr
(

Û 6= m| U = m
)

.

Note that the error probability depends on the blocklength of the coded message.

The level of security is measured by the equivocation rate

Re(Cn) ,
1

n
H(U |Z) (5.1)

where H(U |Z) denotes the conditional entropy of the transmitted message U , given

the received vector Z at the eavesdropper.

Definition 5.1 (Achievable rate-equivocation pair) A rate-equivocation pair

(R,Re) is achievable if there exists a code sequence {Cn} of block length n and rate

R such that

lim
n→∞

Pe(Cn) = 0

Re ≤ lim
n→∞

Re(Cn).

Remark 5.1 (On strong and weak notions of secrecy) The current discussion

considers normalized entropies to measure the level of security (see the definition of

equivocation rate in (5.1)). Therefore, the achieved secrecy notion is referred to as

weak secrecy. The strong notion of secrecy considers the unnormalized mutual infor-

mation between the confidential message and the received vector at the eavesdropper

receiver. Strong secrecy guarantees secrecy in the weak sense while the opposite

direction does not follow.
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Definition 5.2 (Secrecy capacity) The secrecy capacity Cs is the supremum of all

the rates R, such that the pair (R,R) is an achievable rate-equivocation pair.

Theorem 5.1 (The secrecy capacity of the wire-tap channel [69]) The secrecy

capacity Cs of the wire-tap channel satisfies:

Cs = max
PUXPY Z|X

(

I(U ; Y )− I(U ;Z)
)

where U is an auxiliary random variable over the alphabet U , satisfying

1. Markov relationship: U → X → (Y, Z) is a Markov chain.

2. Bounded cardinality: |U| ≤ |X |+ 1.

Binary-input symmetric wire-tap channels are considered in this chapter.

Definition 5.3 (Symmetric binary input channels) A DMC with a transition

probability p, binary-input alphabet X , and an output alphabet Y is said to be

symmetric if there exists a permutation π over Y such that

1. The inverse permutation π−1 is equal to π, i.e.,

π−1(y) = π(y)

for all y ∈ Y .

2. The transition probability p satisfies

p(y|0) = p(π(y)|1)

for all y ∈ Y .

Definition 5.4 (Symmetric binary-input wire-tap channels) A binary input dis-

crete memoryless wire-tap channel is symmetric if both of its marginal channels are

symmetric.

The particular case of physically degraded channels is studied in this chapter.

Definition 5.5 (Physically degraded channels) Let P be a wire-tap channel with

an input alphabet X and output alphabets Y and Z, at the legitimate and eaves-

dropper, respectively. Then, P is said to be physically degraded if

P (y, z|x) = G(y|x)D(z|y) (5.2)

for all x ∈ X , y ∈ Y , and z ∈ Z.
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The following Theorem characterizes the secrecy capacity of a binary-input, mem-

oryless, symmetric and degraded wire-tap channel:

Theorem 5.2 ([69]) Let P be a binary-input, memoryless, symmetric, and de-

graded wire-tap channel. Denote by GY |X and QZ|X the marginal channels to the

legitimate user and the eavesdropper, respectively. Then, the secrecy capacity Cs is

given by

Cs(P ) = C(GY |X)− C(QZ|X)

where C(GY |X) and C(QZ|X) are the channel capacities of the marginal channel GY |X

and QZ|X, respectively.

Remark 5.2 (On the entire rate-equivocation region) Theorem 5.2 is a par-

ticular case of the rate-equivocation region of less-noisy channels (which is on its own

a particular case of the rate-equivocation region of the wire-tap channel). Under the

notation in Theorem 5.1, if I(U ; Y ) ≥ I(U ;Z) for every U satisfying the Markov

relationship in Theorem 5.1, then the channel to the legitimate receiver is said to be

less noisy than the eavesdropper (the degradation assumption in (5.2) satisfies the

less noisy condition). It can be shown for the case of less-noisy wire-tap channels,

that the rate-equivocation region is given by

⋃

PXPY Z|X











(R,Re) :

0 ≤ R ≤ I(X ; Y )

0 ≤ Re ≤ R

Re ≤ I(X ; Y )− I(X ;Z)











.

For further details and proof see [69] and references therein. In the particular case

of binary-input, memoryless symmetric and degraded wire-tap channels as in Theo-

rem 5.2, the rate-equivocation region is therefore given by











(R,Re) :

0 ≤ R ≤ C(GY |X)

0 ≤ Re ≤ R

Re ≤ C(GY |X)− C(QZ|X)











. (5.3)

5.1.2 Polar Codes

This preliminary section offers a short summary of the basic definitions and results

in [4], [6], that are essential to the presentation of the results in Section 6.3.

Let p be a transition probability function of a DMC with a binary input-alphabet

X = {0, 1} and an output alphabet Y . The operation of the channel on vectors is
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also denoted by p, that is for x = (x1, . . . , xn) ∈ X n, and y = (y1, . . . , yn) ∈ Yn, the

block transition probability is given by

p(y|x) =
n
∏

l=1

p(yl|xl).

Polar codes are defined in [4] using the following recursive construction. At the

first step, two independent copies of p are combined to form a new channel p2 over

an input alphabet X 2 and output alphabet Y2. The transition probability function

of the combined channel is given by

p2(y1, y2|w1, w2) = p(y1|w1 + w2)p(y2|w2) (5.4)

for all y1, y2 ∈ Y , and w1, w2 ∈ X , where the addition operation is carried modulo 2.

At the i-th step of the construction, the transition probability function pn, for an

integral power of 2, n = 2i, is defined for a combined channel with an input alphabet

X n and an output alphabet Yn. The recursive definition of pn is based on two

independent copies of the channel pn
2
defined at the previous step (i − 1). The

channel pn
2
has an input alphabet X n

2 and an output alphabet Y n
2 . The construction

of the channel pn includes the following steps:

1. An input vector w = (w1, . . . , wn) ∈ X n is first transformed to a vector s =

(s1, . . . , sn) ∈ X n where

s2k−1 = w2k−1 + w2k

and

s2k = w2k, 1 ≤ k ≤ n

2

where the addition is carried modulo 2.

2. The vector s is transformed into a vector v ∈ X n where

v = (s1, s3, . . . , sn−1, s2, s4, . . . , sn).

i.e., the first n
2
elements of v, v1, . . . , vn

2
, equal the elements in s with odd

indices, and the other n
2
elements of v, vn

2
+1, . . . , vn, are equal the elements of

s with even indices. This operation is called a reverse shuffle operation and can

be described by the linear transformation

v = sRn

where Rn is an n× n matrix, called the reverse shuffle operator.
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3. pn(y|w) is given by

pn(y|w) = pn
2

(

y1, y2, . . . , yn
2
|v1, v2, . . . , vn

2

)

· pn
2

(

yn
2
+1, yn

2
+2, . . . , yn|vn

2
+1, vn

2
+2, . . . , vn

)

. (5.5)

The recursive channel-synthesizing operation of pn is referred to as channel combining,

and the channel pn is referred to as the combined channel. Note that all block lengths

n are assumed to be integral powers of 2.

The recursive construction of pn can be equivalently defined by using a linear

encoding operation. Let

F =

(

1 0

1 1

)

and define the following recursive construction of the n× n matrices Gn:

G1 =I1

Gn =
(

In
2
⊗ F

)

Rn

(

I2 ⊗Gn
2

)

(5.6)

where Il is the l×l identity matrix and ⊗ denotes the Kronecker product for matrices.

The matrix Gn is refereed to as the polar generator matrix of size n.

Proposition 5.1 ([4]) Let p be a DMC, and let pn be the combined channel with a

block length n. Then,

pn(y|w) = p(y|wGn) (5.7)

for all y ∈ Yn and w ∈ X n, where pn is the combined channel in (5.5) and Gn is the

n× n matrix defined in (5.6).

Denote by [n] , {1, 2, . . . , n}, and let An ⊆ [n]. In addition, denote by Ac
n the

complementary set of An, that is Ac
n = [n] \ An. Given a set An, a class of coset

codes with a common code-rate 1
n
|An| are formed. Over the indices specified by An,

the components of the input vector w are set according to the information bit vector.

The rest of the bits of w are predetermined and fixed according to the particular

code design. By setting both the set An and the components of w specified by Ac
n,

a particular coset code is defined. This code can be shown to be a block coset code.

The set An is referred as the information set. Polar codes are constructed by a

specific choice of the information set An. Moreover, the choice of the information set

is tailored to the specific channel over which the communication takes place.

A coset code is defined by using a linear block code and a coset vector. Let G

be a generator matrix for a binary (n, k) linear block code with block length n and
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dimension k. In addition, let c ∈ X n be a binary vector. Then, the coset block code

C(G, c) is defined by

C(G, c) ,
{

x : x = uG + c, u ∈ X k
}

. (5.8)

Denote by Gn(An) the |An| × n sub-matrix of Gn, defined by the rows of Gn whose

indices are in An. Similarly, the matrix Gn(Ac
n) denotes the |Ac

n| × n sub-matrix of

Gn formed by the remaining rows of Gn. For each choice of An and an arbitrary n−k
binary vector b ∈ Xn−k, k = |An|, a coset code C is defined according to

C = C
(

Gn (An) ,bGn (Ac
n)
)

. (5.9)

This coset coding construction coincides with the recursive construction in (5.6)

and (5.7). Specifically, by proper choice of w, x = wGn. To see this, plug the

information vector u in the information indices, specified by An, of the input vector

w to the recursive construction. In addition, plug the vector b in the rest of the

components of w .

Channel splitting is another important operation that is introduced in [4] for polar

coding. The split channels {p(l)n }nl=1, with a binary input alphabet X and output

alphabets Yn × X l−1, 1 ≤ l ≤ n, are defined according to:

p(l)n (y,w|x) = 1

2n−1

∑

c∈Xn−l

pn
(

y|(w, x, c)
)

(5.10)

where y ∈ Yn, w ∈ X l−1, and x ∈ X . The channel synthesizing operation in (5.10)

is referred to as channel splitting operation. The Bhattacharyya parameter of p
(l)
n is

denoted by:

B(p(l)n ) ,
∑

y∈Yn

∑

w∈X l−1

√

p
(l)
n (y,w|0)p(k)n (y,w|1). (5.11)

The construction of the sequence of sets of split channels {p(l)n (y,w|x)}nl=1, n = 2i,

i ∈ N, in (5.10) can be described using the following alternative recursion:

Proposition 5.2 ([4]) For all i > 0, 1 ≤ l ≤ 2i,

p
(2l−1)

2i+1

(

(y(1),y(2)),w|w1

)

=
∑

w∈X

1

2
p
(l)

2i

(

y(1), g(w)|w1 + w
)

p
(l)

2i

(

y(2), e(w)|w
)

(5.12)

p
(2l)

2i+1

(

(y(1),y(2)), (w, w1)|w2

)

=
1

2
p
(l)

2i

(

y(1), g(w)|w1 + w2

)

p
(l)

2i

(

y(2), e(w)|w2

)

(5.13)

where y(1),y(2) ∈ Y2i, w = (w1, . . . , w2l−2) ∈ X 2l−2, w1, w2 ∈ X , the addition oper-

ation is carried modulo 2 and g = (g1, . . . , gl−1) = g(w) is a vector in X l−1 defined

according to

gj = w2j−1 + w2j, 1 ≤ j ≤ l − 1 (5.14)
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and

e(w) = (w2, w4, . . . , w2l−2) (5.15)

is the vector in X l−1 comprises from the components of x with even indices.

The importance of channel splitting is in its role in the successive cancellation

decoding procedure that is provided in [4]. The error performance analysis of this

decoding procedure relies on the following two results:

Theorem 5.3 ([6]) Let p be a binary-input symmetric DMC with capacity C(p),

and fix an arbitrary rate R < C(p) and a positive constant β < 1
2
. Then, there exists

a sequence of information sets An ⊂ [n], where n = 2i, i ∈ N, such that for large

enough blocklengths n the following properties are satisfied:

1. Rate:

|An| ≥ nR.

2. Performance: The Bhattacharyya parameters in (5.11) satisfy

B(p(l)n ) ≤ 2−nβ

for every l ∈ An.

Proposition 5.3 ([4]) Assume that the vector w = (w1, . . . , wn) ∈ X n is encoded

via the considered recursive construction in (5.7), and is transmitted over a memory-

less and symmetric DMC channel p with a binary-input alphabet X and an output

alphabet Y . Define the event

El(p) ,
{

p(l)n (y,w(l−1)|wl) ≤ p(l)n (y,w(l−1)|wl + 1)
}

(5.16)

where y ∈ Yn is the received vector, w(l−1) = (w1, . . . , wl−1) is the vector comprises

of the first l−1 bits of w, p
(l)
n is the split channel in (5.10) and the addition is carried

modulo 2. Then, the event El is independent of the actual input vector w and

Pr
(

El(p)
)

≤ B
(

p(l)n
)

where B(p
(l)
n ) is the Bhattacharyya parameter in (5.11).
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5.2 The Proposed Scheme

5.2.1 Polar Coding for Degraded Wire-Tap Channels

Coset Block Codes

A polar coding scheme is defined for the wire-tap channel. The proposed scheme is

defined using the notion of coset block codes, based on the polar generator matrix

Gn introduced in Section 5.1.2. For a given block length n = 2i, i ∈ N, let An be an

arbitrary subset of [n] of size k. In addition, let Nn be an additional arbitrary subset

of Ac
n, of size k

∗, and let bn ∈ X n−k−k∗ be a length n− k− k∗ binary vector. Denote

by Bn the set of remaining indices in Ac
n, that is

Bn , Ac
n \ Nn. (5.17)

The sets An, Bn, and Nn, the polar generator matrix Gn and the vector bn are all

known to both the legitimate user and the eavesdropper.

Let u ∈ X k be a confidential information bit vector that needs to be transmitted

to the legitimate user. The operation of the proposed secrecy scheme is described as

follows:

1. A binary vector b∗
n ∈ X k∗ is chosen uniformly at random.

2. The coset block code C∗
n is chosen according to

C∗
n = C

(

Gn(An),bnGn(Bn) + b∗
nGn(Nn)

)

. (5.18)

3. The information vector u is encoded into a codeword x using the coset block

code C∗
n. That is,

x = uGn(An) + bnGn(Bn) + b∗
nGn(Nn) (5.19)

and it is transmitted over the wire-tap channel.

As the complexity of constructing a random vector can be assumed to be O(n),

then the encoding complexity of the proposed scheme equals the encoding complexity

of the single-user polar encoding in [4], which is O(n logn).

For given sets An and Nn, and a vector bn, the resulting coding scheme is denoted

by Cn(An,Nn,bn). Since symmetric channels are considered, the performance of the

provided scheme is shown in the following to be independent of the actual choice of

bn. Consequently, the suggested coding scheme is denoted by Cn(An,Nn).
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Recursive Polar Construction

An equivalent recursive construction of the proposed scheme is provided. Similarly

to the single-user construction in (5.4), the first step of the recursive construction is

the composition of the wiretap channel P2 with an input alphabet from X 2 and an

output alphabet from Y2 × Z2

P2(y1, y2, z1, z2|w1, w2) = P (y1, z1|w1 + w2)P (y2, z2|w2) (5.20)

where (y1, y2) ∈ Y2, (z1, z2) ∈ Z2, (w1, w2) ∈ X 2, and the addition is carried modulo-

2.

The continuation of the recursive construction follows in a similar manner to

the recursion in Section 5.1.2; The transition probability function Pn for a channel

with an input alphabet X n and an output alphabet Yn × Zn, is constructed using

two independent copies of a channel Pn
2
with an input alphabet X n

2 and an output

alphabet Y n
2 × Z n

2 . Note that as in Section 5.1.2, all block lengths (n) are integral

powers of 2. The first part of the recursive step includes the evaluation of the vectors

s,v ∈ X n. This part is identical to the construction as described in Section 5.1.2

(steps 1 and 2). Finally, the transition probability function Pn(y|x) is given by

Pn(y, z|x) =Pn
2

(

(y1, y2, . . . , yn
2
), (z1, z2, . . . , zn

2
)|(v1, v2, . . . , vn

2
)
)

· Pn
2

(

(yn
2
+1, yn

2
+2, . . . , yn), (zn

2
+1, zn

2
+2, . . . , zn)|(vn

2
+1, vn

2
+2, . . . , vn)

)

.

(5.21)

The channel Pn in (5.21) is the combined wire-tap channel.

As in the case of standard polar coding for the single-user model, the recursive con-

struction can be shown to be equivalent to a linear encoding with the polar generator

matrix Gn:

Proposition 5.4 Let P be a binary memoryless wire-tap channel with an input

alphabet X and output alphabets Y and Z, for the legitimate user and the eaves-

dropper, respectively. In addition, let Pn and Gn be the combined wire-tap channel

in (5.21) and the polar generator matrix in (5.6), respectively. Then,

Pn(y, z|w) = P (y, z|wGn) (5.22)

for all w ∈ X n, y ∈ Yn, and z ∈ Zn.

Proof: The proof of (5.22) is identical to the proof of (5.7) in [4], where symbols

from the output alphabet of the single user channel are replaced with the correspond-

ing pair of symbols from the composite output alphabet (of the legitimate and the

eavesdropper channels).
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To obtain the equivalence of the recursive construction of the combined channel

Pn in (5.21) with the encoding operation in (5.19), the division of the components

of w in (5.22) for information bits, random bits and predetermined and fixed bits, is

detailed. This division is defined by the sets An and Nn as follows:

1. Over the indices specified by the index set An, the information bits u are placed.

2. The random bits b∗
n are placed in the indices specified by Nn.

3. The predetermined and fixed bits in bn are left for the remaining indices spec-

ified by Bn.

Plugging u, b∗
n, and bn in wGn, results in the coded message x in (5.19).

Channel Splitting and Degradation Properties

The channel splitting operation in (5.10) is repeated for the case of wire-tap channels.

This procedure can be carried in two different but equivalent options:

1. First performing a channel splitting operation for the wire-tap channel. This

operation results in the split wire-tap channels {P (l)
n }nl=1 with a binary input

alphabet X and an output alphabet Yn × Zn × X l−1:

P (l)
n (y, z,w|w) , 1

2n−1

∑

c∈Xn−l

Pn

(

y, z|(w, w, c)
)

(5.23)

where y ∈ Yn, z ∈ Zn, w ∈ X l−1, and w ∈ X . Next, deriving the marginal

split channels

G(l)
n (y,w|w) ,

∑

z∈Zn

P (l)
n (y, z,w|w) (5.24)

and

Q(l)
n (z,w|w) ,

∑

y∈Yn

P (l)
n (y, z,w|w) (5.25)

for the legitimate-user and eavesdropper, respectively, where y, z, w, and w are

as in (5.23).

2. First deriving the marginal combined channels:

Gn(y|w) ,
∑

z∈Zn

Pn(y, z|w) (5.26)

and

Qn(z|w) ,
∑

y∈Yn

Pn(y, z|w) (5.27)
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for the legitimate user and eavesdropper, respectively, where y ∈ Yn, z ∈ Zn,

and w ∈ X n. Next, split the marginal combined channels in (5.26) and (5.27)

according to
1

2n−1

∑

c∈Xn−l

Gn

(

y|(w, w, c)
)

. (5.28)

and
1

2n−1

∑

c∈Xn−l

Qn

(

z|(w, w, c)
)

(5.29)

where y, z, w, and w are as in (5.23).

It is an immediate consequence of the equivalence properties in (5.7) and (5.22), that

the split channels in (5.24) and (5.25) equal to the channels in (5.28) and (5.29).

The following proposition considers physically degraded wire-tap channels:

Proposition 5.5 Assume that the wire-tap channel P is physically degraded. Then,

the split channel P
(l)
n (y, z,w|x) in (5.23) satisfies

P (l)
n (y, z,w|x) = G(l)

n (y,w|x)D(z|y) (5.30)

whereG
(l)
n is the marginal split channel of the legitimate user in (5.24), y = (y1, . . . , yn) ∈

Yn, z = (z1, . . . , zn) ∈ Zn, u ∈ X l−1, x ∈ X , D(z|y) is a memoryless transition prob-

ability law:

D(z|y) =
n
∏

l=1

D(zi|yi)

and D(z|y) is the conditional probability law of receiving a symbol z ∈ Z at the

eavesdropper, assuming that the symbol y ∈ Y is received at the legitimate receiver.

Proof: The recursion operation in Proposition 5.2 is valid for the wire-tap chan-

nel. Specifically, for all i > 0 and 1 ≤ l ≤ 2i it follows that

P
(2l−1)

2i+1

(

(y(1),y(2)), (z(1), z(2)),w|w1

)

=
∑

w∈X

1

2
P

(l)

2i

(

y(1), z(1), g(w)|w1 + w
)

P
(l)

2i

(

y(2), z(2), e(w)|w
)

(5.31)

P
(2l)

2i+1

(

(y(1),y(2)), (z(1), z(2)), (w, w1)|w2

)

=

1

2
P

(l)

2i

(

y(1), z(1), g(w)|w1 + w2

)

P
(l)

2i

(

y(2), z(2), e(w)|w2

)

(5.32)

where y(1),y(2) ∈ Y2i , z(1), z(2) ∈ Z2i , w ∈ X 2l−2, w1, w2 ∈ X , and g(w) and e(w)

are as defined in (5.14) and (5.15), respectively. The proof of the recursion property

in (5.31) and (5.32) follows the exact derivation as in [4] (while replacing the output
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alphabet of the single-user channel with the combined outputs of the legitimate user

and the eavesdropper).

From (5.26), (5.31), and (5.32), a similar recursion follows for the marginal split

channel G
(l)
n (y,w|x) of the legitimate user. To this end, the recursion operations

in (5.12) and (5.13) are satisfied where p
(2l−1)

2i+1 , p
(l)

2i
and p

(2l)

2i+1 are replaced by G
(2l−1)

2i+1 ,

G
(l)

2i and G
(2l)

2i+1 , respectively.

The proof of the degradation in (5.30) is accomplished by induction. At the first

step, from (5.31) and (5.32) it follows that

P
(1)
2

(

(y1, y2), (z1, z2)|w1

)

=
∑

w∈X

1

2
P
(

y1, z1|w1 + w
)

P
(

y2, z2|w
)

(5.33)

P
(2)
2

(

(y1, y2), (z1, z2), w1|w2

)

=
1

2
P
(

y1, z1|w1 + w2

)

P
(

y2, z2|w2

)

. (5.34)

Then, plugging (5.2) in (5.33) and (5.34) concludes the proof for the first step. Next,

assume that the split channel P
(l)

2i satisfies the degradation property in (5.30). That

is, assume that

P
(l)

2i (y, z,w
′|w) = G

(l)

2i (y,w
′|w)D(z|y) (5.35)

for all 1 ≤ l ≤ 2i, y ∈ Y2i , z ∈ Z2i , w′ ∈ X l−1, and w ∈ X . Then, from (5.31)

and (5.35) it follows that

P
(2l−1)

2i+1

(

(y(1),y(2)), (z(1), z(2)),w|w1

)

=
∑

w∈X

1

2
G

(l)

2i

(

y(1), g(w)|w1 + w
)

D(z(1)|y(1))

G
(l)

2i

(

y(2), e(w)|w
)

D(z(2)|y(2))

=G
(2l−1)

2i+1

(

(y(1),y(2)),w|w1

)

D
(

(z(1), z(2))|(y(1),y(2))
)

where the last step follows using the recursion properties of the marginal split channel

for the legitimate user. A similar argument assures the degradation property for P
(2l)

2i+1

which concludes the proof of the proposition.

Successive Cancellation Decoding

The successive cancellation decoding procedure in [4] is applied for the legitimate

user. The difference from the standard single-user case is that for the wire-tap chan-

nel model the legitimate user needs to decode both the message u ∈ X k and the

noisy vector b∗
n ∈ X k∗. In terms of information sets, the legitimate receiver operates

on the indices specified by both An and Nn. Denote by w = (w1, . . . , wn) ∈ X n the

transmitted vector over the combined channel Pn, then w is composed of the infor-

mation vector u, the random vector b∗
n, and the predetermined fixed vector bn. It
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is important not to confuse w with the actual codeword x in (5.19), which is trans-

mitted over the given wire-tap channel P . Both interpretations are equivalent as the

coset block code is equivalent to the recursive combining construction. Nevertheless,

the decoding rule (and its performance analysis in the following) is characterized in

terms of the vector w, transmitted over the combined wire-tap channel and received

over the marginal split channels for the legitimate user.

The decoding rule operates recursively to compute the length-n decoded vector

ŵ = (ŵ1, . . . , ŵn) ∈ X n. Let 1 ≤ l ≤ n, and assume that the first l − 1 components

of ŵ, denoted by ŵ(l−1), are already evaluated. If l 6∈ Ān, where

Ān , An ∪Nn.

then the current index l is not in the information index set An and not in the indices

specified in Nn for the noisy vector. Consequently, l ∈ Bn. Recall that for the indices

specified by Bn, the predetermined vector bn is set. Since bn is predetermined and

known (both to the legitimate user and the eavesdropper), wl is known at the receiver

and therefore it is possible to set

ŵl = wl.

If l ∈ Ān, then the current index is identified either as an information bit in u or as a

noisy bit in b∗
n. For this case, the following decoding rule is applied to the marginal

split channel G
(l)
n in (5.24):

ŵl =

{

0 if G
(l)
n (y, ŵ(l−1)|0) ≥ G

(l)
n (y, ŵ(l−1)|1)

1 else
. (5.36)

The successive cancellation decoding described in this section, is by no means

optimal. This important observation is already noted for the single-user case in [4].

Nevertheless, for an uncoded communication model with a communication channel

whose transition probability function is G
(l)
n , the detection rule for the single bit wl

in (5.36) is optimal, if wl is an equiprobable bit.

5.2.2 A Secrecy Achieving Property for Degraded Channels

Theorem 5.4 Let P be a binary-input, memoryless, degraded and symmetric wire-

tap channel with a secrecy capacity Cs(P ). Fix an arbitrary positive β < 1
2
, and

R < Cs(P ). Then, there exist sequences of sets An and Nn such that the secrecy

coding scheme Cn(An,Nn) satisfies the following properties:

1. Rate: For a sufficiently large block length n

R ≤ 1

n
|An|. (5.37)
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2. Security: The equivocation rate Re(Cn(An,Nn) satisfies

lim
n→∞

Re

(

Cn(An,Nn)
)

≥ R. (5.38)

3. Reliability: The average block error probability under successive cancellation

decoding Pe(Cn(A,N )) satisfies

Pe

(

Cn(An,Nn)
)

= o
(

2−nβ
)

.

Proof:

The proof comprises of three parts: A code construction part where the construc-

tion of the sets An and Nn is described in detail, along with the derivation of the

coding rate property in (5.37). An analysis of the equivocation rate is provided in

the second part of the proof. Finally, in the third part an upper bound on the block

error probability at the legitimate receiver is provided under successive cancellation

decoding.

Part I: The code construction

Fix some r∗ = C(PZ|X) − ǫ, and r = C(PY |X) − ǫ, where C(PY |X) and C(PZ|X)

are the channel capacities of the marginal channels for the legitimate user and the

eavesdropper, and ǫ > 0 is determined later. According to Theorem 5.3, there exists

a sequence of index sets Ñn ⊂ [n], satisfying:

1. The cardinality of the index set Ñn satisfies

|Ñn| ≥ ⌊nr∗⌋. (5.39)

2. For all l ∈ Ñ , the Bhattacharyya parameter B(Q
(l)
n ) of the split channel Q

(l)
n of

the eavesdropper in (5.25), is upper bounded by

B(Q(l)
n ) ≤ 2−nβ

. (5.40)

The index set Nn of size ⌊nr∗⌋ is chosen arbitrary from Ñn.

Next, Theorem 5.3 is applied for the marginal channel of the legitimate user.

Accordingly, there exists a sequence of index sets Ãn ⊂ [n], satisfying:

1. The cardinality of the index set Ãn satisfies

|Ãn| ≥ ⌊nr⌋. (5.41)
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2. For all l ∈ Ãn, the Bhattacharyya parameter B(G
(l)
n ) of the split channel G

(l)
n

of the legitimate user in (5.28), is upper bounded according to

B(G(l)
n ) ≤ 2−nβ

. (5.42)

For each n, the information index set An of size ⌊nr⌋−⌊nr∗⌋ is chosen from Ãn \Nn.

As |Nn| = ⌊nr∗⌋ and |Ãn| ≥ ⌊nr⌋, the set Ãn \ Nn is of sufficient size. The specific

choice of An may be carried arbitrarily. Nevertheless, the best choice is to pick the

indices in Ãn\Nn whose corresponding marginal split-channels for the legitimate-user

have the lowest Bhattacharyya parameters.

The code rate of the resulting scheme satisfies

1

n
|An| ≥

r − 1

n
− r∗ − 1

n

= C(PY |X)− C(PZ|X)− 2ǫ− 2

n

= Cs(P )− 2ǫ− 2

n
(5.43)

where the last equality follows from Theorem 5.2. Consequently, for a large enough

block length and a properly chosen (small) ǫ, the code rate of the proposed scheme

satisfies (5.37).

The choice of the vector bn ∈ X n−k−k∗ may be carried arbitrarily.

Part II: The equivocation rate analysis

The confidential message vector, the transmitted codeword, and the received vector

at the eavesdropper are denoted by the random vectors U, X, and Z, respectively.

The equivocation rate of the proposed scheme Re

(

Cn(A,N )
)

is given by

Re

(

Cn(A,N )
)

=
1

n
H(U|Z)

=
1

n
H(U)− 1

n
I(U;Z)

=
1

n
|An| −

1

n
I(U;Z) (5.44)

Where the last equality follows since the message bit vector is of length |An| and
equiprobable. Using the chain rule of mutual information

I(U,X;Z) =I(U;Z) + I(X;Z|U)

=I(X;Z) + I(U;Z|X).
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Consequently,

I(U;Z) =I(X;Z) + I(U;Z|X)− I(X;Z|U)

(a)
=I(X;Z)− I(X;Z|U)

≤nC(PZ|X)− I(X;Z|U) (5.45)

where (a) follows since U → X → Z is a Markov chain which implies that Z and

U are statistically independent given X, and C(PZ|X) is the channel capacity of the

marginal channel to the eavesdropper. The conditional mutual information I(X;Z|U)

is given by

I(X;Z|U) =H(X|U)−H(X|U,Z)
(a)
=|Nn| −H(X|U,Z)
(b)

≥n
(

C(PZ|X)− ǫ
)

− 1−H(X|U,Z) (5.46)

where (a) follows since the binary vector b∗ is chosen uniformly at random and it is

independent with the confidential message, and (b) follows since |Nn| = ⌊nr∗⌋ and

r∗ = C(PZ|X)− ǫ.

Let Pe|U denote the error probability of a decoder that needs to decode X while

having access to both the eavesdropper observation vector Z, the confidential message

vector U, and the predetermined vector bn (which is fixed, predetermined, and known

to all the users in the model). Note that if both the confidential message U and the

predetermined vector bn are known at the receiver, then the remaining uncertainty

in the codeword X relates only to the random vector b∗
n of size Nn. Using Fano’s

inequality (see, e.g., [23]), the conditional entropy H(X|U,Z) is bounded according

to

H(X|U,Z) ≤h2(Pe|U) + Pe|U log(2|Nn| − 1)

≤h2(Pe|U) + nr∗Pe|U (5.47)

where h2(x) , −x log x − (1 − x) log(1 − x) is the binary entropy function. From

(5.44)-(5.47) it follows that

Re

(

Cn(A,N )
)

≥1

n
|An| − ǫ− 1

n
− 1

n

(

h2
(

Pe|U

)

+ nr∗Pe|U

)

(5.48)

≥R− 1

n
− 1

n

(

h2
(

Pe|U

)

+ nr∗Pe|U

)

(5.49)

where the last inequality follows from (5.43) for a sufficiently small ǫ and a sufficiently

large n. The error probability Pe|U in (5.49) can be upper bounded by the error
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probability under the suboptimal successive cancellation decoder in [4], which is fully

informed with both the predetermined vector bn and the confidential message vector

U. It follows from [6] that

Pe|U ≤ o(2−nβ

)

which concludes the proof of (5.38).

Part III: The error performance at the legitimate decoder

The successive cancellation decoding procedure at the legitimate receiver is analyzed.

First, fix a vector w = (w1, . . . , wn) ∈ X n comprises of the information message

u ∈ X k, the randomly chosen vector b∗ ∈ X k∗, and the predetermined vector b ∈
X n−k−k∗. The conditional block error probability is denoted by Pe|w. That is, Pe|w

is the probability of a block error event given that the input vector is w. Denote by

w(l) = (w1, . . . , wl) the first l bits of w, and by ŵ(l) = (ŵ1, . . . , ŵl) the first l decoded

bits. The event

Fl ,
{

w(l−1) = ŵ(l−1), wl 6= ŵl

}

corresponds to the case where the first l − 1 bits of w are decoded correctly and the

first decoding error is in the l-th bit. Notice that

Fl ⊂ El(Gl
n)

where El is the event defined in (5.16), and Gl
n is the marginal split channel in (5.24).

Consequently, it follows using the union bound that

Pe|w =Pr
(

∪n
l=1Fl| w

)

≤
∑

l∈Ān

Pr
(

El(G(l)
n )| w

)

. (5.50)

Next, the summation in (5.50) is split to two summations: a summation over the

indices in An and a summation over the indices in Nn. For an index l ∈ An, it follows

from Proposition 5.3 that for all w ∈ X n

Pr
(

El(G(l)
n )| w

)

≤ B(G(l)
n ) (5.51)

where B(G
(l)
n ) is the Bhattacharyya parameter in (5.11). To address the probability

of the event El(G(l)
n ) where l ∈ Nn, notice that at the output of the marginal split

channel, the decoding rule for wl in (5.36) is optimal1. Recall the degradation prop-

erty in Proposition 5.5. According to Proposition 5.5 the marginal split channel of

1As stated, this optimality is only under the setting of the split channel, and by no means implies
optimality of the complete procedure (which is clearly suboptimal).
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the eavesdropper is physically degraded with respect to the marginal split channel of

the legitimate user. Consequently, it is clearly suboptimal to first degrade the obser-

vations at the split channel of the legitimate user, and only then to detect the bit wl

over the corresponding marginal split channel of the eavesdropper. Specifically, wl is

detected according to

ŵl =

{

0 if Q
(l)
n (z, ŵ(l−1)|0) ≥ Q

(l)
n (z, ŵ(l−1)|1)

1 else

where z ∈ Zn is a degraded version of y ∈ Yn, randomly picked according to the

probability law D(z|y) in (5.30). This detection rule is inferior with respect to (5.36).

Hence, based on Proposition 5.3, the upper bound

Pr
(

El(G(l)
n )| w

)

≤ B(Q(l)
n ) (5.52)

holds for all l ∈ Nn. From (5.50), (5.51), and (5.52), it follows that the average block

error probability is upper bounded by

Pe(Cn(A,N )) ≤
∑

l∈An

B(G(l)
n ) +

∑

l∈Nn

B(Q(l)
n ).

The proof concludes using the bound on the polarization rate of the Bhattacharyya

parameter in Theorem 5.3 and the specific choice of the sets An and Nn.

Remark 5.3 (On communicating with full capacity) The noisy bits b∗
n, defin-

ing the coset block code C∗
n based on the noisy index set Nn (see eq. (5.18)), are

reliably detected by the legitimate user. It is therefore suggested to utilize these bits

in order to communicate with the legitimate user. That is, instead of setting the bits

in b∗
n to noisy random bits, non-secret information bits are suggested to be set on

b∗
n. The non-secret information bits must be statistically independent and equiprob-

able. In addition, the non-secret information must be statistically independent with

the secret-information. These statistical properties allows the non-secret information

bits to act as if they are noisy bits (where the eavesdropper is concerned). As a result

of the cardinality of the index set An (5.41), the overall rate, including secret and

non-secret information, is arbitrarily close the full (marginal) channel capacity of the

legitimate user C(PY |X).

Remark 5.4 (The noisy bits must not be fixed) It is important to note that

the bits in b∗
n must be chosen at random for each block transmission. To see this,

first note (based on the data processing inequality) that

1

n
I(b∗

n;Z) ≤
1

n
I(X;Z) (5.53)
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for all n > 0. Assuming that (5.53) is satisfied with equality. It follows that both the

legitimate user and the eavesdropper can reliably decoded the vector b∗
n. Considering

the current setting as if it is a broadcast communication problem over the given chan-

nel, a broadcast scheme is therefore provided where we can reliably communicated

with the legitimate user at a rate arbitrarily close to its marginal capacity C(PY |X)

and at the same time with the eavesdropper at a (common) rate which is arbitrarily

close to 1
n
I(X;Z). This violates the fundamental limit imposed by the capacity region

of the degraded broadcast channel (see, e.g., [23]). Consequently, it follows that

1

n
I(b∗

n;Z) <
1

n
I(X;Z) (5.54)

for all n > 0. Next, since there is a one-to-one correspondence between the transmit-

ted codeword X and the vector pair which is comprised of the random bits b∗ and

the confidential message U (the vector b is predetermined and fixed), it follows that

1

n
I(X;Z) =

1

n
I(U,b∗;Z)

(a)
=

1

n
I(b∗;Z) +

1

n
I(U;Z|b∗) (5.55)

for all n > 0, where (a) follows by the chain rule of mutual information. Hence it is

observed from (5.54) and (5.55) that

1

n
I(U;Z|b∗) > 0

for all n. This assures that if the vector b∗ is known to the eavesdropper, for example

by choosing a fixed b∗, perfect secrecy can not be established, not even in the weak

sense.

It is observed in [24], that if (R1, R1) is an achievable rate-equivocation pair and

in addition, an additional information rate R2 is achievable without secrecy (that

is, in the ordinary notion of reliable communication), then the (R1 + R2, R1) is also

an achieved rate-equivocation pair. The other direction is also provided in [24, p.

411]. Following Remark 5.3 which suggests the option of communicating in full rate,

and the observations in [24], it is expected that the entire rate-equivocation region is

obtained with polar coding. This result is provided in the following corollary:

Corollary 5.1 Under the assumptions and notation in Theorem 5.4, the entire rate-

equivocation region is achievable with polar coding.

Proof: Take a rate-equivocation pair (R,Re) in the rate-equivocation region defined

in (5.3). Define R1 = Re, and R2 = R − R1. Note that R2 ≥ 0 as Re ≤ R. Consider
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the coset block code in (5.18). Since Re ≤ Cs(P ), the rate R1 is achievable via the

index set An. It is further detailed in the proof of Theorem 5.4, that the information

transmitted via the indices in An is secure. Specifically, it follows from (5.48) that the

equivocation rate is arbitrarily close to 1
n
|An|. As explained in Remark 5.3, reliable

communication (not necessarily secure) of an additional rate of up to the capacity

C(PY |X) of the marginal channel to the legitimate user, is achievable. Therefore, the

additional rate R2, is achievable either via the remaining indices in An and the vector

b∗
n corresponding to the indices in Nn.

5.2.3 Secrecy Achieving Properties for Erasure Wiretap Chan-

nels

In this section, a particular case of binary erasure wiretap channel is considered.

Specifically, it is assumed that the channel to the legitimate user is noiseless, and

the channel to the eavesdropper is a binary erasure channel (BEC) with an erasure

probability δ, is considered. Recall that the set sequence Nn of the indices that

correspond to “good” split channel to the eavesdropper, is chosen as to achieve the

capacity to the eavesdropper. As the channel to the legitimate user is noiseless, that

is y = x, the set sequence An and is set according to

An , [n] \ Nn. (5.56)

Note that for this particular case Bn = ∅. The resulting coding scheme is then a

particular case of the coset coding scheme in [82] where the base code is determine by

the generator matrix Gn(Nn) and the actual coset is determined by uGn(An) where u

is the transmitted information bits (the secret message) and Gn is the polar generator

matrix for a block length n. Specifically, the codeword x is given, based on(5.19), by

x = uGn(An) + b∗
nGn(Nn). (5.57)

The rate and reliability properties in this particular case follows immediately as a

result of Theorem 5.4. That is, the rate approaches the secrecy capacity, which in this

case equals δ, and the legitimate user obviously can decode the transmitted message.

As in the second part of the proof of Theorem 5.4, the confidential message vector,

the transmitted codeword, and the received vector at the eavesdropper are denoted

by the random vectors U, X, and Z, respectively. The following lemma address the

entropy measure H(U|Z).
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Lemma 5.1 Under the assumption and notation for the consider binary erasure

wiretap channel, the entropy H(U|Z) satisfies

H(U|Z) ≥ nδ(1− c2−nβ

)

where δ is the erasure probability of the wiretap channel, and c > 0.

Proof: Let us fix a particular realization of the channel erasure sequence 2. Denote

by D the set of µ indices which are not erased. That is, the eavesdropper received

the bits Xi for every i ∈ D, and erasure symbols for every index in Dc , [n] \ D.

Consider the |Nn| × n matrix {Gn(Nn)}. As the generator matrix Gn for the polar

construction has a full rank (for every n in the construction), the matrix Gn(Nn)

has a rank Nn. Therefore, it is a generator matrix for a binary linear block code of

dimension Nn. This code has a parity check matrix of size |An| × n, denoted by Hn

(recall that A is given by (5.56)). Since all the information bits are equiprobable, and

all the noisy bits are also equiprobable, the codeword X, given by (5.19), id uniformly

distributed over all possible binary vectors in {0, 1}n. Consequently, all the bits in X

are independent and identically distributed uniform binary random variables. Hence,

H(X|Z) = n−µ. In addition, note that if the codeword X is known, then information

bits U are fully determined for the considered polar coding scheme. It follows that

H(U|Z) = H(U|X,Z) +H(X|Z)−H(X|U,Z) (5.58)

= m− µ−H(X|U,Z). (5.59)

Note that (5.58) is a restatement of [82, Eq. (5)], and (5.59) is a restatement of [82,

Eq. (6)].

Next, fix a realization Z = z ∈ {0, 1}n and U = u ∈ {0, 1}|An|. From (5.57), it

follows that the erased bits {Xi}i∈Dc satisfies the linear equations
∑

i∈D

Xi (Hn)i = HnuGn (An) +
∑

i∈Dc

Xi (Hn)i (5.60)

where (Hn)i is the i-th column of the parity check matrixHn. The number of solutions

to (5.60) is given by

2
n−µ−d

(

{(Hn)i}i∈D

)

where d
(

{(Hn)i}i∈D
)

is the dimension of the linear space spanned by the the column

vectors in {(Hn)i}i∈D. Since all the solutions for the erasures Xi, i ∈ D, are equally

likely, it follows that

H(X|U = u,Z = z) = n− µ− d
(

{(Hn)i}i∈D
)

. (5.61)

2This case is studied in [82], and some parts of the provided proof are based on proper presentation
of the techniques developed in [82] for the case at hand.
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From (5.59) and (5.61), it follows that

H(U|Z) = Ed
(

{(Hn)i}i∈D
)

. (5.62)

As the information indices Nn for the eavesdropper are chosen such that it can decode

the noisy bits b∗ with an error probability of O(2−nβ

), it follows that

H(U|Z) ≥ E
(

d
(

{(Hn)i}i∈D
)

|, correct decoding
)

(1− c2−nβ

) (5.63)

= nδ(1− c2−nβ

) (5.64)

where c > 0 and δ is the erasure probability of the eavesdropper channel.

Remark 5.5 (All coset must be equally likely) In the current discussion, the

secrecy polar coding scheme is applied with Bn = ∅. This fact is crucial for the proof
of Lemma 5.1. It is conjectured that this choice may be crucial to achieve the entire

secrecy capacity under the strong secrecy condition.

Remark 5.6 (On possible stronger notion of secrecy) Consider the conditions

in Theorem 5.3. In particular, not that the rate R < C(p) is kept fixed for the

polarization structure of the code. If, it be possible to construct the sequence of

polar codes, with a sequence of blocklength dependent rates Rn having the property

that

Rn ≥ C(p)− α

nγ
(5.65)

where α > 0 and γ > 1 are arbitrarily fixed parameters. Then, it will follow as a

corollary of Lemma 5.1 that a strong notion of secrecy is guaranteed. That is, the

entropy H(U|Z) is arbitrarily close to H(U). To see this, note that if polarization is

possible while satisfying (5.65), it follows that

|Nn| ≥ n
(

1− δ − α

nγ

)

.

Consequently,

H(U) = |An| = n− |Nn| = nδ +
α

n1−γ
.

Hence H(U|Z) is lower bounded by a quantity which is arbitrarily close H(U) as

the blocklength increases. For the particular case of the BEC, it follows from [4, Eq.

(34)-(35)], that the considered question requires the analysis of the following sequence

|{i ∈ [n] : Z i
n ≤ Cen

β}|

where {Z i
n}i∈[n] is a sequence, generated recursively according to

Z
(2i−1)
2k = 2Z

(i)
k −

(

Z
(i)
k

)2

Z
(2i)
2k =

(

Z
(i)
k

)2

.

where i ∈ [k] and Z
(1)
1 = δ.
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5.3 An open polarization problem and the general

wiretap channel

An open polarization problem is presented in addition to a conjecture which suggests

a possible solution. A polar secrecy scheme for non-degraded wiretap channels is

provided based on suggested conjecture.

5.3.1 On the polarization of the ‘bad’ indices

Let W = (W1, . . . ,Wn) be a random vector, where {Wi}ni=1 are statistically indepen-

dent and equiprobable Pr(Wi = 0) = Pr(Wi = 1) = 1
2
for all i ∈ [n]. The random

vector W is polar encoded to a codeword X = GnW, where Gn is the polar generator

matrix of size n. The codeword X is transmitted over a binary input DMC p, whose

output alphabet is Y . The received vector is denoted by Y = (Y1, . . . , Yn). For a

given vector W and a set A ⊆ [n], the following notation is used

WA , (Wi1 , . . .Wi|A|
)

where i1 < i2 < . . . < i|A| and ik ∈ A for all k ∈ [|A|]. Define the following quantities

of mutual information

Ii , I(Wi;W[i−1],Y), i ∈ [n]. (5.66)

The following polarization of mutual information is the key result in [4], [6]:

Theorem 5.5 (On the polarization of mutual information [4]) Assume that p

is a binary-input output-symmetric DMC whose capacity is C(p), and fix 0 < δ < 1.

Then,

lim
n→∞

(

1

n

∣

∣

∣

{

i ∈ [n] : Ii ∈ (1− δ, 1]
}

∣

∣

∣

)

= C(p)

lim
n→∞

(

1

n

∣

∣

∣

{

i ∈ [n] : Ii ∈ [0, δ)
}

∣

∣

∣

)

= 1− C(p).

Denote by An the set of indices for which the corresponding mutual information

quantities Ii, i ∈ An, are arbitrarily close to 1 bit (for a sufficiently large n). The set

An is called the information index set. This is the very same index set in Theorem 5.3,

of ‘good’ split channels whose corresponding Bhattacharyya constants approach 0.

Let A′
n ⊂ An and let Sn ⊆ Ac

n. We define the index sets

Dn , A′
n ∪ Sn
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and

D(i)
n ,

{

j ∈ Dn : j < i
}

, i ∈ [n].

A problem of interest lies in the |Dn| quantities of mutual information:

Ji , I(Wi;WD
(i)
n
,WDc

n
,Y), i ∈ Dn. (5.67)

For the indices in A′
n a straight froward answer is provided:

Lemma 5.2 (on the indices of ‘good’ split channels) Fix a 0 < δ < 1 and an

index i ∈ A′
n. For sufficiently large n

Ji ≥ 1− δ.

Proof: As the mutual information Ii in (5.66) includes a subset of the random

variables in Ji in (5.67), it follows that

Ji ≥ Ii.

The proof concludes using Theorem 5.5 as A′
n ⊂ An.

According to Lemma 5.2 ‘good’ indices for which the mutual information quanti-

ties Ii approach 1 bit, remain ‘good’ with respect to the mutual information Ji. The

characterization of the ’bad’ indices seems at this point to be a greater challenge. A

conjecture for possible polarization properties of the mutual information quantities Ji

in (5.67) is provided for the (‘bad’) indices in Sn. Two possible polarization properties

are considered:

Conjecture 1 (On possible polarization dichotomy) Fix a 0 < δ < 1. There

exists a partition of Sn to two sets S ′
n and S ′′

n = Sn \ S ′
n, such that for a sufficiently

large n

Ji < δ, for all i ∈ S ′
n (5.68)

Ji > 1− δ, for all i ∈ S ′′
n. (5.69)

Remark 5.7 (On degenerated and non-degenerated possible partitions) One

of the possible option resulting from Conjecture 1 is that S ′
n = Sn. In case where

this degenerated partition is proved to be correct, then it follows that the additional

information provided by the bits in WDc
n
do not alter the known polarization of the

mutual information quantities Ii in (5.66). The non-degenerated partition of Sn offers

(in the case it is proven to be correct) a dichotomy of the indices in Sn. Accordingly,

either the former polarization remains or alternatively the knowledge of the bits in
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WDc
n
completely changes the orientation of the polarization. The size of S ′′

n ∪ A′
n

must satisfy

|S ′′
n ∪A′

n|
(a)
= |A′

n|+ |A′′
n|

(b)

≤ nC(p). (5.70)

Equality (a) in (5.70) is obvious as the sets A′
n and Sn are disjoint. Violating the

inequality (b) in (5.70) results in violating the coding theorem for a DMC as the

input bits to the split channels specified by the set S ′′
n ∪ A′

n can be reliably decoded

(This can be shown in a similar fashion as in [4]).

Remark 5.8 (On a particular trivial case where Conjecture 1 is true) There

exists an option where Conjecture1 is trivially proved as a particular application of

Theorem 5.5. Specifically, assume that for every index i ∈ Dn, it follows that

j < i ∀j ∈ Dc
n.

In that case, the degenerated partition in Remark 5.7 follows as an immediate par-

ticular case of Theorem 5.5.

5.3.2 A polar secrecy scheme

In this section, a polar secrecy scheme is provided assuming that Conjecture 1 is

true. The same notation and definitions of the coset code defined in Section 5.2.1

are assumed. The transmitted codeword x is defined in (5.19). This definition is

based on the index sets An and Nn. The secure information bits are considered as if

they are being transmitted over the split channels whose indices are in An. Over the

split channels whose indices are in Nn, noisy bits are attributed. The polar secrecy

scheme is provided in Section 6.3 by a proper choice of the sets An and Nn. The

degradation property in Section 6.3 assures that the indices which correspond to split

channels which polarize to ‘good channels’ for the eavesdropper, also polarize for

‘good channels’ for the legitimate user. This clearly does not necessarily follow for

the general not-degraded case.

For the general wiretap channel, indices that are ‘good’ for the eavesdropper

may not be ‘good’ for the legitimate user and vice-versa. A binary-input symmetric

wiretap channel is assumed. As in the construction detailed in Part I of the proof of

Theorem 5.4, the sets Ãn and Ñn of ‘good indices’ are considered. The sets Ãn and

Ñn include the indices for which the Bhattacharyya parameters of the corresponding

split channels approach zero as the block length approach infinity. Specifically, fixing

r < C(PY |X) and r
∗ < C(PZ|X), the conditions in (5.39)-(5.42) follow.

Define the index set Sn , Ãn \ Ñn of indices which are ‘good’ for both the

legitimate user and the eavesdropper. According to Conjecture 1, the set Sn can
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be partitioned into two index sets S ′
n and S ′′

n , satisfying the polarization properties

in (5.68)-(5.69) where An is replaced by Ñn, and A′
n is replaced by Ãn ∩ Ñn. Next,

the set Nn is defined according to

Nn ,
(

Ãn ∩ Ñn

)

∪ S ′′
n (5.71)

and the set An is defined to be the remaining indices in Sn, that is

An , S ′
n.

As explained in Remark 5.7, the term 1
n
|Nn| can not exceed the capacity of the

eavesdropper marginal channel. Consequently, the size of S ′
n can be chosen such that

1
n
|S ′

n| is arbitrarily close to C(PY |X)− C(PZ|X).

Next, the same coset coding scheme defined in (5.19) is applied to the case at

hand (with the new construction of the sets An and Nn). As the information rate
1
n
|An| of the considered scheme may be chosen arbitrarily close to C(PY |X)−C(PZ|X),

the same coding rate as in Theorem 5.4 is obtained. The decoding reliability at the

legitimate user is clear and follows the same proof as for the degraded case (note that

all the noisy bits in the considered scheme are ‘transmitted’ over the split channels

that are ‘good’ for the legitimate user). It is left to establish that the equivocation

rate can approach the information rate of the considered scheme.

5.3.3 Analysis of the equivocation rate

As explained in Section 5.2.1, the bits bn corresponding to the indices in Bn are prede-

termined and fixed. These bits are known both to the eavesdropper and the legitimate

user. For each blocklength n, consider the ensemble of coset codes corresponding for

all the possible selection of fixed bits bn. An analysis of the equivocation rate where

the coset code is chosen in random is considered. Specifically, it is assumed that the

actual code is chosen from the ensemble by picking the bits in bn in random. The

random selection of the bits in bn is carried independently and identically. Each bit is

picked at random with an equiprobable probability, Pr(0) = Pr(1) = 1
2
. In addition,

it is assumed that the random selection of bn is independent with the random noisy

bits in b∗
n and the secret message. It is important to distinguish between the ransom

selection of a code and the noisy bits b∗. The random selection of code is part of our

analysis, this selection (i.e., the bits in bn) is known to both the legitimate and the

eavesdropper. In contrast, the random noisy bits b∗ are immanent part of the en-

coding procedure and they are unknown to both the legitimate user and the receiver.

The noisy bits b∗ are picked randomly, each independent with the others, and with
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a uniform probability. The information bits are also assumed to be independent and

equiprobable.

The secrecy properties of the suggested scheme is considered in the following

proposition:

Proposition 5.6 Consider the polar secrecy scheme in Section 5.3.2 whose transmis-

sions take place over a binary-input memoryless symmetric wiretap channel. Then,

there exists a bit vector bn for which the equivocation rate satisfy the secrecy condi-

tion in (5.38).

Proof: Denote by W the random binary vector comprises the random bits in bn,

b∗
n, and u in the encoding procedure (5.19), and by Z the random vector received

at the eavesdropper. According to the considered assumptions, all the bits in W are

independent and equiprobable. It follows using the chain rule of mutual information

that

I(WNn
,WAn

;WBn
,Z) = I(WAn

;WBn
,Z) + I(WNn

;WBn
,Z | WAn

)

= I(WAn
;WBn

) + I(WAn
;Z | WBn

)

+ I(WNn
;WBn

| WAn
) + I(WNn

;Z | WAn
,WBn

)

= H(WAn
)−H(WAn

| Z,WBn
) + I(WNn

;Z | WAn
,WBn

)

(5.72)

where the last equality follows since WAn
, WNn

, and WBn
are independent. As the

set Nn comprises indices of split channels which polarize to perfect channels, the bits

in WNn
can be reliably decoded at the eavesdropper based on perfect knowledge of

the remaining bits and the received vector (this is shown in a similar fashion to [4]).

Hence, the decoding error probability Pe(WN c
n
) of the bits in WNn

based on the

received vector and the remaining bits WN c
n
, can be made arbitrarily low. As a

consequence of Fano’s inequality it follows that

|Nn| ≥ I(WNn
;Z | WAn

,WBn
)

= H(WNn
| WAn

,WBn
)−H(WNn

| Z,WAn
,WBn

)

> H(WNn
)− h2

(

Pe(WN c
n
)
)

− |Nn|Pe(WN c
n
) (5.73)

where h2 is the binary entropy function. For a sufficiently large block length n,

the expected decoding error probability approaches zero. Consequently, the rate
1
n
I(WNn

;Z |WAn
,WBn

) can be made arbitrarily close to 1
n
|Nn|. It follows from (5.72)

and (5.73) that

1

n
H(WAn

| Z,WBn
) ≥ |An|

n
+

|Nn|
n

− ǫn −
1

n
I(WNn

,WAn
;WBn

,Z) (5.74)
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where ǫn ≥ 0 and approaches zero as n grows.

Based on Conjecture 1, the mutual information 1
n
I(WNn

,WAn
;WBn

,Z) can be

shown to be arbitrarily close to 1
n
|Nn|. Using the chain rule of mutual information it

follows that

I(WNn
,WAn

;WBn
,Z) =

∑

i∈Nn

I(Wi;WBn
,Z | W

N
(i)
n
,W

A
(i)
n
)

+
∑

i∈An

I(Wi;WBn
,Z | W

N
(i)
n
,W

A
(i)
n
).

=
∑

i∈Nn

I(Wi;WN
(i)
n
,W

A
(i)
n
,WBn

,Z)

+
∑

i∈An

I(Wi;WN
(i)
n
,W

A
(i)
n
,WBn

,Z). (5.75)

where the last equality follows as all the bits in W are independent. For every index

i ∈ Nn, it follows from Lemma 5.2 and Conjecture 1 that

I(Wi;WN
(i)
n
,W

A
(i)
n
,WBn

,Z) > 1− δ. (5.76)

In addition, for all the indices i ∈ An it also follows from Conjecture 1 that

I(Wi;WN
(i)
n
,W

A
(i)
n
,WBn

,Z) < δ. (5.77)

From (5.75), (5.76) and (5.77) it follows that

1

n
I(WNn

,WAn
;WBn

,Z) ≤ |Nn|
n

+
δ|An|
n

≤ |Nn|
n

+ δ. (5.78)

Hence, based on (5.74) and (5.78) we end up with

1

n
H(WAn

| Z,WBn
) ≥ 1

n
|An| − ǫn − δ.

As δ can be fixed arbitrarily small, and ǫn approaches zero, the equivocation rate can

be made arbitrarily close to 1
n
|An| which assures the secrecy property of the provided

scheme.

5.4 Summary and Conclusions

A polar secrecy scheme is provided in this chapter for the two-user, memoryless, sym-

metric and degraded wire-tap channel.The provided polar coding scheme is shown to

achieve the entire rate-equivocation region for the considered communication model.
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The analysis of non-degraded channel models is of great priority. In particular,

proving Conjecture 1 is the main interest in the continuation of the research discussed

in this chapter. The following generalizations are of additional possible interest:

1. Non-binary settings: In light of the recent results by Sasoglu et al. [91], a gen-

eralization to the non-binary setting may be a straight forward generalization.

2. Secrecy polar schemes for non-symmetric wiretap channels, based on the non-

binary polarization provided in [91].

3. Polar coding for a broadcast channel with confidential messages. The particular

case of degraded message sets over a degraded channel is first considered.

4. Strong secrecy properties: As noted, the provided scheme is shown to provide

weak secrecy. It is of great interest to find out if this scheme can also provide

strong secrecy.

5. Generalized polar secrecy-schemes based on the ideas in [5], [64]-[62].

6. Combing the polar scheme with the MAC approach for the wiretap channel

(see, e.g., [83]).



Chapter 6

Parallel Polar-Coding

Chapter Overview

A parallel polar coding scheme is provided in this chapter for communicating over

binary-input arbitrarily-permuted memoryless symmetric parallel-channels. In [4]

where symmetric DMC are concerned, the predetermined bits may be chosen arbi-

trarily; they are fixed and do not depend on the transmitted message. For the scheme

provided in this chapter, some of these bits incorporate an algebraic structure and

depend on the transmitted message. Moreover, the determination of these bits is

based on the structural properties of MDS codes, in a manner which relates to the

rate-matching code in [116]. The chapter is based on the following paper:

E. Hof, I. Sason, and S. Shamai (Shitz), “Polar Coding for Reliable Communica-

tions over Parallel Channels,” submitted to the IEEE Trans. on Information Theory,

July 2010. This work is presented in part in the 2010 IEEE Information Theory

Workshop (ITW 2010), Dublin, Ireland, September 2010.

This chapter is structured as follows: Section 6.1 provides some preliminary mate-

rial. Section 6.2 considers channel polarization for (stochastically) degraded parallel

channels. The parallel polar coding scheme is introduced and analyzed in Section 6.3.

6.1 Preliminaries

For an introductory section on channel polarization coding the reader is referred to

Section 5.1.2.

154
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6.1.1 Arbitrarily Permuted Parallel Channels

We consider the communication model in Figure 6.1. A message m is transmitted

over a set of S parallel memoryless channels. The notation

[S] , {1, . . . , S}

is used in this paper. All channels are assumed to have a common input alphabet

X , and possibly different output alphabets Ys, s ∈ [S]. The transition probability

function of each channel is denoted by Ps(ys|x), where ys ∈ Ys, s ∈ [S], and x ∈ X .

For the particular case depicted in Figure 6.1, the communication takes place over a

set of S = 3 parallel channels. The encoding operation maps the message m into a

set of S codewords {xs ∈ X n}Ss=1. Each of these codewords is of length n, and it is

transmitted over a different channel. The mapping of codewords to channels is done

by an arbitrary permutation π : [S] → [S]. The permutation π is fixed during the

transmission of the codewords. The set of possible S channels are known at both the

encoder and decoder. The encoder has no information about the chosen permutation.

The decoder, on the other hand, knows the specific chosen permutation. The coding

problem for this communication model is to guarantee reliable communication for all

possible (S!) permutations π. This problem is formulated and studied in [116].

encoder π

x1

x2

x3

x
π(1)

channel 1

channel 2

channel 3

decoder
x
π(2)

x
π(3)

m m̂

Figure 6.1: Communication over an arbitrarily-permuted parallel channel. The partic-
ular case of communicating over S = 3 parallel channels is depicted (taken from [116]).

Definition 6.1 (Achievable rates and channel capacity) Consider coded com-

munication over a set of S arbitrarily permuted parallel channels. A rate R > 0 is

achievable if there exists a sequence of encoders and decoders such that for all δ > 0



CHAPTER 6. PARALLEL POLAR-CODING 156

and a sufficiently large block length n

1

n
log2M ≥ R − δ (6.1)

P (π)
e (n) ≤ δ, for all S! permutations π : [S] → [S] (6.2)

where M is the number of possible messages and P
(π)
e (n) is the average block er-

ror probability for a fixed permutation π and block length n. The capacity of the

considered model CΠ is the maximal achievable rate to satisfy (6.1) and (6.2).

Theorem 6.1 (The capacity of arbitrarily-permutated memoryless parallel

channels [116]) Consider the transmission over a set of S arbitrarily-permutated

memoryless parallel channels. Assume that there is an input distribution that achieves

capacity for all parallel channels. Then, the capacity CΠ satisfies

CΠ =
S
∑

s=1

Cs (6.3)

where Cs is the capacity of the s-th channel, s ∈ [S].

Remark 6.1 In case that there is no common input distribution that achieves the

capacity of each component channel, see [116, Theorem 2, Eq. 50].

As noted in [116],
∑S

s=1Cs is the capacity if both the encoder and decoder know

the actual permutation π; since the encoder does not know the actual permutation,

then C ≤ ∑S
s=1Cs. The achievability part is proved in [116] using two different

approaches:

1. A random coding argument and a joint typicality decoding over prod-

uct channels. This coding scheme is based on the notion of product channels.

Each possible permutation π yields a different product channel. Consequently,

there are S! possible product channels. These product channels have an input

alphabet X S, and an output alphabet Y1 × Y2 × · · · × YS. A random coding

argument can be applied to each one of these product channels. Specifically,

a properly chosen randomly code is shown to achieve the capacity CΠ under a

joint-typicality decoding for all possible permutations π.

2. A rate-matching coding scheme that is combined with a random cod-

ing argument, and a sequential joint-typicality decoding. This coding

scheme is based on the following concatenated structure: An information mes-

sage m ∈ [M ] is mapped to a vector m = (m1, m2, . . . , mS) where ms ∈ [M∗] for
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all s ∈ [S] (this mapping is called a rate-matching code in [116]). It is assumed

that 1
n
log2M

∗ < C∗ where C∗ is the maximal capacity of the S given parallel

channels. Next, a randomly chosen codebook C with M∗ codewords of block

length n is chosen. Each element of m is encoded using the randomly chosen

codebook C, yielding a set of S codewords {xs}Ss=1. The codewords {xs}Ss=1

are transmitted over the considered parallel channels. The decoding procedure

is based on a sequential joint-typicality decoding. First, the received vector

over the channel with the maximal capacity is decoded using a standard joint

typicality decoding. Next, the received vector over the channel with the second

largest capacity is decoded using a joint-typical decoder. Over all possible code-

words under this decoding rule, a message is chosen such that the rate-matching

coding is satisfied. The decoding continues recursively, where in each decoding

stage, a message is chosen such that the rate-matching code constraints are

satisfied.

6.1.2 MDS codes

In this section some basic properties of MDS codes are provided. For complete details

and proofs, the reader is referred to [74] and [89].

Definition 6.2 An (n, k) linear block code C whose minimum distance is d is called

a maximum distance separable (MDS) code if

d = n− k + 1. (6.4)

Remark 6.2 The RHS of (6.4) is the Singleton bound on the minimum distance of

a linear block code.

Example 6.1 (MDS codes) The (n, 1) repetition code, (n, n − 1) single parity-

check (SPC) code, and the whole space of vectors over a finite field are all MDS

codes.

The following properties of MDS codes are of interest in the continuation of this

paper:

Proposition 6.1 (On the generator matrix of an MDS code) Let C be an

MDS code of dimension k. Then, every k columns of the generator matrix of C are

linearly independent.

Corollary 6.1 Every k symbols of a codeword in an MDS code of dimension k

completely characterize the codeword.
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Let S > 0 be an integer number and fix an integerm > 0 such that 2m−1 ≥ S. For

all k ∈ [2m−1], there exists a (2m−1, k) RS code over the Galois field GF(2m). Every

RS code is an MDS code [89, Proposition 4.2]. In Section 6.3.3 a family of MDS codes

with various block lengths and dimensions is applied to construct a parallel coding

scheme. Two alternatives are suggested:

1. Shortened RS codes: Consider a (2m − 1, k) RS code over the Galois field

GF(2m). Deleting 2m − 1 − S columns from the generator matrix of the con-

sidered code results in an (S, k) linear block code over the same alphabet. The

resulting code is an (S, k) MDS code over GF(2m).

2. Generalized RS (GRS) codes: GRS codes are MDS codes which can be

constructed over GF(2m) for every block length S and dimension k (as long as

2m − 1 ≥ S).

Remark 6.3 (On the determination of codewords in RS and GRS codes)

Our main interest in MDS codes is due to Corollay 6.1. This property is even more

appealing for the case of RS or GRS codes because the determination of a codeword

in RS or GRS codes is based on a polynomial interpolation over finite fields (see, e.g.,

[89, p. 151]).

6.2 Stochastically degraded parallel channels

The polarization properties of stochastically degraded parallel-channels are studied

in this section.

Definition 6.3 (Stochastically degraded channels) Consider two memoryless

channels with a common input alphabet X , transition probability functions P1 and P2,

and two output alphabets Y1 and Y2, respectively. The channel P2 is a stochastically

degraded version of channel P1 if there exists a channel D with an input alphabet Y1

and an output alphabet Y2 such that

P2(y2|x) =
∑

y1∈Y1

P1(y1|x)D(y2|y1), ∀x ∈ X , y2 ∈ Y2. (6.5)

Lemma 6.1 (On the degradation of split channels) Let P1 and P2 be two tran-

sition probability functions with a common binary input alphabet X = {0, 1} and

two output alphabets Y1 and Y2, respectively. For a blocklength n, the split channels

of P1 and P2 are denoted by P
(l)
1,n and P

(l)
2,n, respectively, for all l ∈ [n]. Assume that

the channel P2 is a stochastically degraded version of channel P1. Then, for every
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l ∈ [n], the split channel P
(l)
2,n is a stochastically degraded version of the split channel

P
(l)
1,n.

Proof: The proof follows by induction. First, the case of n = 2 is considered. For

every (y2,1, y2,2) ∈ Y2
2 and u1 ∈ X :

P
(1)
2,2 (y2,1, y2,2|u1)

(a)
=
∑

u2∈X

1

2
P2(y2,1|u1 + u2)P2(y2,2|u2)

(b)
=
∑

u2∈X

1

2





∑

y1,1∈Y1

P1(y1,1|u1 + u2)D(y2,1|y1,1)









∑

y1,2∈Y1

P1(y1,2|u2)D(y2,2|y1,2)





=
1

2

∑

(y1,1,y1,2)∈Y2
1

D(y2,1|y1,1)D(y2,2|y1,2)

∑

u2∈X

P1(y1,1|u1 + u2)P1(y1,2|u2)

(c)
=

∑

(y1,1,y1,2)∈Y2
1

D(y2,1|y1,1)D(y2,2|y1,2)P (1)
1,2 (y1,1, y1,2|u1)

where (a) and (c) follow from (5.12), and (b) follows from (6.5). Hence, it is estab-

lished that P
(1)
2,2 is a stochastically degraded version of P

(1)
1,2 . Similar arguments verify

that P
(2)
2,2 is a stochastically degraded version of P

(2)
1,2 .

Next, assume that for i > 1, the split channel P
(l)

2,2i
is a stochastically degraded

version of the split channel P
(l)

1,2i
for every l ∈ [2i]. It is assumed that the degradation

is with respect to the observations over the combined channel outputs. Specifically,

it is assumed that

P
(l)

2,2i(y2,u|x) =
∑

y1∈Yn
1

D(y2|y1)P
(l)

2,2i(y2,u|x) (6.6)

for every l ∈ [2i], y2 ∈ Y2i

2 , u ∈ X l−1, and x ∈ X . It follows that for every l ∈ [2i]:

P
(2l−1)

2,2i+1

(

(y
(1)
2 ,y

(2)
2 ),u|x

) (a)
=
∑

u∈X

1

2
P

(l)

2,2i

(

y
(1)
2 , g(u)|x+ u

)

P
(l)

2,2i

(

y
(2)
2 , e(u)|u

)

=

(b)
∑

u∈X











1

2







∑

y
(1)
1 ∈Y2i

1

D(y
(1)
2 |y(1)

1 )P
(l)

1,2i

(

y
(1)
1 , g(u)|x+ u

)













∑

y
(2)
1 ∈Y2i

1

D(y
(2)
2 |y(2)

1 )P
(l)

2,2i

(

y
(2)
1 , e(u)|u

)
















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=
∑

(y
(1)
1 ,y

(2)
1 )∈Y2i+1

1

{

D(y
(1)
2 |y(1)

1 )D(y
(2)
2 |y(2)

1 )

∑

u∈X

1

2
P

(l)

1,2i

(

y
(1)
1 , g(u)|x+ u

)

P
(l)

1,2i

(

y
(2)
1 , e(u)|u

)

}

(c)
=

∑

(y
(1)
1 ,y

(2)
1 )∈Y2i+1

1

D(y
(1)
2 |y(1)

1 )D(y
(2)
2 |y(2)

1 )P
(2l−1)

1,2i+1

(

(y
(1)
2 ,y

(2)
2 ),u|x

)

where y
(1)
2 ,y

(2)
2 ∈ Y2i, u ∈ X 2l−2, x ∈ X, and the mappings g and e are defined

in (5.14) and (5.15), respectively. The transitions in (a) and (c) follow from (5.12),

and (b) follows from (6.6). Consequently, the split channel P
(2l−1)

2,2i+1 is a stochastically

degraded version of the split channel P
(2l−1)

1,2i+1 for every l ∈ [2i]. Similar arguments

verify that for every l ∈ [2i] the split channel P
(2l)

2,2i+1 is a stochastically degraded

version of the split channel P
(2l)

1,2i+1 . Moreover, the degradation is with respect to the

combined-channel observations in (6.6).

Remark 6.4 Note that the output alphabets of the split channels P
(l)
1,n and P

(l)
2,n are

Yn
1 × X l−1 and Yn

2 × X l−1, respectively. In the proof of Lemma 6.1, a particular

degradation is shown, which is with respect to the received vectors over the original

channels (over the alphabets Yn
1 and Yn

2 ) where the split channel observations over

X l−1 are left unaltered.

Definition 6.4 (Stochastically degraded parallel channels) Let {Ps}Ss=1 be a

set of S parallel memoryless channels, and denote the capacity of Ps by Cs for all

s ∈ [S]. In addition, assume without loss of generality that Cs ≥ Cs′ for all 1 ≤ s <

s′ ≤ S. The channels {Ps}Ss=1 are stochastically degraded if for every 1 ≤ s < s′ ≤ S

the channel Ps′ is a stochastically degraded version of Ps.

The following corollary is an application of Theorem 5.3 for a set of (stochastically)

degraded parallel channels:

Corollary 6.2 (On monotonic information sets for stochastically degraded

parallel channels) Consider a set of S memoryless degraded and symmetric parallel

channels {Ps}Ss=1, with a common binary-input alphabet X . For every s ∈ [S], denote

the capacity of the channel Ps by Cs, and assume without loss of generality that

C1 ≥ C2 ≥ · · · ≥ CS.

Fix 0 < β ≤ 1
2
and a set of rates {Rs}Ss=1 where

0 ≤ Rs ≤ Cs, ∀s ∈ [S].
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Then, there exists a sequence of information sets A(s)
n ⊆ [n], s ∈ [S] and n = 2i where

i ∈ N, satisfying the following properties:

1. Rate:

|A(s)
n | ≥ nRs, ∀s ∈ [S]. (6.7)

2. Monotonicity:

A(S)
n ⊆ A(S−1)

n ⊆ · · · ⊆ A(1)
n . (6.8)

3. Performance:

Pr
(

El(Ps)
)

≤ 2−nβ

(6.9)

for all l ∈ A(s)
n and s ∈ [S], where El(Ps) is the error event defined in (5.16).

Proof: The rate and performance properties form immediate consequences of

Theorem 5.3 and Proposition 5.3. Nevertheless, it is required to prove that the choice

of the information set sequences can be made such that the monotonicity property

in (6.8) is satisfied. Start with s = S. From Theorem 5.3 and Proposition 5.3, it

follows that there exists a sequence of sets {A(S)
n } satisfying (6.7) and (6.9). Next,

fix an s′ ∈ [S] and assume that for all s > s′, the set sequences {A(s)
n } can be chosen

such that the properties in (6.7) and (6.9) are satisfied, and in addition

A(S)
n ⊆ A(S−1)

n ⊆ · · · ⊆ A(s′+1)
n . (6.10)

If s′ = S then (6.10) is satisfied in void. The existence of the sequence {A(s′)
n }

satisfying (6.7) and (6.9) is already provided by Theorem 5.3 and Proposition 5.3.

It is left to verify that the set sequence can be chosen such that the monotonicity

property

A(s′+1)
n ⊆ A(s′)

n (6.11)

is kept. Choose an arbitrary index l ∈ A(s′+1)
n . It is proved that this index corresponds

to the information set for the channel Ps′. Specifically, the performance property

in (6.9) is satisfied for s = s′. Since Ps′+1 is a degraded version of Ps′, then according

to Lemma 6.1, the split channel P
(l)
s′+1,n is a degraded version of the split channel P

(l)
s′,n.

It is clearly suboptimal to first degrade the observation vector y ∈ Ys′ to create a

vector ỹ ∈ Ys′+1, and only then detect the input bit x for the degraded split channel.

However, the detection error event for the degraded split channel P
(l)
s′+1,n satisfies the

upper bound in (6.9). As a result, the optimal detection error for the better split

channel P
(l)
s′,n must also satisfy (6.9). Hence, all the indices in A(s′+1)

n can be chosen

for the set A(s′)
n . The rest of indices are chosen arbitrarily out of the set of possible

indices whose existence is guaranteed by Theorem 5.3. This establishes (6.11), and

the proof follows by induction.
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Remark 6.5 On good indices for stochastically degraded channels In Corol-

lary 6.2, the existence of a monotonic sequence of information sets is proved for a

degraded set of channels. A subtle inspection of the proof shows that the choice of

the monotonic sequence of sets can be carried sequentially. First, the information set

of the worst channel is specified. Then, as is shown in (6.11), all the indices that are

“good” for the worse channel, are also “good” for the better channel. Here “good”

is in the sense that the corresponding Bhattacharyya constants of the split channels

(which form upper bounds on the corresponding decoding error probability) can be

made exponentially low as the block length increases. Consequently, all that is left

to specify are the rest of the “good” indices for the better channel (which are “not

good” for the worse). The construction then follows sequentially.

Remark 6.6 Under the assumptions in Corollary 6.2, the capacity Cs for each of the

channels in {Ps}Ss=1 is achieved with equiprobable inputs. In cases where the parallel

channels are not symmetric, a similar result can be shown where the capacities are

replaced with the mutual information obtained with equiprobable inputs.

6.3 The Proposed Coding Scheme

In this section, parallel polar coding scheme is provided for a set of binary-input,

memoryless, degraded, and symmetric parallel channels. First, two simple particular

cases are studied in Sections 6.3.1 and 6.3.2 where transmission over S = 2 and 3

parallel channels is considered. Next, the general case is studied in Sections 6.3.3-

6.3.4.

6.3.1 Parallel polar coding for S = 2 channels

The case of two memoryless degraded and symmetric parallel channels P1 and P2,

whose capacities are equal (i.e., C = C1 = C2), is first considered. Fix a rate R < C,

and choose a polar code for the channel P2 at rate R. Denote the information index

set for the chosen code by A(2)
n . According to Corollary 6.2, the same polar code is

suitable for the channel P1. Both polar codes are used with the same predetermined

bit vector b for the indices in [n] \ A(2)
n . As both channels are symmetric, the par-

ticular choice of b can be made arbitrary for these channels. Assume that 2|A(2)
n |

information bits are encoded by the two polar codes where |A(2)
n | bits are encoded

by each code. The particular assignment of information bits to polar codes can be

chosen arbitrarily. Let x1 and x2 be the resulting codewords. Since the same polar

code is used for both channels, the mapping of codewords to channels is not relevant
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in this case and the standard successive decoding procedure in [4] can decode both

x1 and x2, irrespectively of the channel assignments (as long as both codes use the

same predetermined and fixed bits). The overall rate for the described scheme is
2
n
|A(2)

n |. As R < C can be chosen arbitrarily close to C, all rates below CΠ = 2C are

achievable.

The case where C1 > C2 is addressed in the following. Set arbitrary rates R1 < C1

and R2 < C2, and construct a polar code for the degraded channel P2. The polar code

for P2 is defined using the information index set A(2)
n (where the information bits are

assigned) and the predetermined and fixed bits assigned for the remaining indices in

[n] \ A(2)
n . The size of the information set satisfies |A(2)

n | ≥ nR2. In contrast to polar

codes used for a single channel, in the case of polar codes designed for transmission

over S = 2 parallel channels, not all the symbols corresponding to indices from the

set [n]\A(2)
n are assigned as predetermined and fixed bits. According to Corollary 6.2,

the choice of A(1)
n can be made such that A(2)

n ⊆ A(1)
n and |A(1)

n | ≥ nR1. As the case

of equal size information set can be treated similarly to the case above with C1 = C2,

it is assumed that A(2)
n ⊂ A(1)

n (i.e., a strict inclusion is assumed). For the indices

specified by [n] \ A(1)
n , predetermined and fixed bits

b ∈ X n−|A
(1)
n | (6.12)

are chosen in the recursive construction of the codeword x1. The vector b is also used

for the same indices in the recursive construction of the second polar codeword x2,

i.e., the indices in [n] \ A(1)
n where

[n] \ A(1)
n ⊂ [n] \ A(2)

n .

It is left to determine the status of the bits corresponding to the the indices in the

set
(

[n] \ A(2)
n

)

\
(

[n] \ A(1)
n

)

= A(1)
n \ A(2)

n (6.13)

for the construction of the second codeword. Note that if the design of polar codes for

a single channel is considered, the indices in (6.13) are information indices for the polar

code designed for the channel P1, but they should correspond to predetermined and

fixed bit indices for polar coding over the channel P2. For parallel polar coding, on the

other hand, the bits corresponding to the indices in (6.13) for the second codeword are

set to be the same as the information bits encoded by the first codeword. Therefore,

the set of bits for the recursive construction in the indices of (6.13) are called the

repetition bits.

To describe the encoding procedure in terms of coset coding, recall the equivalence

between the recursive construction and coset coding as stated in (5.7). Let k1 = |A(1)
n |
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and k2 = |A(2)
n |. Denote the information message bits by u1 ∈ X k2 , u2 ∈ X k2

and ur ∈ X k1−k2. The vector ur includes the repetition bits of the parallel polar

construction. The first codeword is given by

x1 = u1Gn

(

A(2)
n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGn

(

[n] \ A(1)
n

)

(6.14)

where b designates the vector of the predetermined and fixed bits in (6.12), and Gn

is the polar generator matrix. Note that x1 satisfies

x1 = m1(u1,ur) ·Gn

(

A(1)
n

)

+ bGn

(

[n] \ A(1)
n

)

where m1(u1,ur) ∈ X k1 is a proper permutation of the vector (u1,ur). Therefore, the

definition in (6.14) is equivalent to the polar coding in (5.7). The second codeword

is given by

x2 = u2Gn

(

A(2)
n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGn

(

[n] \ A(1)
n

)

. (6.15)

As mentioned, this is almost like a standard polar encoding where the difference is

that some of the predetermined and fixed bits form a repetition of information bits.

In fact, the second codeword can be written by

x2 = u2Gn

(

A(2)
n

)

+m2(ur,b) ·Gn

(

[n] \ A(2)
n

)

where m2(ur,b) is a proper permutation of the vector (ur,b).

The decoding starts with the channel P1 whose capacity is maximal (C1 > C2). No

matter what the actual codeword is transmitted over P1 (either x1 or x2), a standard

polar successive cancellation decoding procedure is applied to decode the set of infor-

mation bits corresponding to the indices in A(1)
n . If x1 is the codeword transmitted

over P1, then the bit vectors u1 and ur are decoded. Else, if the codeword x2 is trans-

mitted over the channel P1, then u2 and ur are decoded. Next, recall that the vector

b is predetermined and fixed. In addition, the repetition bit vector ur, corresponding

to the indices in (6.13), are already decoded after the previous decoding step. Note

that the vector ur is available after the first decoding step irrespectively of the actual

transmission assignment of the codewords x1 and x2 to the parallel channels. Hence,

using the repetition bits ur as if they are predetermined, the successive cancellation

decoding can be applied to the channel P2. If x1 is transmitted over P1 and x2 is

transmitted over P2, then the bits u2 are decoded using the successive cancellation

decoding where m2(ur,b) are used as predetermined and fixed bits. Otherwise, if x2

is transmitted over P1 and x1 is transmitted over P2, then the bits u1 are decoded

using the successive cancellation decoding where again m2(ur,b) are used as prede-

termined and fixed bits. This completes the decoding of all the information bits. As

R1 < C1 and R2 < C2 can be chosen arbitrarily close to C1 and C2, respectively, then

the transmission rate C1 + C2 is achievable.
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6.3.2 Parallel polar coding for S = 3 channels

Assume that a parallel coding scheme is applied for communication over a set of three

parallel channels P1, P2, and P3, whose capacities are C1 > C2 > C3, respectively.

According to Theorem 6.1, the capacity CΠ in this case satisfies

CΠ = C1 + C2 + C3.

Fix the rates R1 > R2 > R3, satisfying Rs < Cs for all s ∈ [3], and let

R , R1 +R2 +R3.

In the following, a parallel polar coding scheme of rate R is described that achieves

reliable communication. Therefore, the proposed scheme achieves the capacity CΠ by

selecting the rates R1, R2, and R3 to be close, respectively, to C1, C2, and C3, and

satisfy the above condition for the rate triple.

Let {A(s)
n } be the information set sequences as in Corollary 6.2. Fix a block length

n, let

ks , |A(s)
n |, s ∈ [3]

and

k , k1 + k2 + k3.

The encoding of k information bits to 3 codewords: x1, x2, and x3 is defined. First,

the information bits are arbitrarily partitioned into three groups of sizes k1, k2 and

k3. Next, the encoding of the first two codewords is performed as follows:

• The k1 information bits used to encode x1 are (arbitrarily) partitioned to three

subsets: u1,1 ∈ X k3, u1,2 ∈ X k2−k3, and ur ∈ X k1−k2 .

• The k2 information bits used to encode x2 are (arbitrarily) partitioned into two

subsets: u2,1 ∈ X k3 and u2,2 ∈ X k2−k3. In addition, ur (used for encoding x1)

is also involved in the encoding of x2.

• The codewords x1 and x2 are defined similarly to the case of S = 2 parallel

channels. Specifically, in terms of coset codes:

x1 = u1,1Gn

(

A(3)
n

)

+ u1,2Gn

(

A(2)
n \ A(3)

n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGb

(

[n] \ A(1)
n

)

(6.16)

x2 = u2,1Gn

(

A(3)
n

)

+ u2,2Gn

(

A(2)
n \ A(3)

n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGb

(

[n] \ A(1)
n

)

(6.17)

where b ∈ X n−k is a predetermined and fixed vector.
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The encoding of the codeword x3 is based on the remaining k3 information bits,

denoted by u3 ∈ X k3. In addition, the information bits in u1,2, u2,2 and ur are also

involved in the encoding of x3:

x3 = u3Gn

(

A(3)
n

)

+ (u1,2 + u2,2)Gn

(

A(2)
n \ A(3)

n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGn

(

[n] \ A(1)
n

)

.

Note that the repetition approach is also done for the indices in [n] \ A(2)
n . However,

a different approach is applied to the indices in A(2)
n \ A(3)

n . The bits corresponding

to these indices are set using a symbol-wise parity-check of u1,2 and u2,2.

The order of decoding the information bits for all possible assignments of code-

words over a set of three parallel channels is provided in Table 6.1. The decoding

starts with the channel P1 with the maximal capacity C1. Irrespectively of the actual

codeword that is transmitted over P1, the bits which correspond to the indices in A(1)
n

are decoded using the standard polar successive cancellation decoding. The decoded

bits depend on the actual codeword which is transmitted over P1. Next, the decod-

ing proceeds to process the vector observed at the output of the channel P2, whose

capacity is C2. The decoding of |A(2)
n | information bits is established in this decoding

step. Note that for a standard successive cancellation decoding procedure, n− |A(2)
n |

predetermined and fixed bits are required for proper operation. For the case at hand,

these bits are not all predetermined and fixed. The vector b is predetermined, but the

rest depends on the repetition bits ur. Since the bits ur were decoded at the previous

decoding stage (based on the observation vector of P1), they can be treated as if they

are predetermined and fixed for the decoding of x2. Consequently, |A(2)
n | information

bits are decoded (depending on the actual codeword transmitted over the channel P2).

Finally, the decoding proceeds for the vector received at the output of the channel

P3. As in the previous decoding steps, the polar successive cancellation decoding is

applied where the bits corresponding to the split channels indexed by [n] \ A(3)
n are

not all predetermined and fixed (as in contrast to the standard single channel case).

Nevertheless, these bits can be all determined using the information bits decoded in

the two first steps. The bits in b are predetermined and fixed. The repetition bits

in ur are already available after the decoding of the information transmitted over

P1. The rest, can be evaluated by taking a bit-wise exclusive-or (xor) of the bits

decoded in the two previous steps. As an example, a combination shown in Table 6.1

is described explicitly. Consider the case where the codeword x2 is transmitted over

the channel P1, and the codeword x3 is transmitted over the channel P2. At the first

decoding step, the vectors u2,1, u2,2 and ur are decoded (where the predetermined

bits refer to the vector b). Next, the vectors u3, and u1,2 + u2,2, are decoded (the
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Channel P1 Channel P2 Channel P3

Transmitted Decoded Transmitted Decoded Transmitted Decoded

Codeword Information Codeword Information Codeword Information

x1 u1,1, u1,2, ur x2 u2,1, u2,2 x3 u3

x3 u3, u1,2 + u2,2 x2 u2,1

x2 u2,1, u2,2, ur x1 u1,1, u1,2 x3 u3

x3 u3, u1,2 + u2,2 x1 u1,1

x3 u3, u1,2 + u2,2, ur x1 u1,1, u1,2 x2 u2,1

x2 u2,1, u2,2 x1 u1,1

Table 6.1: The order of decoding the information bits for all possible assignment of
codewords over a set of three parallel channels

pretermitted bits for this decoding stage refer to b and ur). After this stage, the

information bits u1,2 can be determined by

u2,2 + (u1,2 + u2,2) .

Moreover, the information bits u1,2 are used for the last decoding stage as predeter-

mined and fixed bits (together with the vectors ur and b). After the last decoding

stage the vector u1,1 is decoded, and the decoding of all the information bits is com-

pleted.

To complete the current discussion, the case where some of the channels have

equal capacities is concerned. One option is the trivial case where C1 = C2 = C3. For

this case, a regular polar encoding and decoding is applied. As long as the channels

are degraded and symmetric, the information index sets and the predetermined and

fixed bits are the same for all transmitted codewords. Consequently, irrespective of

the selected permutation at the transmission, all the information bits can be decoded.

The treatment of the case C1 > C2 = C3 can be treated in a similar fashion to the

case of S = 2 parallel channels. For the case where C1 = C2 > C3, the parity-check

construction should be applied.

6.3.3 Parallel polar coding for S > 3 channels

C.1. Encoding

A parallel polar encoding is described for the general case. The technique used for

rate-matching encoding in [116] is incorporated in the current case as well. This

technique is based on MDS codes, in particular (punctured) RS codes are used in

[116] for rate splitting. As commented in Section 6.1.2, GRS codes can also fit for

the provided construction. A set of S − 1 MDS codes over the Galois field GF(2m),

all with a common block length S are chosen (either by puncturing an appropriate

RS code or using GRS codes). These codes are denoted by C(k)
MDS, k ∈ [S − 1], where

the code C(k)
MDS has dimension k.
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Let {Ps}Ss=1 be a given set of memoryless degraded and symmetric parallel chan-

nels, whose capacities are ordered such that C1 > C2 > · · · > CS. Let {A(s)
n }Ss=1

be the information index sets satisfying the properties in Corollary 6.2, for a block

length n and rates R1 > R2 > · · · > RS, Rs < Cs, s ∈ [S]. Define

ks , |A(s)
n |, s ∈ [S]

and

kS+1 , 0.

In addition, it is assumed that n and ks for all s ∈ [S], are integral multiples of m.

In the provided coding scheme, k =
∑S

s=1 ks information bits are encoded into S

codewords xs, s ∈ [S]. As the rates Rs, s ∈ [S] can be chosen arbitrarily close to Cs,

respectively, the capacity CΠ in (6.3) is shown to be asymptotically achievable (the

error performance is considered in Section 6.3.4).

Prior to the stage of polar encoding, the k information bits are first mapped into

a set of binary vectors

U =
{

us,l ∈ X kS−l+1−kS−l+2 : s, l ∈ [S]
}

.

The S ·kS bits in the vectors us,1, s ∈ [S] are plain information bits, chosen arbitrarily

from the set of k information bits. The vector set

C2 ,
{

us,2 =
(

us,2(1), us,2(2), . . . , us,2(kS−1 − kS)
)

: s ∈ [S − 1]
}

are also filled with plain information bits, chosen arbitrarily from the set of remaining

k − S · kS information bits (note that under the above assumptions k − S · kS > 0).

Next, the vector uS,2 is determined (the following steps are accompanied with the

illustration in Figure 6.2):

1. Each vector in C2 is rewritten as a row vector of a matrix over GF(2m) (this step

is illustrated in Figure 6.2 where each vector is represented with a horizontal

rectangle). Each m consecutive bits are mapped into a symbol over GF(2m).

This results in the (S − 1)×KS−1,S matrix over GF(2m)

C(2) =
(

C
(2)
i,j

)

, i ∈ [S − 1], j ∈ [KS−1,S]

where

KS−1,S ,
kS−1 − kS

m
.

The element C
(2)
i,j is the symbol over GF(2m) corresponding to the binary length-

m vector
(

ui,2

(

(j − 1)m+ 1
)

,ui,2

(

(j − 1)m+ 2
)

, . . . ,ui,2

(

jm
)

)

where i ∈ [S − 1] and j ∈ [KS−1,S].
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2. Each one of the columns of C(2) are considered as the first S − 1 symbols of a

codeword in the code C(S−1)
MDS . These columns are illustrated with dashed vertical

rectangles in Figure 6.2. Consequently, these columns completely determine the

codewords {cj : j ∈ [KS−1,S]} in the MDS [S, S − 1] code C(S−1)
MDS .

3. A length-KS−1,S vector ũS,2 over GF(2m) is defined using the last symbol of

each of the codewords cj, j ∈ [KS−1,S], evaluated in the last step. Each of these

symbols is illustrated as a filled black square in Figure 6.2.

4. The vector uS,2 is defined by the binary representation of the vector ũS,2 where

each symbol over GF(2m) is replaced by its corresponding binary length-m

vector.

u1,2

u1,2

u1,2 u1,2

c1
cj

m bitsm bits

ũS,2

C
(2)

Figure 6.2: Illustration of the construction of the vector ũS,2. The vectors uk,s,
k ∈ [S − 1] defining the matrix C(2) are shown, along the columns defining the

codewords cj, j ∈ [KS−1,S] in C(S−1)
MDS

The definition of the remaining vectors in U continues in a similar way. Let

2 < l ≤ S, and assume that the vectors us,l′ are already defined for all s ∈ [S] and

l′ < l, based on
l′
∑

s=1

(S − (s− 1))(kS−(s−1) − kS−(s−2))

information bits (from a total of k information bits). The construction phase for the

vectors us,l, s ∈ [S] is defined as follows:
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1. The binary vector set

Cl = {us,l : 1 ≤ s ≤ S − (l − 1)}

are filled with
(

S − (l − 1)
) (

kS−(l−1) − kS−(l−2)

)

arbitrarily chosen information bits, out of the remaining

k −
l′
∑

s=1

(

S − (s− 1)
) (

kS−(s−1) − kS−(s−2)

)

information bits.

2. Each vector in Cl is rewritten over GF(2m) as a row vector in an (S− (l− 1))×
KS−(l−1),S−(l−2) matrix over GF(2m)

C(l) =
(

C
(l)
i,j

)

where

KS−(l−1),S−(l−2) ,
kS−(l−1) − kS−(l−2)

m

and C
(l)
i,j , i ∈ [S − (l − 1)], j ∈ [KS−(l−1),S−(l−2)], equals the symbol in GF(2m)

corresponding to the binary length-m vector
(

ui,l

(

(j − 1)m+ 1
)

,ui,l

(

(j − 1)m+ 2
)

, . . . ,ui,2

(

jm
)

)

.

3. Each column in Cl is a vector of S − (l − 1) symbols over GF(2m). Hence, it

completely determines a codeword cj = (cj,1, cj,2, . . . , cj,S), j ∈ [KS−(l−1),S−(l−2)],

in the MDS [S, S − (l − 1)] code C(S−(l−1))
MDS . The columns of Cl are considered

as the first S − (l − 1) symbols of a codeword in the code C(S−(l−1))
MDS .

4. Evaluate the remaining symbols for each of the codewords

cj, j ∈ [KS−(l−1),S−(l−2)].

5. The length-KS−(l−1),S−(l−2) vectors ũs,l = (ũs,l(1), . . . , ũs,l(KS−(l−1),S−(l−2))), s >

S−(l−1), over GF(2m) are defined using the codewords cj, j ∈ [KS−(l−1),S−(l−2)]

according to

ũs,l(j) = cj,s.

6. For every s > S−(l−1), The vector us,l is defined to be the binary representation

of the vector ũs,l (where each symbol over GF(2m) is replaced with its binary

length-m vector representation).
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The parallel polar codewords are defined using the coset code notation. Specifi-

cally, the codewords xs, s ∈ [S], are defined according to

xs =

S
∑

l=1

us,lGn

(

A(S−(l−1))
n \ A(S−(l−2))

n

)

+ bGn

(

[n] \ A(1)
n

)

, s ∈ [S] (6.18)

where A(S+1)
n , ∅ and b ∈ X n−k1 is a binary predetermined and fixed vector.

C.2. Decoding

The decoding process starts with the observations received at the output of the chan-

nel P1 whose capacity is maximal. Assume that the codeword xπ−1(1) is transmitted

over P1. A polar successive cancellation decoding, with respect to the information

index set A(1)
n , is applied to the received vector. This allows the decoding of the vec-

tors uπ−1(1),l, l ∈ [S] (as if they are the information bits of the considered polar code).

If π−1(1) = 1, then indeed all the vectors uπ−1(1),l = u1,l, l ∈ [S] are information bit

vectors. Generally, only a subset of these vectors comprise of information bits, the

rest are coded binary representation of coded symbols of the chosen MDS codes.

At the second stage, the decoding of the received vector over P2, which denotes

probability transition of the channel with the second largest capacity, is concerned.

Assume that the codeword xπ−1(2) is transmitted over P2. A polar successive cancel-

lation decoding is used. This decoding procedure is capable of decoding |A(2)
n | bits

based on n − |A(2)
n | predetermined and fixed bits. For the current decoding proce-

dure, n − |A(1)
n | of these bits are the predetermined and fixed bits in b. The rest

of |A(1)
n | − |A(2)

n | bits are based on the bits decoded at the previous decoding stage.

Specifically, the bit vector uπ−1(2),S can be evaluated using the bit vector uπ−1(1),S .

Recall that uπ−1(2),S is the binary representation of ũπ−1(2),S . Moreover, each of the

symbols of ũπ−1(2),S belongs to a codeword in the [S, 1] MDS code C(1)
MDS. These

codewords are fully determined from the vector uπ−1(1),S as follows:

1. Rewrite the vector uπ−1(1),S over GF(2m) where each consecutive m bits are

rewritten by the corresponding symbol over GF(2m). Denote by

ũπ−1(1),S =
(

ũπ−1(1),S(1), . . . , ũπ−1(1),S(K1,2)
)

the resulting length-K1,2 vector over GF(2m).

2. For each symbol ũπ−1(1),S(j), j ∈ [K1,2], find the codeword

cj = (cj,1, . . . , cj,S) ∈ C(1)
MDS

whose π−1(1)-th symbol satisfies cj,π−1(1) = ũπ−1(1),S(j). These codewords are

fully determined by the considered symbols.
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3. Define the vector

ũπ−1(2),S =
(

ũπ−1(2),S(1), . . . , ũπ−1(2),S(K1,2)
)

according to ũπ−1(2),S(j) = cj,π−1(2) for every j ∈ [K1,2].

4. The vector

uπ−1(2),S =
(

uπ−1(2),S(1), . . . , uπ−1(2),S(k1 − k2)
)

is set to the binary representation of ũπ−1(2),S. That is, the bits

uπ−1(2),S((j − 1)m+ 1), . . . , uπ−1(2),S(jm)

are the binary representation of the symbol

ũπ−1(2),S(j) ∈ GF(2m), j ∈ K1,2.

With both b and uπ−1(2),S as predetermined and fixed bits, the polar successive

cancellation decoding can be applied. Consequently, after the second decoding stage,

all the S binary vectors uπ−1(2),s, s ∈ [S], are fully determined. Moreover, based on

the codewords cj, j ∈ [K1,2], the vectors uπ−1(s),S, are fully determined for all s ≥ 2

as well.

Next, the remaining S − 2 decoding stages are described. It is assumed that

after the (s − 1)-st decoding stage, where 2 < s < S, the vectors uπ−1(s′),l for either

1 ≤ s′ < s and l ∈ [S], or s′ ≥ s and S − s + 3 ≤ l ≤ S, were decoded at previous

stages. At the s-th stage, the decoding is extended for the vectors uπ−1(s),l for all

l ∈ [S] and the vectors uπ−1(s′),S−s+2 for all s′ ∈ [S].

In order to apply the polar successive cancellation decoding procedure to the

vector received over the channel Ps, the bits in b and {uπ−1(s),l}l≥S−(s−2) must be

known for the procedure. The vector b is clearly known. In addition, the bits in

{uπ−1(s),l}l≥S−(s−3) are already decoded in previous stages. It is left to determine the

bits in uπ−1(s),S−(s−2). These bits are determined in a similar manner as in the decoding

stage for s = 2, where the vector uπ−1(2),S is determined. Moreover, the determination

of uπ−1(s),S−(s−2) is established along with the determination of uπ−1(s′),S−(s−2) for all

s′ ≥ s, in the following way:

1. The binary vectors uπ−1(s′),S−s+2 for s′ < s are already decoded at previous

stages. Rewrite these vectors over GF(2m) where each consecutive m bits are

rewritten by the corresponding symbol over GF(2m). Denote the set of resulting

vectors by

D =
{

ũπ−1(s′),S−s+2 =
(

ũπ−1(s′),S−s+2(1), . . . , ũπ−1(s′),S−s+2(Ks−1,s)
)

: s′ < s
}

.
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2. The set D completely describes Ks−1,s codeword

cj = (cj,1, . . . , cj,S), j ∈ [Ks−1,s]

all in the code C(s−1)
MDS and satisfy the constraints:

cj,π−1(s′) = ũπ−1(s′),S−s+2(j), 1 ≤ s′ < s. (6.19)

3. Define the vectors

ũπ−1(s′),S−s+2 =
(

ũπ−1(s′),S−s+2(1), . . . , ũπ−1(s′),S−s+2(Ks−1,s)
)

for all s′ ≥ s by

ũπ−1(s′),S−s+2(j) , cj,π−1(s′), j ∈ [Ks−1,s].

4. The vectors uπ−1(s′),S−s+2 are determined for all s′ ≥ s by the binary represen-

tation of ũπ−1(s′),S−s+2.

Based on successive cancellation at the current decoding stage, the ks bits corre-

sponding to the information set A(s)
n are decoded. This completes the decoding of all

the binary vectors uπ−1(s),l for l ∈ [S].

Remark 6.7 (On channels with equal capacities) The case where for an index

s′ ∈ [S], Cs′ = Cs′+1 is treated by skipping the construction of Cs′ . The coset code-

words are defined by

xs =
s′−1
∑

l=1

us,lGn

(

AS−(l−1)
n \ AS−(l−2)

n

)

+ us,s′+1Gn

(

A(S−s′)
n \ A(S−s′+2)

n

)

+

S
∑

l=s′+2

us,lGn

(

A(S−(l−1))
n \ A(S−(l−2))

n

)

+ bGn

(

[n] \ A(1)
n

)

, s ∈ [S]

At the decoding stage, two consecutive polar successive cancellation decoding can be

performed for both vectors received at the output of the channel Ps′ and Ps′+1.

6.3.4 A Capacity-approaching property

Theorem 6.2 The provided parallel coding scheme achieves the capacity of every

arbitrarily-permuted memoryless degraded and symmetric set of parallel channels.
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Proof: Consider a set of S arbitrary-permuted degraded memoryless parallel

channels Ps, s ∈ [S], whose capacities are Cs, s ∈ [S], respectively, and assume that

the channels are ordered so that

C1 ≥ C2 ≥ · · · ≥ CS.

According to Theorem 6.1, the capacity CΠ for the considered model is equal to the

sum in (6.3). For a rate R < CΠ, choose a rate set {Rs}Ss=1 satisfying

Rs < Cs

S
∑

s=1

Rs ≥ R. (6.20)

The parallel polar coding in Section 6.3.3 is considered. The rate of the proposed

scheme is given by

1

n

S
∑

s=1

|A(s)
n |.

From (6.7) and (6.20), it follows that the proposed scheme can be designed to operate

at every rate below capacity. It is left to prove that the block error probability of the

proposed scheme can be made arbitrarily small for a sufficiently large block length.

Consider the vectors

us,l, s, l ∈ [S] (6.21)

in (6.18). These vectors include all the information bits to be transmitted (in ad-

dition to coded versions of these bits). These vectors are determined either via the

successive cancellation decoding procedure of the polar codes, or determined by the

MDS code structure applied in the parallel scheme. The successive cancellation de-

coding procedure is based on detecting the input to the set of split channels P
(l)
s,n

where s ∈ [S] and l ∈ A(s)
n . The information bit corresponding to a split channel

P
(l)
s,n, is denoted by as,l. Note that the bit as,l is either determined by the successive

cancellation decoding procedure for polar codes, or else determined by the codeword

of an MDS code for which it belongs to. In cases where the bit as,l is decoded via a

polar successive cancellation decoding procedure, the decoded bit is denoted by âs,l.

The bits decoded via polar successive cancellation decoding procedure, based on

the received vector at the output of the channel Ps, s ∈ [S], are

âs,l, l ∈ A(s)
n . (6.22)

Note that the bits in (6.22) do not include all the bits in (6.21). Nevertheless, the

rest of the bits in (6.21) are fully determined from the decoded bits in (6.22) based

on the MDS code structure (as detailed in the previous section).
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Assuming that a permutation π is applied to the transmission of codewords, define

the events

Fs,l ,
{

âs,l 6= aπ−1(s),l, âs′,l′ = aπ−1(s′),l′ : for all s′ ≤ s, l′ < l
}

where s ∈ [S] and l ∈ A(s)
n . Since all the information bits can be fully determined

from the bits in (6.22), the conditional block error probability is given by

Pe|m = Pr
(

∪S
s=1 ∪l∈A

(s)
n

Fs,l

)

where m is the transmitted message (representing the k information bits). According

to Proposition 5.3, the events El(Ps) for s ∈ [S] and l ∈ A(s)
n , defined in (5.16), are

independent of the transmitted message. Moreover, it follows that

Fs,l ⊆ El(Ps).

Consequently, the average block error probability is upper bounded using the union

bound according to

Pe ≤
∑

s∈[S]

∑

l∈A
(s)
n

Pr (El(Ps)) (6.23)

Finally, plugging the upper bound on the error probability (6.9) into (6.23), assures

that for every fixed S > 0, the block error probability can be made arbitrarily low as

the block length increases.

6.4 Parallel Polar Coding for Non-Degraded Par-

allel Channels

6.4.1 Signaling over Parallel Erasure Channels

The following proposition, provided in [56], considers the Bhattacharyya parameters

of the split channels:

Proposition 6.2 (On the worst Bhattacharyya parameter) [56] Let p be a

binary-input memoryless output-symmetric channel, and consider the split channel

p
(l)
n where l ∈ [n]. Then, among all such binary-input memoryless output-symmetric

channels p whose Bhattacharyya parameter equals B, the binary erasure channel has

the maximal Bhattacharyya parameter B(p
(l)
n ), for every l ∈ [n].

The proof of Proposition 6.2 is based on a tree-channel characterization of split

channels, in addition to an argument which is related to extremes of information
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combining. Based on Proposition 6.2, a polar signaling scheme is provided in [56] for

reliable communication in a compound setting. A similar technique is used in the

following for the parallel channel setting.

Consider the parallel transmission model in Section 6.1.1. In this section, it is

assumed that the parallel channels are binary-input memoryless and symmetric, but

are not necessarily degraded. We further assume, without loss of generality, that the

set of parallel channels {Ps}s∈[S], are ordered such that

B(P1) ≤ B(P2) ≤ . . . ≤ B(PS)

where B(Ps) is the Bhattacharayya parameter of the channel Ps, s ∈ [S] (note that

the Bhattacharyya parameter varies from 0 to 1 with extremes of zero and one for

a noiseless and completely noisy channels, respectively). Next, consider the set of

parallel binary erasure channels, {δs}s∈[S] where the erasure probability of the channel

δs equals B(Ps), s ∈ [S]. These erasure channels form a family of S stochastically

degraded channels. Consequently, based on Theorem 6.2, the parallel polar coding

scheme in Section 6.3.3 achieves a rate of S −∑S
s=1B(Ps) over the set of erasure

channels, under the successive cancellation decoding scheme detailed in Section 6.3.3.

The following corollary addresses the performance of the same coding scheme over

the original set of parallel channels:

Corollary 6.3 The polar coding scheme for the parallel erasure channels, operates

reliably over the original parallel channels.

Proof: The suggested coding scheme performs reliably over the parallel binary era-

sure channels. The decoding process, as described in Section 6.3.3, includes a sequence

of successive cancellation decoding operations applied to the polar codes over each

one of the parallel channels. As shown in the proof of Theorem 6.2, reliable com-

munication is obtained based on reliably decoding each of the successive cancellation

operations. It is therefore required to show that the successive cancellation over the

original channels {Ps}s∈[S] can also be carried reliably, this follows as a consequence

of Proposition 6.2. Denote the sequences of information sets chosen for reliable com-

munication over the erasure channels {δs}s∈[S] by {A(s)
n }s∈[S]. Each one of these sets

satisfies the properties in Theorem 5.3. Fix an arbitrary channel Ps from the set

of parallel channels, and an arbitrary index l ∈ A
(s)
n . Consider next the error event

El(Ps) in (5.16). According to Proposition 5.3, this error event is upper bounded by

Pr
(

El(Ps)
)

≤ B
(

(Ps)
(l)
n

)

(6.24)
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where B
(

(Ps)
(l)
n

)

denotes the Bhattacharayya parameter of the split channel (Ps)
(l)
n .

From Proposition 6.2, it follows that

B
(

(Ps)
(l)
n

)

≤ B
(

(δs)
(l)
n

)

(6.25)

where B
(

(δs)
(l)
n

)

is the Bhattacharayya constant of the split channel (δs)
(l)
n . Fix 0 <

β < 1
2
as in Theorem 5.3. From (6.24) and (6.25), it follows from Theorem 5.3 that

Pr
(

El(Ps)
)

≤ 2−nβ

.

Consequently, the successive cancellation decoding operations can be carried reliably

for each one of the original channels, which completes the proof.

6.4.2 A Compound Interpretation of Monotone Index Set

Design and Related Results

The parallel coding scheme provided in Section 6.3 is based on a monotonic sequence

of index sets {A(s)
n }s∈[S] satisfying the conditions in Corollary 6.2. As explained

in Remark 6.5, the index sets in A(s)
n , s ∈ [S] are ‘good’ for all the channels Ps′,

s′ ≥ s. Here, as in Remark 6.5, ‘good’ means that the corresponding Bhattacharayya

parameters of the corresponding split channels satisfy the polarization properties

in Theorem 5.3. The index set sequences {A(s)
n }s∈[S] are applied in this paper to

parallel transmission. Even though the compound setting and the problem of parallel

transmissions are at first glance different, the actual problem of finding an index sets

which is ‘good’ for a set of channels is similar to the problem studied in [56] in the

compound model.

In the compound setting, the transmission takes place over one channel which

belongs to a predetermined set of channels. It is assumed in the current discussion

that (only) the receiver knows the channel over which the transmission takes place.

If a polar code is applied in such a compound setting, then a suitable index set is

required. Such an index set must be ‘good’ for all the channels in the set. The

maximal rate over which such a polar coding scheme performs reliably is termed as

the compound capacity of polar codes. Obviously, the compound capacity relates to

the size of possible ‘good’ index sets.

Upper and lower bounds on the compound capacity of polar codes under successive

cancelation decoding are provided in [56]. These bounds are defined using the notion

of tree-channels. Let p be a binary-input memoryless output-symmetric channel.

For a binary vector of length k, σ = (σ1, σ2, . . . , σk), the tree-channel associated to

σ is denoted by pσ. The actual definition of the tree-channel is not required for
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the following discussion, and is therefore omitted (the reader is referred to [56] and

references therein for more details). It is noted that the tree-channel is also binary-

input memoryless and output-symmetric. Moreover, it is further noted in [56] that the

tree-channel pσ, is equivalent to the split-channel p
(l)
n where σ is the binary expansion

of l.

Let {Ps}s∈[S] be a set of S binary-input memoryless output-symmetric channels.

It is shown in [56] that the compound capacity for the considered setting C
(

{Ps}s∈[S]
)

is lower bounded by1

C
(

{Ps}s∈[S]
)

≥ 1− 1

2k

∑

σ∈{0,1}k

max
s∈[S]

B
(

P σ
s

)

(6.26)

where k ∈ N and B
(

P σ
s

)

is the Bhattacharyya parameter of the tree-channel P σ
s .

Moreover, this lower bound is a constructive bound. That is, the construction of

an appropriate index set sequence An

(

{Ps}s∈[S]
)

is inherent from the lower bound.

The polar code corresponding to this index set has an asymptotically low decoding

error probability under successive cancellation decoding (for every channel in the set

{Ps}s∈[S]).

Corollary 6.4 (Improved parallel polar coding scheme) Consider the transmis-

sion over a set of parallel binary-input memoryless and output-symmetric channels

{Ps}s∈[S]. Fix an order Ps1, Ps2, . . . , PsS of channels and k ∈ N. Then, reliable trans-

mission is achievable based on the parallel polar coding scheme in Section 6.3, whose

rate is given by

C(PsS) + S − 1− 1

2k

∑

s∈[S−1]

∑

σ∈{0,1}k

max
i∈{s,...S}

B
(

P σ
si

)

. (6.27)

Proof: Define the channel sets

Ps , {Psi}Si=s , s ∈ [S].

1The actual derivation in [56] is provided for two channels P and Q. Nevertheless, the arguments
in [56] are suitable for the case of S > 2 channels. The proof of the bounds in [56] is based
on two major arguments. The first argument consider a sequential transformations of a given
channel P to a sequence of sets of tree-channels. Initially, the channel P is transformed into a
pair of tree-channels P 0 and P 1. Next, each of these tree-channels is transformed again to another
pair, and the transformation repeats recursively. It is shown that instead of transmitting bits
corresponding to indices induced by the polarization of the original channel P , at each transformation
level k, the problem is equivalent to transmitting a fraction 1

2k
of the bits based on the indices

induced by the polarization of the corresponding tree channels {P σ}σ∈{0,1}k . The first argument is
therefore not affected by the number of channels (as it concerns a property of a single channel). The
second argument is identical to the more simple polarization scheme detailed in Section 6.4.1. This
polarization scheme, based on binary erasure channels, can be applied to every set of tree-channels
{P σ

s }Ss=1, σ ∈ {0, 1}k. Based on this polarization scheme, a rate of 1
2k

(

1−maxs∈[S] B
(

P σ
s

))

is

guaranteed for each σ ∈ {0, 1}k.
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For each channel set Ps, s ∈ [S], the compound setting is considered. Based on the

lower bound in (6.26) and its associated index set sequence, a set sequence An

(

Ps

)

exists for every s ∈ [S], such that

1

n
An

(

Ps

)

≥ 1− 1

2k

∑

σ∈{0,1}k

max
i∈{s,...S}

B
(

P σ
si

)

(6.28)

and reliable decoding is guaranteed for all the channels in the set Ps under successive

cancellation decoding. As an immediate consequence of the construction, for every

n, the index sets form a monotonic sequence (i.e., if an index is ’good’ for a set of

channels, it must be ’good’ for a subset of these channels). Therefore, the monotone

set sequences for the polar construction is provided and the parallel polar scheme in

Section 6.3 can be applied. The rate of the resulting scheme is given by summing

over the rates in (6.28) which adds to

S − 1

2k

∑

s∈[S]

∑

σ∈{0,1}k

max
i∈{s,...S}

B
(

P σ
si

)

.

Since the last channel set PS includes just a single channel PsS , the compound setting

is not required for this set. For the last set the information index set of the polar

coding construction (in Section 5.1.2) is therefore applied. The resulting rate of the

parallel scheme is improved and given by (6.27).

Remark 6.8 (Possible order of channels) The channel order may be an impor-

tant parameter for the provided parallel scheme (in terms of achievable rates). The

channels may be ordered by their capacity, where

C(Ps1) ≤ C(Ps2) ≤ · · · ≤ C(PsS).

However, we have no evidence that this order results in the maximal achievable rate

(or that it is optimal in any other sense).

Remark 6.9 (An upper bound on parallel polar capacity) For each set Ps,

s ∈ [S], the upper bound in [56] on the compound capacity can be applied to upper

bound the size of the existing index sets An

(

Ps

)

. According to [56, Theorem 5], the

resulting rate is upper bounded by2

1

2k

∑

σ∈{0,1}k

min
i∈{s,...,S}

I
(

P σ
si

)

2As in the case of the lower bound, the actual derivation in [56] is provided for two channels
P and Q. Nevertheless, the arguments in [56] are suitable for the case of S > 2 channels. The
proof of the considered upper bound is based on two major arguments. The first argument is a
transformation of a channel to a sequence of sets of tree-channels (the same as in the lower bound).
Then, for each such set, the maximal achievable rate is upper bounded by the minimal capacity of
the channel capacities.
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for every k ∈ N, where I
(

P σ
si

)

is the capacity of the corresponding tree-channel P σ
si
.

Since for the last channel set, which is a set of a single channel, we have no compound

setting (as explained in the proof of Corollary 6.4) the maximal rate at which the

parallel polar coding scheme proposed in Section 6.3 can operate reliably is given by

C(PsS) +
1

2k

∑

s∈[S−1]

∑

σ∈{0,1}k

min
i∈{s,...S}

I
(

P σ
si

)

.

An example is provided in [56], demonstrating the the concerned bound can be smaller

than each of the channel capacities. Specifically, the example in [56] is based on a

BSC with a crossover probability of 0.11002 and a BEC whose erasure probability

is 0.5. Both of these channels corresponds to a capacity of 0.5 bits per channel use.

However, as demonstrated in [56, Example 6], their compound capacity is upper

bounded by 0.482 bits per channel use. Consequently, if the parallel polar coding

scheme in Section 6.3 is applied for the same two channels, the possible rate of such

a parallel coding scheme is upper bounded by 0.982 bits per channel use where the

parallel capacity is given by 1 bit per channel use.

6.5 Summery and Conclusions

A parallel polar coding scheme is provided in this chapter for binary-input arbitrarily-

permuted memoryless and output-symmetric parallel channels. The provided polar

codes are shown to achieve the capacity of the considered model where the channels

are assume to be stochastically degraded. For the non-degraded case an upper and

lower bounds on the achievable rates are provided. A generalization to non-binary

parallel polar coding, based on the results in [91], is clear.



Chapter 7

Summary and Outlook

7.1 Summary

The performance of non-binary linear block codes under ML decoding is analyzed in

Chapter 2. We provided a definition of symmetry for memoryless channels with non-

binary input alphabets. Under the provided symmetry condition, we proved that the

conditional error probability under ML decoding is independent of the transmitted

codeword. This result generalizes the well known message-independence property for

MBIOS channels (see also [39] and [40] where the same result was proved under linear-

programming decoding). The main part of Chapter 2 is devoted to the derivation

of upper bounds on the error performance of linear block codes under ML decoding.

We next apply these bounds on ensembles of regular non-binary LDPC codes, and

study their error performance for various communication channel models. In addition,

we provide the exact complete composition spectra for these LDPC code ensembles

(instead of the upper bound in [44]). This analysis forms a generalization of [18]

and [105] in the binary setting. Finally, we compare the new upper bounds with

sphere-packing lower bounds on the decoding error probability, and show that the

bounds are informative even at the low SNR regime.

In Chapter 3 we provide upper bounds on the error probabilities under generalized

decoding rules, i.e., list decoding rules and decoding rules with erasures. Our bounds

are valid for linear block codes whose transmission takes place over memoryless sym-

metric channels. We also provide message independence results for the considered

generalized decoding rules where both optimal and suboptimal decoding rules are

considered. When variable-size list-decoding is considered, we derive upper bounds

on the expected size of the decoded list and the associated error probability under list

decoding. In addition, upper bounds on the list error probability of linear block codes

are introduced when the size of the list is fixed. The bounds derived in this chapter

181
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are applicable to the performance analysis of specific codes and code ensembles, via

their (average) distance spectra. The bounds are suitable for finite block lengths and

also for asymptotic analysis. We finally exemplify the bounds for two coding schemes:

Fully-random linear block codes, and regular (binary and non-binary) LDPC code en-

sembles with finite block lengths. We also exemplify the applications of the bounds

to hybrid-ARQ schemes.

In Chapter 4 we study possible generalizations of the VA for list-decoding and

decoding with erasures. We introduce a modification of the VA, which coincides with

the optimal decoding rule of Forney for the cases at hand. The new algorithm ap-

plies to the more general case where finite-state Markov processes are observed via

memoryless channels, while our presentation is focused on the decoding of convolu-

tional codes. We simulated the performance of the proposed modified algorithm and

compared the results with the simulated performance of two suboptimal decoding

algorithm with erasures: the likelihood-ratio (LR) test decoding rule, and a simple

decoding scheme with repeat requests provided by Yamamoto and Itoh in [120]. A

good similarity between the performance of the simple scheme to the optimal one was

observed, even though the decoding scheme in [120] is remarkably simple. On the

other hand, the performance of the decoding algorithm based on the LR test is found

to be considerably degraded in comparison with that of the optimal performance.

In Chapter 5, we study the application of channel polarization to the wire-tap

communication model. We show that the secrecy capacity of a degraded memoryless

binary-input and symmetric wire-tap channel can be achieved by a proper application

of the channel polarization method. We prove that for every rate below the channel

secrecy capacity, there exists a suitable polar code for which both conditions of reliable

and secure communication are achieved under successive cancelation decoding. In

addition, we prove that the entire equivocation-rate can be achieved with channel

polarization under the weak notion of secrecy. For the particular case of erasure wire-

tap channel, with perfect observations at the legitimate user, it is shown that the

secrecy capacity can be achieved with a strong notion of secrecy. Finally, we study

the possible application of channel polarization for non-degraded wire-tap channels.

In Chapter 6, we continue the study of some possible applications of channel

polarization, by considering the signaling over parallel channels. We propose a channel

coding scheme and its corresponding successive cancelation decoding algorithm for

signaling over parallel channels. In the proposed scheme, the method of channel

polarization is incorporated with an algebraic maximum-distance separable codes.

In addition, it is shown that by using the proposed coding scheme, the capacity of

signaling over arbitrarily-permuted memoryless and symmetric parallel-channels is
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achievable under an assumption of channel degradation. Finally, the assumption on

channel degradation is excluded.

7.2 Outlook

Performance bounds of non-binary coding schemes

The comparison of the bounds in Chapter 2 with sphere-packing lower bounds shows

the suitability of the new bounds for the study of capacity approaching non-binary

linear block codes whose transmission takes place over an AWGN channel. For the

case of fully-interleaved fading channels with perfect CSI at the receiver, the compar-

ison of these upper and lower bounds shows a gap which motivates further study of

analysis techniques for non-binary linear block codes. It is unclear if the observed gap

is due to the provided bounding technique or is it a question of the suitability of the

specific codes which may not be the best choice for the fully interleaved fading channel

model. Hence, the comparison of additional non-binary coding techniques with the

provided bounding technique is of interest. In particular, the adaptation and possible

generalization for the definition of symmetry and the related message-independence

property for further non-binary modulation techniques is of great interest.

Variations on recently introduced random-coding bounds

The recently introduced coding theorems in [84] and [114] enable to derive improved

upper bounds on the error performance of coded schemes. In [84], new performance

bounds are derived for general channels (both achievable and converse results are pro-

vided). These bounds are tighter than classical bounds and some recently introduced

bounds. The achievable results in [84] and [114] are derived via the random coding

technique. The bounds derived in this thesis are based on some variations of the Gal-

lager bounding technique which was originally derived for random code ensembles. It

is of interest to adapt the recently introduced technique such that it may serve for

the performance analysis of structured codes.

Generalized decoding of linear block codes

The analysis of coded communications over fully-interleaved fading channels with CSI

at the receiver under generalized decoding is of interest. Moreover, the suitability of

the provided bounds for such communication channel models is apparat. The analysis

of the error and latency performance of coded communication systems over fading
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channels with feedback, based on the provided bounds, is of special interest. Possible

adaptation of the bounds for the case of transmissions over parallel channels is also

of interest.

Providing feasible decoding algorithms with variable list sizes and erasures is of

major interest. The literature on list decoding and decoding with ARQ schemes is

tremendous. However, it seems that much less work is devoted to the analysis and

design of decoding algorithms which aim to operate close to the optimal decoding

rule in [41]. Moreover, we still lack a good understanding of efficient, practically

appealing coding and decoding schemas in the realm of different degrees of feedback

(in terms of feedback rate and reliability). The study of such coding scheme is of

special interest for systems which do not exhibit exponential behavior of the error

probability, such as LDPC under iterative decoding, but may acquire exponential

behavior in the presence of feedback.

Channel polarization

The study of possible application of channel polarization for non-degraded wire-tap

channels is of major interest. In particular, it is suggested to investigate the open

polarization problem in Chapter 5. Generalizing the proposed applications to non-

binary and non-symmetric channels, via the non-binary channel polarization method

in [79], [91] is also suggested as a continuation of major interest. Variations on the

parallel polar coding technique which may achieve the capacity of some non-degraded

parallel channels are of interest. The way channel polarization is combined with alge-

braic codes for parallel channels is a technique which may contribute to some further

applications, besides the particular case of parallel channels (see, e.g., [80]). This

technique may also help in improving the error exponents of the channel polarization

method, and in particular its successive decoding algorithm.
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xivwz
C. E. Shannon ly opeknd exn`n mqxet zr ,1948 zpya divnxetpi`d zxez ly dziy`x:divnxetpi`d zxeza zeizedn zeira izyl miizxe`izd ze
eqid egped df xn`na .[98]zppeknd ez
earn z
nlpd zifkxnd d`vezd .uexrd 
e
iw ziirae xewnd 
e
iw ziiramiaexwd miavwa eppevxk dpin` zxeywz biydl ozip yrex uexra ik `id Shannon ly.uexrd leaiwl zizexixy`xwp df jildz .uexra x
eynd r
inl zexizi ztqed i
i lr zbyen dpin` zxeywzoin` geprt jxevl hlwna zynyn ,
e
iwd jldna ztqeeznd zexizid .uexr 
e
iwlr zqqeand dwipkha ynzyd ,[98] -a Shannon .yrexd uexra x
eynd r
ind lyzynyn `ide ,divnxetpi`d zxeza zifkxnl dktd ef dwipkh .mii`xw` wela i
ew,aex it lr) iyrn eppi` i`xw` wela 
ew ,z`f mr 
gi .zeirae mil
en ly agx oeebnadpin` zxeywz mibiynd mi
ew xg` yetigd .(didyde zeikeaiq ly milewiyn xwiraagxp xk deedn zeiyrn zekxrna yeninl mipzipde uexrd leaiwl miaexwd miavwa.dpy 60 -n dlrnl dfn mi
ewd zxeza xwgnlmi`yepd z` millek divnxetpi`d zxeza mixwegdd ly miixwird oiiprd i
wen:mi`ad.zeirae mil
en ly oeebna 
e
iw zenkq ly zei
eqid zelabnd zpad •.zei
eqi zelabn oze` z` zebiynd zeipan 
e
iw zenkq zn`zde gezit •.zeipan 
e
iw zenkq xear zeinzixebl` zewipkh ly dfilp`e gezit •zei
eqid zelabndn dnk e
nlp ,ef d
eara mkeqnd xwgnd ly oey`xd ewlgalr mipeilr minqg ly dxifba ep
wnzd ,hxta .miix`pia-`l mi
ew zervn`a zxeywzamiix`pia-`l miix`ipil wela i
ew ly ziaxin zexiaq beqn geprta d`ibyd zexazqdzxeywza d`ibyd zexazqd ly dfilp`l .miixhniqe oexkif ixqg mivexra mix
eyndlr zei
eqid zelabnd od .df ghya zirevwnd zextqdn xkip wlg y
wen z

ewn-ear oeebna e
nlp miitivtq miipan mi
ew ly mdirevia zkxrd ode d`ibyd zexazqd,miwiie
n miiehia jnq lr dkxrdl mipzip zxeywz zekxrn ireviay xi
py oeeik .ze
xzi .d`ibyd zexazqd lr minqg zervn`a el` zekxrn ly odirevia z` jixrdl bedp




d xivwz-al laewn ,jk meyn .ziyrn izla zeidl dlelr zeitvtq zekxrn ly dfilp` ,ok lrmexhwtq oebk) miiqiqa mixhnxt it lr mdirevia z` jixrdle mi
ew ly mixiav oegmiavwa zepin`a zelret zeipx
en zxeywz zekxrn .(xiavd ly rvennd miwgxndzekxrna oerhiwd avwl xarn jxr xqgk dlbzn 
egi`d mqgy 
era leaiwl miaexwdogezit z` epaxi
 
egi`d mqg ly zelabnd .deab 
r rvenn wela jxe` zelra ze

ewnmiix`ipil wela i
ewa 
wnzd df ghya xwgnd ly eaex .zeti
r dniqg zewipkh ly.([94]-a dtiwn dxiwq d`x) miix`piaemivexra zlaewnd dx
bdd z` irah ote`a daigxn epz
eara zx
bend dixhniqdre
i MBIOS ivexr xear .(MBIOS) `vena-miixhniqe dqipka-miix`pia ,oexkif ixqg-xin zexiaq geprt zgz ,miix`piae miix`ipil wela i
ew ly d`ibyd zexazqd ikly agx oeebn gezitl dyniy ef ziqiqa d`vez .zx
eynd dr
eda dielz dppi` ,zia-pil wela i
ew ly ziaxin zexiaq geprt zgz d`ibyd zexazqd lr mipeilr minqgzniiwzn zx
eynd dr
eda zelzd-i` ik ep`xd epxwgn ziy`xa .miix`piae miix`idgtynl mikiiy ef d
eara egzety mipeilrd minqgd .ix`pia-`ld dxwnd xear mbminqgd ly diipyd dqxba ep
wznd ,hxta .[45] Gallager ly dwipkha minqg ly-gnd ly df wlga egzety minqgd .[96] -e [94] ,[32] ,[31] ,[26] Salehi -e Duman lydlil
 zeibef zwi
a zvixhn ilra mi
ew ly d`ibyd zexazqd zkxrdl miynyn xwly miix`pia-`ld LDPC-d i
ew ly d`ibyd zexazqd z` epga ,epxwgna .(LDPC)myl .(ziaxin zexiaq geprt zgz) zxeywz ivexr ly mil
en oeebna [44] Gallagerdagxdk) dl` mi
ew ly `lnd zeivifetnewd mexhwtql wie
nd iehiad lawzp ,jkmipezgz minqgl eeyed elawzdy ze`vezd .([105] -e [18]-a ix`piad dxwna gezitlminqgd ly zeniyiid lr 
enll ozip ef d`eeydn .(sphere-packing) mixe
k-zfix` beqn.xwgnd ly df wlga egzety-ken migprtn mr ze

ewn zekxrn ly odireviaa ep
wnzd xwgnd ly ipyd ewlga:mi`ad miavna milretd migprtnl dpeekd millken migprtn iepika .millavna gprtnd ly hltd .hlwpd ze`d jnq lr dhlgd rval `l i`yx gprtnd •zhlgd ea rxe`nd ,gprtnd i"r ziyrp z`f lka dhlgd xy`k .dwign dpekn df.zilbzn izla d`iby `xwp dieby gprtndhlt .hlwpd ze`d lr jnzqda z

ea dhlgd xy`n xzei rivdl i`yx gprtnd •ea rxe`nd .(dniyx gprtn mi`xew gprtnl) dniyx `xwp df dxwna gprtnd.dniyx geprt z`iby `xwp dx
eyy dr
edd z` zllek `l dniyxdminqg ly mzxifb mr 
gi Forney i"r gzet el` miavna il`nihte`d dhlgdd weg-peelxd mixwna ,dniyxd ly rvennd l
ebde) [41] d`ibyd zerxe`n lr mil`ivppetqw`jxe` mr dniyxd gprtnn zizedn l
ap Forney i"r rvedy il`nihte`d gprtnd .(mih.mii`xw` wela i
ew xear egzet [41] -a miil`ivppetqw`d minqgd .[117] ,[36] reaw



e xivwz-e [52] ,[9] lynl d`x) miil`nihte`-zz migprtn xtqn xear mb egzet el`ky minqgly miixyt`d miyeniydn xzid oia zraep millken migprtna weqrl divaihend .([54]zxeywz zekxrna .mixyxeyn mi
ew mr zekxrnae aeyn mr zekxrna el` migprtnyeniy jez d`ibyd zexazqda xkip xetiy biydl minieqn mixwna ozip ,aeyn zellekd.dr
edd ly y
gn xe
iyl mipepbpna:mi`ad millkend migprtnd ly mdirevia lr ep
nr epxwgnadxwnd xeare zewign mr geprt ly dxwnd xear ,Forney ly il`nihte`d gprtnd •.dpzyn jxe`a dniyx gprtn ly.zewign mr geprt xear likelihood ratio-test (LR) beqn il`nihte` zz geprt •.xzeia zexiaqd zer
edd z` zllekd reaw jxe`a dniyx mr geprt •egzet el` millken migprtn zgz d`ibyd zerxe`n zeiexazqd lr mipeilr minqgoexkif ixqg mivexra mix
eynd (miix`pia-`le miix`pia) miix`ipil wela i
ew xeardr
eda d`ibyd zerxe`n zeiexazqd zelz-i` lr ze`veza eel el` minqg .miixhniqezelz .
ew ixtq ly mixiavle miitivtq miipan mi
ewl mini`zn minqgd .zx
eynd
ewd ly (rvennd) miwgxnd mexhwtq jx
 iehia i
il d`a mipe
pd mi
ewa minqgdmipzip iteq wela jxe` xear mirevia ode miihehntiq` mirevia od .(mi
ewd xiav e`)miix`ipil wela i
ew xear zenb
en xwgnd ze`vez .egzety minqgd zervn`a dfilp`l.iteq wela jxe` mr LDPC beqn mi
ew ixiav xeare ,(miihehtniq` mirevia) mii`xw`ihnehe` xfeg xe
iyl zenkq mr zekxrn ly odirevia ly dfilp`d zaehl miyeniy.md s` minb
en (ARQ)zekxrn xear Vitebri mzixebl` ly divwiti
en zrven xwgnd ly iyilyd ewlgamieedn diveleapew i
ewe Vitebri mzixebl` .aeyn mr geprte dniyx geprt mr ze

ewnaygl xyt`n Vitebri mzixbel` .mipy zexyr dfn zxeywz zekxrna ifkxn aikxn
eaira zeira oeebna yeninl dni`znd zeikeaiq lr dxiny jez ziaxin zexiaq geprt,Vitebri mzixebl` ly zeaeyg zellkd xtqn zeniiw .zxeywzae mi
ewd zxeza ,zeze`geprtl Vitebri mzixebl` ly zellkd d`x ,hxta .zxeywza ode mi
ewd zxeza odzeihnehe` zenkq mr zekxrn xeare ,[102] -ae [95] ,[88] ,[81] ,[70] ,[50] ,[20] -a dniyx.[120] -ae [67] ,[53] ,[51] -a xfeg xe
iylly il`nihte`d gprtnd mr z
klzn xwgnd ly df wlga dgzety divwiti
end-eleapew i
ew ly zewign mr geprt xear znb
en epz
ear .diveleapew i
ew xear Forneymr (Markov) iaewxn jildz ly illkd dxwnl dni`zn divwiti
end ,z`f mr 
gi .divmieeyen eprvdy mzixebl`d ly eirevia .oexkif xqg uexr jx
 dtvpd iteq miavn xtqnsqep il`nihte`-zz mzixebl` ly eireviale ,LR beqn il`nihte`-zz geprt irevial,dheyt [120] -a geprtd znkqy s` lr .[120] -a Itoh -e Yamamoto i"r rved xy`beqn mzixebl`d ly eirevia .il`nihte`d mzixebl`d ly el`l 
e`n miaexw direvia.il`nihte` geprta mibyend el`n mizegp LR



f xivwz
(polarization) aehiw ly dwipkhd ly zeivwilt`a ep
wnzd xwgnd ly oexg`d ewlga-tyn mieedn el` mi
ew .[4] Arikan i"r elbzd (polar codes) miiahew mi
ew .mivexr ly,`vena-miixhniqe oexkif ixqg dqipka-miix`pia mivexra leaiw ibiyn mi
ew ly dgly dwihwxtde dixe`izd .(successive cancelation) izx
iq lehia beqn geprt zgz-ipkhl mineyii xtqn e`vnp xak ,z`f mr 
gi .okx
 zligza oii
r miiahew mi
ew-neyii .divnxetpi`d zxeze zxeywza zeiq`lw zeiral mivexr ly aehiw ly dw-xn uexre bxe
n dvtd uexr oebk miynzyn zeaexn zekxrna miiqiqa mil
enl mizexewn zqig
 xear miil`nihte`k elbzd miiahew mi
ew .[62] -a e
nlp dyib daeziiraae zix`pia Wyner-Ziv ziiraa miiahew mi
ew ly mineyii .[65] ,[62] zeeir mr-ew mi
ew mr dbydl miixyt`d miavwd .[65] ok mb e
nlp zix`pia Gelfand-Pinskerexwgp (compound channels) zaekxz ivexr mr zeiraa izx
iq lehia geprt zgz miiahmitqep miixyt` mineyii ly ielibl divaihend z` deeid el` zeiexyt` oeebn .[55] -ami
ew lr zeqqeand zenkq eprvd xwgnd ly df wlga .mivexr aehiw ly dwipkhlzaehle (wire-tap channel) oif`n mr uexra dieqge dpin` zxeywz zaehl miiahew.izexixy dqipk ietin (permutation) x
q mr miiliawn mivexra zxeywz.mihlwn befe 

ea x
yn mr miynzyn daexn uexr epid oif`n mr zxeywzd uexryx
p .oif`nd z` ynyn ipyd hlwnde ,iwegd ynzynd z` ynyn 
g`d hlwndwe
dd oeilrd mqgd .inihibld ynzynd xear zi
eqe dpin` zxeywz biydl ef diraawlga .zei
eq mr uexrd leaiw epid ef zxeywz miiwl mixyt`nd miavwd lr xzeiaxqg ,dqipka ix`pia ,bxe
n oif`n mr uexr ly mi`pz zgz ik epgked xwgnd ly dfuexrd leaiw z` mibiyn xy` mini`zn miipan mi
ew miniiw ,`vena ixhniqe oexkif.zei
eq mrzldpzn z

ewnd zxeywzd ,dqipka izexixy x
q mr miiliawn mivexr ly diraaietindy jka uerp ef diraa iyewd .liawna mivexr ly dpezp dveaw jx
 zipnf ea.uexrd i"r izexixy ote`a xgap `l` zkxrnd i"r azken `l mivexrl 
ew zelin ly.hlwna gprtnl re
ie dlek zxe
yzd jxe`l reaw xnyp ietind x
q ik epgpd epxwgnai`pza) miliawnd mivexrd ileaiw mekql deey ef diraa uexrd leaiw ik ze`xdl ozipdf wlga .(mivexrd lka ddf dpid mivexrdn 
g` lka leaiwd z` dbiynd d
indy-ewd 
ewd .dpe
pd dirad xear mivexr aehiw lr zqqeand dnkq eprvd xwgnd lyxear .(MDS) zil`niqwn wgxn z
xtd ilra mi
ew lr xzid oia qqean eprvdy iaheprvdy dnkqd ,mibxe
ne miixhniq ,oexkif ixqg ,dqipka miix`pia miiliawn mivexrmipezgz minqg eprvd ,mibxe
n mpi` mivexrd ea dxwnd xear .uexrd leaiw z` dbiyn.drvedy dnkqd zervn`a miixyt`d miavwd lr mipeilre


