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Abstract

Our study begins with the error performance analysis of non-binary codes. The
performance of non-binary linear block codes is studied via the derivation of new
upper bounds on the block error probability under maximum-likelihood decoding.
The transmission of these codes is assumed to take place over a memoryless and
symmetric channel. The new bounds, which are based on the Gallager bounding
technique and their variations, are applied to regular ensembles of non-binary low-
density parity-check codes. These upper bounds are also compared with sphere-
packing lower bounds. Our study indicates that the new upper bounds are useful
for the performance evaluation of coded communication systems which incorporate
non-binary coding techniques.

Secondly, erasure and list decoding of linear block codes are concerned. A message
independence property and some new upper bounds on the performance are derived
for erasure, list and decision-feedback schemes with linear block codes transmitted
over memoryless symmetric channels. Similar to the classical work of Forney, we
focused on the derivation of some Gallager-type bounds on the achievable tradeoffs
for these coding schemes, where the main novelty is the suitability of the bounds
for both random and structured linear block codes (or ensembles). The bounds are
applicable to finite-length codes and the asymptotic case of infinite block length, and
they are applied to low-density parity-check code ensembles.

Next, a modified Viterbi algorithm with erasures and list-decoding is introduced.
This algorithm is shown to yield the optimal decoding rule of Forney with erasures
and variable list-size. For the case of decoding with erasures, the optimal algorithm
is compared to the simple algorithm of Yamamoto and Itoh. The comparison shows
a remarkable similarity in simulated performance, but with a considerably reduced
decoding complexity.

Finally, two applications for the method of channel polarization are studied. Polar
coding, recently introduced by Arikan, is a structured coding technique which is shown
to approach capacity for every output-symmetric discrete memoryless channel. The

theory of polar coding is still in its early days. Consequently, no known polar coding



ABSTRACT 2

schemes have been shown to compete well with the state of the art of other modern
coding schemes. Nevertheless, it has already been shown that channel polarization
techniques may be applied for various multi-user information-theoretic problems. The
application of channel polarization is investigated in our research for two different
communication problems: signaling over parallel channels, and secure communication

over the wire-tap channel.



x — Scalar.

x — Row vector.

X — Set.

E(X) — Expectation of X.
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() — Empty set.
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Chapter 1
Introduction

The theoretical foundations of communication theory were laid at the mid of the
twentieth century by the celebrated paper of C. E. Shannon [98]. Two dual problems
are conceived and solved in this paper: the problem of source coding, and the problem
of channel coding. The goal of the channel coding problem is to achieve reliable
communication at the maximal rate over a noisy channel. This goal is satisfied by
introducing some redundancy to the transmitted sequence. This operation is carried
by the channel encoder. The redundancy in the transmitted signal supports the
decoding of the transmitted sequence. This dissertation is focused solely on the
channel coding problem.

One of the most fascinating results introduced by Shannon is that information can
be communicated with arbitrarily small distortion at rates arbitrarily close to capac-
ity. This result completely contradicts all that could have been intuitively understood
from the state of the art of the communication theory and practice of Shannon’s time.
Shannon’s solution to the channel coding problem relies on using random block codes.
This technique is referred to in the literature as the random coding technique, and
it serves as one of the fundamental tools of information theory. Nevertheless, fully-
random block codes are of little practical interest (mainly due to complexity and delay
concerns). The pursuit after practical coding schemes which reliably operate close to
the channel capacity limit, contributed to more than 60 years of research in coding
theory. Information and coding theorists spread their interest between the following

core subjects:
e Understanding the fundamental limits in coded communications.

e Formulation and adaptation of coding schemes to support various communica-

tion models and achieving their fundamental limits.
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e Development and analysis of algorithmic techniques operating over the formu-

lated coding schemes.

1.1 A Glimpse to Channel Coding

A short introduction to the theory of channel coding is provided. The modest goal
of this introduction is merely to mention the coding schemes, terms, and techniques
that are of some interest in the following chapters.

Consider the problem of reliable transmission of digital information over a noisy
channel. The channel encoder introduces some redundancy to the digital information
before its transmission over a noisy channel. This redundancy supports the decoding
process at the receiver. The set of possible coded sequences, generated by the channel
encoder, is called the channel code or the the codebook. The term error-correcting
code (or forward error-correcting code) is very common, as one of the key purposes
of channel codes is to provide the means of error correction capabilities. Some codes
support the less demanding purpose of error detection, in order to facilitate automatic
mechanisms for repeat requests.

Much of the interest in coding theory is devoted to linear codes. These codes
may facilitate substantial algebraic structures, while still maintaining the potential of
achieving reliable communications at rates arbitrarily close to channel capacity (see,
e.g., [46, Section 6.2] and [111, Section 3.10]). Linear block codes can be represented
by a generator matriz whose rows form the basis vectors of the linear code. Alterna-
tively, the code may be defined by a parity-check matriz whose rows form a basis of
the vector space which is orthogonal to the code. The algebraic structure of linear
codes allows the introduction of practical encoding and decoding algorithms.

Early influential examples of linear block codes include the well-known codes of
Golay [47] and Hamming [49]. Other important families of linear block codes are
the Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (RS), and generalized RS
(GRS) codes (see, e.g., [15], [71], [89] and references therein). These codes possess el-
egant and sophisticated algebraic structures. Hence, these codes are referred to in the
coding literature as algebraic codes. The field of algebraic coding theory contributed
to many of the successes of coding theory in its early decades. Algebraic codes are an
immanent part of many important applications in both communication systems and
storage.

Convolutional codes, invented by Elias in 1955, are one of the key machineries

of communication systems [35]. These codes have a linear structure, and can be
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described by a discrete time finite-state machine. Based on their tree structure, con-
volutional codes can be decoded using sequential decoding algorithms [38], [118]. The
recognition of the practical usage of convolutional codes was further increased with
the introduction of Massey’s threshold decoding algorithms (and its variations) [76].
Convolutional codes possess the pleasing feature of having a trellis-graph structure
(see, e.g., [101]). The trellis structure enables the introduction of practical and op-
timal decoding algorithms. For detailed description on the structure and techniques
related to convolutional coding, see [60], [71] and references therein. The vast spread
of convolutional codes in practice is due to two important contributions: The Viterbi
algorithm (VA) and concatenated coding schemes. The VA was introduced by Viterbi
in 1967 [42], [108]. The algorithm is popular in many coding and signal processing ap-
plications, as it yields the maximum-likelihood (ML) solution while being amenable to
practical implementations. Concatenated coding, introduced by Forney in 1966 [43],
is a coding technique incorporating two relatively short codes which are combined
to construct an efficient and strong (relatively long) code. The serially concatenated
scheme of a convolutional codes with an RS code is one of the most popular coding
schemes in the pre Turbo-era (see [22], [71], and references therein).

Turbo coding, introduced by Berrou, Glavieux, and Thitimajshima in 1993, is
the first channel coding scheme demonstrated to operate reliably over the Additive
White Gaussian Noise (AWGN) channel within 1 dB from capacity [13]. The original
turbo structure comprises a parallel concatenation of convolutional component codes
where one of the code is an interleaved version of the other. This structure allows
to construct structured but random-like codes. The turbo decoding algorithm is
based on iterative soft-decoding of each of the code components. Each component is
decoded based on the BCJR algorithm, introduced in 1974 by Bahl, Cocke, Jelinek,
and Raviv [7]. The BCJR algorithm allows for optimal symbol-wise decoding of codes
which possess a trellis structure. Being a soft-in soft-out (SISO) algorithm, the BCJR
algorithm provides soft reliability information on each of the decoded symbols based
on soft a-priori reliability inputs on these symbols. The turbo principle is based
on iterative exchanging and refinement of these soft values between the two SISO
decoding algorithms of each of the two component codes.

The discovery of turbo codes started the modern era of the channel coding theory.
Among its important contributions is the rediscovery of Gallager’s Low-density parity-
check (LDPC) codes [44]. LDPC codes are linear block codes, which possess a sparse
structure. The sparse structure of LDPC codes supports the use of practical iterative
decoding algorithms. Various structured LDPC and other turbo-like codes and their

related iterative decoding techniques were reported in the last decade. Many of these
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channel coding techniques show remarkable performance near the ultimate channel
capacity limit with tolerable complexity. For a detailed study of modern coding
theory, the reader is referred to [86], [90], and references therein.

Channel codes for bandwidth-limited channels comprise a valuable part of cod-
ing theory and practice. Important families of non-binary codes for communicat-
ing over bandwidth-limited channels are based on lattices [21], trellis-coded modula-
tion [14], [106], multilevel coding [59], and bit-interleaved coded modulation [2], [121].
Modern coding schemes and techniques were also incorporated to construct spectral-
efficient schemes (see, e.g., [10], [11], [12], [25], [33], [72], [85], [87], [112], [113], and

references therein).

1.2 Performance Analysis of Coded Communica-

tion Systems

A substantial part of coding theory is dedicated to the performance analysis of coded
communication systems. The analysis of error performance is of particular interest
where both the fundamental limitations on the decoding error probability in general,
and the error performance of structured coding schemes are studied.

Error performance characteristics of coded communication systems rarely admit
exact closed-form expressions. Consequently, the performance of these systems is usu-
ally analyzed via upper and lower bounds on the decoding error probability. Modern
coding schemes perform reliably at rates which are close to the channel capacity,
whereas union bounds are useless for codes of moderate to large block lengths at
rates above the channel cut-off rate. The limitation of the union bound therefore
motivates the introduction of some improved bounding techniques which can also
be efficiently calculated. Although the performance analysis of specific codes is in
general prohibitively complex, this kind of analysis is tractable for various code en-
sembles for which the derivation of some of their basic features (e.g., the average

distance spectrum) lends itself to analysis.

1.2.1 Error Performance under Maximum-Likelihood (ML)
Decoding

The 1965 Gallager bound [45] is one of the well-known upper bounds on the decoding
error probability of ensembles of fully random block codes, and it is informative at
all rates below the channel capacity limit. Emerging from this bounding technique,

the bounds of Duman and Salehi (see [31] and [32]) possess the pleasing feature that
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they are amenable to analysis for codes or ensembles for which the (average) distance
spectra are available.

The bounds of Duman and Salehi, in particular its second version (called hereafter
the ‘DS2 bound’), are generalized in [26], [94], and [96] for various memoryless com-
munication systems. Moreover, the DS2 bound facilitates the derivation of a large
class of previously reported bounds (or their Chernoff versions), as shown in [94]
and [96]. Gallager-based bounds for binary linear block codes whose communication
takes place over fading channels are provided in [58], [93] and [119]. The Shulman and
Feder bound (SEFB) [100] forms an extension of the 1965 Gallager bound which can
be also applied to structured codes or ensembles. An adaptation of the SFB to non-
binary linear block codes was reported in [11] for the case of coding with a random
coset mechanism (see, e.g., [11], [12], [46], and [57]), and for the case of transmis-
sion over modulo-additive noise channels (see [37]). Generalizations of Gallager-type
bounds, among them the DS2 bound, for the case of binary linear block codes whose
transmission take places over parallel channels are provided in [73] and [92].

The 1959 sphere-packing (SP59) bound of Shannon [99] is a lower bound on the
decoding error probability of block codes whose transmission takes place over the ad-
ditive white Gaussian noise (AWGN) channel with equal-energy signaling. The 1967
sphere-packing bound of Shannon, Gallager and Berlekamp [97] forms an alternative
lower bound on the decoding error probability of block codes which applies to dis-
crete memoryless channels. An improved sphere-packing (ISP) bound, which holds
for all memoryless symmetric channels, was recently derived in [115] by improving
the bounds in [97] and [107].

For a comprehensive tutorial on the performance analysis of binary linear block
codes under maximum-likelihood (ML) decoding, the reader is referred to [94] and

references therein.

1.2.2 Error Performance under Generalized Decoding

Exponential error bounds for the fully-random block code ensemble were derived and

studied by Forney [41], referring to the following two situations:

1. A decoder is allowed not to make a decision on a received signal, or rejecting all
estimates; this output is called an erasure. When a decision is made, the event

where the decoder decision is incorrect is called an undetected error.

2. A decoder is allowed to make more than one estimate of the received signal.
The output of this decoder forms a list of codewords, and the event where the

transmitted message is not on the list is called a list error event.
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Following [109], decoding rules for these two situations are called in the following
parts of this dissertation generalized decoding rules. As explained in [41], erasure and
list options may be useful when the transmitted data contains some redundancy, when
a feedback channel is available, or when several stages of coding (e.g., concatenated
codes) are used. The size of the decoded list in [41] is allowed to vary according to
the received signal. This decoding rule differs from [36] and [117] where the size of
the list is predetermined and fixed.

Consider the case of decoding with erasures (the first situation). By allowing
a decoder to increase the probability of erasures, the undetected error probability
can be reduced. In the case of list decoding (the second situation), by increasing
the decoder list, the list error probability can be reduced. The optimum decoding
rules with respect to these tradeoffs were provided in [41] and they were analyzed
via the derivation of exponential bounds for the fully-random block code ensemble.
Sub-optimal decoding rules are analyzed in [9], [52], and [54], via a similar bounding
technique, and the random coding error exponents under optimal and sub-optimal
decoding rules are compared. It is noted that the considered decoding rules are
studied with respect to a given code, and finding the optimal codes for these scenarios
remains an open problem.

The performance analysis under generalized decoding rules with erasures enables
the study of coded communications with a noiseless decision feedback. Specifically,
it is assumed that erasures are followed by a repeat-request acknowledgment over
a noiseless and immediate feedback channel. Such schemes are often referred to as
hybrid automatic repeat request (ARQ) systems. Unlike the channel capacity of
single-user discrete memoryless channels (DMC), which is not affected by feedback
(see for example [23, p. 216]), a significant improvement is demonstrated in [41] for
the error exponents of the concerned coded schemes. In this respect, the reader is
also referred to [48] where the error exponents of hybrid ARQ schemes with limited
retransmissions are studied. The effect of feedback was also considered in [19], and it

was shown to significantly reduce the block error probability for DMCs.

1.3 Polar Coding

Channel coding via the method of channel polarization was recently provided by
Arikan in [4]. On a binary-input DMC, polarization ends up with either ‘good bits’,
i.e., binary channels whose capacity approaches 1 bit per channel use, or ‘wasted bits’,
i.e., channels whose capacity approaches zero. The fraction of the good bits is equal

to the mutual information with equiprobable inputs (which equals the capacity for
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the case of a memoryless symmetric channel). The rate of channel polarization and
additional characterization of polar codes were studied in [6], [63] [64] and [91].

For a single-user channel-coding problem, the polar coding scheme is based on
transmitting the uncoded information bits over the capacity approaching channels
(when we interpret the polarization as a kind of a precoding or pre-processing). At
the same time, fixed and predetermined bits are transmitted over the channels whose
capacity approaches zero. These predetermined bits are essential part of the successive
decoding process of polar codes. Hence, these fixed and predetermined bits should
not be ignored. In a physically degraded setting, as mentioned in [4], an order of
polarization is maintained in the sense that ‘good’ bits for the degraded channel,

must also be ‘good’ for the better channel.

1.4 Motivation and Related Work

1.4.1 Error Performance of Non-Binary Codes under ML De-

coding

The drawback of the union bound (for codes of moderate to large block lengths the
union bound diverges above the channel cut-off rate) motivates the derivation of
upper bounds on the decoding error probability of non-binary codes. In particular,
the derivation of Gallager-type bounds for non-binary linear block codes (or code
ensembles) whose transmission takes place over memoryless symmetric channels are
considered.

The definition of symmetry for channels whose input is non-binary should gener-
alize the common definition of memoryless binary-input output-symmetric (MBIOS)
channels. It is well known that for MBIOS channels, the decoding error probability
under ML decoding is independent of the transmitted message (see, e.g., [111]). Many
of the bounding techniques for binary linear block codes under ML decoding are based
on this message independence property. Hence, the motivation for investigation of
the possible generalization of this result for non-binary codes is clear.

The study of non-binary LDPC code ensembles further motivates the derivation
of the suggested bounds. The performance analysis of binary LDPC ensembles in [44]
is carried under the assumption that the channel is MBIOS. In contrast to the binary
case, the performance analysis provided in [44] for non-binary LDPC code ensembles
is carried under a symmetry assumption which is tailored to the specific bounding
technique that was introduced in [44]. The asymptotic error performance of several

non-binary LDPC structures is studied in [11] under ML decoding. Their asymptotic
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performance under iterative decoding was studied in [12], and further bounds on the
thresholds of non-binary LDPC code ensembles were studied in [85] and [113]. It was
assumed in [11] that the transmission takes place over channels with a random coset
mechanism which enables to dismiss the channel symmetry condition required in [44].
The decoding error probability of various non-binary LDPC code constructions was

studied empirically in the literature (see, e.g., [25]).

1.4.2 Error Performance of Structured Codes under Gener-

alized Decoding

Much of the current literature on performance analysis of coded communications is
focused on maximum-likelihood (ML) decoding (see, e.g., [94] and references therein).
Lower bounds on the error exponents for fully-random block codes under generalized
decoding rules were derived in [9], [41], [77], and [109]. Error exponents are provided
in [103] and [104] for random codes with a constant composition under some subop-
timal decoding rules. An upper bound on the error exponent under fixed-size list-
decoding was provided in [97]. The error performance under fixed-size list-decoding
was studied for specific codes in [8], [17] and [68] where the communication takes
place over an AWGN channel. Additional (suboptimal) decoding rules with erasures
were analyzed in [28] and [29].

Consider the case where a given structured code (or code ensemble) is transmitted
over a DMC. A vast amount of performance analysis techniques are available under
ML decoding. On the other hand, for the case of generalized decoding (either optimal
a’la Forney or other suboptimal decoding rules) only few general analysis techniques
exist. This gap motivates the study of a possible adaptation of analysis techniques for
the case of generalized decoding. Specifically, upper bounds on the error probability
under generalized decoding algorithms are of interest.

As mentioned in Section 1.4.1, many of the bounding techniques under ML de-
coding rely on a message independence property. Specifically, the error probability
of binary linear block codes whose transmission takes place over MBIOS channels is
known to be independent of the transmitted codeword. Hence, the motivation for the
study of corresponding message independence properties under generalized decoding

rules emerges.
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1.4.3 Optimal Erasure and List Decoding of Convolutional
Codes

The VA is known to yield the ML sequence estimation for a finite-state Markov
process that is observed via a memoryless channel. For the particular case of coded
communications with convolutional codes, the output of the VA coincides with the
ML decision. The simplicity and low complexity of the VA lead to its wide spread as
one of the key techniques in communication theory and practice (see, e.g., [110], [22],
and references therein).

Many generalizations and adaptations of the VA were reported in the literature,
both in coding theory and signal processing. In this dissertation, applications of list
decoding and ARQ schemes are concerned. List decoding generalizations of the VA
were reported in [20], [50], [70], [81], [88], [95], and [102]. Adaptations of the VA to
support hybrid ARQ schemes were reported in [51], [53], [67], and [120]. These results
motivate the pursuit for a variation on the VA, where optimal decoding a’la Forney is
considered. Specifically, a feasible implementation of Forney’s optimal decoding rule
with erasures (and possible variable list-size) is studied for the case of convolutional

codes.

1.4.4 Applications of Polar Codes

The theory and practice in polar coding is still in its early days. Nevertheless, the
method of channel polarization and its related techniques have already been intro-
duced in several important problems of information theory. Applications of polar
codes for basic multi-terminal models such as the degraded broadcast channel and
the multiple-access channel, were studied in [62]. Polar codes were also found to
be optimal for lossy source coding [62], [65]. Applications of polar coding to binary
Wyner-Ziv and the binary Gelfand-Pinsker problems were provided in [65]. The com-
pound capacity of polarization codes (under successive cancelation decoding) was
studied in [55]. The variety of these possible applications motivates the study of

further applications where the channel polarization technique can be used.

1.5 This Dissertation

Chapter 2 is focused on the performance analysis of non-binary linear block codes
under ML decoding. A definition of symmetry is stated for memoryless channels
with non-binary input alphabets. Under the considered symmetry condition, it is

proved that the conditional error probability under ML decoding is independent of
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the transmitted codeword. This result generalizes the well-known message indepen-
dence property for MBIOS channels. Moreover, this result is in agreement with [39]
and [40] which prove the same result under linear-programming decoding. The rest
of Chapter 2 is devoted to the derivation of upper bounds on the error performance
of non-binary linear block codes under ML decoding. The upper bounds on the error
performance derived in this chapter are applied to non-binary regular LDPC code
ensembles of Gallager [44], and their error performance is studied for various commu-
nication channel models. The exact complete composition spectra for these LDPC
code ensembles are also provided (instead of the upper bound in [44]), and this ex-
act analysis forms a generalization of the analysis in [18] and [105]. In addition, the
derived upper bounds are compared to sphere-packing lower bounds on the decoding
error probability for various code ensembles.

Chapter 3 considers upper bounds on the error probabilities under generalized de-
coding rules. The provided bounds are suitable for linear block codes whose transmis-
sion takes place over memoryless symmetric channels. These bounds are accompanied
by some message-independence results for the considered generalized decoding rules.
Both optimal and suboptimal decoding rules are considered. When variable-size list-
decoding is considered, upper bounds on the expected size of the decoded list and
the associated error probability under list decoding are jointly derived. In addition,
upper bounds on the list error probability are introduced for linear block codes where
the size of the list is fixed. The bounds derived in this chapter are applicable to
the performance analysis of specific codes and ensembles via their (average) distance
spectra. The bounds are suitable for finite block lengths and also for asymptotic
analysis. The provided results are exemplified for two coding schemes: Fully-random
linear block codes, and regular binary and non-binary LDPC code ensembles with fi-
nite block lengths. Applications of the provided bounds for the study of hybrid-ARQ
schemes are also exemplified.

Chapter 4 studies some generalizations of the VA for list-decoding and decoding
with erasures. A modification of the VA is introduced, which coincides with the
optimal decoding rule of Forney for the cases at hand. Although presented for the
decoding of convolutional codes, the provided algorithm is suitable for the more gen-
eral case where finite-state Markov processes are observed via memoryless channels.
The simulated performance of the proposed modification is compared in this chapter
with the simulated performance of two suboptimal decoding algorithms with erasures:
the likelihood-ratio (LR) test decoding rule, and a simple decoding scheme with re-
peat requests that was introduced by Yamamoto and Itoh in [120]. Even though the
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decoding scheme in [120] is remarkably simple, the comparison shows good similar-
ity between the performance of the simple scheme to the optimal one. On the other
hand, the performance of the decoding algorithm based on the LR test is considerably
degraded in comparison with that of the optimal performance.

In Chapter 5 channel polarization is applied for the wire-tap communication
model. The wire-tap channel model is a multi-user communication model involv-
ing a single transmitter, and two receivers: one of the legitimate-user and one of the
eavesdropper. The maximal rate under which secure and reliable communication is
possible is called the secrecy capacity. Our study shows that the secrecy capacity can
be achieved by proper application of the channel polarization method for degraded
and symmetric channels. It is proved that for every rate below the channel secrecy
capacity, there exists a suitable polar code for which reliable and secure communica-
tion are achieved under successive cancelation decoding. Moreover, our polar coding
scheme is shown to achieve the entire rate-equivocation region for the considered
channel model.

In Chapter 6 channel polarization is applied for signaling over parallel channels.
It is shown that using the method of channel polarization, the capacity of signaling
over arbitrarily-permuted memoryless and symmetric parallel-channels is achievable
under an assumption of channel degradation. A channel coding scheme and its cor-
responding successive cancelation decoding algorithm are proposed. The proposed
scheme incorporates the method of channel polarization with an algebraic maximum-
distance separable codes. The achievable rates of the provided scheme are also studied

in the general case where the assumption on channel degradation is removed.



Chapter 2

Performance Bounds for
Non-Binary Linear Block Codes
over Memoryless Symmetric

Channels

Chapter Overview

The performance of non-binary linear block codes is studied in this chapter via the
derivation of new upper bounds on the block error probability under ML decod-
ing. The transmission of these codes is assumed to take place over a memoryless
and symmetric channel. The new bounds, which are based on the Gallager bounds
and their variations, are applied to the Gallager ensembles of non-binary and regu-
lar LDPC codes. These upper bounds are also compared with sphere-packing lower
bounds. This study indicates that the new upper bounds are useful for the per-
formance evaluation of coded communication systems which incorporate non-binary
coding techniques.

The general concept used in this chapter is based on a partitioning of the orig-
inal ensemble into two subsets of codebooks according to their minimal Hamming
distance. For the set of codebooks whose minimal distances are below a certain value
(which is later determined in order to achieve a tight bound), a simple union bound
is used which only depends on their distance properties. As for the complementary
set of codebooks (whose minimal Hamming distance is larger than the above value),
a Gallager-type bound on the decoding error probability is used; the latter bound

depends both on the distance properties of the ensemble and the communication
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channel, and it relies on a generalization of the DS2 bound to non-binary linear block
code ensembles. The chapter is based on the following paper:
E. Hof, I. Sason, and S. Shamai (Shitz), “Performance bounds for non-binary lin-

ear block codes over memoryless symmetric channels,” IEEE Trans. on Information
Theory, vol. 55, no. 3, pp. 977-996, March 2009.

This chapter is structured as follows: the symmetry requirements and the message
independence proposition are provided in Section 2.1. The proposed bounding ap-
proach is introduced in Section 2.2, and these bounds are exemplified for the Gallager
LDPC code ensembles over a g-ary symmetric and AWGN channels. Variations of
these bounds are also derived and exemplified in Section 2.3 for fully-interleaved fad-
ing channels with perfect casual state information (CSI) at the receiver. Section 2.4

concludes the discussion. Various technical details are relegated to the appendices.

2.1 Channel Symmetry and Message Independence

Let X = {xo,21,...,2,-1} be a given alphabet with cardinality ¢. We assume an
addition operation (+) over the alphabet X for which {X’, +} forms an Abelian group.
Let xy = 0 be the additive identity of this group. In addition, let ) be a given discrete
(or continuous) alphabet. We assume a memoryless channel, and denote the channel
transition probability (or probability density, respectively) function by p(y|x), where
reXandy € Y.

Definition 2.1 (Channel symmetry) A memoryless channel which is character-
ized by a transition probability p, an input-alphabet X and a discrete output alphabet
Y is symmetric if there exists a function 7 : ) x X — ) which satisfies the following

properties:
1. For every x € X, the function T (-,z) : ) — ) is bijective.

2. For every x1,x5 € X and y € ), the following equality holds:
p(yle1) = p(T(y, x2 — 21) |22). (2.1)

Remark 2.1 For channels whose output alphabet is continuous, an additional re-

quirement on the mapping 7 is that its Jacobian is equal to 1.! In this case, the

Tt is possible to use a generalized definition for both discrete and continuous output alphabets
using the notion of unitary functions as done for example in [115, Section ITI-A].
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condition in (2.1) implies that

[ ptslen dy = [ Tt = )l dy.

Example 2.1 (MBIOS channels) For the particular case of channels with a binary-
input alphabet, and whose output alphabet ) is the set of real numbers, setting

y ifz=0
T(y,w)z{ .
—y ifx=1

then Definition 2.1 coincides with the standard definition of MBIOS channels. The
meaning of the function 7 is better understood via the setting of MBIOS channels.
Referring to (2.1), the transition probability given a channel input z; is equal to the
transition probability given another input x5 where the sign of the output is changed

if the two binary inputs are different.

Example 2.2 (Random coset mechanism followed by an arbitrary channel)
In [11], [46] and [57], the transmission of block codes takes place over an arbitrary
memoryless channel followed by a random coset mechanism. That is, instead of
transmitting the coded message x, the vector x+v is transmitted where v is a random
vector and the addition is carried out symbol-wise. The random vector v is called
the coset, and it is known to both the transmitter and the receiver. When coding
schemes with a random coset mechanism are applied to an arbitrary memoryless
channel, the symmetry of the equivalent channel is guaranteed. To see this, consider
the equivalent channel that includes the addition of the coset symbols followed by
the original channel, and whose observations are pairs (y, v), where v is the random
coset symbol added to the transmitted coded symbol, and y is the (original) channel

output. Assuming a memoryless channel, the symmetry is guaranteed by setting
T((y,v),x) = (y,U —ZIZ'), y e ya T,v € X

where X' and ) are the input and output alphabets, respectively. Notice that T
is now defined over ()Y x X) x X, where ) x X forms the output alphabet of the

equivalent channel.
Based on Definition 2.1, we get the following lemma:

Lemma 2.1 let xzq, x9, x3 be arbitrary symbols in X', and let p be a transition

probability law of a memoryless symmetric channel. Then,

p(T(T(y, 1), T2) |:)33) =p(T (y, 21 + x2)|23) (2.2)

where 7 is the mapping satisfying the symmetry properties in Definition 2.1.
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Proof: See Appendix 2.A. [ ]

For MBIOS channels, the capacity is attained with a uniform input distribu-
tion. In addition, random coding with a uniform (and memoryless) distribution at-
tains the optimum random-coding error exponent provided by Gallager (see [45],
[46], and [111]). The following lemma generalizes these results for the case of dis-
crete, memoryless, and symmetric channels according to Definition 2.1 (a similar
result follows for the case of memoryless symmetric channels with continuous output-
alphabets).

Lemma 2.2 Let () be a probability function over the input alphabet X', and let p
be a transition probability function of a discrete symmetric and memoryless chan-
nel. Then, the mutual information 7(Q), between the channel input (with an input

probability distribution @)) and the channel output, given by

p(y|z)
=2_2_Q@p(ylz)n (zw Q(z’)p(ylx’))

yeY zeX

and the Gallager function Ey(p, Q) [46], defined by

1+p
Eo(p,Q) 2 —In [ > (ZQ p(ylz) 1“) , p>0

yeY \zeX

are maximized (for every p > 0) by a uniform distribution.

Proof: The proof follows trivially by applying [111, Theorems 3.2.2 and 3.2.3] to

the case at hand. ]

Lemma 2.2 is also valid for symmetric DMCs in the sense defined by Gallager
in [46, p. 94] (as shown in the following definition):

Definition 2.2 (Gallager’s definition for symmetric DMC [46]) A DMC is
defined to be symmetric if the set of outputs can be partitioned into subsets in such
a way that for each subset the matrix of transition probabilities (using inputs as rows
and outputs of the subset as columns) has the property that each row is a permutation
of each other row and each column (if more than 1) is a permutation of each other

column.

Remark 2.2 It is easily verified that a symmetric DMC according to Definition 2.1,

is symmetric according to Definition 2.2 of Gallager.
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Consider linear block codes over the non-binary alphabet X'. Specifically, let G be
a kxn matrix with components over the alphabet X'. Then, the linear block code with
a generator matrix G, denoted by C = {xm}i’le where X, = (T, -« Tmn), 1S the
set of all ¢* linear combinations of the rows of G. The conditional error probability

of the m-th message is given according to

Pe\m = Z p<y|Xm)
yEAS,
where A,, forms the decision region for the m-th codeword, and the superscript ‘c’
stands for the complementary set. The decision region of the m-th codeword under

ML decoding gets the form

A = {y : p(y1%m) > p(y %), ¥ m' #m}

and ties are resolved randomly with equal probability. A well-known result for binary
linear block codes operating over MBIOS channels is that their error probability
under ML decoding is independent of the actual transmitted codeword. This result
enables a great simplification to the error performance analysis by assuming that the
all-zero codeword, designated by 0, is transmitted. The following proposition is a
generalization of this result for linear block codes communicated over memoryless
and symmetric channels whose input alphabet is discrete (for the case of linear-

programming decoding, see [40]):

Proposition 2.1 (Independence of the Conditional Error Probability on the
Transmitted Codeword for all Memoryless Symmetric Channels) Let C be
a linear block code whose transmission takes place over a memoryless and symmetric
channel according to Definition 2.1. Then, the block error probability under ML

decoding is independent of the transmitted codeword.

Proof: See Appendix 2.B. |

The proof for the message independence property remains valid even if the channel
transition probability is different for each transmission. This enables the analysis in
Section 2.3 of g-ary PSK systems whose transmission takes place over fading channels
with perfect CSI at the transmitter. In addition, note that in contrast to Lemma 2.2,
Proposition 2.1 does not necessarily hold for symmetric DMCs in the broader sense,
as in Definition 2.2 due to Gallager. This is demonstrated in the following counter-

example:
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Example 2.3 (Channel symmetry according to Definition 2.2 doesn’t imply
symmetry according to Definition 2.1) Consider a DMC with the integer ring
Z, (with arithmetic operations modulo-4) as common input and output alphabets,

and with the following transition probability matrix:

0.20 0.24 0.30 0.26
0.30 0.20 0.26 0.24

P g iil =
el 0.24 0.26 0.20 0.30
0.26 0.30 0.24 0.20
In this matrix, the element p; ; (where ¢,j € {1,...,4}) refers to the transition prob-

ability when the channel input is equal to ¢ — 1 and the output is equal to 5 — 1. The
memoryless channel which corresponds to P is symmetric according to Definition 2.2
(notice that each row and column is a permutation of another row or column, re-
spectively). However, if the linear block code {00, 13,22,31} is transmitted over the
considered channel, then the resulting conditional error probabilities under ML decod-
ing are 0.7540, 0.7210, 0.5424 and 0.7210, respectively, and they therefore depend on
the transmitted codeword. To show this, we first need to determine the ML decoding
regions for the considered code and channel. This is accomplished by evaluating the
conditional probabilities of each possible output pair given each possible transmitted
codeword (e.g., p(03|31) = 0.26 - 0.24 = 0.0624). The decoding region for the all-zero
codeword 00 is the set {22,23,32} (note that the ‘00’ vector is not included in the
decision region of this codeword, and on the other hand, the vector ‘22’ which forms a
codeword is included in the decision region of the all-zero codeword). The conditional
error probability given that the all-zero codeword is transmitted is therefore equal to
1 — p(22[00) — p(23[00) — p(32]00) = 1 — 0.30%> — 0.30 - 0.26 — 0.26 - 0.30 = 0.7540.
The rest of the conditional error probabilities are similarly evaluated. Hence, due to
Proposition 2.1, this channel is not symmetric according to Definition 2.1 although it

is symmetric according to Definition 2.2.

2.2 Gallager Bounds for Memoryless Symmetric

Channels and Some Applications

2.2.1 The DS2 bound

Let C be an (n, k) linear block code defined over the input-alphabet X with cardinality
g. Consider the conditional error probability under ML decoding given that the m-th

message is transmitted, denoted by F,,. The DS2 bound on the conditional error
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probability (see [31], [32], [94] and [96]) gets the form

<Z G (Y)pn Y|Xm)>

yeynr

A) P
' { ST 3 Gry)  palylxn) (%) } (2.3)
m'#£m yeyn " m

where )Y is a discrete output-alphabet, G (y) is an arbitrary non-negative function of
y € Y" and 0 < p < 1and A > 0 are arbitrary real-valued parameters. Here p,(y|x)
designates the transition probability of the channel where x € C is the transmitted
codeword and y € )" is the received vector. Notice that the bound in (2.3) holds for
an arbitrary channel regardless of its input alphabet.

Consider now the class of memoryless symmetric channels with an input-alphabet
AX. According to Proposition 2.1, P, is independent of the transmitted message m.

We further assume that G2 (y) is expressed in the following product form:

n

) =19
i=1
where g : Y — R, is an arbitrary non-negative function which is defined over the set
Y. The following bound on the decoding error probability is obtained for a discrete
output alphabet (a similar proposition can be stated for channels with a continuous

output alphabet):

Proposition 2.2 Consider an (n, k) linear block code C whose transmission takes
place over a memoryless symmetric channel. Assume that the channel input and
output alphabets are X and ), respectively, and let p be the transition probability
of the channel. Then the block error probability of the code C under ML decoding,

P,, satisfies

n(l-p) o
P, < (Zg y|0> {Z Hzg y|01 *p(ylam Z) } (2.4)

yey m/#£0 i=1 yey

where ¢ : ) — R, is an arbitrary non-negative real function, A > 0, and 0 < p <1

are arbitrary real-valued parameters.

Proof: See Appendix 2.C. |
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2.2.2 Performance evaluation of ensembles of linear block

codes

Definition 2.3 (Composition of a vector) Let ¢ be a vector whose components
are symbols in an alphabet X of size ¢q. Let us assume without loss of generality
that X = {0,...,¢ — 1}. The composition of ¢, denoted by t = t(c), is a vector
t = (to,t1,...,t,—1) where t, (for z € X') counts the number of symbols in c that are

equal to x.

Definition 2.4 (Complete composition spectrum) Let C be a linear block code
of length n over an alphabet X'. The complete composition spectrum is the sequence
{|C¢|} where |C¢| is the number of codewords whose composition is t, and t ranges

over the set H of all possible compositions over X™.

The existence of the all-zero codeword is clear. Consequently, the set H denotes in
the followings the entire set of possible compositions except for the one of the all-zero
codeword. The following lemma considers the error probability under ML decoding

of an ensemble of linear block codes.

Lemma 2.3 Let £ be an ensemble of linear block codes with block length n, and
let dpi, be the random variable designating the minimum Hamming distance of a
randomly selected codebook C from this ensemble. Assume that there exist non-

negative numbers D,, and ¢,, such that

> Elle] <e (2.5)

{teH: n—to<Dy}

where E[|C¢|] denotes the expected number of codewords in C with composition
t, and H denotes the entire set of compositions except for the one of the all-zero

codeword. Then, the block error probability under ML decoding satisfies
P, < Pr( error | dpin > D,,) + €. (2.6)
Proof:

P, = Pr( error | duin > D,,) Pr(dmin > D)
+ Pr( error | dpin < Dy,) Pr(dmin < Dy,)
< Pr( error | dpin > D) + Pr(dmm < D,).
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Let C be a codebook, chosen uniformly at random from the code ensemble £, and
let wy(c) denote the Hamming weight of a codeword ¢ € C. Then, the union bound

gives that

Pr(dmin < Dy) < > Pr(c € C)
{c#0: wn(c)<Dn}

- Z Z E[l{cec}]

{teH: n—to<Dn} {c: t(c)=t}

- Y Elal (2.7)

{teH: n—to<Dn}

where 1cecy denotes the indicator of the event {c € C}, and the last equality follows

by converting the inner summation to an expectation. [ ]

Later in this section, we obtain upper bounds for the first term on the RHS of (2.6).
These bounds are expressed in terms of the composition spectrum of the considered
code ensemble, and they serve to find a suitable tradeoff between the parameters D,
and €, introduced in Lemma 2.3. More explicitly, since these two parameters are
related, one wishes to increase the parameter D,, while maintaining small values of
€,. The continuation to this section relies on Lemma 2.3 for the derivation of some
bounds, and exemplify their use to regular LDPC code ensembles.

The following theorem provides an upper bound on the decoding error probability
for ensembles of linear block codes whose transmission takes place over memoryless

symmetric channels.

Theorem 2.1 Under the assumptions and notation in Proposition 2.2 and Lemma 2.3,

the block error probability under ML decoding satisfies

P, < <Zg p(y|0) )n<1p>< > Ellal | dun > Dl H(Sxﬁp(x))tzy

yey teH: n—to>Dp reX

+ €, (2.8)

where

sne(®) 2 g() T p]0) p(yle), e X (2.9)

yey
and E[ ICe| | dinin > Dn} denotes the conditional expected number of codewords whose
composition is equal to t (where the expectation is with respect to the choice of the
codebook C from the ensemble £) under the requirement that the minimal Hamming

weight of the randomly selected codebook is larger than D,,.
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Proof: From Proposition 2.2 and (2.9), we get the following upper bounding on
the first summand in (2.6):

Pr( error | dyin > Dy)

(o) (i)

yey teH ceCy i=1

dmin > Dn]

where C; is the set of all codewords in a codebook C whose composition is t. Notice
that the double summations on the RHS of the last inequality, over compositions
t and codewords ¢ € Cy, is equivalent to a single summation over all the non-zero
codewords. Using Jensen’s inequality, E[X*] < (E[X])” for 0 < p < 1, then

Pr( error | dyin > Dy)

<Zg p(y|0) >"<1p>

yeY

. <Z E [Z H (S)\7p(l’))t dmin > Dn])
teH ceCy zeX
n(1—p)
(Zg p(y[0) )
yeY

: <Z E[\ct\ } inin > Dn} 11 (sk,,,(x))“y. (2.10)

teH TEX

For all codewords whose composition t satisfies n — ty < D,,, their Hamming weight

is not larger than D,,. Hence
E[le] | duin > Du] =0, VteH:n—t,<D, (2.11)

and the bound in (2.8) follows from Lemma 2.3, and (2.10) and (2.11). n

The following theorem is a particularization of Theorem 2.1:

Theorem 2.2 Under the assumptions and notation in Proposition 2.2 and Lemma 2.3,

the block error probability satisfies

P, < q + €, (2.12)

where n and R are the block length and code rate (measured in g-ary symbols per
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channel use), respectively, and

E:(R) £ max (Ey(p) — pR)

0<p<1
1 1+p
_1
Eo(p) & —log, | Y (— > plylo) ”p)
yey q TeEX
A E [‘Ct‘ dmin > Dn]
D,) = 2.1

ay(C, Dy) (b mt> D) g—"(—F) (?) (2.13)

Proof: See Appendix 2.D. |

A similar theorem can be stated for memoryless symmetric channels with continuous-
output alphabets, where sums are replaced by integrals.

The bound in Theorem 2.2 is based on two summands. The first is an adaptation
of the SFB to non-binary linear block codes which applies to the codebooks whose
minimum distance exceeds an arbitrary threshold D,. The second term relates to
the probability that a randomly selected codebook from the ensemble has a minimum
Hamming distance which does not exceed D,,. As a result, the second term on the
RHS of (2.12) does not depend on the communication channel, but only on the code
ensemble and the arbitrary threshold D,,. This partitioning differs from [11] and [78§]
where no such separation of codebooks is used. The SFB in [11] and [78] is combined
with a union bound which corresponds to all pairwise error probabilities of relevant
codewords and it depends on the communication channel. Following Example 2.2, the
SFB in [11] can be considered as a particular case of Theorem 2.2 (the same goes for
[37] where the considered modulo-additive noise channel is also symmetric according
to Definition 2.1).

In general, the conditional expectation of the composition spectrum given that the
minimum Hamming distance exceeds a certain positive threshold D, (i.e., E [\Ct\ ‘dmm >

Dn]) is not available. Nevertheless, it is possible to use the inequality

E[|ct|} > E[\Ct\ | i > Dn] Pr(dyin > D)

> E[|Ct| | dyin > Dn] (1—e). (2.14)

where the LHS of this inequality requires the knowledge of the expectation of the
complete composition spectrum E[|Ct|]. Applying (2.14) to the RHS of (2.8), gives
a looser version of the bounds in Theorem 2.1 and 2.2 but is more amenable to anal-
ysis. The inequality in (2.14) is valid when expurgation of codebooks is considered.

The expurgated ensemble is constructed by removing all codebooks whose minimum
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Hamming distance is not larger than D,,. Since all the codebooks in the expurgated
ensemble have a minimum distance greater than D,,, then the additive term ¢, on
the RHS of (2.8) vanishes.

Consider an ensemble of linear block codes, and choose a codebook from this en-
semble uniformly at random. We further assume that the probability that a vector
is a codeword only depends on its Hamming weight (so all vectors of a fixed com-
position are codewords with equal probability). As a result, the expected complete

composition spectrum E |Cy| satisfies

E[|Ct|} — P(n—to) (Z) (2.15)

where P(l) denotes the probability that a word whose Hamming weight is [, forms a
codeword in a randomly selected codebook from the ensemble. Assuming (2.15), the
evaluation of oy in Theorem 2.2 is considerably reduced.

In the following, we introduce an improvement over the bound in Theorem 2.2:

Theorem 2.3 Under the assumptions and notation in Proposition 2.2 and Lemma 2.3,

for ensembles satisfying (2.15), the block error probability satisfies

Pesmp)"“-”’( > S (?)B(x))"-lap)l) fo @)

1—¢
Dp<i<n n

where 0 < p < 1, €, is defined in (2.6), and

NEY (; Zp(ymﬁ)

yey zeX
1 e
B(p) &> (—Zp(ylw)m) (—Zp(ylx)l_“>
yey q TeX q TEX
C(p) = qA(p) — B(p).
Proof: See Appendix 2.E. [ ]

Remark 2.3 For the particular case of binary linear block codes, the bound provided
in Theorem 2.3 does not require the symmetry assumption on the considered ensemble

in (2.15). For this case, the same derivation holds while setting

ElIC
pP() & anl}’ D,<l<n
()
where E[ ICi| } denotes the expected number of codewords whose Hamming weight is
L.
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2.2.3 Performance of non-binary regular LDPC ensembles

The non-binary (¢, d)-regular LDPC code ensemble, proposed by Gallager in [44, Ch.
5], is considered with the g-ary symmetric channel and the AWGN channel with a ¢-
ary PSK modulation (both channels are symmetric according to Definition 2.1). The
Gallager ensemble is defined using a sparse parity-check matrix with binary elements.
This matrix is regular, having ¢ ones in each column and d ones in each row. The

LDPC ensemble is constructed as follows:

1. Divide the parity check matrix into ¢ consecutive sub-matrices. All the sub-

matrices have n columns and % TOwWS.
2. Fill the first sub-matrix with ones in a descending order.

3. All other sub-matrices are chosen as random permutations of the first sub-

matrix.
4. Parity-check equations are evaluated using a modulo-q arithmetics.

The following lemma is provided in [44] which implies an upper bound on the complete

composition spectrum satisfying the condition in (2.15):

Lemma 2.4 Consider the regular non-binary LDPC ensemble of Gallager. Let x be
a vector of weight [ > 0. The probability P(l) that the vector x is a codeword of a
codebook which is selected uniformly at random from the ensemble, is upper bounded
by

[

exp (% (uq(s) — spy(s) +(d—1)In q) )

P(l) < — (2.17)
(g —1)
where . .
N (1+(g—1)e’)" +(g—1)(1—e)
:UQ(S) =1In d
q
and s is a real number given by the solution of the following equation
n
E,u;(s) =1. (2.18)

Note, that the bound in (2.17) is valid for all s, not only for the one satisfying
(2.18) which yields the minimum bound in (2.17). Using the change of variables

s=1In qu_i_“l)u, _qul < wu < 1,in (2.18), results in the following polynomial equation:

(E—1>ud+ud_l+u+&—1:0.
n n(qg—1)
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For ¢ > 2, this equation has a single root in the interval [—q_%,l] (the details
concerning the evaluation of the RHS of (2.17) for the binary case are provided in
[93]).

In the following, we obtain the exact composition spectrum of the regular LDPC
code ensembles of Gallager. This derivation serves to improve the tightness of the
bounds on the error probability. The provided analysis generalizes [105] to non-binary
codes. The exact enumeration for the binary case is already available in [18], as an
intermediate result, although its main interest is in asymptotic analysis (This analysis

can be traced even to Gallager [45]).

Lemma 2.5 Under the assumptions and notation in Lemma 2.4, the probability P(l)

satisfies .
Pl) = <ﬁ> C9<i<n (2.19)
where
Y oAaxt e (A (x))1 (2.20)
N N l NZ\
A(X):1+§lz:;<(q—1) +(q—1)(—1))<l)X. (2.21)
Proof: See Appendix 2.F. |

As suggested in [105], the numerical evaluation of the exponent in (2.20) is carried
out, in all the examples studied in this chapter, via the binary method (see [61, p.
441]). This method makes the evaluation of the high-order powers of a polynomial
relatively easy to compute.

The 1961 Gallager-Fano bound (see [94, 44]) and Lemma 2.4 imply an expo-
nential bound (in terms of the block length) on the decoding error probability for
the expurgated LDPC code ensemble. This expurgation removes all the codebooks
whose minimal Hamming distance is below a certain threshold which scales linearly
with the block length. This result is elaborated for the binary case by Miller and
Burshtein [78]).

The following examples consider the Gallager ensembles of non-binary and (8,
16) regular LDPC codes where these ensembles are expurgated by removing all the
codebooks whose minimum distance is not greater than a certain parameter D,,. The
examples study upper bounds on the decoding error probability of these expurgated
ensembles via the use of the upper bounds in Theorems 2.2 and 2.3. The exact

composition spectrum of the non-expurgated LDPC code ensemble is evaluated via
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Lemma 2.5, and then upper bounds on the composition spectrum of the expurgated

ensembles are calculated via (2.14).

Example 2.4 (g-ary symmetric channels) Bounds on the block error probabil-
ity for some expurgated LDPC code ensembles are presented in Figure 2.1 when the
transmission takes place over a g-ary symmetric channel and ML decoding is per-
formed. The performance bounds introduced in this chapter are compared with the
union bound, and we also exemplify the uselessness of the union bound beyond the
crossover probability which corresponds to the cutoff rate. More specifically, for a

g-ary symmetric channel, the cutoff rate is given by

Ry =1—2log, <\/1—p+ \/p(q—1)>

so the crossover probability which follows by setting the value of Ry to the code rate
(which is one-half symbol per channel use in Figure 2.1) is equal to p = 0.0670 and p =
0.0739 for quaternary and octal input alphabets, respectively. The union bound shown
in the upper plot of Figure 2.1 (see plot (a)) has a sharp decline around the crossover
probability which corresponds to the cutoff rate of the g-ary symmetric channel (i.e.,
around p = 0.0670 for ¢ = 4). Plot (a) also exemplifies the potential application
of the proposed bounds to assess the performance of efficient code ensembles which
perform reliably at rates exceeding the cutoff rate of the channel. Figure 2.1(b) is
focused on the improved bounds in Theorems 2.2 and 2.3, applied to the Gallager
(8,16) regular and expurgated LDPC code ensemble with a quaternary alphabet and
block lengths of n = 1008 and 10080 symbols. The ensemble spectrum is upper
bounded via Lemma 2.4, and in addition it is exactly evaluated using Lemma 2.5;
both options are applied in this example so that the improvement provided by the
exact calculation of the composition spectrum is exemplified in this figure. The
various choices of the parameter D,, and the resulting €,, which serves as an upper
bound on the fraction of codebooks whose minimum distance is not larger than D,
are detailed in Table 2.1(a). Since Theorem 2.3 is tighter than Theorem 2.2, then the
minimal value of D,, for which Theorem 2.2 is useful is larger than the corresponding
value which is calculated in conjunction with Theorem 2.3. Moreover, the considered
bounds are further improved when the upper bound for the composition spectrum in
Lemma 2.4 is replaced with the exact calculation in Lemma 2.5. The inferiority of
the SFB in (2.12) is further pronounced for higher alphabets, as exemplified for octal
signaling in Figure 2.1(c) (where the details with regard to the choices of D,, and ¢,

values are given in Table 2.1(b)).
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Figure 2.1: Upper bounds on the block error probability of the Gallager (8,16) reg-
ular and non-binary LDPC code ensembles with quaternary and octal input alpha-
bets. The transmission takes place over a g-ary symmetric channel where ¢ = 4 in
plots (a) & (b) and ¢ = 8 in plot (c¢). This figure refers to expurgated ensembles

whose block lengths are 1008 and 10, 080 symbols.
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Table 2.1: Parameters for Example 2.4

(a) Quaternary alphabet (¢ = 4).

| Performance bound | Block length n (symbols) | D, | €, (Lemma 2.4) | ¢, (Lemma 2.5) ]

Theorem 2.2 1008 173 0.1 10~
Theorem 2.3 1008 99 10~4 10~ 11
Theorem 2.2 10008 1834 0.11 10~17
Theorem 2.3 10008 600 10~7 10~17

(b) Octal alphabet (g = 8).

| Performance bound | Block length n (symbols) | D, | €, (Lemma 2.4) | ¢, (Lemma 2.5) |

Theorem 2.2 1008 191 1075 10°14
Theorem 2.3 1008 119 10~° 1071
Theorem 2.2 10080 1951 1077 10~20
Theorem 2.3 10080 887 107° 10720

Example 2.5 (AWGN channels with a g-ary PSK modulation) Upper bounds
on the block error probability for for some expurgated LDPC code ensembles are
depicted in Figure 2.2 when the transmission takes place over the AWGN channel with
a g-ary PSK modulation. The alphabet size of these code ensembles is ¢ = 4,8, 16,
and 32, and the examined parameters D,, of the expurgation are given in Table 2.2.
It is evident that the SFB in Theorem 2.2 deteriorates as compared to the bound in
Theorem 2.3. This deterioration is more dominant by increasing the alphabet size q.
It is interesting to compare the studied bounds to the union bound which, for large
block lengths, diverges at the cutoff rate of the communication channel. For alphabet
cardinalities of ¢ = 4 and ¢ = 8, the cutoff rate corresponds to % ratios of 2.46 dB
and 5.05 dB, respectively, which exemplify the superiority of both derivations over
the union bound. However, for alphabet cardinalities of ¢ = 16 and ¢ = 32, the
SFB deteriorates considerably comparing to the bound provided in Theorem 2.3 and
to the union bound which is depicted in Figure 2.2 and (d) (the SNR values which
correspond to the cutoff rate for ¢ = 16 and 32 are equal to 7.57 dB and 10.31 dB,
respectively).

The reason for the deterioration of the SFB for large values of ¢ is explained when
looking into the rate term %logqa (C,D,,). This term corresponds to the difference
between the spectrum of the considered ensemble and the multinomial spectrum of
the fully random code ensemble. This difference between the two composition spectra
is depicted in Figure 2.3 as a function of % for alphabet sizes of ¢ = 4, 8, 16, and
32, and for block lengths of n = 512, 1008, and 10080 symbols. From Figure 2.3, this
term is more pronounced by increasing the value of ¢. On the other hand, the bound

in Theorem 2.3 does not exhibit such deterioration.
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Table 2.2: D,, values for Example 2.5

| Performance bound | Block length n (symbols) | Dn (¢g=4) [ Dn (g=8) | Dn (¢=16) | Dn (q=32) |

Theorem 2.2 1008 186 191 191 191
Theorem 2.3 1008 38 34 15 12

Theorem 2.2 10080 1851 1951 1951 1951
Theorem 2.3 10080 282 216 132 102
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Figure 2.2: Upper bounds on the block error probability under ML decoding of the
(8, 16)-regular LDPC ensembles of Gallager with alphabet size of ¢ = 4, 8, 16, and 32,
whose transmission takes place over an AWGN channel with a g-ary PSK modulation.
This figure depicts the upper bounds on the block error probability for the expurgated
ensemble with block lengths of 1008 and 10, 080 symbols.
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Figure 2.3: The term 2 log, o (C, D,,) in (2.12) for the regular (8,16) LDPC ensemble
of Gallager [44], depicted for alphabet sizes of ¢ = 4, 8, 16, and 32, and block lengths
of n =512, 1008, and 10080 symbols.

Remark 2.4 Divsalar’s bound [26, 27] is widely used when assessing the error per-
formance of binary turbo-like code ensembles over the binary-input AWGN channel
(see [94, Chapter 3.2.4] and references therein). This is due to the fact that the
bound is given in a closed form, and its calculation does not involve any numerical
integrations and parameter optimizations. The basic concept the bound is based on
is the following:

Pr(error) < Pr(error,y € R) 4+ Pr(y € R)

where y is the received vector, and the region R is the n-dimensional sphere which
is centered at a point along the line connecting the origin to the all-zero codeword,
and whose radius is optimized analytically in order to get the tightest bound within
its form. This technique was generalized by the authors to the non-binary setup by
examining various regions in the complex observation space. In contrast to the binary
case, not all the parameters could be optimized analytically. Moreover, the resulting
bounds were not satisfactory as compared to the bounds presented in Example 2.5,

and are therefore omitted.

Example 2.6 (A Comparison to lower bounds on the decoding error proba-
bility) The upper bound in Theorem 2.3 is compared in Figure 2.4 to the SP59 lower
bound of Shannon [99], and the ISP lower bound in [115]. The regular LDPC code en-

sembles of Gallager are considered with octal alphabet cardinality and block lengths
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of 1008 and 10080 symbols, and the performance is studied over the AWGN channel
with an 8-ary PSK modulation. In Figure 2.4(a), the upper bound in Theorem 2.3 is
depicted for the Gallager (8,16) regular and expurgated LDPC code ensemble with
octal alphabet (the bound is evaluated with the same parameters as in Table 2.2).
In addition, the ultimate performance of a rate 0.5 code is assessed via the SP59 and
the ISP lower bounds on the decoding error probability. For a block length of 1008
symbols, a negligible difference exists between the two considered lower bounds, and
both of these bounds are about 0.5 dB away from the upper bound in Theorem 2.3 for
all range of interest. For the larger block length of 10080 symbols, the gain of the ISP
bound is about 0.25 dB as compared to the SP59 bound, and it is about 0.2 dB away
from the upper bound (see Figure 2.4(a)). The comparison between the upper and
lower bounds is further studied in Figure 2.4(b) for the Gallager (8,32) regular and
expurgated LDPC code ensembles with block lengths of 1024 and 10080 symbols and
octal alphabet. The design rate for these ensembles is 0.75 symbols per channel use.
The upper bound in Theorem 2.3 is depicted with D,, = 25 and 95, respective to the
studied block lengths. The ISP bound maintains its close proximity with the upper
bound. The SP59 bound on the other hand deteriorates considerably for this case,
and it is less informative than the capacity limit for both considered block lengths
(see Figure 2.4(b)).

2.3 Gallager-type bounds for fully-interleaved fad-

ing channels with prefect CSI at the receiver

In the section, the error probability of a linear block code C is considered under ML
decoding when transmission takes place over a fully-interleaved fading channel and
perfect CSI is available at the receiver. The fading is assumed to be a continuous
random variable (a similar framework is possible for the discrete case). Let A denote
the set of possible fading samples, and p(y, a|x) denote the conditional joint pdf of the
received sequence y = (y1,...,y,) € V" and the fading samples a = (a4, ...,a,) € A"
given that the transmitted codeword is x € C. Due to an ideal symbol interleaving,

the channel is memoryless and accordingly

n

p(y,alx) = [ [ p(wile:, ai)p(a;)

i=1

where p(y|z, a) is the single-letter conditional pdf of the channel, and p(a) is the pdf

of a fading sample. The following definition of symmetry is a generalization to the
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Figure 2.4: A Comparison between the upper bound in Theorem 2.3 and the SP59
and ISP lower bounds on the decoding error probability for octal alphabet block codes
whose transmission takes place over an AWGN channel with 8-ary PSK modulation.
This figure depicts the upper and lower bounds on the block error probability for block

lengths of 1008 and 10, 080 symbols. The upper bounds are provided for expurgated
(8,16) and (8,32) regular LDPC code ensembles.
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one presented in Definition 2.1. This generalization is obtained by directly applying
Definition 2.1 to a channel whose observations are the pair of the considered channel

output and the fading sample.

Definition 2.5 Consider the fully-interleaved fading channel with an input-alphabet
X, and perfect CSI at the receiver. The channel, which is characterized by a transition
pdf p, is symmetric if for every a € A, there exists a function 7, : ) x X — ) which

satisfies the following properties:

1. For every z € X, the function T,(-,z) : Y — ) is bijective and with a Jacobian
1.

2. For every zy, 29 € X, the following equality holds:
p(y|xl>a) :p(ﬁ(yal? _x1)|$2>a)' (222)

Notice that this definition of symmetry is a weaker notion compared to a one
where there exists a function 7 : Y x X — ) meeting the condition in (2.22) for
every fading sample a € A. Nevertheless, this weaker notion is sufficient in order to
prove that for the case at hand, the ML decoding error probability does not depend
on the actual transmitted message. This is clearly expected since Definition 2.5 is a
direct application of Definition 2.1 for the case at hand. The conditional decoding

error probability for the m-th message under ML decoding as is given by

P = / / Dy, alxn) dy da = / p(a) / Pyl a)dyda  (2.23)
a yEAfn(a) a yeA?n(a)

where A,,(a) € Y™ is the decision region under ML decoding given that the sequence
of fading samples is a € A". The proof of the independence of the decoding error
probability on the transmitted codeword follows by showing that the inner integral in
(2.23) is independent of the transmitted message m (this is accomplished for every se-

quence of fading sample sequence a in the same way as of the proof in Appendix 2.B).

Theorem 2.4 Under the assumptions and notation in Lemma 2.3, consider the case
where transmission takes place over a symmetric, fully-interleaved fading channel
with perfect CSI at the receiver. Let the channel input and output alphabets be X
and ), respectively, and let p be the transition pdf of the channel. Then, the block
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error probability under ML decoding satisfies

SJZ:; ( Z E[|Ct| ‘ Aimin > Dni|

teH;: n—to>Dn,

1-X; jPj 22 Pi
</ V;(y, a Pﬂp(y,aIO) "f p(y,alz)”dyd“) )
reX

+en (2.24)

where {’Hj};.]:l with an arbitrary J > 1 forms a partition of the set of composi-
tions (except for the one which corresponds to the all-zero codeword) to J subsets,
E[\Ct\ ‘ Amin > Dn] denotes the expectation of the complete composition spectrum
under the assumption that d, > D, the functions ; : Y x A — R are arbitrary
non-negative tilting probability measures, and 0 < p; <1 and \; > 0.

Proof: See Appendix 2.G. [ ]

Consider an ensemble which satisfies the symmetry property in (2.15), and let
us choose J = n and H; = {t : n —t; = j}. By using calculus of variations, the

optimum tilting measures ; for D,, < j < n, are given by

p(y.alz)\ V)"
wj(yu )_O‘jopyva‘o <1+Z ( : ) ) y )\jZO, ngjgl

rEX * y,CL|0)

where the parameters «;,, * € X" are given by

L 2 [ iy, a) 1_P_jp(y al0)? dy da
N 1-X; 1-Xjp5

(1= )5, e [ 055, 0) "7 ply.al0) % ply, alz) dyda

and «; o are determined such that v; are probability measures. The numerical evalu-

O{]P,E

ations of such bounds result in a tedious numerical process. It is therefore of interest
to seek for probability tilting measures for which the integration in (2.24) has a closed
form expression. Exponential upper bounds on the ML decoding error probability of
binary linear block codes that operate over the binary-input fully-interleaved Rician
fading channel with perfect CSI at the receiver were derived in [58]. These bounds
are reasonably tight in a certain portion of the rate region exceeding the cutoff rate,
and do not require numerical integrations involved in the evaluation of the optimal
DS2-based bound. In the following example, the technique in [58] is generalized
and applied to non-binary linear block codes whose transmission takes place over a

fully-interleaved Rician fading channel with a ¢-ary PSK modulation.
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Example 2.7 (A fully-interleaved Rician fading channel with PSK mod-
ulation) Consider the class of fully-interleaved Rician fading channels with an ad-
ditive white Gaussian noise. A codeword x = (x1,...,2,) with a block length n

and codeword symbols over the alphabet X = {0,1,...,¢ — 1} is transmitted over

a discrete-time memoryless channel. The received sequence y = (y1,...,y,) € C"
satisfies
2F 2mi
Yk :Ak exp (ﬂl’k) —|—Nk, k= 1,...,71,. (225)
No q

Here A}, is a Rician random variable with a parameter K, and Nj, = Ni + jNi, where
N and Nj are statistically independent Gaussian random variables with a zero mean
and a unit variance. The non-negative real-valued parameter K designates the power
ratio between the direct and the diffused paths, Ny/2 is the two sided power density
spectrum of the additive white Gaussian noise, and FEy is the energy per transmitted
coded symbol. The symmetry of the considered channel is guaranteed by the g-ary
PSK modulation and the AWGN noise. Following [58], a sub-optimal DS2 bound is

suggested for the case at hand. To this end, the exponential tilting measure
. . avZa?Es
o (-3 = 0

avZa?Es
Jy playexp (252 ) da

where, for 1 < j < J, v; and «; are non-negative real-valued parameters, and u;

2
2Fg
No

Y — au;

V;(y,a) = L, yeC,a>0 (2.26)

is a complex-valued parameter. Substituting the exponential tilting measure ; into
(2.24) provides an upper bound on the error probability which is expressed in a closed
form (see Appendix 2.H). The performance of the (8,16) regular non-binary LDPC
ensemble of Gallager [44] with block lengths of n = 1008 and n = 10080 symbols
is provided in Figure 2.5 using the bound in Theorem 2.4, in addition to the union
bound. The bound in (2.24) is evaluated with J = 6 and the partitioning of the set
of compositions is done according to their Hamming weights where the boundaries
of this partitioning are set to Hamming weights of 350, 425, 500, 575, and 600 for a
block length of 1008 symbols (the corresponding boundaries for a block length of 10080
symbols are set to 3500, 4250, 5000, 5750, and 6000). The performance bounds refer to
a quaternary input-alphabet ¢ = 4 and a fully-interleaved Rayleigh fading channel (see
Figure 2.5(a)), and for octal input-alphabet ¢ = 8 and a Rician fading channel with
K =2 (see Figure 2.5(b)). In both plots the non-expurgated ensemble is considered,
while in plot (a) the performance for an expurgated ensemble with D,, = 100 (with
a corresponding €, = 107° in Theorem 2.4) is also presented for a block length of
1008 symbols. In both plots, the union bound diverges bellow the cutoff rate which
corresponds to FEg/Ny thresholds of 5.1 dB and 7.18 dB respectively (the capacity
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corresponds to thresholds of 1.86 dB and 4.21 dB, respectively). Although the bound
in Theorem 2.4 is not informative (for the considered example) up to the ultimate
channel capacity, it is for a block length of 1008 symbols 0.9 dB and 1 dB better
than the union bound in Figure 2.5(a) and 1.2 dB and 1.3 dB in Figure 2.5(b) at
block error probabilities of 107¢, and 10~%, respectively (for a block length of 10080
symbols the bound in Theorem 2.4 is better than the union bound by 1.5 dB and 1.8
dB, for quaternary and octal alphabets, respectively, at the considered block error

probabilities).

Example 2.8 (A fully-interleaved Rayleigh fading channel with PSK mod-
ulation and maximal ratio combining) Consider the class of fully-interleaved
Rayleigh fading channels with maximal ratio combining (MRC) space diversity of
order L. The receiver sequence is as in (2.25) where the fading samples, Ay, are

distributed according to the following pdf:

(a) = 2LEa* =  exp (—La?)
pay= (L—1)

L a>0. (2.27)

Note that %O in (2.25) refers to the stage after the MRC module. A closed-form
expression for the upper bound on the block error rate, based on Theorem 2.4 and
an exponential tilting measure is suggested (see Appendix 2.I). Consider the (8,16)
regular and non-binary LDPC code ensemble of Gallager [44] with octal alphabet and
a block length of 1008 symbols. Upper bounds on the decoding error probability of this
ensemble with various diversity orders L are shown in Figure 2.6. The bound provided
in Theorem 2.4 is compared with the union bound for MRC diversity with L =1 to
4 antennas. Both bounds coincide in the error floor region which is considerably low
for the considered ensemble. The union bound is informative only below the cutoff
rate, which corresponds to Eg/Ny of 851, 6.76, 6.18, and 5.90 dB for L = 1,2,3
and 4 receiving antennas. The bound provided in Theorem 2.4 is not informative
up to the ultimate channel capacity (which corresponds to Es/Ny of 4.94, 4.00, 3.68,
and 3.30 dB, respectively). Nevertheless, the bound in Theorem 2.4 outperforms the
union bound by 1.33 dB at a block error rate of 10~ when there is a single antenna

at the receiver, and by 1.02 dB when L = 4 receiving antennas are used.

Example 2.9 (A comparison of upper and lower bounds) The DS2 upper
bound in Theorem 2.4 is compared in this example to an improved sphere-packing
(ISP) lower bound on the ultimate error performance of finite-length codes (see [115]).

The bounds are compared for block codes whose transmission takes place over the fully
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Figure 2.5: Upper bounds on the block error probability under ML decoding for the
(8,16)-regular LDPC ensemble of Gallager, whose transmission takes place over a
fully-interleaved Rician fading channel with ¢-ary PSK modulation and perfect CSI
at the receiver. Both plots refer to the non-expurgated ensemble, and the performance
of an expurgated ensemble with D,, = 100 is also presented in plot (a) for comparison.
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Figure 2.6: Upper bounds on the block error probability under ML decoding for the
(8, 16)-regular LDPC ensemble of Gallager with octal alphabet and a block length of
1008 symbols. The transmission takes place over a fully-interleaved Rayleigh fading
channel with 8-ary PSK modulation, perfect CSI and maximal ratio combining (MRC)
at the receiver. The figure depicts the performance for MRC diversity with L = 1 to
L = 4 antennas at the receiver.

interleaved Rayleigh fading channels with a quadrature-phase shift-keying (QPSK)
modulation and perfect CSI at the receiver. The DS2 bound is evaluated with the
sub-optimal exponential tilting measure in (2.26) for the (8,16) regular LDPC code
ensembles of Gallager with block lengths of 1008 and 10080 symbols. The bounds are
plotted in Figure 2.7 jointly with union bounds as a reference. The ultimate error
performance using a rate—0.5 code with the considered block lengths is evaluated using
the ISP lower bound [115]. For the two block lengths considered in this example,
the ISP bound is more informative than the capacity threshold for decoding error
probabilities below 1072, For a block length of 1008 symbols, the gap between the
ISP lower bound and the sub-optimal DS2 upper bound is about 2.0 dB for a block
error rate of 107%. For a block length of 10080 symbols, this gap is reduced to about
1.5 dB. Note that the use of the upper bound in Theorem 2.4 closes the 3 dB gap
between the union upper bound and the respective ISP lower bound to only 1.5 dB
while referring to a block length of 10080 symbols and a block error probability of
1074,
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Figure 2.7: A comparison between the DS2 and union upper bounds on the block error
probability under ML decoding for the (8, 16)-regular LDPC ensemble of Gallager (see
Example 2.7). The transmission takes place over fully-interleaved Rayleigh fading
channel with a QPSK modulation and perfect CSI at the receiver. The ISP lower
bounds on the decoding error probability are shown for block lengths of 1008 and
10080 symbols. The capacity limit for infinite block length is also presented as a
reference.

2.4 Summary and Conclusions

This chapter considers the performance of non-binary linear block codes whose trans-
mission takes place over memoryless symmetric channels. To this end, upper bounds
on the decoding error probability are derived for finite-length codes. The general
bounding approach is based on a partitioning of the original ensemble into two sub-
sets of codebooks, according to their minimal Hamming distance: The performance of
the set of codebooks with a relatively low minimum Hamming distance is assessed via
a simple union bound which only depends on the considered ensemble, whereas the
other set is evaluated using the second version of the Duman and Salehi (DS2) bound
(See Section 2.2.1). As a particular case of this bounding technique, an adaptation of
the Shulman-Feder bound (SFB) (see [100]) is provided for non-binary linear block
codes. The latter approach which is related to the adaptation of the SEB to the non-
binary setting is similar to the work of Bennatan and Burshtein [11] for a different
setting of coding with a random coset mechanism. Under a symmetry property of
the ensemble, the resulting bound is considerably simplified and even tightened. This
simplifying assumption, which holds in particular for the considered non-binary low-

density parity-check (LDPC) ensembles, yields a bound whose summations are over
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the Hamming weights of the non-zero codewords rather than their compositions (see
Theorem 2.3). The tightness of the bounds presented in this chapter is exemplified
for the non-binary regular LDPC ensembles of Gallager [44] where transmission takes
place over the g-ary symmetric channel and the AWGN channel with a ¢g-ary PSK
modulation. The bound provided in Theorem 2.3 is attractive and show meaningful
results up to the ultimate capacity limit. In addition, it outperforms the adaptation
of the SFB in Theorem 2.2 for the non-binary setting which is even pronounced as
the cardinality of the code alphabet is increased.

The weakness of the union bound is exemplified in this chapter for regular LDPC
code ensembles, showing the necessity in the replacement of the union bound with
some improved upper bounds on the decoding error probability. On the other hand,
the bound provided in Theorem 2.3 is most attractive and shows meaningful results
at a significant portion of the rate region between the cutoff rate and the ultimate
channel capacity. The upper bound in Theorem 2.3 is compared to two lower bounds
on the ultimate error performance of finite-length block codes (which hold for general
block codes, either linear or non-linear): The 1959 sphere-packing (SP59) lower bound
of Shannon [99], and the lower bound derived in [115]. These comparisons show by
examples that recent sphere-packing bounds form a useful analytical tool for finite-
length block codes.

Appendices
2.A Proof of Lemma 2.1

Let x1,20,23 € X, p be the transition probability of the channel, and 7 be the
mapping as in Lemma 2.1. Then, by setting 2 £ x5 — 25, it follows from (2.1) that
forall y € Y

p(y'|z) = p(T (Y, x2) |2 + ).

As a particular case, for y' = T (y,z1) where y € ), we have

p(T(y, w)lz) = p(T(Tly, 1), 22) s + ). (2.A.1)
Using (2.1) (repeatedly twice) on the LHS of (2.A.1) it follows that
p(T(y, 21)|z) = plylr — 1) = p(T (y, 25 — = + 31)|73). (2.A.2)

which then yields from (2.A.1) and (2.A.2), jointly with the equality z3 — z = 9,
that

P(T(y, a1+ 2)las) = p(T(T(y,1), 72) s
which coincides with (2.2).
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2.B Proof of Proposition 2.1

The following proof holds for channels with a discrete-output alphabet, and the gen-
eralization of the proof to continuous-output alphabet channels is trivial. Let p be
the symmetric transition probability function of the considered channel, and T be its

corresponding function according to Definition 2.1. The conditional error probability

of the m-th message, X, = (Tp.1, Tm 2, - - -, Tmn), under ML decoding is given by
Pom= > [Ir@ilzmd = > 1] 11 »ilo
yeAS, i=1 YEAS, 2€X {i: xp, =z}

=> I II o7 -0

YEAS, z€X {it xp, =1}

where y = (y1,...,Yn), and

E 111( il )>O for some m’ # m

y2|$m 2)
dy: ¥ pyila’) :
=<Ky: g In pi > 0, for some m' # m

i | T
\ {:(:J:’EXI xl#x} {Z xm,’i:x/@myizx} (yl| )

(

=<y: Z Z In (p(T(y,-, _$/)|Q)) > 0, for some m' # m

iy 0
{IE,:E’EXZ x’#m} {Z Tyt i:xlvxm,izx} p(T(y «r)‘ )
\ s

Using the change of variables
2z =T Y, —Tm;), 1<i<n

it follows that

Pym =Y [ p(2l0)

zche, =1

m

79 —a 0
-4z Z Z In (p(T(Z(:m)ﬁ ) )) > 0, for some m’ #m
L {z,2'€X: o/#x} {2 x, 1 =1 T, Z—m} !

m',1

p

= Z:Z Z ln(zw)zo,forsomem’#m

feX {7, Z‘nl,i_xm/,’i:(s}

\
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Since the code C is a linear space, then for every two codewords x,,, # X,, in C, there
exists a third non-zero codeword x; in C where x; = %,y — X,,. Hence, for every

m=1,2,..., M and for every z € /~\cm, there exists some [ € {1,2,..., M} for which

5,5 ()

OEX fii —y =

Denote by x; € C the all-zero codeword, then it follows that

which concludes the proof.

2.C Proof of Proposition 2.2

Since the channel is symmetric, we have from Proposition 2.1 and (2.3) that

1—p
Pe:Pe|O§<ZGO pnY|0>

yeyn
A) P
{Z S G Epayio) (2 ) } |
'#0 yeyr pn(y[0)

Next, setting G%(y) as in (2.4), for memoryless channels we have

P. < (Z Hg(yi)p(yi\0)>

yeyn i=1

{Z > Hg vi)' "7 p(y:]0) (pig(i%’)’i)) }

m/'#A0yeYn i=1
which concludes the proof by replacing the sum of products with the corresponding

product of sums.

2.D Proof of Theorem 2.2

From (2.8)

n(1—p)
Pr( error | dpin > (Zg p(y|0) ) q_"p(l_R)

yey

(> E“C;Mf“:;; 2 () 1)

teH: n—tog>Dn
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p

E [}ct\ i > Dn}

n(1—p)
—np(1-R)
(Z gy y‘o ) q te?—lznrlez—lié>Dn q_n(l_R) (:l)

yeY

(L2, (Omewer)

where the last transition holds since ) . x;y; < max;a; ), v; if {2;} and {y;} are

non-negative sequences. Let X* = X'\ {0}, from the definition of o, in (2.13) we get

Pr( error | dyin > Dy)

n(1—p)
< g P0-R) <aq (C,D,) ) (Zg y|0>

yey
p
= n— [ .
Z (7;) (Sk,p(o)) l Z (t " ) H (Sk,p(x))t
I=Dyp+1 fbettgoa=l N ML ey
n(1-p)
= ¢ 0 (aq C,D, ) (Zg yl0>
yey
> () o) (Z m(w)>
=D, +1 zEX™
Consequently,

Pr( error | dyin > D)
n(1—p) np
< g I-R) (aq (C, Dy) ) (Zg y|0> (Z s,\,p(x)> : (2.D.3)
yey TEX
Next, setting

p
( Zp ylz) 1“) (y0) e, A= %p (2.D.4)

zeX

it follows that

> 9y)pylo) = Z( > pylo) “ﬂ) (y|0)r+5. (2.D.5)

yey yey TEX

In addition, plugging (2.D.4) in (2.9), we get

p—1
saol@) = ( > plyle) “ﬂ) p(y]0) e ply|a) o

yey TeX
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which then implies from (2.D.5) that

D snelr)=q) < > p(ylz) 1+P> (ylo)=

reX yey zeX
= qu p(y]0). (2.D.6)
yey

From (2.D.3) and (2.D.6), it follows that

Pr( error | dpin > D) < ¢"F (aq (C,Dy) ) (Zg p(y]0) > . (2.D.7)

yeyY

To complete the proof, we need the following lemma:

Lemma 2.D.1 Setting g(y) as in (2.D.4), the following equality follows for all &:

> 9w pylo) =) ( > p(yle) 1“)&) ( > p(yle) “*P) . (2D3)

yeY yey reX reX

Proof: Since the channel is symmetric, then there exists a function 7, as in
Definition 2.1, satisfying (2.1) and (2.2). As a result, setting g(y) as in (2.D.4) we

have

> 9(y)*p(yl0)
yey
p 3
=> (( > plylo) 1+P> (¥10)~ %> p(y[0)

yey TeEX
&p
=> p(ylo)'~ ( > pylo) “P)
yey zeX
&p
Y ( o)
xeXyey zeX
&p
LSS ( S sty )
:ceXyey reEX
&p
é Zzl)y‘x 1+p ( Zp —;(; |$)T>
xEXy ey TEX

where in (a) an additional variable is added, (b) is based on (2.1), and (c) follows

since

p(T(T (y, ), —a")|x) = p(ylz) (2.D.9)
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for all z,2" € X and y € Y. Next, using the closure of the (finite) input alphabet, it
follows that

mGXyEJ)

&p
= Z > o(yla’)! i G > p(y’lfﬁ”)lﬂ’)

xeXyey nex
1 ép
s ( ST 1fp>~(—zp<ywx">l—ip>
yEy r'eX qSE”E-X

where (a) follows from (2.1) and (b) follows from (2.2) and (2.D.9), both with z; =z

and xo = x + 2. This concludes the proof. [

From (2.D.7) and Lemma 2.D.1 (with £ = 1 in (2.D.8)), we get after an optimiza-
tion over p (where 0 < p < 1):

—nFE; <R+ logg O‘qn(c’Dn) )

Pr( error | dumin > D,) < g (2.D.10)

Finally, the proof of Theorem 2.2 follows from Lemma 2.3 and (2.D.10).

2.E Proof of Theorem 2.3

Under the conditions in Theorem 2.3, we get from (2.8), (2.14), and (2.15) that

n(1—p)
Pr( error | dyin > Dy) (Zg p(y|0) )

yey
Pln—to) (n to n —ty ta '
n_tOZ>Dn 5—76,?) (to) (52,(0)) t1+m+t21:n_t0 (th o 71;[1—1) xg*(s&p(z))
n(1-p) i
o) 5 e (5
vey n—to>Dn " 0 TEX*
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where X* £ X \ {0}. Next, setting A and g(y) as defined in (2.D.4), then it follows
from (2.D.6) that

n(1—p)
Pr( error | duyin > D) (Zg p(y]0) )

yeY

[ > () sl <ng p(yl0) —sxp<o>>n_t0]p.

n—to>Dn yey

(2.E.11)

The proof is completed by applying Lemma 2.D.1 in (2.E.11) with £ =1 for

> 9(y)p(y|0)

yey

and with £ =1 — % for

SAp Zg y‘o

yey

2.F Proof of Lemma 2.5

Denote by a,«(l) the number of choices of [ not necessarily distinct non-zero elements
in {1,...,q — 1} whose summation modulo ¢ equals z* (where z* € {0,...,q¢ — 1}).
Then, for 1 < [ < d, there are (Cll)az*(l) vectors x = (x1,...,24), whose Hamming

weight is [, and which satisfy
T+ -+ x9=2" mod gq.

The sequences {a,(l)} satisfy the following system of recursive equations:

q—1
ap-() =Y e —mymoa gl —1), 2 =0,1,...,¢—1 (2.F.12)

r=1

with the initial conditions ag (1) = 0, and a, (1) =1 for x € {1,...,¢ — 1}. Using a

vector notation, the equations in (2.F.12) are written as

1 10 1
Cl,q_l(l) 1 0 (% 1(l — 1)
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whose solution for [ > 1 is given by

ao(l) 0 1 -+ 1 1 0
ai(1) 1 0 1 - 1
: —| : . (2.F.13)
1 1 0
ag_1(1) 1 c1ro) \N1)

In proving the considered lemma, the main ingredient is obtaining the number of

vectors x satisfying the parity-check equation
r1+ -+ 24 =0 mod gq. (2.F.14)

Accordingly, only the sequence {ay(l)} is of interest. To obtain a closed form expres-
sion for this sequence, consider the following difference equation:
=(qg—1 _ —1)!
Uy = 0

It can be verified by induction that the elements on the diagonal of the ¢ x ¢ matrix
on the RHS of (2.F.13), raised to the (I —1)-th power, are identical and equal to u;_1,
where the sequence {u;} is the solution of (2.F.15). Moreover, all other elements
outside the diagonal, are equal to u;_; + (—1)". As a result, it follows from (2.F.13)
that

ao(l) = (¢ —1) (w—1 + (=1)"), 1 >1, ao(1) = 0.

which implies from (2.F.15) that ao(l) = u; for [ > 1. Solving the difference equation
in (2.F.15), gives
- 1) —1)(—1)
ao(1) = (¢ —1)"+ (g —1)( )’ > 1.
q

Hence, the enumerator for the number of vectors x satisfying the parity-check equation
in (2.F.14), is given by A*(X) in (2.21). As a result, the enumerator of the first sub-
matrix in the considered ensemble is given in (2.20) (this is similar to the idea provided
in [105] for the binary case). Finally, (2.19) is established in [44] which concludes the

proof of Lemma 2.5.
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2.G  Proof of Theorem 2.4

Using the DS2 bound for the case at hand, it follows that
P( error |dmim > Dy,)

=E // p(y,al0) dy da’ dmin > Dn}
L/ J (y,a):p(y,alx)>p(y,a|0) for some x#0€C

B Pj

Aj
<E // (3 2al0)Y ZZ( DA ) avda du> D,

7j=1 tEH x€eCq

Pj
1=Ajpj

A D0 wily.a) ip(y.al0) % ply,alx) dyda) ey > Dn]

tGHJ x€eCq

(2.G.16)

where the statistical expectation is taken over all the codebooks whose Hamming
minimum distance is larger than D,. From (2.G.16), using Jensen’s inequality we

have

P( error |dpin > Dy,)

Pi
1-Xip;

J
1 jPJ
<) E ZZ/ % v,a) 7ip(y,al0) 7% ply,alx)¥ |dyda| dww > D,
j=1

tGHJ x€eCq

Setting v;(y,a) = [ [, ¥;(vi, a;), since the channel is memoryless we have

P( error |dpin > Dy,)

2.2

teH; xeCy

<

S
I Mu
L

m

Pi

1 1-Xjej
// Hwy yzvaz b yzaal|0) Fi p(yi,ai|$i)>‘j dy; da; Awmin > Dy,

Ell DI

teH;

I
<.
I Mg
)

Pj

1=X;p; te
I (/] st Fotat0) ™ stoaler anaa) | | >,
reX

The proof is concluded by using Jensen’s inequality (for the statistical expectation)

and Lemma 2.3.
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2.H A Closed-form expression for the integral in

Theorem 2.4 when applied to Example 2.7

Similarly to [58], we will pursue a closed-form expression by examining an exponential
tilting probability measure 1 as in (2.26). Note that the joint pdf p(y, a|x) to receive
the noisy observation y € C with a fading sample a > 0, given that the transmitted

symbol is x € X, is given according to

1 1

ploale) = o exp =3l — aute)]”) )

where
pla) =201+ K)aexp(~(1 + K)a* = K ) I (2a/K(K + 1)), a>0,

is the pdf of the Rician fading sample a € A with a parameter K, and u(z) =
\/% exp (% x) is the g-ary PSK modulation mapping applied in the considered
scheme. In addition, 1; in (2.26) is easily verified to be a probability measure. As-
suming that 1 + K + 8 > 0 (which is the case since o > 0), the denominator of 1) as

in (2.26) equals

/°° (a)e ( OéUZCL2ES)d 1+ K . ( BK )
a)ex - a4 = ———— X T —— .
0 b P No 1+K+p P 1+ K+4

Straightforward (though tedious) calculations show that for every x € X

1—

o 1 1-p
/ W(y,a) "7 p(y,al0) 7 p(y,alz)*dyda
a=0 JyeC

1_

o 14 K (_ 8K )Pl
S 1-a(l—p) a(1+K+5)eXp 1+ K+p

1+ K Vo K
-76}( _——
I+ K47 PUTHK 49,

where
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2.1 A Closed-form expression for the integral in

Theorem 2.4 when applied to Example 2.8

The following exponential tilting measure is applied:

L
2E,
Y(y,a) = aé)gra) (1 + % N ) exp —%

2E

y—a U

2
[2F
— Ba? ° 21.1

where y is complex-valued, a,a, 8 > 0, are real-valued parameters, u is a complex-

valued parameter, and p(a) is the pdf of the fading, given in (2.27). The integral in
(2.24) with the proposed tilting measure in (2.1.17) is calculated via straightforward

calculus, and it is obtained that for every x € X

*° 1 1-2p
/ By, ) ply, al0) 7 ply, alz) dy da
a=0 JyeC

pal—%LL (1_'_@ 2ES>L(1/13)

:1—a(1—p) LY Ny

2
1\ [2E. 1\ alu|’E,  E,
L+B<1——) —+(1——) +
( p No p No pNo

1 1—A 271
au (1——) + p+)\exp< mx)
p p q




Chapter 3

Performance Bounds for Erasure,
List and Decision Feedback

Schemes with Linear Block Codes

Chapter Overview

A message independence property and some new performance upper bounds are de-
rived in this chapter for erasure, list and decision-feedback schemes with linear block
codes transmitted over memoryless symmetric channels. Similar to the classical work
of Forney, this chapter is focused on the derivation of some Gallager-type bounds
on the achievable tradeoffs for these coding schemes, where the main novelty is the
suitability of the bounds for both random and structured linear block codes (or code
ensembles). The bounds are applicable to finite-length codes and to the asymptotic
case of infinite block length, and they are applied to low-density parity-check code

ensembles. The chapter is based on the following paper:

E. Hof, I. Sason, and S. Shamai (Shitz), “Performance Bounds for Erasure, List and
Decision Feedback Schemes with Linear Block Codes,” IEEE Trans. on Information
Theory, vol. 56, no. 8, pp. 3754-3778, August 2010.

This chapter is structured as follows: The definitions generalized decoding rules,
and some of their basic properties, are provided in Section 3.1. New upper bounds
under the generalized decoding rules in [41] are derived in Section 3.2. Error perfor-
mance of suboptimal decoding rules are provided in Sections 3.4 and 3.5. Section 3.6

concludes the discussion. Some technical details are relegated to the appendices.

o6
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3.1 Channel Symmetry, Generalized Decoding, and

Message Independence

In this section we introduce some definitions, examples, and statements related to
channel symmetry, Forney’s generalized decoding rule [41], and sub-optimal versions
([9] and [41]), as well as list decoding rules ([36] and [117]). A message independence
property is stated for these decoding rules, which is used for the simplification of
the analysis. The notation in Section 2.1 is assumed. In addition, a memoryless
symmetric channel is assumed (see Definition 2.1), whose transition probability (or
probability density, respectively) function is denoted by p(y|z), where z € X and
yey.

Let C = {Xm}fz:l be a linear block code whose generator matrix is a k xn full-rank
matrix with entries over X. The decoding rules studied in this chapter are specified
in terms of decision regions A,,, 1 < m < ¢*, which are all subsets of J". The

conditional error probability of the m-th message is given by

Py = > plylxm) (3.1)

yEAS,
where A,, forms the decision region for the m-th codeword, and the superscript ‘c’
stands for the complementary set. The decision region of the m-th codeword under

ML decoding gets the form

A = {y = p(y|xXm) > p(y[xm), ¥ m' #m} (3.2)

where ties are resolved randomly with equal probability. Assuming equal a-priori
probabilities for the transmitted messages, the ML decoding rule minimizes the error
probability given in (3.1). A well-known result for binary linear block codes operating
over MBIOS channels is that their error probability under ML decoding is independent
of the transmitted codeword. This enables a great simplification in the analysis by
assuming that the all-zero codeword is transmitted. This result is generalized in
Chapter 2 for non-binary linear block codes whose transmission takes place over
memoryless symmetric channels with discrete input alphabet.

When generalized decoding rules are considered, the decision regions A,, are not
necessarily disjoint nor they include all the possible received vectors. The former case
corresponds to decoding rules with a possibly variable list-size, and the latter case
corresponds to decoding with erasures. A list is produced by the decoder where the

received vector may possibly belong to more than one decision region. An erasure
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event is declared by the decoder when the received vector does not belong to any
decision region. These concepts were first introduced in [41]. When generalized
decoding rules are allowed, the conditional block error probability P, in (3.1) stands
for the probability of either an undetected error or an erasure. When the decision

regions are disjoint, the conditional undetected error probability is given by

ue\m— Z Z ‘Xm (33)

m/#m yEAm/

In addition, let Py, denote the conditional probability of an erasure event given that
X,, 18 transmitted. Then
Px\m = Pe\m - Puo|m-

In the case where list decoding is considered, the decision regions are not disjoint, and
Pyejm as given in (3.3) is no longer a probability. However the RHS of (3.3) equals
the conditional expectation of the number of incorrect codewords in the list (the
same notation, Pc|m, is used in both cases to simplify the statement of the following
results). The optimum decoding rule with respect to the tradeoff between the error

and the undetected error event is derived in [41].

Definition 3.1 (Forney’s generalized decoding) Consider a block code over an
alphabet X', and let {x,,} denote its codebook. The generalized decoding rule is

defined by the following decision regions:

i PV s X!

A, = {y ey Z PI"(Y,Xm) ) > enT} (34)

where m is the index of the codeword, T' € R is a parameter, Pr(y,x,,) denotes the
joint probability that x,, is the transmitted codeword and y is the received vector,

and the summation is over all codewords except for x,,.

Remark 3.1 The decision region in (3.4) can be expressed equivalently in the form

nT
A, = {y eY": Pr(xnly) > 1 j_ enT} (3.5)

Note that for T' = 0, this decision region includes all the vectors y € V" for which
Pr(x,|y) > % The a-posteriori probability of x,,, given that y € A,, is received, is
therefore larger than the a-posteriori probability for any other codeword. Hence, if a
codeword is selected according to the decoder with the decision regions in (3.5) with
T = 0, then the same decision is made by a MAP decoder (as no other codeword

can get an a-posteriori probability larger than ) This implies that the undetected
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error exponent for the decoder in (3.5) with 7" = 0 cannot be smaller than the error
exponent of an ML decoder with equally-likely codewords. Interestingly, as will be
shown later, we get the same lower bound on the error exponents for both decoders.
Moreover, it is shown that for 7' = 0 the bounds for the undetected error event and

erasures coincides.

Remark 3.2 The threshold parameter 7" in (3.4) controls the tradeoff between era-
sures and undetected errors (or average list size and decoding error). Setting 7" > 0

guarantees that the decision regions A,, are disjoint.

Proposition 3.1 (Forney’s generalized decoding [41]) Assume that the decod-
ing of a block code is carried according to the generalized decoding rule in Defini-
tion 3.1. Then, there is no other decoding rule that simultaneously gives a lower
error probability and a lower undetected error probability (or an average number of

incorrect codewords when list decoding is considered).

The following proposition generalizes the message independence property for the

case of generalized decoding:

Proposition 3.2 (Message independence property for optimal generalized
decoding) Let C be a linear block code whose transmission takes place over a mem-
oryless and symmetric channel. Then, the block error probability and the undetected
error probability, under the generalized decoding rule in Definition 3.1, are indepen-

dent of the transmitted codeword.

Proof: See Appendix 3.A. [ ]

Remark 3.3 In the case where list decoding is considered (i.e., the decision regions
are not disjoint), then Proposition 3.2 holds when we refer to the conditional expec-
tation of the number of incorrect messages in the list produced by the generalized

decoding rule, instead of the undetected error probability.

The following suboptimal decoding rule is suggested in [41] for the case of decoding

with erasures:

Definition 3.2 (Likelihood Ratio (LR) Decoding) Consider a block code over
the alphabet X', and let {x,,} denote its codebook. The LR decoding rule is defined

by the following decision regions:

LR _ n . Pr(y, Xm) nT
A= {y ey": Prly. %) >e (3.6)
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where m is a codeword index, T' > 0 is a parameter, Pr(y,x,,) denotes the joint
probability that x,, is the transmitted codeword and y is the received vector, and

ms = may(y) denotes the second most probable codeword for each received vector y.

Remark 3.4 It is observed in [41] that the LR decoding rule may be a good ap-
proximation to the optimal regions in (3.4), since the second most likely codeword
is usually much more probable than the rest of the codewords (excluding the most
probable codeword). It is also noted in [41] that this suboptimal decoding rule is of
practical utility.

Example 3.1 (Suboptimal generalized decoding) Consider the transmission of
a binary linear block code over a BSC. Given a received vector y € {0,1}", the

decoded codeword is x if and only if
du(x',y) — du(x,y) > 2mn (3.7)

for all codewords x” # x, where dy(x,y) denoted the Hamming distance between x,
and y, and 7 > 0 is an arbitrary parameter. Otherwise, an erasure is declared. It is
easily verified that this rule is a particular case of (3.6). The error exponents for this

setting are studied in [9].

The following proposition obtains a message independence property for the sub-

optimal decoding rule in Definition 3.2:

Proposition 3.3 (Message independence property for (suboptimal) LR de-
coding) Let C be a linear block code whose transmission takes place over a memo-
ryless and symmetric channel. Then, the block error probability and the undetected
error probability, under the suboptimal decoding rule in (3.6), are independent of the

transmitted codeword.

Proof: See Appendix 3.B. |

The following definition considers list decoding with a fixed size. Such a decoding
rule is based on a fixed size of the list (instead of a variable list size which characterizes
the decoding rule in Definition 3.1 with 7" < 0).

Definition 3.3 (Fixed-size list-decoding) Consider a block code over an alphabet
X, and let {x,,} denote its codebook. Given a fixed list size L, the list-decoder is a
mapping from the set of all possible received vectors Y™ to the set of all possible lists

of L codewords. This mapping produces the list whose likelihoods are the highest
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among all other codewords. That is, given a received vector y, a codeword x,, is in
the list if p(y|x,) > p(y|x,) for all m’ # m except for at most L — 1 other possible

codewords.

Assuming that the codeword x,, is transmitted, a block error event is occurred by
the fixed-size list-decoding rule in Definition 3.3, if the list produced by the decoder
does not include the transmitted codeword x,,,. The following proposition is analogous

to the message independence property in Propositions 3.2 and 3.3:

Proposition 3.4 (Message independence property for fixed-size list decod-
ing) Let C be a linear block code whose transmission takes place over a memoryless
and symmetric channel. Then, the block error probability, under the fixed-size list-

decoding is independent of the transmitted codeword.

Proof: See Appendix 3.C. |

3.2 Upper Bounds under optimal generalized de-

coding

The transmission of block codes (not necessarily linear) is first considered. In addi-
tion, throughout the chapter, all codewords are assumed to have a uniform a-priori

probability.

Proposition 3.5 Consider the transmission of a code C with a block length n and M
codewords, and let p(y|x) designate the transition probability of the channel where
x € C is the transmitted codeword and y € )" is the received vector. Then, the
conditional block error probability (P,|,,) and the average undetected error probability

(Pye) under the generalized decoding rule in (3.4) satisfy

Py < "’ Dg(m, G, s, p) (3.8)
LM
n(s—1)T — m
P.<e 7 mE:1 Dg(m, G, s, p) (3.9)

where 0 < s < p < 1 are real-valued parameters, GG]' is an arbitrary non-negative

function over Y™ which possibly depends on the codeword x,,, 1 < m < M, and

DB<m7 Gnm7 S, p) é (Z G:Ln(Y)p(Y‘Xm>>

(Z S plyln) G (y) (M” S (310)

i p(ylxm)
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Proof: See Appendix 3.D. [ ]

Remark 3.5 Bounds (3.8) and (3.9) in Proposition 3.5 may be considered as a gener-
alization of the DS2 bound ([26], [96], [94]). In fact, setting 7" = 0 in (3.8) reproduces
the DS2 bound under ML decoding. Note however that for 7" = 0, the decision re-
gions in (3.4) do not coincide with those under ML decoding (e.g., in the former case

there are erasures).

The following corollary is a particularization of Proposition 3.5 for fully random
block codes whose transmission takes place over memoryless channels. The corollary

reproduces the exponential upper bounds as in [41, Th. 2].

Corollary 3.1 (Random coding error exponents under optimum general-
ized decoding) Consider the transmission of block codes over a memoryless com-
munication channel with a transition probability law p. Then, under the notation in

Proposition 3.5, there exists a block code which simultaneously satisfies

P, < e "BURT) (3.11)
Py < e "R (3.12)

where R = In M /n is the code rate (in nats per channel use),
E\(R,T)% max (Eo(s,p, qx) — pR — sT) (3.13)

0<s<p<1, gx

Ey(R,T) 2 E/(R,T)+T

Eo(s,p,qx) & =In )y { (Z ax (z)p(ylz)'™ ) (Z ax (v)p(ylx f’) } (3.14)

yeY zeX zeX

and ¢x is a probability distribution over X.

Proof: See Appendix 3.E. |

The bounds in Corollary 3.1 are derived in [41] without relying on tilting measures.
The current derivation relies on the DS2 bound which makes use of tilting measures
and Jensen’s inequality. It is noted in [41] that setting 7" = 0 in Corollary 3.1, provides
the random coding error exponent of Gallager [45]. Hence, as is mentioned in [41],
the random coding error exponent is attainable not only under ML decoding, but also
under the generalized decoding rule in (3.4) with 7" = 0. The following proposition

is a particularization of Proposition 3.5 for linear block codes.
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Proposition 3.6 Consider an (n,k) linear block code C whose transmission takes
place over a memoryless symmetric channel. Assume that the channel input and
output alphabets are X and ), respectively, and let p be the transition probability of
the channel. Then, the block error probability P, and the undetected error probability
P, under the generalized decoding rule in (3.4), satisfy

P, < e™T'D(g,s,p) (3.15)
Py < e 379D (g, 5,p) (3.16)

where g : ) — R is an arbitrary non-negative real-valued function, 0 < s < p <1 are

arbitrary parameters, and

n(1-p) 2\’
D(g,s,p) (Zg y|0> (Z HZQ P(y[0) (%) ) .

yey 140 i=1 yeY
(3.17)

Proof: See Appendix 3.F. |

Remark 3.6 When the decision regions are not disjoint (i.e., a list decoder is consid-
ered), Py in (3.16) does not denote a probability but the expected number of incorrect
codewords in the decoded list. The block error probability P. in (3.15) refers, in this
case, to the list decoding error probability.

Remark 3.7 The parameters s and p in Proposition 3.6 may be chosen separately for
the bounds in (3.15) and (3.16). However, the optimized choice of the two parameters

is identical in both bounds (since they only differ in the multiplicative term e="7).

The mathematical structure of the bound provided in the following corollary is
similar to the Shulman-Feder bound (SFB) in [100]. Because of this reason, this
bound may be considered as a generalization of the SFB for the generalized decoding
rule in (3.4). To simplify the notation, the corollary is provided for the case of a
binary linear block code whose transmission takes place over an MBIOS channel (the
generalization of the bounds to non-binary linear block codes is performed similarly

to the approach in the proof of Theorem 2.2).

Corollary 3.2 Consider an (n,k) binary linear block code C whose transmission
takes place over an MBIOS channel with a transition probability law p. Then, the
block error probability P, and the undetected error probability P,. under the gener-
alized decoding rule in (3.4) satisfy

P, < e (E0RO—£5) (3.18)
Py < e BRRO ) (3.19)
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where 0 < p <1 is an arbitrary real-valued parameter, R e (%) -In 2 is the code rate

(in nats per channel use),

E(p,R,c>éEo<p>—p(R+T

Fy(p) £ ~In <Z (390010075 + o107 ) (321)

(3.20)

a(C) = g&ﬁw (3.22)
and |C;| denotes the number of codewords whose Hamming weight is 7.
Proof: Setting s = F”p, and
o(0) = (00100 + o105 ) 10y 5 (3.23)

in the bounds of Proposition 3.6, the proof follows in the same way as in [94, Ch.
4.4.1]. n

Remark 3.8 In the case where the performance of an ensemble of linear block codes
is of interest, repeating the derivation of Corollary 3.2 leads to the same upper bounds
as in (3.18) and (3.19), where the cardinality |C;| in (3.22) is replaced with its statis-
tical expectation over the considered ensemble, and the codebooks of this ensemble

are chosen uniformly at random.

Example 3.2 (Error exponents of fully random binary linear block codes)
Consider the transmission of fully random binary linear (n, k) block codes over a
memoryless symmetric channel. For this particular case, the term «(C) in (3.22)
equals 1. As a result, it follows from Corollary 3.2 that the exponent of the block

error probability (including erasures and undetected errors), denoted by E,, satisfies

pT
> — -
E. > Joax <E0(p) pR T p) (3.24)

where Ey(p) is defined in (3.21), R is the code rate (in nats per channel use), and
T is the parameter of the generalized decoding rule in Definition 3.1. Setting T" = 0
in (3.24) reproduces the (non-expurgated) random coding error exponent of Gal-
lager [45]. This observation was first made by Forney for the ensemble of fully random

block codes [41]. The undetected error exponent, denoted by E.., satisfies

> —pR— -,
Eue > T+ orgn?gl (EO(p) pR 1+ p)
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The lower bounds on the two error exponents are shown in Figures 3.1 and 3.2 for
the case of transmission over a BSC with a crossover probability of p = 0.11, and
for a binary-input AWGN channel with E;/Ny = —2.8 dB, respectively (both values
refer to the capacity limit for a rate of one-half bits per channel use). The bounds are
sketched as a function of the code rate (in nats per channel use). The lower bounds
on the error exponents for the case of decoding with erasures (7' > 0) are provided in
Figures 3.1(a) and 3.2(a) for 7' = 0,0.025, 0.05, 0.1 and 0.15. For the case of decoding
with a variable list-size (T" < 0), the lower bounds on the error exponents are provided
in Figures 3.1(b) and 3.2(b) for 7' = 0, —0.05, and —0.1. In addition, lower bounds
on the exponent Eyy = —(In N)/n, where N is the number of incorrect codewords
in the decoded list, are also provided for this case. Note that the exponent Ey is
negative above some rate. The figures show the region for which the exponent Ey is
non-negative; the negative part of Ey, for which an upper bound on the size of the

decoded list grows exponentially with the block length, is removed.

Recall the definitions of vector compositions, and complete composition spectrum
in Chapter 2 (see Definitions 2.3 and 2.4).

Corollary 3.3 Consider an ensemble € of (n, k) linear block codes whose transmis-
sion takes place over a memoryless symmetric channel. Let P(l) denote the probability
that a vector whose Hamming weight is [, forms a codeword in a randomly selected
codebook from £. Assume that the average composition spectrum over all the codes

C, uniformly selected at random from & satisfies

E[|ct|} — P(n —t) (Z) (3.25)

Then, under the notation in Proposition 3.6, the block error probability P, and the
undetected error probability P,., satisfy

P. < e - Dy(p,C) (3.26)
Pu < e 140 - Dy(p,C) (3.27)
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Figure 3.1: Lower bounds on the error exponents and list-size exponents for the
ensemble of fully-random binary linear block codes whose transmission takes place
over a BSC with a crossover probability of p = 0.11. The lower bounds in Corollary 3.2
are sketched in plots (a) and (b), for the generalized decoding rule in (3.4) with
erasures (i.e., 7' > 0) and with a variable list-size (i.e., T' < 0), respectively.
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Figure 3.2: Lower bounds on the error exponents and list-size exponents for the en-
semble of fully-random binary linear block codes whose transmission takes place over
a binary-input AWGN channel with F /Ny = —2.8 dB. The lower bounds in Corol-
lary 3.2 are sketched in plots (a) and (b), for the generalized decoding rule in (3.4)
with erasures (i.e., ' > 0) and with a variable list-size (i.e., T' < 0), respectively.
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where 0 < p < 1, and

D(p.C) & A(p)y"t~" ( > P) (7)B<p>"-10<p>l) (3.28)

1<i<n

Ap) 2y (; Zp(ymﬁ) (3.29)

yeY rEX
1 e
1 2

B(p) &> (— > plylz) HP) (— Zp(ylx)lﬂ’) (3.30)

yeY q rEX q reX
C(p) = qA(p) — B(p). (3.31)
Proof: Setting s = F”p and choosing the tilting measure ¢ in (3.23), the proof
follows from Proposition 3.6 in the same way as in Theorem 2.3. ]

Remark 3.9 For an ensemble of binary linear block codes, the condition in (3.25)
is not mandatory. Repeating the derivation results in the same bounds as in Corol-
lary 3.3 where the term P(I)(’) in (3.28) is replaced with the expected complete
composition spectrum of the ensemble.

Remark 3.10 The bounds in Corollary 3.3 are tighter than those in Corollary 3.2.
Hence, for a finite block length, the bounds in Corollary 3.3 are more attractive even

though they lack the appealing exponential structure of the bounds in Corollary 3.2.

Remark 3.11 As a particular case of Remark 3.5, setting 7" = 0 in (3.26) reproduces
the upper bound on the decoding error probability of non-binary linear block codes

under ML decoding in Theorem 2.3.

The following comments concerns the numerical results shown in the examples

throughout this chapter:

1. Ezxpurgation of codebooks: The examples presented in this chapter consider the
performance of some expurgated ensembles of regular LDPC codes under gen-
eralized decoding rules. Specifically, an expurgation of the codebooks whose
minimum Hamming distance is not larger than a specific value D,, is assumed.
As a result, the expected complete composition spectrum E [|C¢| |dmin > Dy] of a
codebook which is chosen uniformly at random from the expurgated ensemble,

satisfies the following upper bound:

E[IC:]

1—¢,

E[|Ce| |dmin > D] < (3.32)
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where E[|C¢|] is the expected composition spectrum of the original (non-expurgated)

ensemble, and

> E[lC] <en (3.33)

t: n—to<Dp
The fraction of the removed codebooks is upper bounded by ¢,. In the following
examples, the value of ¢, is negligible. For the (6,12) regular binary ensemble
with block lengths of n = 504 and 2004 bits, €, = 3.6002-107°, and 5.5058-1078,
for D,, = 40 and 160 bits, respectively. For the (8,16) regular octal alphabet
ensemble with a block length of n = 1008 symbols and D,, = 80 symbols, €, is

around 10714,

2. Performance over the AWGN channel: For the AWGN channel, the results

Es
No

E is the energy per transmitted coded symbols, and % is the two-sided power

in this chapter are provided as function of the signal-to-noise ratio where
spectral density of the additive white noise. This comment concerns both binary

and non-binary codes.

Example 3.3 (Error performance of binary regular LDPC code ensembles
under generalized decoding with erasures) Consider an expurgation of the bi-
nary and regular (6,12) LDPC code ensemble of Gallager [44] with a block length
of n = 2004 bits. In this expurgated ensemble, all the codebooks whose minimum
distance is not larger than D,, = 160 are removed. Upper bounds on the block error
probability and the undetected error probability, under Forney’s generalized decod-
ing with erasures, are studied based on Corollary 3.3. The composition spectrum is
upper bounded via (3.32) and (3.33), where the composition spectrum of the original
(non-expurgated) regular LDPC code ensemble is evaluated using the method pro-
vided in [18], [105]. The bounds are provided for several non-negative values of 7" in
Figures. 3.3(a) and 3.3(b), assuming that the transmission takes place over a BSC
and a binary-input AWGN channel, respectively. Note that if 7" = 0, the resulting
bounds on the block error probability and the undetected error probability coincide,
and they also provide an upper bound on the ML decoding error probability. The
results indicate that by allowing an error probability that may be slightly higher than
the upper bound on the error probability under ML decoding, significant improve-
ment is guaranteed for the undetected error probability. Consider for example the
error performance where the transmission takes place over a BSC with a crossover
probability of 0.088. The upper bound on the error probability under ML decoding
is around 7.5 - 1073 (see Figures. 3.3(a)). By allowing the total error probability to
be less than 2-1072, the undetected errors are guaranteed to be less than 2-10~* and
5-107° for T' = 0.002 and 0.004, respectively.



CHAPTER 3. BOUNDS FOR GENERALIZED DECODING 70

Example 3.4 (Error performance of binary regular LDPC code ensembles
under generalized decoding with a variable-size list) The performance of the
same expurgated ensemble as in Example 3.3 is studied here under Forney’s general-
ized decoding with a variable list-size. Upper bounds on the block error probability
and the expected number of incorrect codewords in the list, are evaluated based on
the bounds in Corollary 3.3 for several non-positive values of 7. These bounds are
provided in Figures. 3.4(a), and 3.4(b), assuming a transmission over a BSC or a
binary-input AWGN channels, respectively. It is evident that only a slight improve-
ment in the error performance is possible by using the generalized decoding rule. Take
for example the case of transmission over a BSC: for crossover probabilities where the
block error probability under ML decoding is below 0.09, the expected number of
incorrect codewords is low. In fact, the upper bound on the expected number of
incorrect codewords for such crossover probabilities, is less than one which implies
that the list is likely to include only the correct codeword. However, for crossover
probabilities for which the probability of the list error event is larger, the upper bound
on the size of the decoded list grows considerably above 1 (see Figure. 3.4(a)).

Example 3.5 (Generalized decoding of non-binary regular LDPC code en-
sembles) Consider an expurgation of Gallager’s ensemble of (8,16) regular LDPC
codes [44] with an octal alphabet, and a block length of 1008 symbols. Consider
the case where the expurgated ensemble excludes all the codebooks whose minimum
distance is not larger than D,, = 80. The upper bounds on the error probabilities,
under the generalized decoding rule in (3.4), are studied based on the upper bounds
provided in Corollary 3.3. The (average) composition spectrum is upper bounded via
(3.32) and (3.33), and the composition spectrum of the original ensemble is evaluated
using the method provided in [34]. For the case of decoding with erasures, upper
bounds on the block error and undetected error probabilities are provided, whereas
for decoding with a variable list size, an upper bound on the expected number of
incorrect codewords in the list and an upper bound on the block error probability are
provided. These bounds are shown in Figures. 3.5(a) and 3.5(b), assuming that the
transmission takes place over an 8-ary discrete memoryless symmetric channel, and
an AWGN channel with 8-PSK modulation, respectively. It is evident that the upper
bound on the block error probability for the case of decoding with erasures, referring
to ' = 0.01 in Figures. 3.5(a) and 3.5(b), slightly deteriorates as compared to the
block error probability under ML decoding (where the bound presented for 7" = 0
coincides with the bound under ML decoding). However, a remarkable improvement

is shown in these figures with resect to the undetected error probability (referring to



CHAPTER 3. BOUNDS FOR GENERALIZED DECODING 71

10
10°
>
5 10
<
e
o
—
o
510°
= —A-T=0
—o— Pe T =0.002
—s—P_ T=0.004
10—8 e i
—e— Pue T =0.002
T Pue T =0.004
10_10 ! ! ! !
0.075 0.08 0.085 0.09 0.095 0.1
crossover probability
(a) Transmission over a BSC
10° —=
10°
>
=
B
z 10"
Qo
o
fart
o
5 h
g —A-T=0
S 10 | —o— P_ T=0.002
—a— Pe T =0.004
—e— Pue T =0.002
1078} — . Pue T =0.004

-2.6 -2.4 -2.2 -2 -1.8 -1.6
ES/NO [dB]

(b) Transmission over a binary-input AWGN channel

Figure 3.3: Upper bounds on the block error and undetected block error probabilities
under the generalized decoding rule in (3.4) with erasures (7" > 0). An expurgation of
the binary and regular (6,12) LDPC code ensemble of Gallager is considered, where
the block length is 2004 bits, and the parameter D,, which refers to the expurgation
is set to 160 (see Example 3.3). The transmission in plots (a) and (b) is assumed to
take place over a BSC, and a binary-input AWGN channels, respectively.
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Figure 3.4: Upper bounds on the block error probability and expected size of incorrect
codewords in the decoded list, under the generalized decoding rule in (3.4) with
variable-size list (7" < 0). An expurgation of the binary and regular (6,12) LDPC
code ensemble of Gallager is considered, where the block length is 2004 bits, and
the parameter D,, which refers to the expurgation is set to 160 (see Example 3.3).
The transmission in plots (a) and (b) is assumed to take place over a BSC, and a
binary-input AWGN channels, respectively.
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Py for T'=0.01 in both figures). For the variable-size list decoding which refers to
T =0.01 in (3.4), only a slight improvement is provided in the probability of error.

3.3 Applications to performance analysis of hybrid-
ARQ systems

3.3.1 Preliminaries

Coded communication systems with one-bit noiseless feedback are considered where
a generalized decoding rule with erasures is applied at the receiver. Each decoding
erasure is communicated via the feedback to the transmitter, which then retransmits
its message. It is first assumed that each transmitted block is decoded separately.
Such a hybrid-ARQ system is described and studied in [41], where the error exponents
for random coding are provided. For the case where deadlines are assumed, the error
exponents for random coding are provided in [48].

The following discussion is provided in [41] and [48], and it is surveyed here for
the sake of completeness.

Since Forney’s generalized decoding rule (3.4) with a positive value of T is used
in the context of erasures, the resulting decision regions at the receiver are disjoint,

and the erasure probability P, for a single block transmission is given by
Py =P, — Py

where P, and P, are, respectively, the (total) block error probability and undetected
error probability for a single block transmission. The erasure probability is studied
via an upper bound on the error probability P,. Assuming a noiseless and immediate
feedback, for the case where no deadlines are considered, the expected rate of the

considered system equals
(1-P)R (3.34)
where R is the rate of the codebook used (in units of bits per channel use) for a single

block transmission. The error probability of this scheme is given by

Pue
1- P,

(3.35)

Note that the replacement of P, in (3.34) and (3.35) with an upper bound on F,,
provides a lower bound on the expected rate and an upper bound on the error prob-

ability.
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Figure 3.5: Upper bounds on the decoding error probabilities and number of incor-
rect codewords in the decoded list for an expurgated ensemble of LDPC codes. The
considered ensemble refers to the octal-alphabet regular (8,16) LDPC code ensemble
of Gallager with a block length of 1008 symbols, and where the parameter D,, which
refers to the expurgation is set to 80 (see Example 3.5). The upper bounds in Corol-
lary 3.3 are provided in plots (a) and (b), assuming that the transmission takes place
over an 8-ary discrete memoryless symmetric channel, and an AWGN channel with
8-ary PSK modulation, respectively.
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For the case where deadlines are considered, let @) (¢ > 1) be the maximal num-
ber of block retransmissions (including the first transmitted block). Each transmitted
block is decoded separately using Forney’s generalized decoding rule with erasures.
Such a scheme is termed memoryless in [48] (note that the ARQ scheme without
deadlines, studied in [41], is also memoryless in this sense). In cases where ) con-
sequent block transmissions occur, then the generalized decoding rule is replaced for
the last (@Q-th) retransmitted block with an ML decoder. As a result, the expected
rate and error probability, denoted by R(Q) and P,(Q), respectively, satisfy

R
R(Q) = Sz_ol (Px)k
_ R (1 - Px)
o (3.36)
and
Q-1
PO(Q) = Z (PX)k_l Py + (PX)Q_I PeML
_ (1 B (PX)Q_l) Pe + (PX>Q_1 PCML (337)

1— Py
where PMY is the block error probability under ML decoding for the considered code
(while referring to the decoding of the last retransmitted block separately). Note that
in the limit where ) — oo (no deadlines), then (3.36) and (3.37) tend asymptotically
to (3.34) and (3.35), respectively. Replacing P in (3.36) and (3.37) with an upper
bound on the (total) error probability P,, results in a lower bound on the expected
rate, and an upper bound on the error probability, respectively.

In hybrid incremental-redundancy ARQ schemes, a repeat request triggers the
transmission of a new block of n coded symbols which is not necessarily equal to the
former block (even though the transmission of the same message is concerned). The
decoder, instead of processing only the last block, decodes the message by observing
the entire blocks received so far for the concerned message. For such cases, the
expected rate, denoted by R™(Q), satisfies the following lower bound [48, Eq. (24)]:

R
B Q=g pp;
This bound coincides with (3.36) if @ = 2. However, for ) > 2, the bound in

(3.38) is loosened because of the specific derivation used in [48]. Assuming that an

(3.38)

ML decoder is used after the last retransmitted block, the error probability for the
IR-ARQ scheme, denoted by P™®(Q), is upper bounded by [48, Eq. (25)]:

-1

P(Q) < > Pulk)+ P (Q) (3.39)
1

e

B
Il
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where Py.(k) denotes the undetected error probability of the generalized decoding
rule, which operates on the received observations of k consequent transmitted blocks
(1<k<Q@-1),and PM(Q) denotes the error probability under ML decoding, based
on the entire transmission of @) blocks (the ML decoder is used only if () blocks are
needed to be transmitted for the same message). Note that the dominant summand
in (3.39) is Pye(1), i.e., the undetected error probability of the first transmitted block.

3.3.2 Examples

In the following examples, upper bounds on the error performance and lower bounds
on the expected rates of some hybrid-ARQ systems are studied. These bounds are
based on the bounds in Corollary 3.3 and the results in Section 3.3.1. As mentioned,
each block of coded symbols in the IR-ARQ scheme may include new coded symbols.
Nevertheless, for all examples in this section where IR-ARQ schemes are considered,

a retransmission of equal coded blocks is assumed.

Example 3.6 (Hybrid-ARQ schemes over BSC) Consider the expurgated en-
semble of binary regular LDPC codes in Example 3.3, whose transmission takes place
over a BSC. Lower bounds on the expected rates are presented for several values of
the decoding parameter T' in Figure 3.6(a). For memoryless systems without dead-
lines, the provided lower bound on the expected rate in (3.34) drops to zero as the
crossover probability of the BSC approaches the capacity limit (which is 0.11 for a
design rate of R = % bits per channel use). For schemes with deadlines of ) = 2 and 4
transmissions, the lower bounds on the expected rate in (3.36) drop to % = i and
é, respectively, as the crossover probability of the BSC approaches the capacity limit
(which is the limit of (3.36) when we let P, tend to 1). Schemes with incremental
redundancy are also considered. Note that the lower bound on the expected rates for
memoryless schemes with deadline of () = 2, also applies to schemes with incremental
redundancy, the lower bound in (3.38) coincides with the equality in (3.36) for Q = 2.
For the case of () = 4, the loosened lower bound on the expected rate for incremental
redundancy schemes in (3.38) is also provided. Upper bounds on the decoding error
probabilities for the considered schemes are provided in Figure 3.6(b). The upper
bound for a block error probability with 7" = 0 and where no feedback is available
(a single transmission, () = 1) is also provided. Note that this bound is valid for
the block error probability under ML decoding. Comparing this upper bound (for
T =0 and @ = 1), with the upper bounds for " = 0.002 and 0.004, shows that the

introduction of one-bit immediate and noiseless feedback allows for a considerable
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improvements in the error performance. This improvement is achieved while main-
taining reasonable rate drops (at least for crossover probabilities below the threshold
for which the rate starts dropping considerably). Moreover, the improvement is of
interest even for the simplified memoryless-ARQ schemes with moderate deadlines
(of @ = 2 and 4 block transmissions).

Example 3.7 (Hybrid-ARQ schemes over binary-input AWGN channels)
Consider the expurgated, binary, and regular LDPC code ensemble in Example 3.3,
and the hybrid-ARQ scheme used in Example 3.6. Lower bounds on the expected
rates, and upper bounds on the error probabilities for such schemes are provided
in Figures. 3.7(a), and 3.7(b), respectively, assuming that transmission takes place
over a binary-input AWGN channel. The results show that if the SNR is above a
threshold for which the expected rate does not deteriorate considerably, a substan-
tial improvement in the decoding error probability is possible. This improvement is
achieved while maintaining a negligible rate loss, even for the simplified memoryless
schemes with moderate deadlines (e.g., @ = 2 and 4). Take for example the case
where Fg/Ny = —2.1 dB. For this setting, the upper bound on the error probability
under ML decoding without retransmissions (T' = 0, @Q = 1) is slightly above 1072.
By introducing a one bit noiseless feedback, the upper bounds on the error probability
for all considered schemes with T = 0.004 are in the range of 10~* — —10~° while
maintaining a small rate loss (the rate loss for the memoryless scheme with deadlines

of @ = 2 transmissions is below 3.2%).

Example 3.8 (Hybrid-ARQ schemes over AWGN channels with non-binary
LDPC codes) Hybrid ARQ schemes over the AWGN channel with 8-PSK modu-
lation is considered where the expurgated and octal-alphabet LDPC code ensemble
in Example 3.5 is used. Lower bounds on the expected rate and upper bounds on
the decoding error probability are shown in Figures. 3.8(a) and 3.8(b), respectively.
Schemes with and without deadlines are considered. The results show that the lower
bounds on the expected rates drop considerably, below Es/N, = 3.6 dB. However,
above this SNR, the introduction of a single-bit, noiseless and immediate feedback
allows to achieve remarkable improvements in the error performance. Take for exam-
ple the case where Fs/Ny = 3.62 dB where the upper bound on the error probability
under ML decoding without feedback (see the curve for 7= 0 and @ = 1) is around
1072, For the same channel, if no deadlines are assumed, the upper bounds on the
error probability are around 2 - 107%. When deadlines of () = 2 and 4 total retrans-

missions (including the first transmission) are assumed, the upper bounds on the
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Figure 3.6: Performance bounds of hybrid-ARQ schemes for the expurgated, binary
and regular (6,12) LDPC code ensemble of Gallager with a block length of n = 2004
bits (see Example 3.3). The transmissions are assumed to take place over the BSC. In
plot (a), lower bounds on the expected rates for memoryless hybrid-ARQ schemes with
and without deadlines (see (3.36), and (3.34), respectively) are shown for 7" = 0.002
and 0.004 (and deadlines of ) = 2 and 4 transmissions). In plot (b), upper bounds on
the error probability are provided for the considered schemes. For the case of Q) = 2,
lower bounds on the expected rate and upper bounds on the decoding error probability
are also provided in plots (a) and (b), respectively, assuming incremental-redundancy
ARQ at the decoder (see (3.38)).
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(b) Upper bounds on the error probability

Figure 3.7: Performance bounds of hybrid-ARQ schemes for the expurgated, binary
and regular (6,12) LDPC code ensemble of Gallager with a block length of n = 2004
bits (see Example 3.3). The transmissions are assumed to take place over binary-
input AWGN channels. In plot (a), lower bounds on the expected rates for memoryless
hybrid-ARQ schemes with and without deadlines (see (3.36), and (3.34), respectively)
are shown for 7" = 0.002 and 0.004 (and deadlines of @) = 2 and 4 transmissions).
In plot (b), upper bounds on the error probability are provided for the considered
schemes. For the case of () = 2, the lower bounds on the expected rate and upper
bounds on the decoding error probability are also provided in plots (a) and (b),
respectively, assuming incremental-redundancy ARQ at the decoder (see (3.38)).
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Figure 3.8: Performance bounds of hybrid-ARQ schemes based on an expurgated,
octal-alphabet and regular (8,16) LDPC code ensemble with a block length of n =
1008 symbols (see Example 3.5). The transmission is assumed to take place over an
AWGN channel with 8-PSK modulation. In plot (a), lower bounds on the expected
rates for memoryless hybrid-ARQ schemes with and without deadlines (see (3.36),
and (3.34), respectively) are shown for 7" = 0.01 (and possible deadlines of ) = 2
and 4 transmissions). In plot (b) upper bounds on the error probability are provided
for the considered schemes.
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error probability for the same channel are 6 - 107% and 3 - 107°, respectively. For all

considered schemes, the expected rate deteriorates at this point by no more than 4%.

Immediate and noiseless one-bit feedback is assumed in Examples 3.6-3.8. The re-
striction to immediate feedback is loosened in most network applications where some
sort of a multiple-access protocol is introduced. As a result of the applied protocol,
the transmitter is informed regarding the one-bit feedback with some delay that is
guaranteed (by the protocol) to be before the next time slot of the retransmission.
As for the condition of noiseless feedback, loosening this condition results in an in-
evitable synchronization errors (see, e.g., a similar observation in [30]). Since the
hybrid-ARQ schemes presented in this section require only one-bit feedback, even if
these synchronization errors should be kept low in comparison with the block error

performance, they are typically achievable with relatively low resources.

3.4 Upper Bounds under suboptimal decoding with

erasures

In this section, upper bounds on decoding error probabilities are derived for the

suboptimal decoding rule in (3.6).

Proposition 3.7 Consider the transmission of a block code C of block length n
and M codewords, and let p(y|x) designate the transition probability of the channel
where x € C is the transmitted codeword and y € Y™ is the received vector. Then,
the conditional block error probability F,, and the conditional undetected error

probability Pe|m, under the suboptimal decoding rule in (3.6) satisfy

Pe|m < enSTDB(ma GTT?? S,p), 0<s< P <1 (340)
Pueim < ¢ ™' Dg(m, G, s,p), 0<s<p<1 (3.41)

where Dg(m, G, s, p) is defined in (3.10), and G} is an arbitrary non-negative func-

tion over )" which possibly depends on the codeword x,,, 1 < m < M.

Proof: See Appendix 3.G. |

Remark 3.12 The upper bound on the block error probability in (3.40) coincides
with the upper bound on the total error probability provided in (3.8) under the
optimal generalized decoding rule. On the other hand, the upper bounds on the un-
detected error probabilities under the optimal and suboptimal decoding rules in (3.9)

and (3.41), respectively, are different.
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The following corollary is a particularization of Proposition 3.7 for the ensemble
of fully random block codes of length n and rate R whose transmission takes place

over memoryless channels:

Corollary 3.4 Consider the transmission of block codes over a memoryless commu-

nication channel. Then, there exists a block code satisfying

P, < ¢ "R

P, < ¢ "ERT)

where R £ M ig the code rate (in nats per channel use), F, (R, T) is defined in (3.13),

n

E;(R,T) = max (Eo(s, p,qx) — pR+ sT)

0<s<p<1, gx

Ey is as defined in (3.14), and ¢y is an arbitrary probability distribution over X.

Proof: The proof follows the same arguments as the proof of Corollary 3.1. =

The following bound is provided for the case of binary linear block codes whose
transmission takes place over an MBIOS channel (the generalization of the bound to

non-binary linear block codes, as provided in Chapter 2, is direct):

Corollary 3.5 Consider an (n,k) binary linear block code C whose transmission
takes place over an MBIOS channel with a transition probability law p. Then the
block error probability P,, and the undetected error probability P,., under the gen-
eralized decoding rule in (3.6) satisfy

where R is the code rate (in nats per channel use), and E (p, R, C) is defined in (3.20).

Proof: The proof follows from Proposition 3.7, and its derivation is similar to the

way where Corollary 3.2 is derived from Proposition 3.6. ]

Remark 3.13 As in Corollary 3.2, the bounds of Corollary 3.5 resemble to the SFB,
and they may therefore be considered as a generalization of the SFB for the case at
hand.
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Remark 3.14 For all rates below some (finite) rate thresholds, the bounds in Corol-
lary 3.5 on the decoding error for linear block codes under the suboptimal LR rule in
Definition 3.2, coincide with those under the optimal decoding rule in Definition 3.1.
To see this, observe first that the upper bounds in (3.18) and (3.42) are identical.
It is left to consider the upper bounds in (3.19) and (3.43) on the undetected error
probability. Note first that Ey(p) — pR (Ey is defined in (3.21)) is a concave function
of 0 < p <1, and it is optimized for rates below Ej(1) at p = 1 (see, e.g., [111,
p. 135]). Moreover, Fpp is a monotonic increasing function of 0 < p < 1. This implies
that if T < E{(1), then at all rates below Ej(1) — W — L the error exponents
of the upper bounds in (3.19) and (3.43) are both maximized at p = 1, and they
therefore coincide. A similar observation is provided in [54, p. 82] for the ensemble
of fully random block codes. Specifically, it is observed in [54] that up to some rate
threshold, the upper bounds under the suboptimal LR decoding rule for the ensemble
of fully-random block codes coincide exponentially with those provided by Forney in
[41].

Example 3.9 (Error exponents of fully random binary linear block codes)
Fully random binary and linear (n, k) block codes are considered where, as mentioned
in Example 3.2, «(C) =1 (see (3.22)). For the particular case of transmission over a
BSC, the error exponents for the considered ensemble are studied in [9] and [16]. The
lower bounds on the block error exponents and the undetected error exponents from
[9] and [16] are compared in Figures 3.9(a), and 3.9(b), respectively, to the bounds
provided in Corollary 3.5. The bounds are derived for a BSC with a crossover prob-
ability of p = 0.07 and a decoding parameter 7 = 0.03 (see (3.7) where these are the
same parameters studied in [9, Figure 1]). The error exponent provided by Gallager
for the case of ML decoding is also provided for comparison, in addition to the unde-
tected error exponent under the optimal generalized decoding rule. Apart from low
rates, where the bounds in [9] and [16] outperform those provided in Corollary 3.5,
the latter bounds on the error exponents lie in between the two previously reported
bounds from [9] and [16] (see Figure 3.9). Moreover, in the rate region beyond the
critical rate, where the bound in [9] outperform the bound in [16], the derived bounds
perform in close proximity to the tightest known bound. The superiority of the un-
detected error exponent under the optimal decoding rule is clearly pronounced. This
comparison is further studied in Figure. 3.10 where the lower bounds on the unde-
tected error exponents under the optimal and suboptimal generalized-decoding rules
are provided for the same parameters as in Example 3.2 (7" = 0, 0.025, 0.05, 0.1 and
0.15), assuming that transmission takes place over a BSC with a crossover proba-
bility of p = 0.11, and over binary-input AWGN channel with E;/N, = —2.8 dB.
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For the case where T" = 0, both considered exponents, for optimal and suboptimal
generalized-decoding rules, coincide with each other and with the (non-expurgated)
random coding error exponent of Gallager [45]. As observed in Remark 3.14, it is
evident that for low to moderate code rates, the bounds under optimal and subopti-
mal generalized decoding rules coincide. However, as the coding rates approach the
channel capacity, the lower bounds on the undetected block error exponents under
the suboptimal generalized-decoding, are considerably loosened in comparison to the

lower bound under the optimal generalized decoding.

Corollary 3.6 Under the assumptions and notation in Corollary 3.3, the block er-
ror probability P, and the undetected error probability P, under the suboptimal
decoding rule in (3.6), satisfy

P, < et . Dy(p,C), 0<p<1 (3.44)
Pw <e 1% -D(p,C), 0<p<1 (3.45)

where Ds(p,C) is defined in (3.28).

Proof: Setting s = -, G'(y) = [T:-, 9(y;) where g is as defined in (3.23), the

proof follows from Proposition 3.7 in the same way as the proof of Theorem 2.3. =

Consider the particular case of binary linear block codes whose transmission takes
place over the binary-input AWGN channel with BPSK modulation. The bound of
Divsalar (see [26] and [94, Sec. 3.2.4]) provides a closed-form expression for an upper
bound on the block error probability under ML decoding. The following proposition

provides a similar bound under the LR decoding rule in Definition 3.2:

Proposition 3.8 Consider the transmission of a binary linear block code over the
AWGN channel with BPSK modulation, then the error and undetected error proba-
bilities under the LR decoding in (3.6) satisfy

~ d E, [2Ed  nT
P, < Z min { exp (—nEe (5, Fo)) ,|Cal @ N 2\/@ (3.46)
No

d:dmin
u d E 2F.d nT
P, < i —nFye —,—S ,|C i 3.47
_d; min ¢ exp ( n (n No)) Cal @ { 4/ No + e (3.47)
—0min NO

where d,;, is the minimum Hamming distance of the code, n is the block length of

the code, |C;| is the number of codewords whose Hamming weight equals i, T" is the
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Figure 3.9: Lower bounds on the block error exponents of fully-random binary linear
block codes whose transmission takes place over a BSC with a crossover probabil-
ity of p = 0.07, under the suboptimal decoding rule in (3.7) with 7 = 0.03. The
lower bounds on the undetected block error exponents in [9, Theorem 2], [16] (see
also [9, Theorem 1]), and Corollary 3.5 (see (3.43)) are provided in plot (a), together
with Gallager’s random-coding error exponent under ML decoding [45], and the lower
bound on the undetected error exponent in Corollary 3.2 (see (3.19)) under the op-
timal generalized decoding rule. The lower bounds on the error exponents in [9,
Theorem 2], [16], and Corollary 3.5 (see (3.42)) are provided in plot (b) (the lower
bound of Gallager for the random-coding error exponent under ML decoding is also
provided for comparison).
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Figure 3.10: Lower bounds on the undetected error exponents of fully-random binary
linear block codes under the suboptimal generalized decoding rule in (3.6). The
bounds based on Corollary 3.5, are provided in plots (a) and (b), assuming that the
transmission takes place over a BSC with a crossover probability of p = 0.11, and a
binary-input AWGN channel with F;/Ny = —2.8 dB, respectively. The lower bounds
on the error exponents under the optimum generalized decoding rule in (3.4), studied
in Example 3.2, are also provided for comparison.

decoding parameter in (3.6), E is the energy per transmitted (coded) symbol, & is
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the two-sided power spectral density of the white Gaussian noise, and

E\ & E.\ T¢
EO (57 FO) - ED (57 N(]) 9 9

Es\ A E; T¢
Eue (57 FO) - ED (57 NO) + 9

% L _ 1 B o (6) L%
LlE 20-s  _pev( BV )\ 1-i( 5
" _05<1—6‘2“<‘”>+( 5 ) <<“Fo) ”)‘T(HF)
A 11’l|Cd| A g
n(é)—T, 0=
= 0
B+ (1-p)(1-9)
Proof: See Appendix 3.H. .

Example 3.10 (Error performance of expurgated binary and regular LDPC
code ensembles under suboptimal generalized decoding with erasures) Con-
sider an expurgation of the binary and regular LDPC code ensembles in Example 3.3
(with block lengths of 504 and 2004 bits). The upper bound in (3.45), on the unde-
tected error probability under the generalized decoding rule with erasures in (3.6), is
provided in Figures 3.11(a) and 3.11(b), assuming that the transmission takes place
over a BSC and a binary-input AWGN channel, respectively. The upper bounds
under the optimal generalized decoding rule are also provided for a comparison, in
addition to the upper bound under the generalized decoding rule with 7" = 0 (which
coincides with the upper bound on the error probability under ML decoding). It is
evident that the resulting bounds under the suboptimal generalized decoding rule
are loosened in comparison to the bounds under the optimal generalized decoding
rule. This result is expected from the previous example where the undetected error
exponents are studied for fully-random linear block codes. In Figure 3.12, the upper
bounds on the undetected error probability in Corollary 3.6 are compared with those
provided in Proposition 3.8. The provided bounds are for the binary regular and ex-
purgated LDPC code ensembles in Example 3.3 (with block lengths of 504 and 2004
bits), and for a similar ensemble with a block length of 10008 bits and D,, = 800.
The parameter 7' in (3.6) is chosen, for this comparison, to be 0.0198, 0.0050, and
9.992 - 10™%, respective to the considered block lengths. It is evident that the sim-
ple bound in (3.47) is loosened in comparison to the bound in (3.45), but only by a

relatively small difference.
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Figure 3.11: Upper bounds on the undetected error probabilities of some expurgated
ensembles of binary and regular (6,12) LDPC codes under the optimal and sub-
optimal generalized decoding rules in (3.4) and (3.6), respectively. The upper bound
in Corollary 3.6 is shown in plots (a) and (b), assuming that the transmission takes
place over a BSC and a binary-input AWGN channel, respectively. The upper bounds
in Corollary 3.3, studied in Examples 3.3 and 3.4, are also provided for comparison.

3.5 Upper bounds under fixed-size list decoding

In this section, upper bounds on the block error probability are derived for the fixed-

size list decoding (see Definition 3.3). As mentioned in Section 3.1, the block error
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Figure 3.12: A comparison between the upper bounds in (3.45) and (3.47), on the
undetected error probability under the LR generalized decoding rule in (3.6). The
comparison is provided for binary expurgated and regular (6,12) LDPC code ensem-
bles of Gallager with block lengths of 504, 2004 and 10008 bits whose transmissions
take place over binary-input AWGN channels with BPSK modulation.

event in this case corresponds to the possibility that the decoded list does not include

the transmitted codeword.

Proposition 3.9 Consider the transmission of a block code C with M codewords
of length n, and let p(y|x) designate the transition probability of the channel where
x € C is the transmitted codeword and y € )" is the received vector. Consider the
case where a fixed-size list decoder is used where the size of the list is denoted by
L. Then, the conditional block error probability F,,, given that the m-th message

is transmitted satisfies

Pejm < (Z Gnm(y)p(y\xm)>
1 ot (P )7
<z > Sstvbecn) (20e) ) )

m'#Fm y

where 0 < s < p <1 are real-valued parameters, and G is an arbitrary non-negative

function over Y™ which possibly depends on the codeword x,,, for 1 < m < M.

Proof: See Appendix 3.1. [ ]
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The following corollary is a particularization of Proposition 3.9 for the ensemble
of fully-random block codes, with fixed block length and rate, whose transmission

takes place over a memoryless channel:

Corollary 3.7 Consider the transmission of a block code C over a memoryless com-
munication channel. Then, under the notation in Proposition 3.9, there exists a block

code whose block error probability P, under fixed-size list decoding satisfies
Pe < e—nEr(R—TlllnL) (349)

where R £ % is the code rate (in nats per channel use),

N _
E.(R) = o BEX (Eo(p, qx) pR) (3.50)
1+p
Eo(p.qx) & —In [ > <Z qx (2)p(ylz) 1+P>
yeY \zeX

and ¢x is a probability distribution over the input alphabet X.

Proof: Fix a probability distribution ¢y over X, and consider the ensemble
of random block codes where each codeword is chosen independently according to
gx(x) = [T~ gx(z;). First, we apply the bound in (3.48) for a specific realization of

a codebook, with s = 1+ and

o (oo (225 )

X

The proof follows by a random coding argument, and by choosing the optimal prob-

ability distribution ¢x. [ |

Remark 3.15 (On comparison of the error exponent in Corollary 3.7 with
previously known results) The upper bound in Corollary 3.7 is compared to three

previously known results:

1. The sphere-packing bound: The sphere-packing lower bound in [97, eq. 1.6]
provides an exponential lower bound on the error probability for fixed-size list-
decoding of block codes. The bound in Corollary 3.7 and the sphere-packing
bound exponentially coincide for all rates above the critical rate (where the

maximization of the random coding error exponent is achieved for 0 < p < 1).
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2. Asymptotic upper bound: Consider the case where the size of the de-
coded list grows exponentially with the blocklength, and denote the exponential
growth rate of the decoded list by [ (i.e., L = €™ for some [ > 0). The following
asymptotic upper bound is provided in [24, p. 196, ex. 27] for the case at hand:

1
limsup—In P, < —E. (R —1). (3.51)
n

n—o0

It is easily verified that the bound in Corollary 3.7 asymptotically coincides
with the bound in (3.51).

3. A variation on the Gallager bound: The following exponential upper bound
on the error probability is provided in [46, p. 538, ex. 5.20] for given block

length and list size (the same assumptions and notation as in Corollary 3.7 are

considered):
P, < ¢ "B (RL)
where
A —
E&RL)—WﬁgﬁX@%@ﬂx) Mﬂ. (3.52)

The error exponents in (3.49) and (3.52) differ in the following aspects:

(a) For a fixed list-size L, the error exponent in (3.49) depends on the block

length n while the error exponent in (3.52) does not.

(b) The maximization of p in (3.49) is carried over the interval [0, 1] while
in (3.52) it is [0, L]
(¢) The bound in (3.49) includes an explicit rate reduction term, which de-

pends on the list size.

(d) The derivation of the bound in (3.49) is based on a particularization of the
DS2 bound in Proposition 3.9 for fully-random block codes. On the other
hand, the derivation of the bound in (3.52) is based on a modification of

the random coding bound [45] for the case at hand.

The two bounds in (3.49) and (3.52) are compared in Figure 3.13. Transmission
of fully-random block codes over a BSC with a crossover of p = 0.11 are con-
sidered, where equiprobable ¢x(z) = %, xr € X, is assumed. The error exponent
E.(R,L) in (3.52) is plotted for a list size of L = 16 codewords. In addition,
the exponent E,(R — % In L) is provided for the same list size and block lengths
of 128, 256 and 1024 bits. It is observed that for low rates the bound in (3.52)
outperforms the bound in (3.49). For moderate rates, the bound in (3.49)
outperforms the bound in (3.52). The gap between the plotted exponents is
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Figure 3.13: A comparison between the upper bounds in Corollary 3.7 and [46, p.
538, ex. 5.20]. Transmission of a fully-random binary block codes (with independent
equiprobable selection of coded bits) over a BSC with a cross over probability of
p = 0.11 is assumed. The exponent term F,(R, L) in(3.52) is plotted for a list size
of L = 16 codewords. The exponent E,(R — +1In L) in (3.49) is plotted for the same
list-size and blocklengths of 128, 256 and 1024 bits.

negligible as the block length increases (even for a moderate block length of
1024 bits).

The following bound is provided for the case of binary linear block codes whose

transmission takes place over an MBIOS channel:

Corollary 3.8 Consider an (n, k) binary linear block code C whose transmission
takes place over an MBIOS channel. Then, the block error probability P, under
fixed-size list-decoding, satisfies

p S 6—nEr(R+7—ILln(aTC))) (353)

e

where

E(R) 2 max (Eo(p) - pR)

0<p<1
and R is the code rate (in nats per channel use), L is the list size, and Ey(p) and
a(C) are defined in (3.21) and (3.22), respectively.

Proof: According to Proposition 3.4, it is necessary to analyze only the con-

ditional error event assuming that the all-zero codeword is transmitted. Setting
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Go(y) =11, 9(y:) in (3.48), it follows that

(Zg p(y|0) )”Up)

yeY
p

LZK’I(ZQ y|0)> (Zg p(y|1)* (y\O)H> (3.54)

yey yey

where |C;| denotes the number of codewords whose Hamming distance is 7, 1 <7 < n.
The proof follows from (3.54) by setting A = 11— where g is as defined in (3.23) (see

similar derivation in [94, Section 4.4.1]). n

Remark 3.16 For the particular case of fully-random linear block codes, the bound

in (3.53) coincides with the bound in Corollary 3.7 for fully-random block codes.

Remark 3.17 The bound in Corollary 3.8 resembles to the SFB [100], and therefore

may be considered as a generalization of the SFB for the case at hand.

Remark 3.18 The bound in (3.54) can be generalized to non-binary linear block
codes using a similar derivation as in Chapter 2. Note, however, that in Chapter 2,
non-binary codes are studied under ML decoding and not list-decoding. Nevertheless,
the similarity of the bound in (3.48) to the upper bounds derived in Chapter 2 allows

to use the same arguments for the case at hand (see Appendix 3.1).

Corollary 3.9 Under the assumptions and notation in Corollary 3.3, the block error
probability probability P, under fixed-size list-decoding where L denotes the size of
the list, satisfies

P, < A(p)0) (% S P (Q‘)B<p>"-10<p>l) (355)

1<i<n

where A(p), B(p), and C(p) are defined in (3.29)—(3.31).

Proof: Setting s = $f- and G7'(y) = IT:-, 9(y;) where g is defined in (3.23), the

proof follows from Proposition 3.9 in the same way as the proof of Theorem 2.3. =

Remark 3.19 In the derivation of the bound in (3.53), a sum is upper bounded by
a product of the maximal summand with the number of summands. This operation
is avoided in the derivation of the bound in (3.55). Hence, the bound in Corollary 3.9
is tighter than the one in Corollary 3.8.



CHAPTER 3. BOUNDS FOR GENERALIZED DECODING 94

Remark 3.20 For the particular case of binary linear block codes, the symmetry con-
dition in (3.25) is not mandatory and the bound in Corollary 3.9 follows by replacing

the term P(1) () with the distance spectrum of the considered code (ensemble).

Example 3.11 (Error performance of an expurgated ensemble of binary
and regular LDPC codes under fixed-size list decoding) Consider the expur-
gation of Gallager’s ensemble of binary and regular (6,12) LDPC codes with a block
length of 2004 bits (see Example 3.3). Upper bounds on the block error probabil-
ity under fixed-size list-decoding are shown in Figures 3.14(a) and 3.14(b), assuming
that the transmission takes place over a BSC and a binary-input AWGN channel,
respectively. The upper bound in Corollary 3.9 is evaluated for list sizes of L = 1,
16, and 128 codewords. Note that the upper bound for L = 1 corresponds to ML
decoding. The bounds on the error probability show some marginal improvement by

increasing the considered list size from L =1 to 128.

Example 3.12 (Error performance of an expurgated ensemble of non-binary
and regular LDPC codes under fixed-size list decoding) Consider the expur-
gation of Gallager’s ensemble of regular (8,16) LDPC codes with octal alphabet and
a block length of 1008 symbols (see Example 3.5). Upper bounds on the block error
probability under fixed-size list decoding are shown in Figures 3.15(a) and 3.15(b),
assuming that the transmission takes place over an 8-ary discrete memoryless sym-
metric channel and an AWGN channel with 8-PSK modulation, respectively. The
bound in Corollary 3.9 is evaluated for list sizes of L = 1, 16, and 128 codewords.
similarly to the case of binary code ensembles, only marginal improvement in the

error performance is observed by increasing the value of L from 1 to 128.

3.6 Summary and Conclusions

This chapter considers performance bounds for several generalized decoding rules
over memoryless symmetric channels. Three types of generalized decoding rules are

considered:

1. The optimal generalized decoding rule in [41] with erasures and variable list

sizes.

2. The suboptimal likelihood-ratio (LR) decoding rule with erasures (see [9] and
41]).
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(b) Transmission over a binary-input AWGN channel

Figure 3.14: Upper bounds on the error probability for an expurgation of Gallager’s
ensemble of binary and regular (6,12) LDPC codes with a block length of 2004 bits
(see Example 3.3). A list decoder is assumed where the size of the list is set to L.
The upper bound in Corollary 3.9 is provided for some values of L. The bounds are
shown in plots (a) and (b), respectively, for the case where the transmission takes
place over a BSC and a binary-input AWGN channel.
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(b) Transmission over an AWGN channel with 8-PSK modulation

Figure 3.15: Upper bounds on the error probability for an expurgation of Gallager’s
ensemble of regular (8,16) LDPC codes with octal alphabet and a block length of
1008 symbols (see Example 3.5). A list decoder is considered where the size of the
list is set to L. The upper bound in Corollary 3.9 is provided in plots (a) and (b)
for several values of L, assuming that the transmission takes place over an 8-ary dis-
crete memoryless symmetric channel and an AWGN channel with 8-PSK modulation,
respectively.
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3. A fixed-size list decoding rule (see [36] and [117]) where the decoder outputs a
list which includes the L most probable codewords (where the value of L is set

a-priori).

The independence of the error performance on the transmitted codeword is proved in
Propositions 3.2-3.4 for the considered decoding rules.

Upper bounds on the decoding error probability are provided. These bounds are
suitable for the analysis of structured and random codes (or code ensembles) over
memoryless symmetric channels. Both binary and non-binary code ensembles are
studied in this chapter under generalized decoding rules. When binary codes are
considered, the bounds are based on the distance spectra of the codes, and when
non-binary ensembles are studied, the complete composition spectra are required
under the symmetry assumption in (3.25). For the case of LR decoding of binary
linear block codes, a derivation of a closed-form expression is provided via a similar
derivation to [26] which applies to ML decoding.

Several particular cases of the provided bounds are studied. The random coding
error exponents in [41] are reproduced. In addition, error exponents under the sub-
optimal LR decoding rule with erasures are also derived. These error exponents are
derived by applying the new bounds to fully random block codes. Next, a derivation
of the error exponents of fully random linear block codes under optimal and subop-
timal (LR) generalized decoding is provided. The resulting error exponents under
the suboptimal LR decoding rule are compared with a recent improvement in [9],
where the ensemble of binary fully random linear block codes over binary symmetric
channels (BSC) is studied. This comparison shows good match with the provided
error exponents with the results in [9]. In addition, it is shown that the error ex-
ponents for the fully random linear block codes under the suboptimal LR decoding
rule, coincide for low rates with the corresponding error exponents under the optimal
decoding rule. This is similar to an observation in [54], where the ensemble of fully
random block codes is considered. A lower bound on the error exponent under fixed-
size list-decoding is also studied as an application. This bound is compared to the
sphere-packing lower bound on the error probability [97], and two additional upper
bounds on the error probability, provided in [24] and [46].

Applications of the bounds for the performance analysis of structured code en-
sembles are further exemplified for some expurgated ensembles of (binary and non-
binary) regular low-density parity-check (LDPC) codes. The error performance under
some generalized decoding rules for these LDPC code ensembles is studied assuming
that the transmission takes place over memoryless symmetric channels. The applica-

tion of the provided bounds for the study of hybrid automatic-repeat request (ARQ)
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schemes is also demonstrated. The possibility of further investigating and optimizing
the trade-offs between undetected error and erasures is suggested for further study in

the context of linear block codes, based on the derived bounds.

Appendices

3.A Proof of Proposition 3.2

The following proof holds for memoryless symmetric channels with discrete-output
alphabets, and the generalization to continuous-output alphabets is direct.
Assuming that all the codewords are sent with equal probability, the decision

regions in (3.4) satisfy

A, @)y PO
Em’;ﬁm p(y‘xm’)

® ) [T p(wilwm,) T

B {y ‘ Zm’;ﬁm H?:l p(yl‘xm’,l) Z }

© ). [T p(T (yi, —m,i)|0) o7

©) {y. > ) 2 } (3.A.1)

m/#m H?:l p(T(ylv —Tm i

—
=

—
~

where (a) follows from (3.4) and the equal a-priori message probability assumption,
(b) holds since the channel is memoryless, and (c) follows from the symmetry of the
channel (see (2.1)). Let z = (z1,...,2,) be defined as

2 = Ty, —Tmi), 1<i<n (3.A.2)

where m is the index of the transmitted codeword. From Lemma 2.1, it follows that

y € A,, if and only if z € A,, where

" p(2i]0)
{ Zm’;ﬁm Hizl (T (2 Tm,i — T i)[0)

Using the linearity of the code, it follows that

n anlp(zl‘o) nT
A, = cy": = > .
{Z > o Ly (T (2, 21)[0) = }

Since the set A,, is independent of the index m, then

Ay =A; forall 1 <m < ¢~ (3.A.3)
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As a result, the conditional block error probability of the m-th message in (3.1)

satisfies

Pe|m = Z p(Z‘O)

z€AS,

23" pzl0)

zEA§

—

where (a) follows from (3.A.3). This concludes the proof of the message independence
property for the block error event.

We continue in proving the message independence property for the undetected
error event (or the expected number of incorrect codewords when list decoding is
considered). Assuming a memoryless symmetric channel, it follows from (2.1) and
(3.3) that

Priem Z Z (y[xm)

m/#£Fmy€eAN,

m

=> > HP(T(yh—ZEm,i”O) (3.A.4)

m/'#Fmy€eN,, i=1

where from (3.A.1)

[T 2T (i = )0) "
A, = : = d > e 5.
{y 5 e LI (T (i =2 )[0)

Let z be a vector defined as in (3.A.2), then from Lemma 2.1
p(T(yi, —xm/,i)|0) = p(T(zi, T — xm/,i|0), 1=1,...,n.

Hence, given that x,, is the transmitted codeword, then y € A,/ for some m’ # m if

and only if z € I';,, ,,» where

Hﬂ—l p(T(Z,', Tmi — T Z)|O) T
i=1 A ’ ’ > T\ 3.A.5
S oo L 20T s T — 0 J0) (3:4.5)

From (3.A.2), the conditional undetected error probability in (3.A.4) is rewritten in

P = Z (3.A.6)

m/'#Fmzel,,

Fm,m’ = {Z ey":
the form

Using the linearity of the code, then x,,; — 2, ; = (Z)Sm,z' — xm/,i) + (:L"mg,- — :zsmu,i) =

2y, + x1,,; for some indices [; and l; which correspond to non-zero codewords. Let



CHAPTER 3. BOUNDS FOR GENERALIZED DECODING 100

x £ x;, and X = x,,, then the conditional undetected error probability in (3.A.6) is

expressed equivalently in the form

Picjm ZZ

xeC zel(x
X0

where, based on (3.A.5),

[T o(T (2, 2:)[0) > T

P(x) = {zey": Dseg Iy p(T (a4 3)10)

This proves the independence property for the undetected error event, and it concludes

the proof of Proposition 3.2.

3.B Proof of Proposition 3.3

Similarly to Appendix 3.A, also the following proof considers memoryless symmetric
channels with discrete-output alphabets, where the generalization to continuous out-
put alphabets is direct. Let p be the transition probability function of the considered
channel, C be an (n, k) linear block code over an alphabet whose cardinality is ¢, and
T be a mapping as specified in Definition 2.1. It is assumed that all the codewords
of C are sent with equal probability. For an arbitrary set A C Y™ and a codeword
Xm € C, let

Z,.(A) 2 {z €V (T (21, mn)s T (220 Tma)s - s T (s T} € A}. (3.B.7)

In addition, we use the notation A“®(x,,) for the decision region AR in (3.6) of the
codeword x,,. Note that for the concerned decoding rule with 7" > 0, the decision

regions are disjoint. The following technical lemma is introduced:

Lemma 3.B.1 Let Z,, be the mapping defined in (3.B.7), and ALR be the decision
region in (3.6). Then,

Zo (ALY = A" (x — %), Vm,m' € {1,....¢"}. (3.B.8)

Proof: Let us choose z € Z,, (A%ﬁ”), and let y = (y1,...,y,) be defined via the
equality
vi =T (zi,xmy), i=1,...,n. (3.B.9)

From (3.6) and (3.B.7)
p(y[xm)

Z eTLT
p()"xm’z)
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where x,,» and X,y are the most probable codewords, in a descending order, for y as

a received vector. Using the symmetry of the channel, it follows from (2.1) that
p(y[%m) = p(2[Xm — Xom).

As a result, x,,, — x,, is the most probable codeword if z is the received vector
(otherwise, if there exists a codeword x # X, — x,, which is more probable, then
there exists a more probable codeword for y which is different from x,,/). The same

argument shows that x,,, — X, is the second most probable codeword for z, and

P(Z[Xn — Xim)

> 6nT.
p(Z|Xm’2 —Xp)

This verifies that z € A*?(x,,, — x,,,) which shows that Z,, (A}nlf”) C AM(x, — xp).
To show the opposite inclusion, which then yields that these two sets are equal, let
z € A"™(x,, — x,,,). This implies that the codeword x,,, — x,, is the most probable

codeword if z is the received vector, and
p(z[Xn — Xin) nT
p(zlxmy)

where x,,7 is the second most probable codeword for z. Again, using the symmetry
of the channel, for a vector y as in (3.B.9), it follows that x,, is the most probable

codeword for y, X,z + X, is the second most probable codeword for y, and

T
p<y|Xm’2’ + Xm)

As a result, z € Z, (AL}), which yields that A" (x,, — x,,) C Z,, (AE}). This
concludes the proof of (3.B.8). n

From (3.B.9), the conditional block error probability satisfies

Pom = Y, p(ylxm)

yZALR

DS (o)

Z2Z Zm (ALR)

m

= > p(z[0)

zgZ ALR(0)

—
N

—~
=

where (a) follows from (2.1) and (3.B.9), and (b) follows from (3.B.8). This proves the

message independence property for the conditional block error probability. Using the
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same arguments, the message independence property is established for the conditional

undetected error probability:

Pue\m: Z Z y‘Xm

m'Fm yeALR

- o)

mEM ge 2, (ALR)

= > > p(z[0)

m'#Fm ze AR (x, 1 —%m)
xel zeALR (x)

x#0

where the second equality follows from (3.B.9) and since the mapping 7T is bijective,
the third equality follows from (3.B.8), and the last equality follows from the linearity
of the code.

3.C Proof of Proposition 3.4

Considering ties as error events', the conditional block error probability for a list of

size L satisfies

P = > ply[xm) (3.C.10)

yeAk,

where

é{yeyn: IH{ma}is, stomi #m, p(Y‘XmZ)ZP(Y‘Xm>V1§i§L}
(3.C.11)
is the complementary of the decision region of x,,, € C under list decoding of fixed-size
L (here {m;}£ | is a sequence of distinct integers), i.e., if y € AL then the codeword
X, is not included in the list for a received vector y. Using the change of variables in
(3.B.9), it follows from (3.C.10) that for linear block codes whose transmission takes

place over memoryless symmetric channels

Pan= 3 p(zl0)

ZEZWL(A#L)

where Z,, (AL) is as defined in (3.B.7). The following lemma concludes the proof of
Proposition 3.4:

1Such a pessimistic assumption is reasonable, see also a similar assumption in [111, p. 59].
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Lemma 3.C.2 Let Z,, be a mapping defined in (3.B.7), and AL be the decoding
region of x,, € C under list decoding with a fixed size L. Then,

Z, (ML) = AT

for all 1 < m < ¢*, where AF is the complementary of the decision region of the

all-zero codeword x; = 0 under list decoding of size L.

Proof: Let us choose z € Z (AL). From (3.B.7), there exists y € AL where
Y; :T(zi,xm,i), 1= 1,...,71, <3C12)

and 7T is a specified in Definition 2.1. From (3.C.11), there exists a list of L distinct

codewords, {x,,,},, for which
p(¥|Xm;) > p(¥|xm), i=1,...,L. (3.C.13)
Using the symmetry of the channel, it follows that
p(z|Xm, —Xm) > p(2]0). (3.C.14)

This assures that z € AL, which shows that Z,, (AL) C A}
Next, in order to show the opposite inclusion, let z € AL. Then, there exists a list

of L non-zero codewords {xmi}le, m; # 1, satisfying
p(z[xm,) = p(2|0)

and therefore from the symmetry of the mapping 7 and the equality in (3.C.12), we
get
P(Y[Xm; +%Xm) 2 p(y[Xm)

It assures that z € Z,, (AL) which implies that A} C Z,, (AL). This two inclusions

complete the proof of the lemma. [ ]

3.D Proof of Proposition 3.5

Let A,, be the generalized decision region as defined in (3.4). For y ¢ A,,, it follows

that
> %) . (3.D.15)

m’'#m

1= enTe—nT S 6nT <
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Let s and p satisfy 0 < s < p < 1, and recall the following inequality (see [111,
p.197)):

>

D a; < (Z aj) (3.D.16)

% 7

which holds if a; > 0 and 0 < A < 1. Setting

p(y[m)’ p
it follows from (3.1), (3.D.15) and (3.D.16) that the conditional error probability of

the m-th message satisfies

FPojm < e’ Z (¥Ixm) ( Z £ Y|Xm')> (3.D.17)

a; =

YEAS, ’;ﬁm
s\ P
p(y|%m) \ 7
<™ > plylxm) (Z (7) ) :
vl oz \p(y )

Let ¢ (y) designate an arbitrary probability tilting measure (which may depend

on the transmitted codeword), then it follows that

P < €S0 (30 (y) ™ ply[0) ( 2 CM) )
< "“Zw (’“ Y) P p(y[xn)

Next, invoking Jensen’s inequality gives
PN
nT's m 1 PLY [ Xm/
P (S Bt 3 (27
/#m

This concludes the proof of (3.8) by setting

G (y)p(y[xm)
>y G (y)p(ylxm)

where GI'(y) is an arbitrary non-negative function.

Un(y) = (3.D.18)

An undetected error event occurs if the received vector is included in the decision
region of a codeword which differs from the transmitted codeword. Consequently, the

average undetected error event satisfies

— _Z S plylxm). (3.D.19)

m=1yeA,, m'#m
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Note that in the case where list decoding is considered (i.e., the decision regions are
not disjoint), the LHS of (3.D.19) is no longer a probability. However, for the latter
case this expression equals the expected number of incorrect codewords in the decoded
list. It follows from (3.D.19) that for 0 < s < 1, the undetected error probability

satisfies

Pue = % i > plylxm) (Zm’mp(y"{m’>)s (Zm/¢mp(y|xm,))l—s

=1 yEhm p(Y|Xm) p(Y|Xm)
< enT(s—l)% Z Zp(y\xm) ( Z %) (3.D.20)
m=1 y m/#m mn

where the last inequality holds since for y € A,, and 0 < s <1

1-s
p(y‘xm> > enT(l—s).
Zm’;ﬁm p(y|Xm')

The rest of the proof follows in a similar way to the derivation of (3.8) when comparing
the bound in (3.D.17) with (3.D.20).

3.E  Proof of Corollary 3.1

Consider the ensemble of fully random block codes of length n symbols where the
M = e™® codewords of a codebook are chosen independently at random according to
the probability distribution ¢gx on X™.

Let Dy ym (m, Gy, s, p) denote the functional Dg(m, Gy, s,p) in (3.10) where
the dependence on a specific codebook {x;}M, is expressed explicitly. Given a fixed
codeword x,, for the m-th message, the expectation over the other M — 1 codewords
on the right-hand side of (3.8) gives that for 0 < s <p <1

Z <H C_IX(Xz')) D{Xi}?i1 (m> G?» S, p)

(L \{xm} \iFEm
(a)

< <Z G?(y)p(ylxm)>
S S axtxn) X plylxn) G (B )

iy S p(ylxm)

p
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(ZGm Y|Xm)>
(qu Zp YI%m)GR(y)™ <((Y|X)>> (3.B.21)

Xm)

where (a) follows from (3.10) and by invoking Jensen’s inequality. Next, by substi-
tuting the non-negative function

Gn(y) 2 <Z ixtx) (10 ;>

n (3.E.21), one obtains that for 0 < s<p<landm=1,..., M

> <H q><<x:->> Dy, (m, Gy s, p)

{Xi}fvil \{xm } iFm

< M—l)”;p@lxm <Zq ) (2L )

(y[xm)
By averaging Dy (m, G, s, p) over the M codewords, we get that for every index
m(1<m< M)
M
5 (Ioxts)) Drcye, (20

{xib}L,  \i=l

= ZQX(Xm) Z (H QX(Xi)> D{xz}fil (ma GZ"US,P)

Xm {xi} L \{xm}  \iFm
P
p(y|x
15 Yt (Soste) (2220
Yy Xm m

= (M Z{(qu ply[x)'~ ) (qu p(y[x) ?>p}. (3.E.22)

Since the right-hand side of (3.E.22) does not depend on the index m, then this
bound also applies to the expectation of the quantity ﬁ Z 1 Dy, (m, G, s, p).
Therefore, there exists a block code for which the value of this quantlty is not larger

than the average over the considered ensemble, i.e.,

M
1 m
M > Dixyr, (m, G5, p)
m=1

< (M Z{(qu p(y|x)'~ ) (qu )p(y|x) i>p}. (3.5.23)
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From (3.8), (3.9) and (3.E.23), it follows that the above block code satisfies simulta-

neously
1 M
m=11 .
< ensT . M Zl D{XL}fvi1 (m, Gnm7 S, p)

< S (Smcossro) (Semcerer)

P
< "t Z { (Z ax (x) p(y|x)" 8) (Z gx (x)p(y|x') %) }
-n (Eo(s,p,qx)—pR—sT)

=€

and

° |

st (o) (o)

Yy X

_ e—n(Eo(sm,qx)—ﬂR—(s—l)T)

where the last two equalities follow from (3.14), and since the input distribution and

the channel are assumed to be memoryless, i.e.,

n

p(ylx) = Hp(yim)a gx (x) = H(JX(%)-

i=1

The proof of Corollary 3.1 is completed by optimizing the bounds over the parameters
pand s (where 0 < s < p < 1) and the input distribution gy. This gives the exponents
E; and Es in (3.13) for the upper bounds on P, and P,, respectively.

3.F Proof of Proposition 3.6
The bounds in Proposition 3.6 are derived from Proposition 3.5 as follows: setting
p(yx) = [ [ p(yil=:)
i=1

and

Gr(y) = H 9(y:)
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n (3.10), and relying on the useful rule for interchanging sum and product signs
>y Ilimy fyi) = TIii 22, f(vi), one gets from (3.8) the RHS of (3.15) as an up-
per bound on Fp. Since the considered block code is linear and the communication
channel is memoryless and symmetric, the bound in (3.15) follows from the message
independence property in Proposition 3.2. The derivation of the bound in (3.16)
relies on (3.9) where it is first proved that for a linear block code whose transmis-
sion takes place over a memoryless symmetric channel, the resulting expression for
Dg(m, G, s, p) is independent of m. To this end, let T be a mapping as defined in
Definition 2.1, then for all 1 <7 <n

DY 9w rp(ylrm) <M)p

m/#m yeY p(y|xm,z)
Z Z g(y 1__ :L“m,z')|0) (p(T(% ;_xmmxm’z ; mmz)) L
m/#£m yeY p( (y7 _xm,z>| )
_ZZQ p(2]0) <p(z|37l,i))”
140 z€Y p(z]0)

As a result, it follows that for a memoryless and symmetric channel

— ZDB m,G™, s,p) = D(g,s, p) (3.F.24)

where D(g, s, p) is introduced in (3.17). The proof of the upper bound on P, as given
in (3.16) is completed by substituting (3.F.24) in (3.16).

3.G Proof of Proposition 3.7

Proof of the upper bound on the conditional error probability
n (3.40)

Let ALR designate the decision region in (3.6), then the conditional error probability

is equal to

Pe|m = Z p<y|Xm)

yEARE
For y ¢ ALR. the decision rule in (3.6) implies that

Xm
p(Y‘ ) < enT
p(y[Xm,)
where x,,, is the second most probable codeword, and therefore

> ; yy‘|X:
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Let s > 0, then for y ¢ ALR

(3 ) -

and the conditional block error probability satisfies

Py < e"STZp(y|Xm ( Z Py > (3.G.25)

m;ém

The bound in (3.40) follows from (3.G.25), using the arguments following (3.D.17).

Proof of the upper bound on the conditional undetected error
probability in (3.41)
The conditional undetected error probability is given by
ue|m ZP |Xm
yeL

where
LE{y:3m #m, plylxm) > p(ylxm,)}

and X,,, is the second most probable codeword for p(y[x). Since p(y|xu,) > p(¥]Xm),
then

LC{y:Im #m, p(ylxmw) > e plylxm)}

and therefore

yeLl = Im #m, M-e‘”Zl
p(}’| m)
o p(y %)
m%:m (¥[%m)
= Vs>0, e"® Ly‘xm,) > 1
2 by

As a result, the conditional undetected block error probability satisfies, for all s > 0,
the following upper bound:

Poepm < 6_"STZp(y|xm ( Z ply )
y ’sﬁm

The rest of the proof of (3.41) is, again, similar to the derivation following (3.D.17).
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3.H Proof of Proposition 3.8

The derivation of the bounds in Proposition 3.8 is primarily identical to the analysis
in [26] and [94, Section 3.2.4], for which the reader is referred for a complete treatment
of the analysis under ML decoding. We assume a BPSK modulation over AWGN
channel with energy FE; per transmitted coded symbol, and a white Gaussian noise

with two-sided power spectral density of % Hence, the received vector y satisfies

y =9X+n (3.H.26)

where v 2 ,/QNEOS, x € C C {—1,+1}" is the transmitted codeword (with BPSK
modulation), and n is a normal random vector with independent coordinates (all

with zero mean and unit variance). Setting

maxXy % X
E(d) £ {y e yn: Ml PO o 1}'

p(y[xo)
where C; is the set of all codewords whose Hamming weight is d, and x is the all-zero
codeword, it follows from (3.6) and the union bound that the conditional decoding

error probability is upper bounded by

Pejo < Zn: Pr (Ee(d)) (3.H.27)
d=dmin

where d;, denotes the minimal Hamming distance of C. Consider the following

inequality on the probability of an error event:
Pr(E)<Pr(E,y e R)+Pr(y ¢ R) (3.H.28)

where E denotes an error event, y € )" is the received vector, and R C Y".
From (3.H.27) and (3.H.28), it follows that

Po< Y (Pr(Eud),y € R) +Pr(y ¢ R)). (3.H.29)

d=dmin

Using the union bound, we have

Pr(E,(d),y € R) < ZP( oy Tz1,ye7z)
x€Cyq y 0
(a) nT’
= Z Pr ((y,x> > (y,Xg) — o y € R) (3.H.30)

x€Cy

where equality (a) follows from (3.H.26), and (x,y) £ >_" | z;y; denotes the scalar
multiplication of the vectors x and y. Similarly to the derivation of bound in [26]

(under ML decoding), we choose

R2{y: |y —mxol” < nr?} (3.H.31)
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where 77 and r are arbitrary parameters which are subject to optimization. In addition,
define

Z £ <Y7X> - <y7X0>
W 2 |ly — nyxol|* — nr?

then it follows from (3.H.30) and (3.H.31), using the Chernoff bound that
Pr(E.(d), y €R) +Pr(y € R) < e |Cdl E[etZJF“W} + E[esW} (3.1.32)

forall t > 0, w <0, and s > 0. Evaluating the expectations in (3.H.32) and setting
= 2(1 — 2un), we have similarly to [26] and [94, Section 3.2.4]:

nT(1—run) o .
Pr(E.(d), y € R) +Pr(y ¢ R) <e ™ = = [Cale™™ (fu (v u, )" (fo (v,u.m))"
e (fi (v, 8,m)" (3.H.33)
where
6(17171)?2(1
A —2x
hily,am) = ——=
R e_'v2(1722an2) 1
fa(v,0,m) = ﬁ’ a < 5

Optimizing the term e™ on the right-hand side of (3.H.33), gives

S u S 1
Pr(E.(d).y € R) +Pr(y ¢ R) < 2(5) A5 B, 0<s< 2, w0 (3H3Y)

where

A é (fl (77 S, U))n
B2 = 0 (f (o m) 4 (fo (7, u, )

and hs designates the binary entropy function on base 2. Using the change of variables

where 0 < p < 1,0< <1, and £ > 0, the bound in (3.H.34) transforms to

Pr(E.(d), y € R) + Pr(y ¢ R) < 2"2(0)enB(E/Nosd/n5,0)+"55 (3.H.35)
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where

E(C76?/8?p?€)

:_prn((;)_gln(%)_1;P1n<i:g)+c<1—(1— )%—(11%?2)

The parameters p, § and £ are optimized in [26], [94] such that the error exponent
E(c, 6, 3, p, €) is maximized? (note that the bound for T = 0 coincides with the bound
which refers to ML decoding), setting the optimal parameters yields the first argument
n (3.46). The second term inside the minimization on the right-hand side of (3.46)

follows from a union bound on the error probability

Z Z ( (¥ [x0) "T21)

d= dmm xecd

where for every codeword x € Cy4

Pr (p(Y\X) T > 1) ) (V\/_

p(y[xo)

nT )
2vvd)
The derivation of the upper bound on the undetected error probability follows some

similar arguments, and is therefore omitted.

3.1 Proof of Proposition 3.9

The main ingredient for proving the DS2 bound on the block error probability under
ML decoding (and also the well known random-coding bound) is that for a received

vector y which is not included in the decision region A,, as given in (3.2), the following

1< (Z <M>A> . A p>0. (3.1.36)

oz, \p(y )

inequality holds:

When an error event under fixed-size (L) list decoding is considered, there exists L
distinct codewords, all different from the transmitted codeword, whose a-posterior
probability is larger than the one of the transmitted codeword. Hence, the sum on
the right-hand side of (3.1.36) is divided by L. Specifically for a received vector y

2It is possible to obtain the optimized p and ¢ when maximizing the entire exponent
E(e,0,8,p,&) + T7£ To this end, £ needs to be shifted by —% and the optimal p remains without
change. The parameter 3 is required to be numerically optimized over 0 < § < 1. Nevertheless, the
resulting bound gives only a marginal gain over the bound which maximizes F(c, d, 3, p, &) without
the addition of %
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that results in an error event, the following inequality is satisfied:

1< (% > (M)A> . Ap>0 (3.1.37)

Following the derivation of the DS2 bound in [94, p. 96] where the right-hand side
of (3.1.36) is replaced with (3.1.37) leads to the derivation of the bound in Proposi-
tion 3.9. This derivation is repeated for the sake of completeness. For an arbitrarily

chosen probability measure ¢ (y) it follows that:

P < Um0 ) ply[xn) (% 2 < (Y|Xm>)) )

v \P(Y[%im
R e Y Pyl \ MY
T ( @) g 3 (2
Py V1’
@MZ )7 (555 )

where the last inequality follows from Jensen’s inequality. Plugging ¢ (y) as in
(3.D.18) concludes the proof.



Chapter 4

Optimal Erasure and List Decoding

Schemes of Convolutional Codes

Chapter Overview

A modified Viterbi Algorithm (VA) with erasures and list-decoding is introduced.
This algorithm is shown to yield the optimal decoding rule of Forney with erasures
and variable list-size (see Definition 3.1). For the case of decoding with erasures, the
optimal algorithm is compared to the simple algorithm of Yamamoto and Itoh [120].
The comparison shows a remarkable similarity in simulated performance. The chap-

ter is based on the following paper:

E. Hof, I. Sason, and S. Shamai (Shitz), “‘Optimal generalized decoding of convolu-
tional codes,” Proceedings of the Tenth International Symposium on Communication
Theory and Applications, pp. 6-10, Ambleside, UK, July 2009.

This chapter is structured as follows: Section 4.1 proposes a modification to the
VA, and Section 4.2 presents some numerical results for the optimal decoding of

convolutional codes with erasures.

4.1 Optimal generalized decoding of convolutional

codes over memoryless channels

In this section, a modified VA is presented for optimal decoding of convolutional
codes with erasures. In addition, it is proved that this modification coincides with

the optimal decoding rule in (3.4).

114



CHAPTER 4. OPTIMAL ERASURE AND LIST DECODING 115

Assuming that all codewords are transmitted with equal a-priori probability, the
joint probabilities in (3.4) can be replaced with conditional probabilities, and the

decoding regions in (3.4) are given by:

— N, Pr(y[xm) NT
Am‘{y“’ Py } .

The standard VA provides the ML decision and its corresponding likelihood metric

for the case at hand. Consequently, it remains to evaluate the denominator in (4.1)

which is involved in the specification of the decision regions in [41].

Remark 4.1 Since

Pr(y,xm) _ Pr(y,xm)
Do YY) Pr(y) — Pr(y, xm)

the denominator of the LHS of the inequality in (3.4) can also be evaluated using the
forward part of the Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [7].

A convolutional code C with k inputs and n outputs for every time unit, and of
memory length m is considered. The information sequence u = (uy, ...ug), of length
kB symbols, is encoded (followed by a termination sequence) to form the codeword
X = (X1,...Xptm) of length n(B 4+ m) symbols. We assume a memoryless channel,
and denote the received sequence by y. Each encoding operation, where k new inputs
are introduced and n coded symbol outputs are transmitted at every time unit, is
considered as a single time step. Let the metric for each branch in the trellis graph
of C be

p(yelx) £ In(p(yelxi)), 1<t<B+m (4.2)

where y, is the vector of n received samples at the decoder for the time step ¢, and x;
is the vector of coded symbols which corresponds to the considered branch at time ¢.

In addition, we define the (cumulative) metric for each path in the trellis of C by
t
p(y'1x") £ ulyilxi)
i=1

where y' = (y1,...,y:) is the vector of nt received samples up to time step ¢, x' =
(x1,...,%;) is the vector of nt coded symbols of the considered path, and the sum is
taken over all the ¢ branches of this path. The set of nodes at a given time step ¢,
which correspond to the possible encoder states in this time step, is denoted by V(t).
For each node v in the trellis, the set of branches entering v is denoted by B,. The
originating node of a trellis branch b, is denoted by v, ! and the vector of output
coded symbols of b is denoted by x(b).
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A detailed description of the proposed algorithm is provided in Fig. 4.1. For the
sake of simplicity, the algorithm in Fig. 4.1 is provided for the particular case of
decoding a terminated convolutional code with erasures (7" > 0). Steps 1(a) and (b)
in Fig. 4.1 form the initialization actions for the standard VA. Starting from time
step t = m, there exists a single surviving path in the trellis for each state whose
cumulative metric is updated and stored. While proceeding along the trellis, steps
2(a)-2(d) in Fig. 4.1 are the familiar add-compare-select steps of the standard VA; for
each state, the surviving path metric is chosen according to the maximal accumulate
metric. Steps 1(c), 2(e) and 2(f) in Fig. 4.1 are the introduced modification. These
steps allow the recursive evaluation of the sum in the denominator of (4.1). After
this recursive evaluation along the trellis, the surviving path is selected, and the
information bits are reconstructed according to the generalized decision rule in (4.1);
else, an erasure is declared.

The following theorem assures that the suggested algorithm coincides with For-

ney’s generalized decoding rule, as given in Definition 3.1:

Theorem 4.1 Consider the decoding of a terminated convolutional code using the
algorithm in Fig. 4.1. Assuming that x,, is the codeword which corresponds to the

surviving path, then the generalized metric ug satisfies:

o = Y Pr(y|xm).
m/#m
Proof: Let K(v) denote the set of all possible paths entering a node v in the
trellis graph of C, except for the surviving path for v. We prove by induction that

the generalized metric pug(v) evaluated at v € V(t) satisfies

o) = 37 Pr(y'}el) (43)
keK(v)

where y' is the received vector up to time ¢ (included), and x% is the vector of the
first nt symbols of the k-th codeword. First, we check that (4.3) follows for t = m
where each state v € V(m) has a single entering path. Hence, the sum in (4.3) is
void (i.e., K(v) = @) which coincides with the setting pug(v) = —oo for all v € V(m)
(step 1(c) in Fig. 4.1). Assume by induction that (4.3) holds for t = 7 — 1 > m,
and it is required to prove that (4.3) also holds for the next time step t = 7. Let
Ks(v) € K(v) denote all the paths in K(v) entering v via the same branch as the
survivor. For t = 7, consider the temporary result after step 2(e) in Fig 4.1, and

assume that the algorithm is currently handling the state v € V(7). Following the
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1. For each state v € V(m):

(a) Set the single path entering v as the survivor s(v).
(b) Evaluate the surviving entering path metric pu(v).

(c¢) Set the generalized metric pug(v) = —oo.
2. Tterations over m + 1 <t < L 4+ m. For each state v € V(¢t) do:

(a) Evaluate for each entering branch b € B(v):
py = fip + pu(v; )

survivor at the source node v, L of b.

(b) Find the entering branch with the maximal path metric:

b* = arg max .
beB(v

B(v)

(c) Set an updated survivor: s(v) = (s(v;.'), x(b*)).
(d) Set an updated survivor path metric: p(v) = pp-.

(e) Evaluate a temporary generalized metric:

pa(v) = pa(vy') + i

of the survivor path.

i. Evaluate

branch b.

ii. Update the generalized metric:

Else, return an erasure.

where fi; is the branch metric of b, and p(v, 1) is the path metric of the

where g (vl;l) is the generalized metric evaluated at the previous node
vl;} of the survivor path, and fip+ is the branch metric of the last branch

(f) For each of the rest of the entering branches b € B(v) \ {v*} do:

= ,L]b—l-max(,u(;(vb_l),,u(vb_l))—l—ln (H—eXP(— |#G(Ub_1) — i

where fi;, is the branch metric of b, ,U(;(vb_l) and ,u(vb_l) are the
generalized and standard path metrics at the initial node v, L of the

() = max(u(v). ¢) + (1 +exp(~ na(v) — () ).

3. If u— pg > n(B + m)T, return the survivor in the single node in V(B + m).

Figure 4.1: Modified VA for optimal generalized decoding (with erasures) of termi-

nated convolutional codes.
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induction assumption, the temporary value of the generalized metric ug(v) satisfies

eha(v) — chpx . eMG(v,;kl)

Lo 3 Py )
kEIC(U;*l)

2N PrlyIg) (4.4)
kels(v)

where y* is the received vector up to time step ¢, x} is vector of the first nt symbols of
the codeword corresponding to a path k in the trellis graph, b* is the entering branch
of the maximizing path metric in step 2(b) of the algorithm, vb_*l is the source node of
b*. Equality (a) follows by the induction assumption for ¢ = 7 — 1, and equality (b)
follows from the memoryless property of the channel and the definition of the branch

metric in (4.2).
Next, let b be a branch which is handled by the algorithm in step 2(f.i), and denote
by KCp(v) C K(v) the set of all the paths in (v) entering v via the branch b. After

step 2(f.i) terminates, the variable { satisfies:

¢ @ ua(, Nt 4 onlv, i

(b) TloT
= Y Pr(yxj) (4.5)
kele(v)
where y” forms the received vector up to time step 7, and xj, forms the sequence of the
first nT symbols of the codeword corresponding to a path & in the trellis, equality (a)

follows from the equality
In(e® + e) = max(a,b) + In (1+ e_‘“_b‘) (4.6)

and equality (b) follows from the induction assumption, using the same arguments
leading to (4.4). Finally, from (4.4)-(4.6), the update in step 2(f.ii) guarantees that
(4.3) follows for t = 7. Hence, by induction (4.3) follows for all ¢ > m. n

Remark 4.2 The complexity of the proposed algorithm is linear in the block length
B, and is exponential in the constraint length m of the code. This is the same

complexity characteristics as in the case of the standard VA.

Remark 4.3 (On generalized decoding with variable-size list) Consider the
problem of generalized decoding with a variable list-size according to the optimal
decoding rule in (3.4) (with 7" < 0). According to the random coding analysis in

[41] for low rates, the decoded list size is small (it typically includes one codeword);
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however, for higher code rates, the decoded list is likely to increase exponentially with
the block length. Consequently, when practical decoding is of interest, some fixed
limit on the decoded list is set. The following two options are suggested: the first, is
to apply the (parallel) list VA as in [95] with the evaluation of the generalized metric
as applied in the algorithm stated in Fig. 4.1. At the final step, only the survivors
satisfying the condition in step 3, are left in the decoded list. Aslong as the size of the
decoded list of the optimal decoding rule in Definition 3.1 is below the predetermined
size-limit, Theorem 4.1 assures that the suggested modification coincides with the
optimal decoding rule in [41]. The second option is to apply the evaluation of the
generalized metrics in a serial implementation of the list VA (see, e.g., [70], [95], [81]).
The serial implementation of the list VA iteratively produces a sequence of probable
codewords where each iteration produces the next most probable path in the trellis
graph of the code. After each iteration, the generalized metric of the decoded path is
checked to satisfy the condition in step 3 of the algorithm, and the iterations stop if
the condition fails. This scheme iteratively produces the list of codewords according
to the optimal decoding rule in Definition 3.1. Since an exponentially amount of
iterations is not practical, the algorithm needs to be stopped after a predetermined
upper limit on the number of possible iterations. The resulting decoded list equals
to the list under the optimal decoding rule only if the size of the optimal list is not

larger than the predetermined limit.

Remark 4.4 (On knowledge of channel state information) Let x and y be
vectors of size N over the channel input and output alphabets, respectively. The

path metric
p(yx) £ In(p(y[x)).

may be replaced with an erroneous metric p/ which does not rely on the complete
channel state information. Consequently, for some applications, the implementation
of the VA does not require complete channel state information at the receiver. Take

for example a BSC with a crossover probability p. For this case:
) = duly 0t (T2) + NGt~ )
where dy(y,x) is the Hamming distance between x and y. Another example is the

AWGN channel with energy F; per transmitted symbol and a two-sided density noise

power spectrum Ny /2, where we have:

2F, B, . N, E,
e I N) — 2 .
ulylx) N, Y ¥ (NO ¥y +N) -3 an0>
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A weakness of the proposed algorithm is that its proof of optimality according to
Theorem 4.1 does not necessarily follow if the metric p is replaced with an erroneous
metric. The implication of this observation is that the proposed algorithm may re-
quire complete channel state information to guarantee its optimality according to
Theorem 4.1.

4.2 Examples

The performance of the (2,1,4) convolutional code with generator polynomials g; (D) =
14+ D+ D3+ D* and ¢g5(D) = 1+ D3+ D* is simulated under some generalized decod-
ing algorithms with erasures. This code is used in the GSM Phase 2 system for the
full-rate data traffic channel [1]. The results are provided for information sequence
of 240 bits, with additional 4 bits of termination sequence (these bits are called “tail
bits” in [1] where the same parameters are used). It is assumed that the transmis-
sion takes place over an AWGN channel with a binary phase shift keying (BPSK)
modulation. Exact likelihood metrics are used in this simulation assuming complete
channel state information at the decoder, i.e., the metric used in the simulation is
w(ylx) = Qﬁ—zyTx. Denote T* £ n(B 4+ m)T, then the threshold e in (3.4) and

7" In the following simulated results, the error performance for

(3.6), is equal to e
different values of the threshold parameter T™ are plotted. Note however, that when
T is fixed with the applied metric, it follows that a different receiver is simulated for
each SNR value. In Figure 4.2(a), the undetected bit error rates under the optimal
generalized decoding algorithm in Figure 4.1 (based on the optimal decoding rule of
Forney [41]), with 7% = 1 and 7, are provided. In addition, the bit error rate of
the standard VA and the undetected bit error rate of the LR decoding in (3.6) with
T* = 31 and 42, and under the decoding algorithm of Yamamoto-Itho (this algorithm
uses a threshold A (see [120, Section II}), the same 7™ values of the optimal algorithm
are used for A.) (YI) [120] , are provided for comparison. The corresponding block
erasure rates for the simulated algorithms are provided in Figure 4.2(b). It is evi-
dent that the estimated performance of the optimal algorithm outperforms the one
of the LR decoding rule. The undetected error performance of the optimal algorithm
with 7™ = 1, resembles the undetected bit error rates of the LR decoding rule with
T* = 31 and 42. However, the corresponding erasure rates under optimal decoding
clearly outperform the suboptimal erasure rates under the LR decoding rule. More-
over, the optimal algorithm with 7% = 7, which results in similar erasure rates as
the LR decoding rule with 7" = 31, whereas its undetected bit error rates clearly

outperforms the undetected bit error rates under the LR decoding rule. Comparing
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the simulated performance of the optimal algorithm with the YI decoding algorithm
shows a remarkable improvement as compared to the LR decoding rule, and a good
match with the simulated performance under the optimal decoding rule. For high
SNR values, both decoding algorithms show the almost the same performance. For
low SNR values, the gain of the optimal algorithm as compared with the YT algorithm
is marginal. Take for example the results for 7% = 7 where both decoding algorithms
have almost the same erasure rates, while only a slight improvement of the undetected

bit error rate is observed for the optimal algorithm (in low SNR values).

4.3 Summary and Conclusions

An optimal algorithm is provided based on the generalized decision regions of For-
ney [41]. This algorithm allows for a practical generalized decoding of convolutional
codes with erasures and variable list-sizes. The simulated performance of the pro-
posed algorithm is compared with two suboptimal erasure decoding algorithms: the
LR decoding rule in (3.6), and an algorithm by Yamamoto and Itoh (YI) [120]. The
difference between the simulated performance of the optimal decoding algorithm and
the YI algorithm is negligible. Moreover, the implementation of the YT algorithm is
simpler and it yields a remarkable reduction in decoding complexity. The performance

of the LR decoding rule, on the other hand, are substantially inferior.
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Figure 4.2: Error performance of a (2,1,4) convolutional code under generalized de-
coding with erasures. Undetected bit error rates, and erasure rates, are provided in
plots (a) and (b), respectively, under the optimal decoding in Figure 4.1, the LR
decoding rule in (3.6), and for the Yamamoto-Itoh (YI) decoding algorithm [120].
The bit error rate under ML decoding (using the standard VA) is also provided. The
results are provided for information sequence of 240 bits, with additional 4 bits of
termination sequence
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Chapter 5

Secrecy-Achieving Polar-Coding

Chapter Overview

A secrecy polar scheme is provided in this chapter for the two-user wire-tap channel
model. A secret message needs to be transmitted reliably to a legitimate user. At the
same time, this message must be kept secret from the eavesdropper. It is assumed
that the marginal channel to the eavesdropper is physically degraded with respect
to the marginal channel to the legitimate user. The proposed secrecy polar scheme
for the degraded case is based on transmitting random bits on the ‘good bits’ of the
degraded eavesdropper channel. These random bits are independent of the secret
message. The ‘good bits’ for the degraded eavesdropper channel are also ‘good’ for
the legitimate user. Consequently, these random bits can be decoded reliably at the
legitimate user. The rest of the ‘good’ bits for the legitimate user are dedicated for
the secret message.

Transmitting random bits on the ‘good bits’ of the eavesdropper, all the possible
information rates that can be detected by the eavesdropper are exhausted. Otherwise,
the standard channel capacity could have been beaten. Thus the ‘good bits’ associ-
ated with the secret message for the legitimate channel, must be perfectly secret (at
least in the weak sense). Note that this result is satisfied immaterial of whether the
eavesdropper adheres to successive decoding or to optimal decoding (as otherwise, its

capacity could have been beaten). The chapter is based on the following paper:

E. Hof and S. Shamai (Shitz), “Secrecy-Achieving Polar-Coding,” submitted to the
IEEFE Trans. on Information Theory, May 2010. This work is presented in part in the
2010 IEEE Information Theory Workshop (ITW 2010), Dublin, Irland, September
2010 (Invited talk).
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Additional independent works on this subject are provided in [3] [66] [75].

This chapter is structured as follows: In Section 6.1 preliminary introduction
is provided. In Section 6.1.1 the wire-tap communication model is introduced in
addition to some basic definitions and results in information-theoretic security. Polar
codes are introduced in Section 5.1.2. The polar secrecy scheme is detailed and
studied in Section 6.3. A conjecture on possible polarization properties is stated in
Section 5.3, along with a resulting adaptation of the polar secrecy scheme for non-
degraded wiretap channels. A list of possible further generalizations is provided in
Section 5.4.

5.1 Preliminaries

5.1.1 The Wire-Tap Communication Model

We consider the communication model in Figure 5.1. A coded system is presented
which transmits a confidential message U to a legitimate user. The message U is
chosen uniformly from a set of size M. Next, the message is encoded to a codeword
X with a blocklength n over an alphabet X'. The resulting code-rate is R = % log M.
The codeword X is transmitted over a DMC P, with an input alphabet X', and output
alphabets ) and Z. Let P(y,z|x) denote the probability of receiving the vectors
y € V", and z € Z", at the legitimate user and the eavesdropper, respectively, given
that a codeword x € X™ is transmitted. Based on the assumption that the channel

is memoryless, it follows that
P(y,z|x) = H (Y 2| vx)

where (with some abuse of notation) P(y, z|x) denotes the probability of receiving the
symbols y € Y and z € Z, at the legitimate user and the eavesdropper, respectively,
given that the symbol x € X is transmitted. Moreover, let G(y|z) and Q(z|z) denote
the marginal probabilities for receiving the symbols y € Y and z € Z, at the legitimate
user and the eavesdropper, respectively, given that the symbol z € X is transmitted.
Both G(y|z) and Q(z|x) are transition probability laws of DMCs, called the marginal
channels of the legitimate user and the eavesdropper, respectively. In addition, the
probability to receive the symbol z € Z at the eavesdropper, given that the symbol
y € Y is received at the legitimate user is denoted by D(z|y).

The channel output vectors Y and Z, both of length n, are received by the le-

gitimate user and the eavesdropper, respectively. The legitimate user decodes the
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Legitimate user

Y A
Message x| Channel » Decoder —» [/
U —| Encoder —»

Py z1x

HZ

Eavesdropper

Figure 5.1: A wire-tap communication model.

received vector Y resulting in the decoded message U. The objectives of the con-
sidered coding system is to obtain both secure and reliable communication. These
objectives are to be accomplished simultaneously using a single codebook C,. The
reliability of the system is measured via the average error probability P,(C,) of the

decoded message
M
1 .
Pe(cn) - M_ mE:1 Pr (U 7& m| U = m) .

Note that the error probability depends on the blocklength of the coded message.

The level of security is measured by the equivocation rate

1
R(C) 2 TH(U|Z) (5.1
where H(U|Z) denotes the conditional entropy of the transmitted message U, given

the received vector Z at the eavesdropper.

Definition 5.1 (Achievable rate-equivocation pair) A rate-equivocation pair
(R, R.) is achievable if there exists a code sequence {C,} of block length n and rate
R such that

lim P.(C,) =0

R, < lim R.(C,).

n—o0

Remark 5.1 (On strong and weak notions of secrecy) The current discussion
considers normalized entropies to measure the level of security (see the definition of
equivocation rate in (5.1)). Therefore, the achieved secrecy notion is referred to as
weak secrecy. The strong notion of secrecy considers the unnormalized mutual infor-
mation between the confidential message and the received vector at the eavesdropper
receiver. Strong secrecy guarantees secrecy in the weak sense while the opposite

direction does not follow.
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Definition 5.2 (Secrecy capacity) The secrecy capacity Cj is the supremum of all

the rates R, such that the pair (R, R) is an achievable rate-equivocation pair.

Theorem 5.1 (The secrecy capacity of the wire-tap channel [69]) The secrecy

capacity Cy of the wire-tap channel satisfies:

Co= max (I(U;Y)—1(U;Z2))

Pyx Py z x

where U is an auxiliary random variable over the alphabet U, satisfying
1. Markov relationship: U — X — (Y, Z) is a Markov chain.

2. Bounded cardinality: |U| < |X|+ 1.
Binary-input symmetric wire-tap channels are considered in this chapter.

Definition 5.3 (Symmetric binary input channels) A DMC with a transition
probability p, binary-input alphabet X, and an output alphabet ) is said to be

symmetric if there exists a permutation 7 over )’ such that
1. The inverse permutation 7! is equal to m, i.e.,
T (y) = 7(y)
forall y € V.
2. The transition probability p satisfies
p(y[0) = p(7(y)[1)
for all y € V.

Definition 5.4 (Symmetric binary-input wire-tap channels) A binary input dis-
crete memoryless wire-tap channel is symmetric if both of its marginal channels are

symmetric.
The particular case of physically degraded channels is studied in this chapter.

Definition 5.5 (Physically degraded channels) Let P be a wire-tap channel with
an input alphabet X and output alphabets ) and Z, at the legitimate and eaves-
dropper, respectively. Then, P is said to be physically degraded if

Py, z[z) = G(ylz) D(zly) (5-2)

foralz e X, ye Y, and z € Z.
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The following Theorem characterizes the secrecy capacity of a binary-input, mem-

oryless, symmetric and degraded wire-tap channel:

Theorem 5.2 ([69]) Let P be a binary-input, memoryless, symmetric, and de-
graded wire-tap channel. Denote by Gy|x and @z x the marginal channels to the
legitimate user and the eavesdropper, respectively. Then, the secrecy capacity Cj is
given by

Cs(P) = C(Gyx) — C(Qzx)

where C(Gy|x) and C(Qz|x) are the channel capacities of the marginal channel Gy |y

and @z x, respectively.

Remark 5.2 (On the entire rate-equivocation region) Theorem 5.2 is a par-
ticular case of the rate-equivocation region of less-noisy channels (which is on its own
a particular case of the rate-equivocation region of the wire-tap channel). Under the
notation in Theorem 5.1, if I(U;Y) > I(U; Z) for every U satisfying the Markov
relationship in Theorem 5.1, then the channel to the legitimate receiver is said to be
less noisy than the eavesdropper (the degradation assumption in (5.2) satisfies the
less noisy condition). It can be shown for the case of less-noisy wire-tap channels,

that the rate-equivocation region is given by

0<R<I(X:Y)
U S(®R): 0<R.<R
Px Py z|x RCSI(X,Y)_[(Xaz)

For further details and proof see [69] and references therein. In the particular case
of binary-input, memoryless symmetric and degraded wire-tap channels as in Theo-

rem 5.2, the rate-equivocation region is therefore given by

0< R<C(Gyx)
(RR): 0<R <R | (5.3)
R. < C(Gy|x) — C(Qzx)

5.1.2 Polar Codes

This preliminary section offers a short summary of the basic definitions and results
in [4], [6], that are essential to the presentation of the results in Section 6.3.

Let p be a transition probability function of a DMC with a binary input-alphabet
X = {0,1} and an output alphabet ). The operation of the channel on vectors is
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also denoted by p, that is for x = (z,...,z,) € X", and y = (y1,...,¥n) € V", the
block transition probability is given by

n

p(yIx) = [ [ p(wla).
1=1
Polar codes are defined in [4] using the following recursive construction. At the
first step, two independent copies of p are combined to form a new channel py over
an input alphabet X? and output alphabet )?. The transition probability function

of the combined channel is given by

P2(Y1, y2|wi, w2) = p(y1|wr + wa)p(y2|w2) (5.4)

for all y1,y2 € )V, and wy, ws € X', where the addition operation is carried modulo 2.
At the i-th step of the construction, the transition probability function p,, for an
integral power of 2, n = 2, is defined for a combined channel with an input alphabet
X" and an output alphabet )™. The recursive definition of p, is based on two
independent copies of the channel p» defined at the previous step (1t —1). The
channel p» has an input alphabet & 2 and an output alphabet V2. The construction

of the channel p,, includes the following steps:

1. An input vector w = (wy,...,w,) € X" is first transformed to a vector s =
(81,...,5n) € X™ where

Sok—1 = Wag—1 + Wag

and
n
Sok = Wak, 1§/€§§
where the addition is carried modulo 2.

2. The vector s is transformed into a vector v € X™ where

V = (81,83, ..., 801,52, 84, -, Sn)-

Le., the first 3 elements of v, vy,..., vz, equal the elements in s with odd
3
s with even indices. This operation is called a reverse shuffle operation and can

indices, and the other 3 elements of v, vn_y,...,v,, are equal the elements of

be described by the linear transformation
v =sR,

where R, is an n X n matrix, called the reverse shuffle operator.
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3. pn(y|w) is given by

pn(Y|W) = p% (ylayQa s 7y%|'U1>'U27 s aU%)

"Dz (y%-i-b Y242, - ayn|vg+1> U242y -. avn) . (55)

The recursive channel-synthesizing operation of p,, is referred to as channel combining,
and the channel p, is referred to as the combined channel. Note that all block lengths
n are assumed to be integral powers of 2.

The recursive construction of p, can be equivalently defined by using a linear

(1)

and define the following recursive construction of the n x n matrices G,,:

encoding operation. Let

Gl :Il
Gon=I:®F)R, (I,®Gz) (5.6)

where [; is the [ x [ identity matrix and ® denotes the Kronecker product for matrices.

The matrix G, is refereed to as the polar generator matrix of size n.

Proposition 5.1 ([4]) Let p be a DMC, and let p,, be the combined channel with a
block length n. Then,

p(yIw) = p(y|wG,) (5.7)

for ally € Y™ and w € X", where p, is the combined channel in (5.5) and G,, is the

n x n matrix defined in (5.6).

Denote by [n] £ {1,2,...,n}, and let A, C [n]. In addition, denote by AS the
complementary set of A, that is AS = [n] \ A,. Given a set A, a class of coset
codes with a common code-rate +|A,| are formed. Over the indices specified by A,,
the components of the input vector w are set according to the information bit vector.
The rest of the bits of w are predetermined and fixed according to the particular
code design. By setting both the set A,, and the components of w specified by A¢ .
a particular coset code is defined. This code can be shown to be a block coset code.
The set A, is referred as the information set. Polar codes are constructed by a
specific choice of the information set A,,. Moreover, the choice of the information set
is tailored to the specific channel over which the communication takes place.

A coset code is defined by using a linear block code and a coset vector. Let G

be a generator matrix for a binary (n, k) linear block code with block length n and
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dimension k. In addition, let ¢ € X™ be a binary vector. Then, the coset block code
C(G, c) is defined by

C(G,c) & {x: x=uG+c, ue x*}. (5.8)

Denote by G, (A,) the |A,| x n sub-matrix of G, defined by the rows of G,, whose
indices are in A,,. Similarly, the matrix G, (AS) denotes the |AS| x n sub-matrix of
G, formed by the remaining rows of GG,,. For each choice of A,, and an arbitrary n —k

binary vector b € X" * k = |A,|, a coset code C is defined according to
C =C(Gn (An),bG, (A)). (5.9)

This coset coding construction coincides with the recursive construction in (5.6)
and (5.7). Specifically, by proper choice of w, x = wG,,. To see this, plug the
information vector u in the information indices, specified by A,,, of the input vector
w to the recursive construction. In addition, plug the vector b in the rest of the
components of w .

Channel splitting is another important operation that is introduced in [4] for polar
coding. The split channels {p,(f)};;l, with a binary input alphabet X and output
alphabets " x X!~ 1 <[ < n, are defined according to:

S pa(lw.z,0)) (5.10)

cexn—i

Py

(y7w|x) = 21’L—1
where y € V", w € X! and # € X. The channel synthesizing operation in (5.10)
is referred to as channel splitting operation. The Bhattacharyya parameter of pg) is
denoted by:

B2 S S oy, wlopply, wib). (5.11)

YEVT wexl-1

The construction of the sequence of sets of split channels {pg)(y,w\x)}l":l, n = 2,

i € N, in (5.10) can be described using the following alternative recursion:

Proposition 5.2 ([4]) Foralli > 0,1 <1 <2

- I ¢ !
pgﬂl) ((y(l)’ y(2))> W|w1) = Z ipéi) (y(1)> g(W) |w1 + w)péi) (y(2)> 6(W) |w) (5'12)
weX

1 1 g !
P (v, y?), (w, wy)|ws) =§p§3 (y D, g(w)|wy +ws)pl) (y?, e(w)|wy)  (5.13)

where y, y® € V¥ w = (wy,..., wy_s) € X%72 wy,wy € X, the addition oper-
ation is carried modulo 2 and g = (g1,...,g;-1) = g(w) is a vector in X'~ defined
according to

gj = Woj_1+wy, 1<j<1—1 (5.14)
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and

e(wW) = (w2, Wy, . .., Wa—2) (5.15)

is the vector in X'~! comprises from the components of x with even indices.

The importance of channel splitting is in its role in the successive cancellation
decoding procedure that is provided in [4]. The error performance analysis of this

decoding procedure relies on the following two results:

Theorem 5.3 ([6]) Let p be a binary-input symmetric DMC with capacity C(p),
and fix an arbitrary rate R < C(p) and a positive constant § < 1. Then, there exists
a sequence of information sets A, C [n|, where n = 2°, i € N, such that for large

enough blocklengths n the following properties are satisfied:

1. Rate:
|A.| > nR.

2. Performance: The Bhattacharyya parameters in (5.11) satisfy
B(pY) <27
for every | € A,.

Proposition 5.3 ([4]) Assume that the vector w = (wy,...,w,) € X™ is encoded
via the considered recursive construction in (5.7), and is transmitted over a memory-
less and symmetric DMC channel p with a binary-input alphabet X and an output
alphabet ). Define the event

&(p) £ {pV(y, w"Dlwr) < p@(y, w!' Vlw, + 1)} (5.16)
where y € V" is the received vector, w!=Y = (wy,...,w;,_;) is the vector comprises

of the first [ — 1 bits of w, pg) is the split channel in (5.10) and the addition is carried

modulo 2. Then, the event & is independent of the actual input vector w and

Pr(&(p)) < B(p)

where B (pg)) is the Bhattacharyya parameter in (5.11).
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5.2 The Proposed Scheme

5.2.1 Polar Coding for Degraded Wire-Tap Channels

Coset Block Codes

A polar coding scheme is defined for the wire-tap channel. The proposed scheme is
defined using the notion of coset block codes, based on the polar generator matrix
G, introduced in Section 5.1.2. For a given block length n = 2%, i € N, let A,, be an
arbitrary subset of [n] of size k. In addition, let AV, be an additional arbitrary subset
of AS, of size k*, and let b,, € X" *~*" be a length n — k — k* binary vector. Denote

by B, the set of remaining indices in A, that is
B, 2 A\ N, (5.17)

The sets A,, B,,, and N,,, the polar generator matrix G,, and the vector b,, are all
known to both the legitimate user and the eavesdropper.

Let u € X* be a confidential information bit vector that needs to be transmitted
to the legitimate user. The operation of the proposed secrecy scheme is described as

follows:
1. A binary vector b* € X*" is chosen uniformly at random.

2. The coset block code C; is chosen according to

n

C: = C(Gr(An), bnGo(By) + bEGa(N;)). (5.18)

3. The information vector u is encoded into a codeword x using the coset block
code C;. That is,

x = uG,(A,) + b,G,.(B,) + b.G,(N,) (5.19)
and it is transmitted over the wire-tap channel.

As the complexity of constructing a random vector can be assumed to be O(n),
then the encoding complexity of the proposed scheme equals the encoding complexity
of the single-user polar encoding in [4], which is O(nlogn).

For given sets A,, and V,,, and a vector b,,, the resulting coding scheme is denoted
by C,,(An, Ny, by). Since symmetric channels are considered, the performance of the
provided scheme is shown in the following to be independent of the actual choice of

b,. Consequently, the suggested coding scheme is denoted by C,(A,, N,).
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Recursive Polar Construction

An equivalent recursive construction of the proposed scheme is provided. Similarly
to the single-user construction in (5.4), the first step of the recursive construction is
the composition of the wiretap channel P, with an input alphabet from X2 and an
output alphabet from )? x 22

Ps(y1, Y2, 21, 22w, wa) = P(y1, 21 (w1 + wa) P(y2, 22|ws) (5.20)

where (y1,y2) € V?, (21, 22) € 22, (w1, wy) € X?, and the addition is carried modulo-
2.

The continuation of the recursive construction follows in a similar manner to
the recursion in Section 5.1.2; The transition probability function P, for a channel
with an input alphabet X" and an output alphabet V" x Z™ is constructed using
two independent copies of a channel Pz with an input alphabet & 7 and an output
alphabet J2 x Z2. Note that as in Section 5.1.2, all block lengths (n) are integral
powers of 2. The first part of the recursive step includes the evaluation of the vectors
s,v € X" This part is identical to the construction as described in Section 5.1.2

(steps 1 and 2). Finally, the transition probability function P,(y|x) is given by

Pn(y,Z|X) :Pg ((y1>y2a . >y%)a (217227 . 'aZ%)|(U1>U2a s 72}%))

' Pg ((y%-i-la y%+27 s 7yn)7 (Z%-i-l? Z%+2a SRR Zn)|(vg+la U%-{-Qa s >'Un)) .
(5.21)

The channel P, in (5.21) is the combined wire-tap channel.
As in the case of standard polar coding for the single-user model, the recursive con-
struction can be shown to be equivalent to a linear encoding with the polar generator

matrix G,:

Proposition 5.4 Let P be a binary memoryless wire-tap channel with an input
alphabet X and output alphabets ) and Z, for the legitimate user and the eaves-
dropper, respectively. In addition, let P, and G,, be the combined wire-tap channel

in (5.21) and the polar generator matrix in (5.6), respectively. Then,
P,(y,z|w) = P(y,z|lwG,) (5.22)
forall we A" y € V", and z € Z".

Proof: The proof of (5.22) is identical to the proof of (5.7) in [4], where symbols
from the output alphabet of the single user channel are replaced with the correspond-
ing pair of symbols from the composite output alphabet (of the legitimate and the

eavesdropper channels). [ ]
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To obtain the equivalence of the recursive construction of the combined channel

P, in (5.21) with the encoding operation in (5.19), the division of the components

of w in (5.22) for information bits, random bits and predetermined and fixed bits, is
detailed. This division is defined by the sets A,, and N,, as follows:

1.

2.

3.

Over the indices specified by the index set A,,, the information bits u are placed.
The random bits b are placed in the indices specified by N,,.

The predetermined and fixed bits in b,, are left for the remaining indices spec-
ified by B,,.

Plugging u, b}, and b,, in wG,, results in the coded message x in (5.19).

Channel Splitting and Degradation Properties

The channel splitting operation in (5.10) is repeated for the case of wire-tap channels.

This procedure can be carried in two different but equivalent options:

1.

First performing a channel splitting operation for the wire-tap channel. This
operation results in the split wire-tap channels {P,Sl)}le with a binary input
alphabet X and an output alphabet Y x Z" x X!~

1
Pf(zl)(Y7ZaW|w) = F Z Pn(YaZ|(W>waC)) (523)
cexn—!

where y € Y, z € 2", w € X! and w € X. Next, deriving the marginal

split channels

GOy, wlw) £ > P (y,z wlw) (5.24)
zEZ™
and
QY (z, wiw) & Z PU(y,z, w|w) (5.25)
yey"

for the legitimate-user and eavesdropper, respectively, where y, z, w, and w are
as in (5.23).

. First deriving the marginal combined channels:

Gu(y|lw) £ Z P,(y,z|w) (5.26)

pASyAL

and

w) £ Y Py, zlw) (5.27)

yeyn



CHAPTER 5. SECRECY-ACHIEVING POLAR-CODING 135

for the legitimate user and eavesdropper, respectively, where y € V" z € Z",
and w € X™. Next, split the marginal combined channels in (5.26) and (5.27)

according to

on 1 Y. Galylw,w,c)). (5.28)
cexn—i
and .
2n—1 Z Q”(Z|(W7w7c>) (529)
cexn—l

where y, z, w, and w are as in (5.23).

It is an immediate consequence of the equivalence properties in (5.7) and (5.22), that
the split channels in (5.24) and (5.25) equal to the channels in (5.28) and (5.29).

The following proposition considers physically degraded wire-tap channels:

Proposition 5.5 Assume that the wire-tap channel P is physically degraded. Then,
the split channel P\ (v,2z,w|z) in (5.23) satisfies

POy, z,wlz) = G (y, w|z)D(zly) (5.30)

where GV is the marginal split channel of the legitimate user in (5.24), y = (y1,...,Yn) €
V'z=(21,...,2,) € 2", u € X" x € X, D(z]y) is a memoryless transition prob-
ability law:

n

D(zly) = H D(zily;)

1=1
and D(z|y) is the conditional probability law of receiving a symbol z € Z at the

eavesdropper, assuming that the symbol y € ) is received at the legitimate receiver.

Proof: The recursion operation in Proposition 5.2 is valid for the wire-tap chan-
nel. Specifically, for all i > 0 and 1 < [ < 2¢ it follows that

20-1
P (v, y®), (21, 22), wlwn) =

1 1 l
Z §P2(i) (yW, 2", g(w)|w; +w) P2(i) (y?, 2@, e(w)|w) (5.31)
weX
P (v, y @), (21,29, (w,w1)|ws) =
1 a I
§P2(i) (y(l), zW | g(w)|wy + ’LUQ)P2(1-) (y(2), z?) e(w)|w2) (5.32)

where y1,y® e Y2 20 22 ¢ 2% w e X2 w;,w, € X, and g(w) and e(w)
are as defined in (5.14) and (5.15), respectively. The proof of the recursion property
in (5.31) and (5.32) follows the exact derivation as in [4] (while replacing the output
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alphabet of the single-user channel with the combined outputs of the legitimate user
and the eavesdropper).

From (5.26), (5.31), and (5.32), a similar recursion follows for the marginal split
channel Gg)(y,w\:c) of the legitimate user. To this end the recursion operations
in (5.12) and (5.13) are satisfied where pfil ), p2z and p2z+1 are replaced by G;ill ,

W

5 and G2Z+1 respectively.

The proof of the degradation in (5.30) is accomplished by induction. At the first
step, from (5.31) and (5.32) it follows that

P (11, 92), (21, 22) [wn ) Z —P(y1, 21|w1 + w) P (2, 2| w) (5.33)
wEX
1
P ((y1,92) (1, 22), wi o) =5 P (y1, z1fwn + ws) P (g2, 20|ws). (5.34)

Then, plugging (5.2) in (5.33) and (5.34) concludes the proof for the first step. Next,
assume that the split channel PY satisfies the degradation property in (5.30). That

is, assume that
PPy, 2, w'|w) = GV (y, w'|w)D(zly) (5.35)

forall 1 <1<2,yed¥ ze2¥ w e X! and w € X. Then, from (5.31)
and (5.35) it follows that

- 1 .«
PETY (v, y?), (29,29), wlw,) = > 50;’ (y™, g(w)|w; + w) D(zM]|y™)

weX

l
Gy (v, e(w)|w) D(z?[y®)
[—
:G;%+11) ((y(1)> y(2))7 W|w1)
D (.22 (v y)

where the last step follows using the recursion properties of the marginal split channel
for the legitimate user. A similar argument assures the degradation property for Pz(zi)l

which concludes the proof of the proposition. [ ]

Successive Cancellation Decoding

The successive cancellation decoding procedure in [4] is applied for the legitimate
user. The difference from the standard single-user case is that for the wire-tap chan-
nel model the legitimate user needs to decode both the message u € X* and the
noisy vector b¥ € X*¥". In terms of information sets, the legitimate receiver operates
on the indices specified by both A, and N,. Denote by w = (w1, ..., w,) € X" the
transmitted vector over the combined channel P,, then w is composed of the infor-

mation vector u, the random vector b}, and the predetermined fixed vector b,,. It
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is important not to confuse w with the actual codeword x in (5.19), which is trans-
mitted over the given wire-tap channel P. Both interpretations are equivalent as the
coset block code is equivalent to the recursive combining construction. Nevertheless,
the decoding rule (and its performance analysis in the following) is characterized in
terms of the vector w, transmitted over the combined wire-tap channel and received
over the marginal split channels for the legitimate user.

The decoding rule operates recursively to compute the length-n decoded vector
W = (Wq,...,W,) € X" Let 1 <1 < n, and assume that the first [/ — 1 components

of b, denoted by w1, are already evaluated. If [ & A,,, where
A, £ A, UN,,.

then the current index [ is not in the information index set A,, and not in the indices
specified in N,, for the noisy vector. Consequently, [ € B,. Recall that for the indices
specified by B,,, the predetermined vector b, is set. Since b,, is predetermined and
known (both to the legitimate user and the eavesdropper), w; is known at the receiver
and therefore it is possible to set

w; = w.
If | € A, then the current index is identified either as an information bit in u or as a

noisy bit in b’. For this case, the following decoding rule is applied to the marginal
split. channel G in (5.24):

0 if Gg) (D10 > Gg) W (-1
1 else

The successive cancellation decoding described in this section, is by no means
optimal. This important observation is already noted for the single-user case in [4].
Nevertheless, for an uncoded communication model with a communication channel
whose transition probability function is Gg), the detection rule for the single bit wy

in (5.36) is optimal, if w; is an equiprobable bit.

5.2.2 A Secrecy Achieving Property for Degraded Channels

Theorem 5.4 Let P be a binary-input, memoryless, degraded and symmetric wire-

tap channel with a secrecy capacity Cs(P). Fix an arbitrary positive f < %, and
R < C4(P). Then, there exist sequences of sets A, and N,, such that the secrecy

coding scheme C,(A,, N, ) satisfies the following properties:

1. Rate: For a sufficiently large block length n

1
< — . .
R< n|An\ (5.37)
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2. Security: The equivocation rate R.(C, (A, N,) satisfies

lim R.(Cp(An,N,)) > R. (5.38)

n—oo

3. Reliability: The average block error probability under successive cancellation
decoding P.(C, (A, N)) satisfies

Po(Co(An, N,)) = 0 (2—n") .

Proof:

The proof comprises of three parts: A code construction part where the construc-
tion of the sets A,, and N, is described in detail, along with the derivation of the
coding rate property in (5.37). An analysis of the equivocation rate is provided in
the second part of the proof. Finally, in the third part an upper bound on the block
error probability at the legitimate receiver is provided under successive cancellation

decoding.

Part I: The code construction

Fix some r* = C(Pzx) — ¢, and r = C(Py|x) — €, where C(Py|x) and C(Pyx)
are the channel capacities of the marginal channels for the legitimate user and the
eavesdropper, and € > 0 is determined later. According to Theorem 5.3, there exists

a sequence of index sets N, C [n], satisfying:

1. The cardinality of the index set N, satisfies

N, > [nr]. (5.39)

2. For all [ € N, the Bhattacharyya parameter B (Qg)) of the split channel Qg) of
the eavesdropper in (5.25), is upper bounded by

B(QW) <27, (5.40)

The index set N, of size |nr*] is chosen arbitrary from N,
Next, Theorem 5.3 is applied for the marginal channel of the legitimate user.

Accordingly, there exists a sequence of index sets A, C [n], satisfying:

1. The cardinality of the index set A, satisfies

|A,| > |nr]. (5.41)
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2. For all | € A,, the Bhattacharyya parameter B (Gg)) of the split channel Go

of the legitimate user in (5.28), is upper bounded according to

B(GV) <27, (5.42)

For each n, the information index set A, of size |nr| — |nr*| is chosen from A, \ N,,.
As |N,| = [nr*] and |A,| > |nr], the set A, \ N, is of sufficient size. The specific
choice of A, may be carried arbitrarily. Nevertheless, the best choice is to pick the
indices in A, \N,, whose corresponding marginal split-channels for the legitimate-user
have the lowest Bhattacharyya parameters.

The code rate of the resulting scheme satisfies

1 —1 *—1
_|An|2’f’ _T
n n n
2
= C(Py‘x) —C(PZ‘X) — 2¢ — E
— Py -2 -2 (5.43)

n

where the last equality follows from Theorem 5.2. Consequently, for a large enough
block length and a properly chosen (small) €, the code rate of the proposed scheme
satisfies (5.37).

The choice of the vector b,, € X" *=%" may be carried arbitrarily.

Part II: The equivocation rate analysis

The confidential message vector, the transmitted codeword, and the received vector
at the eavesdropper are denoted by the random vectors U, X, and Z, respectively.

The equivocation rate of the proposed scheme R, (Cn(A,N )) is given by

Re(Co(A,N) :%H(U\Z)

- %H(U) - %](U; Z)
_ %\An\ _ %I(U; Z) (5.44)

Where the last equality follows since the message bit vector is of length |A,| and

equiprobable. Using the chain rule of mutual information

[(U,X; Z) =I(U: Z) + [(X; Z|U)
=1(X;Z) + I(U; Z|X).
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Consequently,

I(U;Z) =I(X;Z) + 1(U; Z|X) — I(X; Z|U)

WI(X;z) - I(X;Z[U)

<nC(Pzx) — 1(X;Z|U) (5.45)

where (a) follows since U — X — Z is a Markov chain which implies that Z and
U are statistically independent given X, and C(Pyx) is the channel capacity of the
marginal channel to the eavesdropper. The conditional mutual information I(X; Z|U)

is given by

[(X;Z|U) =H(X|U) — H(X|U, Z)

SN - H(X|U, 2)
gn(C(PZ‘X) —€) —1— H(X|U,Z) (5.46)
where (a) follows since the binary vector b* is chosen uniformly at random and it is
independent with the confidential message, and (b) follows since |N,| = [nr*] and
r* = C(Pgzx) — €
Let Pyu denote the error probability of a decoder that needs to decode X while
having access to both the eavesdropper observation vector Z, the confidential message
vector U, and the predetermined vector b,, (which is fixed, predetermined, and known
to all the users in the model). Note that if both the confidential message U and the
predetermined vector b,, are known at the receiver, then the remaining uncertainty
in the codeword X relates only to the random vector b% of size N,,. Using Fano’s
inequality (see, e.g., [23]), the conditional entropy H(X|U,Z) is bounded according

to

H(X|U,Z) <hy(Puu) + Peulog(2M — 1)
ShQ(PO‘U) + TM”*PO|U (547)

where hy(z) = —zlogz — (1 — x)log(1 — ) is the binary entropy function. From

(5.44)-(5.47) it follows that

1 11
Re(Cn(A,N)) 25|An| —e———= (ha (Pous) + nr* Pyu) (5.48)
zR — % — % (hg (PO\U) + nr*PC|U) (549)

where the last inequality follows from (5.43) for a sufficiently small € and a sufficiently

large n. The error probability Py in (5.49) can be upper bounded by the error
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probability under the suboptimal successive cancellation decoder in [4], which is fully
informed with both the predetermined vector b,, and the confidential message vector
U. It follows from [6] that

Py <o(27™)

which concludes the proof of (5.38).

Part III: The error performance at the legitimate decoder

The successive cancellation decoding procedure at the legitimate receiver is analyzed.
First, fix a vector w = (wyq,...,w,) € X™ comprises of the information message
u € X%, the randomly chosen vector b* € X*", and the predetermined vector b &€
X"~k=k" " The conditional block error probability is denoted by Pyw. That is, Pyw
is the probability of a block error event given that the input vector is w. Denote by
wl) = (wy, ..., w;) the first [ bits of w, and by W) = (101, ...,0) the first [ decoded
bits. The event
Fi 2w = w0y # )

corresponds to the case where the first [ — 1 bits of w are decoded correctly and the
first decoding error is in the [-th bit. Notice that

Fi C &(GL)

where & is the event defined in (5.16), and G, is the marginal split channel in (5.24).

Consequently, it follows using the union bound that

Piw :Pr(Ulnzl]ﬂ w)
<> Pr(&(GY)| w). (5.50)

leﬂn
Next, the summation in (5.50) is split to two summations: a summation over the
indices in A,, and a summation over the indices in NV,,. For an index | € A, it follows
from Proposition 5.3 that for all w € A"

Pr(&(GY)| w) < B(GY) (5.51)

where B (Gg)) is the Bhattacharyya parameter in (5.11). To address the probability
of the event 51(G£f)) where [ € N, notice that at the output of the marginal split
channel, the decoding rule for w; in (5.36) is optimall. Recall the degradation prop-

erty in Proposition 5.5. According to Proposition 5.5 the marginal split channel of

L As stated, this optimality is only under the setting of the split channel, and by no means implies
optimality of the complete procedure (which is clearly suboptimal).
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the eavesdropper is physically degraded with respect to the marginal split channel of
the legitimate user. Consequently, it is clearly suboptimal to first degrade the obser-
vations at the split channel of the legitimate user, and only then to detect the bit wy
over the corresponding marginal split channel of the eavesdropper. Specifically, w; is
detected according to

0 QP (2,0079(0) = Q1 (2,00 V|1)
e { 1 else
where z € Z" is a degraded version of y € V", randomly picked according to the
probability law D(z|y) in (5.30). This detection rule is inferior with respect to (5.36).
Hence, based on Proposition 5.3, the upper bound

Pr(&(GY) w) < B(QY) (5.52)

holds for all [ € AV,,. From (5.50), (5.51), and (5.52), it follows that the average block
error probability is upper bounded by

P.(Ca(AN)) < D BIGY)+ > BQY).

leA, lEN,

The proof concludes using the bound on the polarization rate of the Bhattacharyya

parameter in Theorem 5.3 and the specific choice of the sets A, and N,,. [ ]

Remark 5.3 (On communicating with full capacity) The noisy bits b}, defin-
ing the coset block code C based on the noisy index set N, (see eq. (5.18)), are
reliably detected by the legitimate user. It is therefore suggested to utilize these bits
in order to communicate with the legitimate user. That is, instead of setting the bits
in b’ to noisy random bits, non-secret information bits are suggested to be set on
by . The non-secret information bits must be statistically independent and equiprob-
able. In addition, the non-secret information must be statistically independent with
the secret-information. These statistical properties allows the non-secret information
bits to act as if they are noisy bits (where the eavesdropper is concerned). As a result
of the cardinality of the index set A, (5.41), the overall rate, including secret and
non-secret information, is arbitrarily close the full (marginal) channel capacity of the

legitimate user C(Py x).

Remark 5.4 (The noisy bits must not be fixed) It is important to note that
the bits in b; must be chosen at random for each block transmission. To see this,

first note (based on the data processing inequality) that

1 1
Li(b1:2) < 210X 2) (5.53)
n n
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for all n > 0. Assuming that (5.53) is satisfied with equality. It follows that both the
legitimate user and the eavesdropper can reliably decoded the vector b} . Considering
the current setting as if it is a broadcast communication problem over the given chan-
nel, a broadcast scheme is therefore provided where we can reliably communicated
with the legitimate user at a rate arbitrarily close to its marginal capacity C(Py|x)
and at the same time with the eavesdropper at a (common) rate which is arbitrarily
close to %I (X; Z). This violates the fundamental limit imposed by the capacity region
of the degraded broadcast channel (see, e.g., [23]). Consequently, it follows that

1 1

—I(b;Z) < —I(X;Z 5.54

~I(b3;Z) < —I(X;2) (551
for all n > 0. Next, since there is a one-to-one correspondence between the transmit-
ted codeword X and the vector pair which is comprised of the random bits b* and

the confidential message U (the vector b is predetermined and fixed), it follows that

1 1
“I(X:Z)==I(U b*Z
n( ,Z) n( ,b*;,Z)
@1 . 1 .
g El(b Z) + E](U;Z|b ) (5.55)

for all n > 0, where (a) follows by the chain rule of mutual information. Hence it is
observed from (5.54) and (5.55) that

1
~I(U:Z[b) > 0

for all n. This assures that if the vector b* is known to the eavesdropper, for example
by choosing a fixed b*, perfect secrecy can not be established, not even in the weak

sense.

It is observed in [24], that if (Ry, Ry) is an achievable rate-equivocation pair and
in addition, an additional information rate Ry is achievable without secrecy (that
is, in the ordinary notion of reliable communication), then the (R; + Ry, R1) is also
an achieved rate-equivocation pair. The other direction is also provided in [24, p.
411]. Following Remark 5.3 which suggests the option of communicating in full rate,
and the observations in [24], it is expected that the entire rate-equivocation region is

obtained with polar coding. This result is provided in the following corollary:

Corollary 5.1 Under the assumptions and notation in Theorem 5.4, the entire rate-

equivocation region is achievable with polar coding.

Proof: Take a rate-equivocation pair (R, R,) in the rate-equivocation region defined
in (5.3). Define Ry = R,, and Ry = R — R;. Note that Ry > 0 as R, < R. Consider
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the coset block code in (5.18). Since R, < Cs(P), the rate R; is achievable via the
index set A,,. It is further detailed in the proof of Theorem 5.4, that the information
transmitted via the indices in A, is secure. Specifically, it follows from (5.48) that the
equivocation rate is arbitrarily close to %\An| As explained in Remark 5.3, reliable
communication (not necessarily secure) of an additional rate of up to the capacity
C(Pyx) of the marginal channel to the legitimate user, is achievable. Therefore, the
additional rate Rs, is achievable either via the remaining indices in .4,, and the vector

b’ corresponding to the indices in N,. [ ]

5.2.3 Secrecy Achieving Properties for Erasure Wiretap Chan-

nels

In this section, a particular case of binary erasure wiretap channel is considered.
Specifically, it is assumed that the channel to the legitimate user is noiseless, and
the channel to the eavesdropper is a binary erasure channel (BEC) with an erasure
probability d, is considered. Recall that the set sequence N, of the indices that
correspond to “good” split channel to the eavesdropper, is chosen as to achieve the
capacity to the eavesdropper. As the channel to the legitimate user is noiseless, that

is y = x, the set sequence A,, and is set according to
A, 2 0]\ N, (5.56)

Note that for this particular case B, = (). The resulting coding scheme is then a
particular case of the coset coding scheme in [82] where the base code is determine by
the generator matrix G, (N,,) and the actual coset is determined by uG,,(.A,) where u
is the transmitted information bits (the secret message) and G, is the polar generator

matrix for a block length n. Specifically, the codeword x is given, based on(5.19), by
x = uG,(A,) +b.G,(N,). (5.57)

The rate and reliability properties in this particular case follows immediately as a
result of Theorem 5.4. That is, the rate approaches the secrecy capacity, which in this
case equals ¢, and the legitimate user obviously can decode the transmitted message.
As in the second part of the proof of Theorem 5.4, the confidential message vector,
the transmitted codeword, and the received vector at the eavesdropper are denoted
by the random vectors U, X, and Z, respectively. The following lemma address the

entropy measure H(U|Z).
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Lemma 5.1 Under the assumption and notation for the consider binary erasure

wiretap channel, the entropy H(U|Z) satisfies
H(U|Z) > nd(1 — 27"
where ¢ is the erasure probability of the wiretap channel, and ¢ > 0.

Proof: Let us fix a particular realization of the channel erasure sequence 2. Denote
by D the set of p indices which are not erased. That is, the eavesdropper received
the bits X; for every i € D, and erasure symbols for every index in D¢ £ [n] \ D.
Consider the |N,| x n matrix {G,(N,)}. As the generator matrix G,, for the polar
construction has a full rank (for every n in the construction), the matrix G, (N,)
has a rank N,,. Therefore, it is a generator matrix for a binary linear block code of
dimension N,,. This code has a parity check matrix of size |A,| x n, denoted by H,
(recall that A is given by (5.56)). Since all the information bits are equiprobable, and
all the noisy bits are also equiprobable, the codeword X, given by (5.19), id uniformly
distributed over all possible binary vectors in {0, 1}™. Consequently, all the bits in X
are independent and identically distributed uniform binary random variables. Hence,
H(X]|Z) = n—p. In addition, note that if the codeword X is known, then information

bits U are fully determined for the considered polar coding scheme. It follows that

H(U|Z) = HU|X,Z) + H(X|Z) — H(X|U, Z) (5.58)
—m—p— HX[U,Z). (5.59)

Note that (5.58) is a restatement of [82, Eq. (5)], and (5.59) is a restatement of [82,
Eq. (6)].
Next, fix a realization Z = z € {0,1}" and U = u € {0,1}. From (5.57), it

follows that the erased bits {X;};epc satisfies the linear equations

> Xi(Hy), = HouG, (A) + ) X, (H,), (5.60)

ieD ieDe
where (H,,), is the i-th column of the parity check matrix H,,. The number of solutions
to (5.60) is given by

2"_“_d<{(H”)i}ieD>

where d ({(H”)i}iei)
vectors in {(Hy,);},.p- Since all the solutions for the erasures X, i € D, are equally
likely, it follows that

) is the dimension of the linear space spanned by the the column

HX[U=u,Z=2z)=n—p—d({(H,),} (5.61)

iep)

2This case is studied in [82], and some parts of the provided proof are based on proper presentation
of the techniques developed in [82] for the case at hand.
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From (5.59) and (5.61), it follows that
H(U|Z) = Bd ({(Hn);}iep) - (5.62)

As the information indices N,, for the eavesdropper are chosen such that it can decode
the noisy bits b* with an error probability of O(27"), it follows that

H(U|Z) > E(d ({(Hy),},ep) | correct decoding) (1 — cQ‘"B) (5.63)
=nd(1—c27) (5.64)
where ¢ > 0 and ¢ is the erasure probability of the eavesdropper channel. [ ]

Remark 5.5 (All coset must be equally likely) In the current discussion, the
secrecy polar coding scheme is applied with B,, = (). This fact is crucial for the proof
of Lemma 5.1. It is conjectured that this choice may be crucial to achieve the entire

secrecy capacity under the strong secrecy condition.

Remark 5.6 (On possible stronger notion of secrecy) Consider the conditions
in Theorem 5.3. In particular, not that the rate R < C(p) is kept fixed for the
polarization structure of the code. If, it be possible to construct the sequence of
polar codes, with a sequence of blocklength dependent rates R, having the property
that

Q@

R, >C(p) — < (5.65)

n”
where a > 0 and v > 1 are arbitrarily fixed parameters. Then, it will follow as a

corollary of Lemma 5.1 that a strong notion of secrecy is guaranteed. That is, the
entropy H(U|Z) is arbitrarily close to H(U). To see this, note that if polarization is

possible while satisfying (5.65), it follows that
IV Zn(l—é—g>.
ny

Consequently,
Q@

H(U) = |Au| = n— [N,| = nd +

ni=v
Hence H(U|Z) is lower bounded by a quantity which is arbitrarily close H(U) as
the blocklength increases. For the particular case of the BEC, it follows from [4, Eq.

(34)-(35)], that the considered question requires the analysis of the following sequence
[{ien]: Z. <Ce}|
where {Z} };cn) is a sequence, generated recursively according to
, . N2
250 =22 — (2"
2i i)
2~ (2’

where i € [k] and Zfl) = 4.
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5.3 An open polarization problem and the general

wiretap channel

An open polarization problem is presented in addition to a conjecture which suggests
a possible solution. A polar secrecy scheme for non-degraded wiretap channels is

provided based on suggested conjecture.

5.3.1 On the polarization of the ‘bad’ indices

Let W = (Wy,...,W,) be a random vector, where {W;}!_, are statistically indepen-
dent and equiprobable Pr(W; = 0) = Pr(W; = 1) = 1 for all i € [n]. The random
vector W is polar encoded to a codeword X = G,,W, where G, is the polar generator
matrix of size n. The codeword X is transmitted over a binary input DMC p, whose
output alphabet is ). The received vector is denoted by Y = (Y3,...,Y,). For a

given vector W and a set A C [n], the following notation is used
W2 (Wi, . Wi,

where i1 < iy < ... < i and iy € A for all k € [|A]]. Define the following quantities

of mutual information
L= I(Wi5 Wiy, Y), i€ nl. (5.66)

The following polarization of mutual information is the key result in [4], [6]:

Theorem 5.5 (On the polarization of mutual information [4]) Assume that p
is a binary-input output-symmetric DMC whose capacity is C'(p), and fix 0 < ¢ < 1.
Then,

lim (l‘{z €ln]: I (1-4, 1]})) =C(p)

1
lim (—
n—oo \ N,

lieh]: I € [0,5)}‘) —1-C(p).

Denote by A,, the set of indices for which the corresponding mutual information
quantities I;, i € A, are arbitrarily close to 1 bit (for a sufficiently large n). The set
A, is called the information index set. This is the very same index set in Theorem 5.3,
of ‘good’ split channels whose corresponding Bhattacharyya constants approach 0.
Let A], C A, and let S,, C A?. We define the index sets

D, = A US,
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and
DY 2 {jeD,: j<i}, i€ln

A problem of interest lies in the |D,,| quantities of mutual information:

Ji 2 I(Wi; W), Wpe,Y), i€D,. (5.67)

D’ELL) Y

For the indices in A}, a straight froward answer is provided:

Lemma 5.2 (on the indices of ‘good’ split channels) Fix a 0 < 0 < 1 and an
index i € A!. For sufficiently large n

Ji >1—0.

Proof: As the mutual information [; in (5.66) includes a subset of the random
variables in J; in (5.67), it follows that

Ji > I;.

The proof concludes using Theorem 5.5 as A/, C A,. [

According to Lemma 5.2 ‘good’ indices for which the mutual information quanti-
ties I; approach 1 bit, remain ‘good’ with respect to the mutual information J;. The
characterization of the ’bad’ indices seems at this point to be a greater challenge. A
conjecture for possible polarization properties of the mutual information quantities J;
in (5.67) is provided for the (‘bad’) indices in S,,. Two possible polarization properties

are considered:

Conjecture 1 (On possible polarization dichotomy) Fix a 0 < § < 1. There
exists a partition of S, to two sets S and S/ = S, \ S.,, such that for a sufficiently

large n

Ji <6, foralliesS) (5.68)
Ji>1—9, forallieS). (5.69)

Remark 5.7 (On degenerated and non-degenerated possible partitions) One
of the possible option resulting from Conjecture 1 is that S; = S,. In case where
this degenerated partition is proved to be correct, then it follows that the additional
information provided by the bits in Wpe do not alter the known polarization of the
mutual information quantities I; in (5.66). The non-degenerated partition of S,, offers
(in the case it is proven to be correct) a dichotomy of the indices in S,,. Accordingly,

either the former polarization remains or alternatively the knowledge of the bits in
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Wpe completely changes the orientation of the polarization. The size of S; U AJ,

must satisfy
a (b)
S UAL 2 AL+ AL < nC(p). (5.70)

Equality (a) in (5.70) is obvious as the sets A/, and S,, are disjoint. Violating the
inequality (b) in (5.70) results in violating the coding theorem for a DMC as the
input bits to the split channels specified by the set S/ U A/, can be reliably decoded

(This can be shown in a similar fashion as in [4]).

Remark 5.8 (On a particular trivial case where Conjecture 1 is true) There
exists an option where Conjecturel is trivially proved as a particular application of

Theorem 5.5. Specifically, assume that for every index i € D,,, it follows that
j<i VjeD,.

In that case, the degenerated partition in Remark 5.7 follows as an immediate par-

ticular case of Theorem 5.5.

5.3.2 A polar secrecy scheme

In this section, a polar secrecy scheme is provided assuming that Conjecture 1 is
true. The same notation and definitions of the coset code defined in Section 5.2.1
are assumed. The transmitted codeword x is defined in (5.19). This definition is
based on the index sets A,, and N,,. The secure information bits are considered as if
they are being transmitted over the split channels whose indices are in A,,. Over the
split channels whose indices are in N,,, noisy bits are attributed. The polar secrecy
scheme is provided in Section 6.3 by a proper choice of the sets A, and N,. The
degradation property in Section 6.3 assures that the indices which correspond to split
channels which polarize to ‘good channels’ for the eavesdropper, also polarize for
‘good channels’ for the legitimate user. This clearly does not necessarily follow for
the general not-degraded case.

For the general wiretap channel, indices that are ‘good’ for the eavesdropper
may not be ‘good’ for the legitimate user and vice-versa. A binary-input symmetric
wiretap channel is assumed. As in the construction detailed in Part I of the proof of
Theorem 5.4, the sets fln and ./\~/'n of ‘good indices’ are considered. The sets .»Zln and
N,, include the indices for which the Bhattacharyya parameters of the corresponding
split channels approach zero as the block length approach infinity. Specifically, fixing
r < C(Py|x) and r* < C(Pyx), the conditions in (5.39)-(5.42) follow.

Define the index set S, £ fln \./\7n of indices which are ‘good’ for both the

legitimate user and the eavesdropper. According to Conjecture 1, the set S, can
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be partitioned into two index sets S, and S/, satisfying the polarization properties
in (5.68)-(5.69) where A, is replaced by N, and Al is replaced by A, N N,,. Next,

the set N, is defined according to
Ny &2 (A, NN, US) (5.71)
and the set A, is defined to be the remaining indices in S,,, that is
A, LS

As explained in Remark 5.7, the term %\N’n\ can not exceed the capacity of the
eavesdropper marginal channel. Consequently, the size of S/, can be chosen such that
118 ] is arbitrarily close to C(Py|x) — C(Pyx).

Next, the same coset coding scheme defined in (5.19) is applied to the case at
hand (with the new construction of the sets A,, and A,,). As the information rate
1] A,| of the considered scheme may be chosen arbitrarily close to C(Py|x)—C(Pyzx),
the same coding rate as in Theorem 5.4 is obtained. The decoding reliability at the
legitimate user is clear and follows the same proof as for the degraded case (note that
all the noisy bits in the considered scheme are ‘transmitted’ over the split channels
that are ‘good’ for the legitimate user). It is left to establish that the equivocation

rate can approach the information rate of the considered scheme.

5.3.3 Analysis of the equivocation rate

As explained in Section 5.2.1, the bits b,, corresponding to the indices in B,, are prede-
termined and fixed. These bits are known both to the eavesdropper and the legitimate
user. For each blocklength n, consider the ensemble of coset codes corresponding for
all the possible selection of fixed bits b,,. An analysis of the equivocation rate where
the coset code is chosen in random is considered. Specifically, it is assumed that the
actual code is chosen from the ensemble by picking the bits in b, in random. The
random selection of the bits in b, is carried independently and identically. Each bit is
picked at random with an equiprobable probability, Pr(0) = Pr(1) = 1. In addition,
it is assumed that the random selection of b,, is independent with the random noisy
bits in b} and the secret message. It is important to distinguish between the ransom
selection of a code and the noisy bits b*. The random selection of code is part of our
analysis, this selection (i.e., the bits in b,,) is known to both the legitimate and the
eavesdropper. In contrast, the random noisy bits b* are immanent part of the en-
coding procedure and they are unknown to both the legitimate user and the receiver.

The noisy bits b* are picked randomly, each independent with the others, and with
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a uniform probability. The information bits are also assumed to be independent and
equiprobable.
The secrecy properties of the suggested scheme is considered in the following

proposition:

Proposition 5.6 Consider the polar secrecy scheme in Section 5.3.2 whose transmis-
sions take place over a binary-input memoryless symmetric wiretap channel. Then,
there exists a bit vector b,, for which the equivocation rate satisfy the secrecy condi-
tion in (5.38).

Proof: Denote by W the random binary vector comprises the random bits in b,,,
b’, and u in the encoding procedure (5.19), and by Z the random vector received
at the eavesdropper. According to the considered assumptions, all the bits in W are
independent and equiprobable. It follows using the chain rule of mutual information
that

I(Wp, s Wa, ;s Wg,, Z) = I(Wa,; Wg,,Z) + I(Wx,; Wg,, Z | Wa,)

I(W4,;Wg,) +I1(Wa;Z | Wg,)

I(Wy,; Wg, | Wa,) + I(Wx,; Z | Wa,, Wsg,)

H(Wyu,) —HWu,| Z,Wg,) + I(Wx,;Z | Wy,, Wg,)
(5.72)

_|_

where the last equality follows since W 4, W, , and Wy are independent. As the
set N, comprises indices of split channels which polarize to perfect channels, the bits
in Wy, can be reliably decoded at the eavesdropper based on perfect knowledge of
the remaining bits and the received vector (this is shown in a similar fashion to [4]).
Hence, the decoding error probability P.(Wys) of the bits in Wy, based on the
received vector and the remaining bits Wy, can be made arbitrarily low. As a

consequence of Fano’s inequality it follows that

Vol > T(Wa, s Z | Wy, Wg,)
= H(WNn‘ W.An7WBn) - H(WNn‘ Z7 W.An7WBn)
> H(Wy,) = ha(Pe(W)) — NG| Pe(Wne) (5.73)

where hy is the binary entropy function. For a sufficiently large block length n,
the expected decoding error probability approaches zero. Consequently, the rate
LI(Wn,; Z | W 4,, Wg,) can be made arbitrarily close to 1|A,|. It follows from (5.72)
and (5.73) that

1 [ An|

n 1
_H( An Z? Bn) 2 ‘N ‘
n

+ —€n— —1(Wy,,, Wy ;Wg  Z) (5.74)
n n n
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where €, > 0 and approaches zero as n grows.

Z) can be
shown to be arbitrarily close to %|Nn| Using the chain rule of mutual information it
follows that

Based on Conjecture 1, the mutual information 17(Wy;,, W4,; Wp

n

I(Wx,, Wa,; W, Z) = Y I(Wi; W, Z | W, W 0)

iENn

+ > I(WiWg, 2| W0, W 0).
1€AR

=Y I(Wi W0, W 0, Wg,, Z)
iENn

+ > (W5 W0, W 0, Wg,,Z). (5.75)
1€AR

where the last equality follows as all the bits in W are independent. For every index

i € N, it follows from Lemma 5.2 and Conjecture 1 that

](Wi; WN,Si)’WA,(f)’WB”’ Z) >1-—09. (5.76)

In addition, for all the indices i € A, it also follows from Conjecture 1 that

I(Wi;WMS”’WAS)’WBn’Z) < 0. (577)
From (5.75), (5.76) and (5.77) it follows that
LW, W W, ) < Pl 0
n n n
< |A£"| + 4. (5.78)

Hence, based on (5.74) and (5.78) we end up with
1 1
~H(Wau,| Z,W3,) > —|A,| — €, — 4.
n n

As d can be fixed arbitrarily small, and €, approaches zero, the equivocation rate can
be made arbitrarily close to %|An| which assures the secrecy property of the provided

scheme. ]

5.4 Summary and Conclusions

A polar secrecy scheme is provided in this chapter for the two-user, memoryless, sym-
metric and degraded wire-tap channel. The provided polar coding scheme is shown to

achieve the entire rate-equivocation region for the considered communication model.
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The analysis of non-degraded channel models is of great priority. In particular,

proving Conjecture 1 is the main interest in the continuation of the research discussed

in this chapter. The following generalizations are of additional possible interest:

1.

Non-binary settings: In light of the recent results by Sasoglu et al. [91], a gen-

eralization to the non-binary setting may be a straight forward generalization.

Secrecy polar schemes for non-symmetric wiretap channels, based on the non-

binary polarization provided in [91].

Polar coding for a broadcast channel with confidential messages. The particular

case of degraded message sets over a degraded channel is first considered.

Strong secrecy properties: As noted, the provided scheme is shown to provide
weak secrecy. It is of great interest to find out if this scheme can also provide

strong secrecy.
Generalized polar secrecy-schemes based on the ideas in [5], [64]-[62].

Combing the polar scheme with the MAC approach for the wiretap channel
(see, e.g., [83]).



Chapter 6

Parallel Polar-Coding

Chapter Overview

A parallel polar coding scheme is provided in this chapter for communicating over
binary-input arbitrarily-permuted memoryless symmetric parallel-channels. In [4]
where symmetric DMC are concerned, the predetermined bits may be chosen arbi-
trarily; they are fixed and do not depend on the transmitted message. For the scheme
provided in this chapter, some of these bits incorporate an algebraic structure and
depend on the transmitted message. Moreover, the determination of these bits is
based on the structural properties of MDS codes, in a manner which relates to the

rate-matching code in [116]. The chapter is based on the following paper:

E. Hof, 1. Sason, and S. Shamai (Shitz), “Polar Coding for Reliable Communica-
tions over Parallel Channels,” submitted to the IEEE Trans. on Information Theory,
July 2010. This work is presented in part in the 2010 IEEE Information Theory
Workshop (ITW 2010), Dublin, Ireland, September 2010.

This chapter is structured as follows: Section 6.1 provides some preliminary mate-
rial. Section 6.2 considers channel polarization for (stochastically) degraded parallel
channels. The parallel polar coding scheme is introduced and analyzed in Section 6.3.

6.1 Preliminaries

For an introductory section on channel polarization coding the reader is referred to
Section 5.1.2.

154
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6.1.1 Arbitrarily Permuted Parallel Channels

We consider the communication model in Figure 6.1. A message m is transmitted

over a set of S parallel memoryless channels. The notation
[S]£{1,..., 5}

is used in this paper. All channels are assumed to have a common input alphabet
X, and possibly different output alphabets ), s € [S]. The transition probability
function of each channel is denoted by Ps(ys|x), where ys € Vs, s € [S], and z € X.
For the particular case depicted in Figure 6.1, the communication takes place over a
set of S = 3 parallel channels. The encoding operation maps the message m into a
set of S codewords {x, € X"}3_,. Each of these codewords is of length n, and it is
transmitted over a different channel. The mapping of codewords to channels is done
by an arbitrary permutation 7 : [S] — [S]. The permutation 7 is fixed during the
transmission of the codewords. The set of possible S channels are known at both the
encoder and decoder. The encoder has no information about the chosen permutation.
The decoder, on the other hand, knows the specific chosen permutation. The coding
problem for this communication model is to guarantee reliable communication for all

possible (S!) permutations 7. This problem is formulated and studied in [116].

X XW(S channel 1
m m
— encoder X T X7r(2)= channel 2 + decoder|—
< X0 channel 3

Figure 6.1: Communication over an arbitrarily-permuted parallel channel. The partic-
ular case of communicating over S = 3 parallel channels is depicted (taken from [116]).

Definition 6.1 (Achievable rates and channel capacity) Consider coded com-
munication over a set of S arbitrarily permuted parallel channels. A rate R > 0 is

achievable if there exists a sequence of encoders and decoders such that for all § > 0
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and a sufficiently large block length n

1
~log, M > R~ (6.1)

P™(n) <4, for all S! permutations 7 : [S] — [S] (6.2)

where M is the number of possible messages and pm (n) is the average block er-
ror probability for a fixed permutation 7 and block length n. The capacity of the

considered model Cfy is the maximal achievable rate to satisfy (6.1) and (6.2).

Theorem 6.1 (The capacity of arbitrarily-permutated memoryless parallel
channels [116]) Consider the transmission over a set of S arbitrarily-permutated
memoryless parallel channels. Assume that there is an input distribution that achieves

capacity for all parallel channels. Then, the capacity Cp satisfies

S

Cn=)Y C, (6.3)

s=1

where Cj is the capacity of the s-th channel, s € [S].

Remark 6.1 In case that there is no common input distribution that achieves the

capacity of each component channel, see [116, Theorem 2, Eq. 50].

As noted in [116], S22, C, is the capacity if both the encoder and decoder know
the actual permutation 7; since the encoder does not know the actual permutation,
then C' < Zle Cs. The achievability part is proved in [116] using two different

approaches:

1. A random coding argument and a joint typicality decoding over prod-
uct channels. This coding scheme is based on the notion of product channels.
Each possible permutation 7 yields a different product channel. Consequently,
there are S! possible product channels. These product channels have an input
alphabet X°, and an output alphabet Y; x Y x --- x Vg. A random coding
argument can be applied to each one of these product channels. Specifically,
a properly chosen randomly code is shown to achieve the capacity Cpp under a

joint-typicality decoding for all possible permutations .

2. A rate-matching coding scheme that is combined with a random cod-
ing argument, and a sequential joint-typicality decoding. This coding
scheme is based on the following concatenated structure: An information mes-

sage m € [M] is mapped to a vector m = (my, ma, ..., mg) where m; € [M*] for
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all s € [S] (this mapping is called a rate-matching code in [116]). It is assumed
that %log2 M* < C* where C* is the maximal capacity of the S given parallel
channels. Next, a randomly chosen codebook C with M* codewords of block
length n is chosen. Each element of m is encoded using the randomly chosen
codebook C, yielding a set of S codewords {x,}5_,. The codewords {x,}5_,
are transmitted over the considered parallel channels. The decoding procedure
is based on a sequential joint-typicality decoding. First, the received vector
over the channel with the maximal capacity is decoded using a standard joint
typicality decoding. Next, the received vector over the channel with the second
largest capacity is decoded using a joint-typical decoder. Over all possible code-
words under this decoding rule, a message is chosen such that the rate-matching
coding is satisfied. The decoding continues recursively, where in each decoding
stage, a message is chosen such that the rate-matching code constraints are
satisfied.

6.1.2 MDS codes

In this section some basic properties of MDS codes are provided. For complete details

and proofs, the reader is referred to [74] and [89].

Definition 6.2 An (n, k) linear block code C whose minimum distance is d is called

a maximum distance separable (MDS) code if
d=n—Fk+1. (6.4)

Remark 6.2 The RHS of (6.4) is the Singleton bound on the minimum distance of

a linear block code.

Example 6.1 (MDS codes) The (n,1) repetition code, (n,n — 1) single parity-
check (SPC) code, and the whole space of vectors over a finite field are all MDS

codes.

The following properties of MDS codes are of interest in the continuation of this

paper:

Proposition 6.1 (On the generator matrix of an MDS code) Let C be an
MDS code of dimension k. Then, every k columns of the generator matrix of C are

linearly independent.

Corollary 6.1 Every k symbols of a codeword in an MDS code of dimension k

completely characterize the codeword.
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Let S > 0 be an integer number and fix an integer m > 0 such that 2™ —1 > S. For
all k € [2™ —1], there exists a (2™ —1, k) RS code over the Galois field GF(2™). Every
RS code is an MDS code [89, Proposition 4.2]. In Section 6.3.3 a family of MDS codes
with various block lengths and dimensions is applied to construct a parallel coding

scheme. Two alternatives are suggested:

1. Shortened RS codes: Consider a (2™ — 1,k) RS code over the Galois field
GF(2™). Deleting 2™ — 1 — S columns from the generator matrix of the con-

sidered code results in an (.S, k) linear block code over the same alphabet. The
resulting code is an (S, k) MDS code over GF(2™).

2. Generalized RS (GRS) codes: GRS codes are MDS codes which can be
constructed over GF(2™) for every block length S and dimension k (as long as
m 1> 89).

Remark 6.3 (On the determination of codewords in RS and GRS codes)
Our main interest in MDS codes is due to Corollay 6.1. This property is even more
appealing for the case of RS or GRS codes because the determination of a codeword

in RS or GRS codes is based on a polynomial interpolation over finite fields (see, e.g.,
89, p. 151)).

6.2 Stochastically degraded parallel channels

The polarization properties of stochastically degraded parallel-channels are studied

in this section.

Definition 6.3 (Stochastically degraded channels) Consider two memoryless
channels with a common input alphabet X, transition probability functions P, and P,
and two output alphabets Y, and ), respectively. The channel P; is a stochastically
degraded version of channel P if there exists a channel D with an input alphabet )

and an output alphabet ), such that

Py(yolr) = Y Pi(n|z)D(yalwn), Vo € X,ys € Vs, (6.5)

Yy1€V1

Lemma 6.1 (On the degradation of split channels) Let P, and P, be two tran-
sition probability functions with a common binary input alphabet X = {0,1} and
two output alphabets Y, and ), respectively. For a blocklength n, the split channels
of P, and P, are denoted by Pl(l,)L and Pz(,l,)”

the channel P, is a stochastically degraded version of channel P;. Then, for every

respectively, for all [ € [n]. Assume that
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[ € [n], the split channel Pz(l,)L is a stochastically degraded version of the split channel
P

1n

Proof: The proof follows by induction. First, the case of n = 2 is considered. For

every (yz,1,¥2,2) € V3 and u; € X

a 1
P2(,12)(y2,1> Y2,2|u1) & Z §P2(y2,1|u1 + u2) P2 (ya,2|uz)

U2EX

b 1
® 3 ; > Pilyralus + u2)D(y2alyr1)

ug€X Y1,1€EM1

Z P (y1,2 |U2)D(y2,2|y1,2)

Y1,2€V1

=5 Z D(y2,11y1,1) D (y2.2]y1,2)

(y1,1,y1,2)€V?

Z Py (y11|ur + ug2) Pr(y12|us)

u2€X

= Z D(y2,11y1,1) D(y2,2]y1,2) P 1(2)(y1 1, Y1,2|u1)
(1,1,91,2)€VE
where (a) and (c) follow from (5.12), and (b) follows from (6.5). Hence, it is estab-
lished that P2(712) is a stochastically degraded version of Pl(,lz)- Similar arguments verify
that P2(,22) is a stochastically degraded version of P1(22
Next, assume that for ¢ > 1, the split channel P2( i

version of the split channel P1 i for every [ € [2 ‘. Tt is assumed that the degradation

is with respect to the observations over the combined channel outputs. Specifically,

a stochastically degraded

it is assumed that
P (yaulz) = S Dlyaly:) P (y2, ule) (6.6)
NAESRZE

for every I € [2/], y, € Y2, u € X! and z € X. It follows that for every [ € [27]:

- a 1
PL (687 98) ule) @37 P (v g(w)la + u) P, (v e(w)u)

ueX

(®)
1 1) Wy pd) (D)
=Y 33| X b PG v gwle +u)

y\Pey2t

> DYy )PY (v e(w)u)

y{Pey?
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1 1 2 2
= > {D(Y§ NyDE Iy
y2i+l

M yPhe
1 1 1 1 2
> 5P gle + u) PO (v, e(wlu)
ueX
© D, 2 20—1 1 9
9N pPly)DEP ) PAY (v, v), ul)
! (1) (2)) y2b+1

where yé ),y € V¥ ue X%2 5 ¢ X, and the mappings ¢ and e are defined

n (5.14) and (5.15), respectively. The transitions in (a) and ( ) follow from (5.12),

and (b) follows from (6.6). Consequently, the split channel P ApY ay

is a stochastically
degraded version of the split channel Pl(zzl ﬁ for every | € [2']. Similar arguments
verify that for every [ € [2Y] the split channel P2(22l,?+1 is a stochastically degraded
version of the split channel P 22 1. Moreover, the degradation is with respect to the

combined-channel observations in (6.6). n

Remark 6.4 Note that the output alphabets of the split channels Pl(l,)L and PQ(Z,)L are
Yrox X7 and Y5 x XL respectively. In the proof of Lemma 6.1, a particular
degradation is shown, which is with respect to the received vectors over the original
channels (over the alphabets V" and }y) where the split channel observations over

X1 are left unaltered.

Definition 6.4 (Stochastically degraded parallel channels) Let {P,}%_; be a
set of S parallel memoryless channels, and denote the capacity of P, by C for all
s € [S]. In addition, assume without loss of generality that Cy > Cy for all 1 < s <
s’ < S. The channels {P,}5_, are stochastically degraded if for every 1 < s < s’ < S

the channel Py is a stochastically degraded version of P;.

The following corollary is an application of Theorem 5.3 for a set of (stochastically)

degraded parallel channels:

Corollary 6.2 (On monotonic information sets for stochastically degraded
parallel channels) Consider a set of S memoryless degraded and symmetric parallel
channels { P,}%_,, with a common binary-input alphabet X'. For every s € [S], denote
the capacity of the channel P by Cj, and assume without loss of generality that

Ci>2Cy > >Cs.
Fix 0 < # < § and a set of rates {R,}5_; where

0< R, <y, VselS]
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Then, there exists a sequence of information sets A C [n], s € [S] and n = 2° where

1 € N, satisfying the following properties:

1. Rate:
|A®)| > nR,, Vsel[S]. (6.7)
2. Monotonicity:
AP C ASD C ..o AW, (6.8)
3. Performance:
Pr(&(P,)) <27 (6.9)

forall I € AY and s € [S], where &/(P;) is the error event defined in (5.16).

Proof: The rate and performance properties form immediate consequences of
Theorem 5.3 and Proposition 5.3. Nevertheless, it is required to prove that the choice
of the information set sequences can be made such that the monotonicity property
in (6.8) is satisfied. Start with s = S. From Theorem 5.3 and Proposition 5.3, it
follows that there exists a sequence of sets {A%S)} satisfying (6.7) and (6.9). Next,
fix an s’ € [S] and assume that for all s > &', the set sequences { A} can be chosen
such that the properties in (6.7) and (6.9) are satisfied, and in addition

AP C AT C e C ALY, (6.10)

If & = S then (6.10) is satisfied in void. The existence of the sequence {Agfl)}
satisfying (6.7) and (6.9) is already provided by Theorem 5.3 and Proposition 5.3.

It is left to verify that the set sequence can be chosen such that the monotonicity

property

ALY AL (6.11)
is kept. Choose an arbitrary index [ € Aff'“). It is proved that this index corresponds

to the information set for the channel Py. Specifically, the performance property
in (6.9) is satisfied for s = §’. Since Py is a degraded version of Py, then according
to Lemma 6.1, the split channel Ps(,lzrlm
It is clearly suboptimal to first degrade the observation vector y € )y to create a

is a degraded version of the split channel Ps(,lv)n.

vector y € Vg1, and only then detect the input bit x for the degraded split channel.
satisfies the

upper bound in (6.9). As a result, the optimal detection error for the better split

However, the detection error event for the degraded split channel Ps(’l-)i-l,n
channel PS(,{)n must also satisfy (6.9). Hence, all the indices in ASY can be chosen
for the set AY”. The rest of indices are chosen arbitrarily out of the set of possible
indices whose existence is guaranteed by Theorem 5.3. This establishes (6.11), and

the proof follows by induction. |
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Remark 6.5 On good indices for stochastically degraded channels In Corol-
lary 6.2, the existence of a monotonic sequence of information sets is proved for a
degraded set of channels. A subtle inspection of the proof shows that the choice of
the monotonic sequence of sets can be carried sequentially. First, the information set
of the worst channel is specified. Then, as is shown in (6.11), all the indices that are
“good” for the worse channel, are also “good” for the better channel. Here “good”
is in the sense that the corresponding Bhattacharyya constants of the split channels
(which form upper bounds on the corresponding decoding error probability) can be
made exponentially low as the block length increases. Consequently, all that is left
to specify are the rest of the “good” indices for the better channel (which are “not

good” for the worse). The construction then follows sequentially.

Remark 6.6 Under the assumptions in Corollary 6.2, the capacity C; for each of the
channels in {P,}%_, is achieved with equiprobable inputs. In cases where the parallel
channels are not symmetric, a similar result can be shown where the capacities are

replaced with the mutual information obtained with equiprobable inputs.

6.3 The Proposed Coding Scheme

In this section, parallel polar coding scheme is provided for a set of binary-input,
memoryless, degraded, and symmetric parallel channels. First, two simple particular
cases are studied in Sections 6.3.1 and 6.3.2 where transmission over S = 2 and 3
parallel channels is considered. Next, the general case is studied in Sections 6.3.3-
6.3.4.

6.3.1 Parallel polar coding for S = 2 channels

The case of two memoryless degraded and symmetric parallel channels P; and P,
whose capacities are equal (i.e., C = C7 = (%), is first considered. Fix a rate R < C,
and choose a polar code for the channel P, at rate R. Denote the information index
set for the chosen code by AP, According to Corollary 6.2, the same polar code is
suitable for the channel P;. Both polar codes are used with the same predetermined
bit vector b for the indices in [n] \A,?’. As both channels are symmetric, the par-
ticular choice of b can be made arbitrary for these channels. Assume that 2\A,&2)|
information bits are encoded by the two polar codes where \Aﬁf’| bits are encoded
by each code. The particular assignment of information bits to polar codes can be
chosen arbitrarily. Let x; and x5 be the resulting codewords. Since the same polar

code is used for both channels, the mapping of codewords to channels is not relevant
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in this case and the standard successive decoding procedure in [4] can decode both
x; and X, irrespectively of the channel assignments (as long as both codes use the
same predetermined and fixed bits). The overall rate for the described scheme is
%\AS?’L As R < C can be chosen arbitrarily close to C, all rates below Cpy = 2C' are
achievable.

The case where C; > (5 is addressed in the following. Set arbitrary rates Ry < C}
and Ry < (5, and construct a polar code for the degraded channel P,. The polar code
for P; is defined using the information index set AP (where the information bits are
assigned) and the predetermined and fixed bits assigned for the remaining indices in
[n] \ AP, The size of the information set satisfies | AL | > nR,. In contrast to polar
codes used for a single channel, in the case of polar codes designed for transmission
over S = 2 parallel channels, not all the symbols corresponding to indices from the
set [n] \Ag) are assigned as predetermined and fixed bits. According to Corollary 6.2,
the choice of AY can be made such that A'? C AW and \As)\ > nR;. As the case
of equal size information set can be treated similarly to the case above with C = (),
it is assumed that A c AL (i.e., a strict inclusion is assumed). For the indices
specified by [n] \ A, predetermined and fixed bits

b e x4 (6.12)

are chosen in the recursive construction of the codeword x;. The vector b is also used
for the same indices in the recursive construction of the second polar codeword xs,

i.e., the indices in [n] \ A% where
0]\ AD C 1]\ AP

It is left to determine the status of the bits corresponding to the the indices in the

set

([N AP) N (] \AD) = AP\ AP (6.13)

for the construction of the second codeword. Note that if the design of polar codes for
a single channel is considered, the indices in (6.13) are information indices for the polar
code designed for the channel P;, but they should correspond to predetermined and
fixed bit indices for polar coding over the channel P,. For parallel polar coding, on the
other hand, the bits corresponding to the indices in (6.13) for the second codeword are
set to be the same as the information bits encoded by the first codeword. Therefore,
the set of bits for the recursive construction in the indices of (6.13) are called the
repetition bits.

To describe the encoding procedure in terms of coset coding, recall the equivalence

between the recursive construction and coset coding as stated in (5.7). Let k; = \As)|
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and ky = |AP|. Denote the information message bits by u; € X*2, u, € X%
and u, € X*7%2 The vector u, includes the repetition bits of the parallel polar

construction. The first codeword is given by
x; = WG, (A?) + u,G, (AP \ AP) +bG, ([n] \ AV) (6.14)

where b designates the vector of the predetermined and fixed bits in (6.12), and G,

is the polar generator matrix. Note that x; satisfies
x1 = mi(u, u,) - Gy, (AD) +bG, ([n] \ AD)

where m; (up, u,) € X* is a proper permutation of the vector (uy, u,). Therefore, the
definition in (6.14) is equivalent to the polar coding in (5.7). The second codeword

is given by
Xy = WG, (A?) + u,G, (AP \ AP) +bG, ([n] \ AV). (6.15)

As mentioned, this is almost like a standard polar encoding where the difference is
that some of the predetermined and fixed bits form a repetition of information bits.

In fact, the second codeword can be written by
Xy = UGGy, (Af)) + ms(u;, b) - G, ([n] \Af))

where ms(u,, b) is a proper permutation of the vector (u,,b).

The decoding starts with the channel P, whose capacity is maximal (C; > C3). No
matter what the actual codeword is transmitted over P; (either x; or x3), a standard
polar successive cancellation decoding procedure is applied to decode the set of infor-
mation bits corresponding to the indices in AY I x; is the codeword transmitted
over P;, then the bit vectors u; and u, are decoded. Else, if the codeword x5 is trans-
mitted over the channel P;, then uy and u, are decoded. Next, recall that the vector
b is predetermined and fixed. In addition, the repetition bit vector u,, corresponding
to the indices in (6.13), are already decoded after the previous decoding step. Note
that the vector u, is available after the first decoding step irrespectively of the actual
transmission assignment of the codewords x; and x5 to the parallel channels. Hence,
using the repetition bits u, as if they are predetermined, the successive cancellation
decoding can be applied to the channel P,. If x; is transmitted over P; and x5 is
transmitted over P, then the bits uy are decoded using the successive cancellation
decoding where my(u,, b) are used as predetermined and fixed bits. Otherwise, if x
is transmitted over P; and x; is transmitted over P, then the bits u; are decoded
using the successive cancellation decoding where again ms(u,, b) are used as prede-
termined and fixed bits. This completes the decoding of all the information bits. As
Ry < C7 and Ry < (5 can be chosen arbitrarily close to C; and Cy, respectively, then

the transmission rate Cy + Cy is achievable.
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6.3.2 Parallel polar coding for S = 3 channels

Assume that a parallel coding scheme is applied for communication over a set of three
parallel channels P;, P, and P;, whose capacities are C; > Cy > (3, respectively.

According to Theorem 6.1, the capacity Cp in this case satisfies
Cn=0Cy+Cy+Cs.

Fix the rates Ry > Ry > Rjg, satisfying R, < C for all s € [3], and let
R£ Ry + Ry + Rs.

In the following, a parallel polar coding scheme of rate R is described that achieves
reliable communication. Therefore, the proposed scheme achieves the capacity Cp by
selecting the rates R;, Ry, and R3 to be close, respectively, to C, Csy, and C3, and
satisfy the above condition for the rate triple.
Let {ASLS)} be the information set sequences as in Corollary 6.2. Fix a block length
n, let
ke 2 1AV, s €3]

and
k2 k4 ky + ks

The encoding of k information bits to 3 codewords: X7, X5, and X3 is defined. First,
the information bits are arbitrarily partitioned into three groups of sizes ki, ko and

ks. Next, the encoding of the first two codewords is performed as follows:

e The k; information bits used to encode x; are (arbitrarily) partitioned to three

subsets: up; € X, wyp € X7 and u, € AN

e The ky information bits used to encode x5 are (arbitrarily) partitioned into two
subsets: up; € X% and uy, € X%, In addition, u, (used for encoding x;)

is also involved in the encoding of x».

e The codewords x; and x5 are defined similarly to the case of S = 2 parallel

channels. Specifically, in terms of coset codes:

X1 = ll171Gn (.Ag’)) + u1726'171 ('Ag) \AS’))

Gy (AP AD) + 56 (] | AD) (6.16)
X9 =— 11271Gn (Ag)) + U—2,2Gn (Af) \‘Ag))
UG (A9 AD) +bGy ([n] | AY) (6.17)

where b € X" * is a predetermined and fixed vector.
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The encoding of the codeword x3 is based on the remaining k3 information bits,
denoted by ug € X*3. In addition, the information bits in u; 2, Uz and u, are also

involved in the encoding of x3:

x5 = u3G (AD) + (w2 + us2) G (AP \ AD)
+u, Gy (AD N\ A®) +bG,, (0] \ AD) .

Note that the repetition approach is also done for the indices in [n] \A,(E). However,
a different approach is applied to the indices in Aﬁf) \ AS;"”. The bits corresponding
to these indices are set using a symbol-wise parity-check of u; o and us .

The order of decoding the information bits for all possible assignments of code-
words over a set of three parallel channels is provided in Table 6.1. The decoding
starts with the channel P, with the maximal capacity C. Irrespectively of the actual
codeword that is transmitted over Py, the bits which correspond to the indices in ALY
are decoded using the standard polar successive cancellation decoding. The decoded
bits depend on the actual codeword which is transmitted over P;. Next, the decod-
ing proceeds to process the vector observed at the output of the channel P, whose
capacity is Cy. The decoding of \AS?’\ information bits is established in this decoding
step. Note that for a standard successive cancellation decoding procedure, n — \A%2)|
predetermined and fixed bits are required for proper operation. For the case at hand,
these bits are not all predetermined and fixed. The vector b is predetermined, but the
rest depends on the repetition bits u,. Since the bits u, were decoded at the previous
decoding stage (based on the observation vector of P;), they can be treated as if they
are predetermined and fixed for the decoding of x5. Consequently, |.A§Lz)| information
bits are decoded (depending on the actual codeword transmitted over the channel P).
Finally, the decoding proceeds for the vector received at the output of the channel
P3. As in the previous decoding steps, the polar successive cancellation decoding is
applied where the bits corresponding to the split channels indexed by [n] \AS;"” are
not all predetermined and fixed (as in contrast to the standard single channel case).
Nevertheless, these bits can be all determined using the information bits decoded in
the two first steps. The bits in b are predetermined and fixed. The repetition bits
in u, are already available after the decoding of the information transmitted over
P;. The rest, can be evaluated by taking a bit-wise exclusive-or (xor) of the bits
decoded in the two previous steps. As an example, a combination shown in Table 6.1
is described explicitly. Consider the case where the codeword x; is transmitted over
the channel P;, and the codeword x3 is transmitted over the channel P,. At the first
decoding step, the vectors ug;, uss and u, are decoded (where the predetermined

bits refer to the vector b). Next, the vectors us, and u; s + us, are decoded (the
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Channel P; Channel P> Channel P3
Transmitted Decoded Transmitted Decoded Transmitted Decoded
Codeword Information Codeword Information Codeword Information
X1 ui,1, U1,2, Ur X2 uz 1, u2:2 X3 us
X3 usz, uj 2 + ug 2 X2 u2 1
X2 uz1, U2,2, Ur X1 uj 1, U2 X3 us
X3 uz, u;2 +u2:2 X1 uj 1
X3 uz, ui,2 +Uu22, ur X1 ujp 1, Ui 2 X2 ug 1
X2 uz i, Uz2 X1 ui,1

Table 6.1: The order of decoding the information bits for all possible assignment of
codewords over a set of three parallel channels

pretermitted bits for this decoding stage refer to b and u,). After this stage, the

information bits u; » can be determined by
Uz 2 + (111,2 + 11272) .

Moreover, the information bits u; o are used for the last decoding stage as predeter-
mined and fixed bits (together with the vectors u, and b). After the last decoding
stage the vector u; ; is decoded, and the decoding of all the information bits is com-
pleted.

To complete the current discussion, the case where some of the channels have
equal capacities is concerned. One option is the trivial case where C; = Cy = (5. For
this case, a regular polar encoding and decoding is applied. As long as the channels
are degraded and symmetric, the information index sets and the predetermined and
fixed bits are the same for all transmitted codewords. Consequently, irrespective of
the selected permutation at the transmission, all the information bits can be decoded.
The treatment of the case C; > 'y = (3 can be treated in a similar fashion to the
case of S = 2 parallel channels. For the case where C; = Cy > (C}, the parity-check

construction should be applied.

6.3.3 Parallel polar coding for S > 3 channels

C.1. Encoding

A parallel polar encoding is described for the general case. The technique used for
rate-matching encoding in [116] is incorporated in the current case as well. This
technique is based on MDS codes, in particular (punctured) RS codes are used in
[116] for rate splitting. As commented in Section 6.1.2, GRS codes can also fit for
the provided construction. A set of S —1 MDS codes over the Galois field GF(2™),
all with a common block length S are chosen (either by puncturing an appropriate
RS code or using GRS codes). These codes are denoted by Cls/lfl)js, k €[S — 1], where

the code CIE/IE)DS has dimension &.
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Let {P,}5_, be a given set of memoryless degraded and symmetric parallel chan-
nels, whose capacities are ordered such that C; > Cy > --- > Cgs. Let {Aﬁf) 5
be the information index sets satisfying the properties in Corollary 6.2, for a block
length n and rates Ry > Ry > --- > Rg, Ry < Cy, s € [S]. Define

ks = |AP)], s €[9]

and

ksi1 = 0.

In addition, it is assumed that n and kg for all s € [S], are integral multiples of m.
In the provided coding scheme, k = Zle ks information bits are encoded into S
codewords x;, s € [S]. As the rates R, s € [S] can be chosen arbitrarily close to Cj,
respectively, the capacity Cpy in (6.3) is shown to be asymptotically achievable (the
error performance is considered in Section 6.3.4).

Prior to the stage of polar encoding, the k information bits are first mapped into

a set of binary vectors
U="{u,, e XPs-thimks—ir2 . g ] ¢ 151}

The S- kg bits in the vectors uy 1, s € [S] are plain information bits, chosen arbitrarily

from the set of k information bits. The vector set

C2 = {u572 = (u872(1)>u8,2(2)> cee >us,2(k5’—l - kS)) NS [S — 1]}

are also filled with plain information bits, chosen arbitrarily from the set of remaining
k — S - ks information bits (note that under the above assumptions k — S - kg > 0).
Next, the vector ugy is determined (the following steps are accompanied with the

illustration in Figure 6.2):

1. Each vector in Cy is rewritten as a row vector of a matrix over GF(2™) (this step
is illustrated in Figure 6.2 where each vector is represented with a horizontal
rectangle). Each m consecutive bits are mapped into a symbol over GF(2™).
This results in the (S — 1) x Kg_; g matrix over GF(2")

o — (C.@)), ie[S—1], j€[Ks sl

Zh]

where

ko1 —k
Kg_1g2 2L 75

)

m
The element CZ-(? is the symbol over GF(2™) corresponding to the binary length-

m vector

(um((j — 1)m + 1), ui’g((j — 1)m + 2), e, W2 (jm))

where i € [S — 1] and j € [Ks_1g].
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2. Each one of the columns of C'® are considered as the first S — 1 symbols of a
codeword in the code Cﬁfgsl ). These columns are illustrated with dashed vertical
rectangles in Figure 6.2. Consequently, these columns completely determine the

codewords {c;: j € [Kg_15]} in the MDS [S, S — 1] code Cﬁfgsl).

3. A length-Kg_1 g vector tigs over GF(2™) is defined using the last symbol of
each of the codewords c;, j € [Kg_1,s], evaluated in the last step. Each of these
symbols is illustrated as a filled black square in Figure 6.2.

4. The vector ugy is defined by the binary representation of the vector tigo where
each symbol over GF(2™) is replaced by its corresponding binary length-m

vector.

m bits m bits

- > - >

Pt —

| |

“ ug o | ! | ‘

| I

! | ! |

! | ! |

! | ! |

I I ;

L1z | |
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Figure 6.2: Illustration of the construction of the vector tigs. The vectors uyg,

k € [S — 1] defining the matrix C® are shown, along the columns defining the

codewords c;, j € [Kg_1 5 in Cﬁ/}qD_sl)

The definition of the remaining vectors in U continues in a similar way. Let
2 <1 < S, and assume that the vectors usy are already defined for all s € [S] and

I" <1, based on
l/

Z(S — (5= 1)) (ks—(s=1) — ks—(s—2))

s=1
information bits (from a total of k£ information bits). The construction phase for the

vectors Uy, s € [S] is defined as follows:
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1. The binary vector set
Cl:{us,l: 1§8§S—(l—1)}

are filled with
(S = (=1) (ks—q-1) = ks—u-2)

arbitrarily chosen information bits, out of the remaining

[ Z(S — (s = 1)) (ks—(s—1) — ks—(s—2))

information bits.

2. Each vector in C; is rewritten over GF(2™) as a row vector in an (S — (I —1)) x

KS—(l—l),S—(l—2) matrix over GF(Qm)
O — (W

where
a ks—q-1) — ks—u-2)

m

Ks_q-1),5-1-2)

and CY, i € (S = (—1)], j € [Ks—(-1),5-1-2)], equals the symbol in GF(2™)

Zh] ’

corresponding to the binary length-m vector
(w0((G = D+ 1), 0 (G = Dm +2), . wia (m) ).

3. Each column in Cj is a vector of S — (I — 1) symbols over GF(2™). Hence, it
completely determines a codeword ¢; = (¢;1,¢j2,---,¢55), § € [Ks—-1),5-1-2),
in the MDS [S,S — (I — 1)] code Cﬁfgs(l_l)). The columns of C; are considered
as the first S — (I — 1) symbols of a codeword in the code cﬁfggl‘l”.

4. Evaluate the remaining symbols for each of the codewords
cj, J € [Ks_-1).5-1-2)-

5. The 1el’lgth—KS_(l_1)7S_(l_2) vectors l~137l = (ﬂ&l(l), e 7ﬂs,l(KS—(l—l),S—(l—2)))7 S >
S—(l—1), over GF(2™) are defined using the codewords c;, j € [Ks_q-1),5—(1-2)]
according to

ﬂs,l(j) =Cjs-

6. Forevery s > S—(I—1), The vector u,, is defined to be the binary representation
of the vector ,,; (where each symbol over GF(2™) is replaced with its binary

length-m vector representation).
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The parallel polar codewords are defined using the coset code notation. Specifi-

cally, the codewords x4, s € [5], are defined according to

s
X, = Z u, G, (Aﬁf‘(l‘l” \A%S_(l_z))) + bG,, ([n] \Aﬁj)) , self] (6.18)

=1

where AT 2 and b € X" is a binary predetermined and fixed vector.

C.2. Decoding

The decoding process starts with the observations received at the output of the chan-
nel P, whose capacity is maximal. Assume that the codeword z,-1(1) is transmitted
over P;. A polar successive cancellation decoding, with respect to the information
index set As), is applied to the received vector. This allows the decoding of the vec-
tors u,-1(1),, [ € [S] (as if they are the information bits of the considered polar code).
If 771(1) = 1, then indeed all the vectors u,-1(1); = uyy, [ € [S] are information bit
vectors. Generally, only a subset of these vectors comprise of information bits, the
rest are coded binary representation of coded symbols of the chosen MDS codes.

At the second stage, the decoding of the received vector over P,, which denotes
probability transition of the channel with the second largest capacity, is concerned.
Assume that the codeword x,-1(9) is transmitted over /. A polar successive cancel-
lation decoding is used. This decoding procedure is capable of decoding |A£LZ)| bits
based on n — |.A§Lz)| predetermined and fixed bits. For the current decoding proce-
dure, n — \As)\ of these bits are the predetermined and fixed bits in b. The rest
of |A£Ll)| - |A£LZ)| bits are based on the bits decoded at the previous decoding stage.
Specifically, the bit vector u,-1(2) s can be evaluated using the bit vector u -1 s.
Recall that u,-1(9) ¢ is the binary representation of Q;-1(2) 3. Moreover, each of the
symbols of ;1) ¢ belongs to a codeword in the [S,1] MDS code Cﬁl)js. These

codewords are fully determined from the vector ur-1(;) g as follows:

1. Rewrite the vector u,-1(1)g over GF(2™) where each consecutive m bits are

rewritten by the corresponding symbol over GF(2™). Denote by

ﬁﬂ*l(l),s — (’aﬂ-fl(l)’s(l), ey 1]”71(1),5(K172))
the resulting length- K 5 vector over GF(2™).

2. For each symbol tiz-1(1),5(j), j € [K1 2], find the codeword
1
¢ = (Cj1,---,C5) € Clibg

whose 771(1)-th symbol satisfies Cjm11) = Ur—1(1),5(j). These codewords are

fully determined by the considered symbols.
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3. Define the vector

Ur1(2),5 = (Ur-102),5(1), ., Up-1(2),5(K12))
according to tiy-1(2),5(j) = ¢j»-1(2) for every j € [K ).

4. The vector
1028 = (Un-1(2),5(1), .., Up—1(2),5(k1 — k2))

is set to the binary representation of t,-1(5) ¢. That is, the bits

Ur1(2),5((J = D)m +1),... Uz1(2),5(jm)
are the binary representation of the symbol

Ur-1(2),5(J) € GF(2™), j € Ko

With both b and ur-1(2)s as predetermined and fixed bits, the polar successive
cancellation decoding can be applied. Consequently, after the second decoding stage,
all the S binary vectors u.-1(s),, 5 € [S], are fully determined. Moreover, based on
the codewords c;, j € [K 2], the vectors u,-1,) g, are fully determined for all s > 2
as well.

Next, the remaining S — 2 decoding stages are described. It is assumed that
after the (s — 1)-st decoding stage, where 2 < s < S, the vectors u,-1(yy; for either
1<¢d <sandle[S],ors >sand S—s+3<1<S, were decoded at previous
stages. At the s-th stage, the decoding is extended for the vectors u,-1(y,; for all
[ € [S] and the vectors ur-1(y g—s12 for all s" € [S].

In order to apply the polar successive cancellation decoding procedure to the
vector received over the channel P, the bits in b and {u;-1(5),;}i>5-(s—2) must be
known for the procedure. The vector b is clearly known. In addition, the bits in
{ur-1(s)1 }1>5—(s—3) are already decoded in previous stages. It is left to determine the
bits in U;-1(5) 5—(s—2). These bits are determined in a similar manner as in the decoding
stage for s = 2, where the vector u,-1() g is determined. Moreover, the determination
of Ur-1(5),5—(s—2) is established along with the determination of u,-1(s g_(s—2) for all

s’ > s, in the following way:

1. The binary vectors u;-1(y) g_s42 for s < s are already decoded at previous
stages. Rewrite these vectors over GF(2™) where each consecutive m bits are
rewritten by the corresponding symbol over GF(2™). Denote the set of resulting

vectors by

D= {ﬁﬂfl(s’),s—s-‘,& = (aﬂfl(s’),s—s-‘,&(l)a - >ﬂ7r*1(s’),S—s+2(Ks—l,s)) D8 < S} .
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2. The set D completely describes K_; ; codeword
C; = (Cj,la sy Cj,S)7 ] € [Ks—l,s]
all in the code Cﬁgé) and satisfy the constraints:

Cjﬂ.r—l(sl) — ﬂwfl(s’),s—s-i-Q(j)a 1 S S, < S. (619)

3. Define the vectors

Ur—1(s"),8—s+2 = (awfl(S’),S—s+2(1)7 R aﬂ’l(s')75—s+2(Ks_Ls))
for all s > s by
Un1(s)5-s42(7) = Cimr(wy, J € [Koo1s).

4. The vectors U;-1(y) g—s42 are determined for all s’ > s by the binary represen-

tation of W15 g—st2-

Based on successive cancellation at the current decoding stage, the k, bits corre-
sponding to the information set AY) are decoded. This completes the decoding of all

the binary vectors u,-1(y; for I € [S].

Remark 6.7 (On channels with equal capacities) The case where for an index
s' € [S], Cy = Cyyq is treated by skipping the construction of Cy. The coset code-
words are defined by

s'—1
X, = Z u,, G, (AS_U—U \A,‘f_(l_2))

=1

+ uS,S’-i-lGn (.ASLS_S/) \A%S—S’—m))
s
+ Z u, Gy, (.Ang—(l—l)) \A7(15—(1—2))) +bG, ([n] \AS)) Csels
I=s'+2

At the decoding stage, two consecutive polar successive cancellation decoding can be

performed for both vectors received at the output of the channel Py and Py ;.

6.3.4 A Capacity-approaching property

Theorem 6.2 The provided parallel coding scheme achieves the capacity of every

arbitrarily-permuted memoryless degraded and symmetric set of parallel channels.
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Proof: Consider a set of S arbitrary-permuted degraded memoryless parallel
channels P, s € [S], whose capacities are Cs, s € [S], respectively, and assume that

the channels are ordered so that
Ci>Cy > >0Cs.

According to Theorem 6.1, the capacity Cp for the considered model is equal to the
sum in (6.3). For a rate R < Cfy, choose a rate set { R, }5_, satisfying

R, < C,
S
> R, >R (6.20)
s=1

The parallel polar coding in Section 6.3.3 is considered. The rate of the proposed

scheme is given by

18

—> AL

n s=1
From (6.7) and (6.20), it follows that the proposed scheme can be designed to operate
at every rate below capacity. It is left to prove that the block error probability of the
proposed scheme can be made arbitrarily small for a sufficiently large block length.

Consider the vectors
u,, s,lel9) (6.21)

in (6.18). These vectors include all the information bits to be transmitted (in ad-
dition to coded versions of these bits). These vectors are determined either via the
successive cancellation decoding procedure of the polar codes, or determined by the
MDS code structure applied in the parallel scheme. The successive cancellation de-
coding procedure is based on detecting the input to the set of split channels Ps(l%
where s € [S] and | € AP The information bit corresponding to a split channel
PS(QL, is denoted by as;. Note that the bit a,; is either determined by the successive
cancellation decoding procedure for polar codes, or else determined by the codeword
of an MDS code for which it belongs to. In cases where the bit a,; is decoded via a
polar successive cancellation decoding procedure, the decoded bit is denoted by as .

The bits decoded via polar successive cancellation decoding procedure, based on

the received vector at the output of the channel P, s € [S], are
s, le A, (6.22)

Note that the bits in (6.22) do not include all the bits in (6.21). Nevertheless, the
rest of the bits in (6.21) are fully determined from the decoded bits in (6.22) based

on the MDS code structure (as detailed in the previous section).
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Assuming that a permutation 7 is applied to the transmission of codewords, define

the events
For 2 s # a1, oy = agr: forall 8 <s,0' <1}

where s € [S] and [ € A, Since all the information bits can be fully determined
from the bits in (6.22), the conditional block error probability is given by

P = Pr (U, U o0 Fi)

where m is the transmitted message (representing the k information bits). According
to Proposition 5.3, the events &(Ps) for s € [S] and [ € A defined in (5.16), are

independent of the transmitted message. Moreover, it follows that
-Fs,l g 8l<Ps)

Consequently, the average block error probability is upper bounded using the union
bound according to
P.< Y N Pr(&(R) (6.23)
s€[S] e Al
Finally, plugging the upper bound on the error probability (6.9) into (6.23), assures
that for every fixed S > 0, the block error probability can be made arbitrarily low as

the block length increases. [ ]

6.4 Parallel Polar Coding for Non-Degraded Par-
allel Channels

6.4.1 Signaling over Parallel Erasure Channels

The following proposition, provided in [56], considers the Bhattacharyya parameters

of the split channels:

Proposition 6.2 (On the worst Bhattacharyya parameter) [56] Let p be a
binary-input memoryless output-symmetric channel, and consider the split channel
pgf) where [ € [n]. Then, among all such binary-input memoryless output-symmetric
channels p whose Bhattacharyya parameter equals B, the binary erasure channel has

the maximal Bhattacharyya parameter B(pg)), for every [ € [n].

The proof of Proposition 6.2 is based on a tree-channel characterization of split

channels, in addition to an argument which is related to extremes of information
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combining. Based on Proposition 6.2, a polar signaling scheme is provided in [56] for
reliable communication in a compound setting. A similar technique is used in the
following for the parallel channel setting.

Consider the parallel transmission model in Section 6.1.1. In this section, it is
assumed that the parallel channels are binary-input memoryless and symmetric, but
are not necessarily degraded. We further assume, without loss of generality, that the

set of parallel channels {Ps}c[s), are ordered such that
B(P) < B(P») < ... < B(Ps)

where B(P,) is the Bhattacharayya parameter of the channel Py, s € [S] (note that
the Bhattacharyya parameter varies from 0 to 1 with extremes of zero and one for
a noiseless and completely noisy channels, respectively). Next, consider the set of
parallel binary erasure channels, {d, }sc|s) Where the erasure probability of the channel
ds equals B(FPs), s € [S]. These erasure channels form a family of S stochastically
degraded channels. Consequently, based on Theorem 6.2, the parallel polar coding
scheme in Section 6.3.3 achieves a rate of S — 5.2 B(P,) over the set of erasure
channels, under the successive cancellation decoding scheme detailed in Section 6.3.3.
The following corollary addresses the performance of the same coding scheme over

the original set of parallel channels:

Corollary 6.3 The polar coding scheme for the parallel erasure channels, operates

reliably over the original parallel channels.

Proof: The suggested coding scheme performs reliably over the parallel binary era-
sure channels. The decoding process, as described in Section 6.3.3, includes a sequence
of successive cancellation decoding operations applied to the polar codes over each
one of the parallel channels. As shown in the proof of Theorem 6.2, reliable com-
munication is obtained based on reliably decoding each of the successive cancellation
operations. It is therefore required to show that the successive cancellation over the
original channels {P;},c(s) can also be carried reliably, this follows as a consequence
of Proposition 6.2. Denote the sequences of information sets chosen for reliable com-
munication over the erasure channels {J;}cis) by {Aﬁf)}se[s]. Each one of these sets
satisfies the properties in Theorem 5.3. Fix an arbitrary channel P, from the set
of parallel channels, and an arbitrary index [ € A, Consider next the error event

&E(Ps) in (5.16). According to Proposition 5.3, this error event is upper bounded by

Pr(E(P) < B((P)Y) (6:24)



CHAPTER 6. PARALLEL POLAR-CODING 177

where B((Ps)gf)) denotes the Bhattacharayya parameter of the split channel (Ps)g).
From Proposition 6.2, it follows that

B((R.)y) < B((8,)7)) (6.25)

where B((és)g)) is the Bhattacharayya constant of the split channel (55)59. Fix 0 <
B < 5 as in Theorem 5.3. From (6.24) and (6.25), it follows from Theorem 5.3 that

Pr(&(P)) <27

Consequently, the successive cancellation decoding operations can be carried reliably

for each one of the original channels, which completes the proof. [ ]

6.4.2 A Compound Interpretation of Monotone Index Set
Design and Related Results

The parallel coding scheme provided in Section 6.3 is based on a monotonic sequence
of index sets {Aﬁf)}se[g] satisfying the conditions in Corollary 6.2. As explained
in Remark 6.5, the index sets in AS’, s € [S] are ‘good’ for all the channels Py,
s’ > s. Here, as in Remark 6.5, ‘good’ means that the corresponding Bhattacharayya
parameters of the corresponding split channels satisfy the polarization properties
in Theorem 5.3. The index set sequences {A,(f)}se[s} are applied in this paper to
parallel transmission. Even though the compound setting and the problem of parallel
transmissions are at first glance different, the actual problem of finding an index sets
which is ‘good’ for a set of channels is similar to the problem studied in [56] in the
compound model.

In the compound setting, the transmission takes place over one channel which
belongs to a predetermined set of channels. It is assumed in the current discussion
that (only) the receiver knows the channel over which the transmission takes place.
If a polar code is applied in such a compound setting, then a suitable index set is
required. Such an index set must be ‘good’ for all the channels in the set. The
maximal rate over which such a polar coding scheme performs reliably is termed as
the compound capacity of polar codes. Obviously, the compound capacity relates to
the size of possible ‘good’ index sets.

Upper and lower bounds on the compound capacity of polar codes under successive
cancelation decoding are provided in [56]. These bounds are defined using the notion
of tree-channels. Let p be a binary-input memoryless output-symmetric channel.
For a binary vector of length k, 0 = (01,09, ...,0%), the tree-channel associated to

o is denoted by p?. The actual definition of the tree-channel is not required for
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the following discussion, and is therefore omitted (the reader is referred to [56] and
references therein for more details). It is noted that the tree-channel is also binary-
input memoryless and output-symmetric. Moreover, it is further noted in [56] that the
tree-channel p?, is equivalent to the split-channel pg) where ¢ is the binary expansion
of [.

Let {P,}sc(s) be a set of S binary-input memoryless output-symmetric channels.
It is shown in [56] that the compound capacity for the considered setting C'({Ps}se(s))

is lower bounded by!

1 o
ce{0,1}k

where £ € N and B(PS" ) is the Bhattacharyya parameter of the tree-channel P?.
Moreover, this lower bound is a constructive bound. That is, the construction of
an appropriate index set sequence A, ({Ps}se[s]) is inherent from the lower bound.
The polar code corresponding to this index set has an asymptotically low decoding

error probability under successive cancellation decoding (for every channel in the set
{PS}SG[S])'

Corollary 6.4 (Improved parallel polar coding scheme) Consider the transmis-
sion over a set of parallel binary-input memoryless and output-symmetric channels
{Ps}seis). Fix an order Py, P,, ..., Py, of channels and k € N. Then, reliable trans-
mission is achievable based on the parallel polar coding scheme in Section 6.3, whose

rate is given by

o SS)+S—1—— >y nax B(P") (6.27)

s€[S—1] o€{0, 1}k

Proof: Define the channel sets

Psé{Psi}f:sa SG[S]'

!The actual derivation in [56] is provided for two channels P and Q. Nevertheless, the arguments
n [56] are suitable for the case of S > 2 channels. The proof of the bounds in [56] is based
on two major arguments. The first argument consider a sequential transformations of a given
channel P to a sequence of sets of tree-channels. Initially, the channel P is transformed into a
pair of tree-channels P° and P'. Next, each of these tree-channels is transformed again to another
pair, and the transformation repeats recursively. It is shown that instead of transmitting bits
corresponding to indices induced by the polarization of the original channel P, at each transformation
level k, the problem is equivalent to transmitting a fraction 2% of the bits based on the indices
induced by the polarization of the corresponding tree channels {P?},c1o13+. The first argument is
therefore not affected by the number of channels (as it concerns a property of a single channel). The
second argument is identical to the more simple polarization scheme detailed in Section 6.4.1. This
polarization scheme, based on binary erasure channels, can be applied to every set of tree-channels
{P7}s_,, o € {0,1}*. Based on this polarization scheme, a rate of 5r (1 — maxses) B(P7)) is
guaranteed for each o € {0, 1}*.
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For each channel set P, s € [S], the compound setting is considered. Based on the
lower bound in (6.26) and its associated index set sequence, a set sequence A, (735)

exists for every s € [S], such that

1 1
SAUP) =1 D)

oe{0,1}F

Zer{rslaxs} B(PY) (6.28)
and reliable decoding is guaranteed for all the channels in the set Py under successive
cancellation decoding. As an immediate consequence of the construction, for every
n, the index sets form a monotonic sequence (i.e., if an index is ’good’ for a set of
channels, it must be ’good’ for a subset of these channels). Therefore, the monotone
set sequences for the polar construction is provided and the parallel polar scheme in
Section 6.3 can be applied. The rate of the resulting scheme is given by summing
over the rates in (6.28) which adds to

S——Z Z max BP")

s€lS] oefoapk
Since the last channel set Pg includes just a single channel P, the compound setting
is not required for this set. For the last set the information index set of the polar
coding construction (in Section 5.1.2) is therefore applied. The resulting rate of the

parallel scheme is improved and given by (6.27). n

Remark 6.8 (Possible order of channels) The channel order may be an impor-
tant parameter for the provided parallel scheme (in terms of achievable rates). The

channels may be ordered by their capacity, where
C(P81) < C(P82) <o < C(PSS)‘

However, we have no evidence that this order results in the maximal achievable rate

(or that it is optimal in any other sense).

Remark 6.9 (An upper bound on parallel polar capacity) For each set P,
s € [S], the upper bound in [56] on the compound capacity can be applied to upper
bound the size of the existing index sets A, (735). According to [56, Theorem 5], the
resulting rate is upper bounded by?

1 a
o Z min [ (P )

O'E{O,l}k ZE{S, 75}

2As in the case of the lower bound, the actual derivation in [56] is provided for two channels
P and Q. Nevertheless, the arguments in [56] are suitable for the case of S > 2 channels. The
proof of the considered upper bound is based on two major arguments. The first argument is a
transformation of a channel to a sequence of sets of tree-channels (the same as in the lower bound).
Then, for each such set, the maximal achievable rate is upper bounded by the minimal capacity of
the channel capacities.
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for every k € N, where [ (Ps‘j) is the capacity of the corresponding tree-channel P7.
Since for the last channel set, which is a set of a single channel, we have no compound
setting (as explained in the proof of Corollary 6.4) the maximal rate at which the

parallel polar coding scheme proposed in Section 6.3 can operate reliably is given by

Z Z e?;un I Z).

sE[S 1] c€{0,1}F

An example is provided in [56], demonstrating the the concerned bound can be smaller
than each of the channel capacities. Specifically, the example in [56] is based on a
BSC with a crossover probability of 0.11002 and a BEC whose erasure probability
is 0.5. Both of these channels corresponds to a capacity of 0.5 bits per channel use.
However, as demonstrated in [56, Example 6], their compound capacity is upper
bounded by 0.482 bits per channel use. Consequently, if the parallel polar coding
scheme in Section 6.3 is applied for the same two channels, the possible rate of such
a parallel coding scheme is upper bounded by 0.982 bits per channel use where the

parallel capacity is given by 1 bit per channel use.

6.5 Summery and Conclusions

A parallel polar coding scheme is provided in this chapter for binary-input arbitrarily-
permuted memoryless and output-symmetric parallel channels. The provided polar
codes are shown to achieve the capacity of the considered model where the channels
are assume to be stochastically degraded. For the non-degraded case an upper and
lower bounds on the achievable rates are provided. A generalization to non-binary

parallel polar coding, based on the results in [91], is clear.



Chapter 7

Summary and Outlook

7.1 Summary

The performance of non-binary linear block codes under ML decoding is analyzed in
Chapter 2. We provided a definition of symmetry for memoryless channels with non-
binary input alphabets. Under the provided symmetry condition, we proved that the
conditional error probability under ML decoding is independent of the transmitted
codeword. This result generalizes the well known message-independence property for
MBIOS channels (see also [39] and [40] where the same result was proved under linear-
programming decoding). The main part of Chapter 2 is devoted to the derivation
of upper bounds on the error performance of linear block codes under ML decoding.
We next apply these bounds on ensembles of regular non-binary LDPC codes, and
study their error performance for various communication channel models. In addition,
we provide the exact complete composition spectra for these LDPC code ensembles
(instead of the upper bound in [44]). This analysis forms a generalization of [1§]
and [105] in the binary setting. Finally, we compare the new upper bounds with
sphere-packing lower bounds on the decoding error probability, and show that the
bounds are informative even at the low SNR regime.

In Chapter 3 we provide upper bounds on the error probabilities under generalized
decoding rules, i.e., list decoding rules and decoding rules with erasures. Our bounds
are valid for linear block codes whose transmission takes place over memoryless sym-
metric channels. We also provide message independence results for the considered
generalized decoding rules where both optimal and suboptimal decoding rules are
considered. When variable-size list-decoding is considered, we derive upper bounds
on the expected size of the decoded list and the associated error probability under list
decoding. In addition, upper bounds on the list error probability of linear block codes

are introduced when the size of the list is fixed. The bounds derived in this chapter
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are applicable to the performance analysis of specific codes and code ensembles, via
their (average) distance spectra. The bounds are suitable for finite block lengths and
also for asymptotic analysis. We finally exemplify the bounds for two coding schemes:
Fully-random linear block codes, and regular (binary and non-binary) LDPC code en-
sembles with finite block lengths. We also exemplify the applications of the bounds
to hybrid-ARQ schemes.

In Chapter 4 we study possible generalizations of the VA for list-decoding and
decoding with erasures. We introduce a modification of the VA, which coincides with
the optimal decoding rule of Forney for the cases at hand. The new algorithm ap-
plies to the more general case where finite-state Markov processes are observed via
memoryless channels, while our presentation is focused on the decoding of convolu-
tional codes. We simulated the performance of the proposed modified algorithm and
compared the results with the simulated performance of two suboptimal decoding
algorithm with erasures: the likelihood-ratio (LR) test decoding rule, and a simple
decoding scheme with repeat requests provided by Yamamoto and Itoh in [120]. A
good similarity between the performance of the simple scheme to the optimal one was
observed, even though the decoding scheme in [120] is remarkably simple. On the
other hand, the performance of the decoding algorithm based on the LR test is found
to be considerably degraded in comparison with that of the optimal performance.

In Chapter 5, we study the application of channel polarization to the wire-tap
communication model. We show that the secrecy capacity of a degraded memoryless
binary-input and symmetric wire-tap channel can be achieved by a proper application
of the channel polarization method. We prove that for every rate below the channel
secrecy capacity, there exists a suitable polar code for which both conditions of reliable
and secure communication are achieved under successive cancelation decoding. In
addition, we prove that the entire equivocation-rate can be achieved with channel
polarization under the weak notion of secrecy. For the particular case of erasure wire-
tap channel, with perfect observations at the legitimate user, it is shown that the
secrecy capacity can be achieved with a strong notion of secrecy. Finally, we study
the possible application of channel polarization for non-degraded wire-tap channels.

In Chapter 6, we continue the study of some possible applications of channel
polarization, by considering the signaling over parallel channels. We propose a channel
coding scheme and its corresponding successive cancelation decoding algorithm for
signaling over parallel channels. In the proposed scheme, the method of channel
polarization is incorporated with an algebraic maximum-distance separable codes.
In addition, it is shown that by using the proposed coding scheme, the capacity of

signaling over arbitrarily-permuted memoryless and symmetric parallel-channels is
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achievable under an assumption of channel degradation. Finally, the assumption on

channel degradation is excluded.

7.2 Outlook

Performance bounds of non-binary coding schemes

The comparison of the bounds in Chapter 2 with sphere-packing lower bounds shows
the suitability of the new bounds for the study of capacity approaching non-binary
linear block codes whose transmission takes place over an AWGN channel. For the
case of fully-interleaved fading channels with perfect CSI at the receiver, the compar-
ison of these upper and lower bounds shows a gap which motivates further study of
analysis techniques for non-binary linear block codes. It is unclear if the observed gap
is due to the provided bounding technique or is it a question of the suitability of the
specific codes which may not be the best choice for the fully interleaved fading channel
model. Hence, the comparison of additional non-binary coding techniques with the
provided bounding technique is of interest. In particular, the adaptation and possible
generalization for the definition of symmetry and the related message-independence

property for further non-binary modulation techniques is of great interest.

Variations on recently introduced random-coding bounds

The recently introduced coding theorems in [84] and [114] enable to derive improved
upper bounds on the error performance of coded schemes. In [84], new performance
bounds are derived for general channels (both achievable and converse results are pro-
vided). These bounds are tighter than classical bounds and some recently introduced
bounds. The achievable results in [84] and [114] are derived via the random coding
technique. The bounds derived in this thesis are based on some variations of the Gal-
lager bounding technique which was originally derived for random code ensembles. It
is of interest to adapt the recently introduced technique such that it may serve for

the performance analysis of structured codes.

Generalized decoding of linear block codes

The analysis of coded communications over fully-interleaved fading channels with CSI
at the receiver under generalized decoding is of interest. Moreover, the suitability of
the provided bounds for such communication channel models is apparat. The analysis

of the error and latency performance of coded communication systems over fading
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channels with feedback, based on the provided bounds, is of special interest. Possible
adaptation of the bounds for the case of transmissions over parallel channels is also
of interest.

Providing feasible decoding algorithms with variable list sizes and erasures is of
major interest. The literature on list decoding and decoding with AR(Q schemes is
tremendous. However, it seems that much less work is devoted to the analysis and
design of decoding algorithms which aim to operate close to the optimal decoding
rule in [41]. Moreover, we still lack a good understanding of efficient, practically
appealing coding and decoding schemas in the realm of different degrees of feedback
(in terms of feedback rate and reliability). The study of such coding scheme is of
special interest for systems which do not exhibit exponential behavior of the error
probability, such as LDPC under iterative decoding, but may acquire exponential

behavior in the presence of feedback.

Channel polarization

The study of possible application of channel polarization for non-degraded wire-tap
channels is of major interest. In particular, it is suggested to investigate the open
polarization problem in Chapter 5. Generalizing the proposed applications to non-
binary and non-symmetric channels, via the non-binary channel polarization method
in [79], [91] is also suggested as a continuation of major interest. Variations on the
parallel polar coding technique which may achieve the capacity of some non-degraded
parallel channels are of interest. The way channel polarization is combined with alge-
braic codes for parallel channels is a technique which may contribute to some further
applications, besides the particular case of parallel channels (see, e.g., [80]). This
technique may also help in improving the error exponents of the channel polarization

method, and in particular its successive decoding algorithm.
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TPNNNIPND NNNA NPINNND NPYA SNYD ODPNNNNN MMTION INNN M NN [98]
1NN INTIAYR NTHIN TRIWN IRIND 1IN TP IPY NPRN TITP NM”Ya
DANPN DN NNNID NPHXR NNYPN PYND 1123 WY 11 ) NN Shannon DY
XYWn 212095 MYV

NIPI M TONN X)W ITIVRN YR MPTY NN >T> DY MW NYHRN NNWPN
PON NIV TNND VOPNI IVRVYN  TITPN ToNNA DIONNKN MPIPN 1w NP
%y NODINN NPPDVA WHNYN (98] -2 Shannon WD 1WA ITWNHDN YO SV
VRN RN IPSHMIPRD NN MDD ND9N N NPPI2V  DOXIPN 70 PTIP
21729 2Y) SUYN NN ONIPN 7172 TP INY DY TN NPy DOTIN DY AN PN
NYNNR NNYPTN DPYNRN DTIP INNR YIND .(PNIYN NP0 DV DNPIUN Iyl
AN T2 INNND IPYYND MIIWNI YIS DIMINM WD NP DANPN DIANPA
Y 60 -0 NOYN2 MR DTIPN NNNA PN

DRUYNN X D21 7PNNNAPRD NNNA DIIPINNN Y OPIOYN PIIvn >TPm
OONAN

VY2 D57 OV NN TITP MNID SV NPTIDN MZINN NN e
JPTIO? 2210 IMN TN DPWYNN NN TITP NINID NIRNN MO e
1N TYTP MNID MY NPHRIPIMNOR MPPIDV DY NI MDD e

NYTION M2 NN ITNI2I N NTIAYA D0 IPNNRN DY NYRIN IPoN2

2Y DYDY DMION DY NP NTPNNN ,0IN DM IRPI-ND DY MYNNNI NNYPNI
D»INIA-ND DPINPY 7102 TP DY 12PN MIPAD 10N NIV DNV THIANDN
DNYPNL NRAYN TMNANDN DY NPIIND .D»IVNPD) NI 20N DIXIIYI DITIVNN
2Y YT M22N I AT DLW TPWNSPNN TMIDNN 132 PN YIPM NTNPN
-12Y PN ITNOI DOPNID DM?1AN TP DY DiPYIN NIIWN 1 NIRAYN MHANON
;DTN DV THD DY NIIWND DI NNYPN MWD MINNIAY PTIV NP M7
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DYIVPAD N)D) DPDXD DIVNID 29 HY DIPINA NIX PN DTP DY D> PIAN PN
DANPA MPNNI MOV NPIITI NNYPN MIWN (AN DV YySINN DPNIN
MOIYN NYVIPN AP 72YNI TIY IDND N2INND TINRD DONY T 210P2 ©IPN
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([94]-2 PPN NPPO NN DPINPI)

DXV NONPNRN NITHINN NN YAV 1IN NNIN NNTIAYA NITHIND NPIVON
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-PHN MPAD NIV INT ,DPIRPA) OPINYY 2172 NP OV IRDYN TMNANDN »D
oV 2N PN MY DYDY R TPD0A NRNIN NITIWVNN IYTINA MDD MPNX 1’2
P9 222 TP SY FPAPN MPAD NIYO NN NRAYN TNANDN DY DNIPOY DNON
TP NITIVNN NYTINA MONN-N 2D NRID MIPNHN TPYRIL  DPINPI) DPIN?
NNOYND DXIMY N NTIAYI NMAY DNIPIOYN DNONN 2INPA-NIN NIPHRN NIy D)
DNONN DY MWD NONA NTPIND ,0IN [45] Gallager W NP*OLVI DMON SV
-NNN SY M PON2 INMOY DONN [96] -1 [94] ,[32] ,[31] ,[26] Salehi -y Duman 5S¢
12227 NPIN NPT NNIVN YA DTIP DY IRAYD TNANDN NIIWND DOVNYN P
oV O»INYA-NON LDPC-N »Mip YW NROYN TMHANDN IR "N, NIjpnna (LDPCO)
OV .(TP2APN MPIAD NIYI NNN) NNYPN ¥ DY DOTIN PN [44] Gallager
NANIND) NOR DTIP DY RONN NP DNVPIDY PATHN MNV2IAN JapM) T2
DNNINT DNONY NN VAPNNY MIRNIND .([105] -1 [18]-2 »INPAN NIPHRI MIAd
DI0NN DY NIPWMN DY TIDD 112 1’ IRNWNN .(sphere-packing) D*NTI-TRIN NON
PPN oY Nt PoN1a NMOY

=210 DXNIYAN DY MTTPN MIIWN SV JPIN A2 NTPNNN IPNNN VW WD IPoNA
:DONAN DXANNA DIOYISN DXNIYAND NININ D551 DINIYIN NP1 .00

2NN NIYHNN DY VAN VIPIN TIND THO DY NVINN YNIAT NI ORYI NIYIND
NOSNN I YNRKDND ,NIYINN 'Y TPYYI IINT 932 NOINN IYND NjPPNN NN M
JP2INN SN2 NNAY NIPI PNY NIYONN

V29 VIPIN TMIND DY THNDNA NTTIA NVINN IWND INY WINT INYI NIYIND e
12 YNINNDD IV MY DINRNP NIVIND) PYI RIPI M NIPNL NIYOND
DY NIV INRNY RIPI NMITIVY NYTINND NN NO51D XD YWD

DION YY DNV DY T Forney »'Y NMO 1IN DXANNA SINIDPLOND NOININ PN
-M9IN DRI PN SV YSINN STHRM) [41] INIYN MIYIIND Y DORONINODPN
TN DY IDPWIN NIYINK TPINNN 9723 Forney 'Y YINY Y9IRMVIND NIVYONN (D0
DYRIPN 92 TP MY MO [41] -2 DYORINADPND DMNONN [117] ,[36] najp
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-1 [52] ,[9] S¥no NRI) DPONDPVIIN-NIN DXNIYIN 90N NAY D) NI WNRIY DNON
2V D?»IVAND DOVIDIWNIN 1PN P2 NYAN D551 DINIYINIA 7IDYY iPNOINN .([54]
DNYPN MOIWNL .DIWNYND DT DY MDIWNI) 2IWND DY MIIYNI WX DNIYIN
VDY TIN NNOYD TMNIANDNA 122 MDY PYND DINDN DIPNIA 11, 2WN MO0
JYTINN OV WTNHN MY DN

:DONIAN DYO5MN DINIYIND YW DIPNINA DY NTHY 1IIPNNI

PN N2V MPPNN DY NIV DV NIP1RN NAY Forney SYW IINDPPVIND NIYID o
DINVYN TNNL DDYYI NIYIN SY

PPN By NIYS May likelihood ratio-test (LR) MDD MINDIVN NN NIYO o

NP2 MPADN MYTINN NN NO1DN WA TR PV DY DY

N WN DOOM DNIYND HND NNRAYN TYNINRD NPIANDN DY DIDY DNON
NN DN DXL DITIVNN (DPINPI-RI DPINPL) DPINPD 7192 TP MY
IYTINA NNV TMYNIND TM”NIINDN MIN-N DY TMINIIN N DX DNON .D’ILVDD)
™M1 NP 2190 Y D>PIAND) DPPNAD D120 DOXTPY DIPRNN DMIONN NITIWNN
TIPN DV (YXIDND) DPNIND DIVPAD TIT N2 XTI NN DINTIN D2 DNDONN
D)1 9D P02 TN NIY DN 17N DPVIVNPON NN ) (O TIPN PN WN)
D?INOPT 2122 TP Y TILITIN APNNN MRKIN INMAY DNONN MYSHNNI MIDIND
XM 72 TR OY LDPC DN D17 3PN NI, (OPVILIPDNR DINNI) DINIPN
YOMLIN MWIN NTYI TMNDD DY MDIWN DV JiPYINIA DY NPIIRD NIVY DVIDY
DN N DTN (ARQ)

OWN MY Vitebri DIPIMON DY PNDTI NYNW IPNNN W HWOWN 1poNa
DN PN >N Vitebri DIPINON 2IWN DY MY MPYI NIYD DY MTTPN
AVYND WANN Vitebri DIPMON .DNIY MIVY iMHD NNYPTN MIIWNL RIW 2M
TIDYI HPYI NN YIIND MOIRINDND NN DY NPNY TN TPAPH MPID NIYD
,Vitebri DIPINON SW MAIWN MS51 900 MXPP NNYPNL ONPN NNNL, MINN
MIYA5 Vitebri DIPINON SW M2JIN NN ,VI9] NNYPML 1M DTPH NN N
NYLMVIN MNVID BOY MIWN NI ,[102] -23 [95] ,[88] ,[81] ,[70] ,[50] ,[20] -2 NP
J120] -2 [67] ,[53] ,[51] -2 N MY

DV OONIDPVAND MIYONN DY NTIONNI NN DY M PoN2 INMOY i TN
S21207 0P DV MPNN DY NHY NAY TN NNTIAY PX1ANP X2 MY Forney
oy (Markov) 223790 TONN SV Y5701 NIPRD NIIRIND PP TIVN IINY DY T 7PN
DNV NYINY DIPIMORD DY PN PNIDN 0N X1 TIT NN 29D D2AND 19010
O PONDPVIN-NT DIPIMON W PNIAZ LR NON MONDOVIN-NT NIYD SNNI5
,NOWA [120] -2 NMIYON N0V OGN Dy [120] -2 Ttoh -) Yamamoto 'y YN IWN
NN DIPIMINRD DY PN IONDPOVIND DIPIMIND DY ORI TIND DANP iPINI
IONDPLIN NNYSL DHVINN WRD MM LR
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(polarization) 20 DY NP*I20N DY NYPPIANA NTPNNN IPHNN DY NINRD IPONI
-9WN ONNN PR NP .[4] Arikan >’V 23NN (polar codes) BV TP .Y SV
NSINI-DMIVPDI PNIIN 2IDN ND2IDI-DMINPI DN NP MPWN DONP S¥ N
oV NPPLPIOM MPINNN (successive cancelation) IO 21022 NON NIYS NNT
-)000 MY 1901 INNA) 72D NINY DY TN’ 97T N2NM PTY D»I0)p ONP
SO TPSNNAPRD NN NNYPNL NYONIP NPYAd DY DV 0P SV NP
SM NI IMTH NN XY N DYNNYN MIAIND MIIWNI DPDDI DOTND O
MMPN NONT NIY DIPINDPLNND VINN O’V DR [62] -2 y1I5) DY) N
PY22) INRYA Wyner-Ziv H1”y¥221 D»0p Dp OW 0w [65] ,[62] My DY
AP DT DY MVYND DPIWARD DAASPN [65] 12 D) y1192) 1IN Gelfand-Pinsker
17N (compound channels) N21295) >8Iy DY NPYIL >XNITD 2102 NIYI HNT DMV
DADN DPIVAN DI DY ND2)T 7PXDLIN NN MPH WX DPIVONR NN .[55] -2
DTP DY MODIBN MNID NYSN IPNHNN DY M PN DX¥IY 210D DY NjPIdV5
N2V (wire-tap channel) PIND DY X1IW2 MIOM NYHINR NNYPN NV DPIVP
IINPIY NO2D NN (permutation) ITO DY DNAPN DNV NNYPN

DOVPN MM T TV DY DVUNNYN NI X1 I PIRD OY NNYPHNN XY
VAT PINDD NN WHNWND WD VOPNRM PINN WRNYNND DX WRYND THRD VIPNN
PYTNN JPOYN DONN DPVNIN YHNNYNN MY TPTIO) DPHXR NNYPN PYND 1 Pyl
79N YT DY \1WN 2P 1PN N NNIWPN DYPY DIVANDND DANPN DY INra
0N ;N2 INYL INTH PIRD DY 1Y DY DININ DN 2D NN I\PNRN DY it
WD 911D NR DPYN WK DIPRNN 0?20 DY DNDNP  N¥INL 0D NN
JYTID DY

N2NINN NTTPNRN NNYPNN ,ND2ID02 MY ITO DY DP22IAPN D8I DV iPyad
NYNNY T2 NWI R 7PYIL SWIPN 222PNna DINIY OV NN N8P TIT I 12
XN 'Y OMPIVY 9N NI XIX NN 'Y ANIM KD DNWI TP M0 OV
02PN NIYAND YITY N2 NNTYNN TR YD MW MN9DN ITO 3 NN NIPNN2
ININL) 2PN DNIYN MDD DD MY R 717V \1IWN 1207 72 MININD 1M
M PO (O¥IWYN D2 DM NN DNIWNN THN 522 22PN DX NPYHRN NTHNY
SPN PN INTIN PPN NIY DNIY WP DY NODINN N0 NYSN IPNHKN DY
M2y (MDS) 1PONDOPN PN NTION 20¥2 DOTIP DY PN P2 DDIAN NYSIY 220
VYNNIV NNODN , DNNTND OPIVPD IR XIDN ,ND?DI DMINPI DIPPIAPN DINIY
DNNNTN DION YN ,DNNTH DN DXIIVN 12 NIPHRN MY XN 21200 IR YN
DYNINY NNODN MYNIND DPIVARD DANPN DY DIVOY



