
On Rényi Entropy Power Inequalities

Eshed Ram

Andrew and Erna Viterbi Faculty of Electrical Engineering
Technion - Israel Institute of Technology

Haifa 32000, Israel

M.Sc. thesis supervised by Igal Sason

January 19, 2017.

E. Ram (Technion) M.Sc. Exam Presentation January 19, 2017. 1 / 32



Outline

1 Preliminaries
Definitions and Motivation
The Question

2 A New Rényi EPI
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Preliminaries Definitions and Motivation

Entropy Power

Definition 1 (Entropy Power)

Let X be a d-dimensional random vector (r.v.) with differential entropy
h(X). The entropy power of X is

N(X) = exp
(
2
d h(X)

)
.
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Preliminaries Definitions and Motivation

Entropy Power

Definition 1 (Entropy Power)

Let X be a d-dimensional random vector (r.v.) with differential entropy
h(X). The entropy power of X is

N(X) = exp
(
2
d h(X)

)
.

2
d in the exponent implies homogeneity of order 2:

N(λX) = λ2N(X), ∀λ ∈ R.

If X ∼ N(0, σ2Id), then h(X) = d
2 log(2πeσ

2), and

N(X) = 2πeσ2.

In some definitions the entropy power is normalized by 2πe.

E. Ram (Technion) M.Sc. Exam Presentation January 19, 2017. 3 / 32



Preliminaries Definitions and Motivation

The Entropy Power Inequality

Introduced by Shannon in his 1948 fundamental paper: “A mathematical
theory of communication.”

The Entropy Power Inequality (EPI)

Let {Xk}nk=1 be independent r.v.’s. Then,

N

(
n∑
k=1

Xk

)
≥

n∑
k=1

N(Xk)

and equality holds if and only if {Xk}nk=1 are Gaussians with proportional
covariances.
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Preliminaries Definitions and Motivation

Applications of the EPI

Converse theorems for...

The capacity region of the Gaussian broadcast channel - Bergmans,
1974

The rate-equivocation region of the Gaussian wire-tap channel -
Leung-Yan-Cheong & Hellman, 1978.

The capacity region of the Gaussian interference channel - Costa,
1985.

Multi-terminal rate-distortion theory (the quadratic Gaussian CEO
problem) - Oohama, 1998.

The capacity region of the Gaussian broadcast MIMO channel -
Weingarten, Steinberg & Shamai, 2006.
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Preliminaries Definitions and Motivation

Rényi’s Entropy

Definition 2

Let X be a d-dimensional r.v. with density fX , and α ∈ (0, 1) ∪ (1,∞).
The order-α Rényi entropy of X is

hα(X) =
α

1− α
log ‖fX‖α =

1

1− α
log

 ∫
Rd

fαX(x) dx

 .
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Preliminaries Definitions and Motivation

Rényi’s Entropy

Definition 2

Let X be a d-dimensional r.v. with density fX , and α ∈ (0, 1) ∪ (1,∞).
The order-α Rényi entropy of X is

hα(X) =
α

1− α
log ‖fX‖α =

1

1− α
log

 ∫
Rd

fαX(x) dx

 .

By continuous extension in α, we have

h0(X) = log µ
(
supp(fX)

)
.

h1(X) = h(X) = −
∫
Rd fX(x) log fX(x) dx.

h∞(X) = − log
(
ess sup(fX)

)
.

where µ is the Lebesgue measure in Rd.
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Preliminaries Definitions and Motivation

Properties of Rényi’s Entropy

Let X be a d-dimensional r.v. with density.

hα(X) is continuous in α ∈ [0,∞]

hα(X) is monotonically non-increasing in α ∈ [0,∞],

0 ≤ β ≤ α =⇒ hβ(X) ≥ hα(X).

If X = (X1, . . . , Xd) has independent elements, then

hα(X) =

d∑
k=1

hα(Xk), ∀α ∈ [0,∞].

(similar to Shannon’s entropy)

Unlike Shannon’s entropy,

hα(X) �
d∑

k=1

hα(Xk).
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Preliminaries Definitions and Motivation

Rényi’s Entropy Power

Definition 3

Let X be a d-dimensional r.v. with density.

Let α ∈ [0,∞].

The Rényi entropy power of X is

Nα(X) = exp
(
2
d hα(X)

)
.
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Preliminaries Definitions and Motivation

Rényi’s Entropy Power

Definition 3

Let X be a d-dimensional r.v. with density.

Let α ∈ [0,∞].

The Rényi entropy power of X is

Nα(X) = exp
(
2
d hα(X)

)
.

Homogeneity of order 2:

Nα(λX) = λ2Nα(X), ∀λ ∈ R, α ∈ [0,∞].
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Preliminaries Definitions and Motivation

An Application of The Rényi Entropy - Example

PnX -Xn ∈ X n
fn -m ∈ {1, . . . , 2nR}

φn
-

L = {xn ∈ X n :
fn(x

n) = m}

Fixed ρ > 0: rate R is called achievable if there exist encoders
{fn}∞n=1 such that lim

n→∞
E [|L|ρ] = 1.

Direct and converse results: 1

R > H 1
1+ρ

(X)⇒ R is achievable

R < H 1
1+ρ

(X)⇒ R is not achievable

1Bunte and Lapidoth, “Encoding Tasks and Rényi Entropy”, IEEE Trans. on
Information Theory, Sept. 2014.”
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Preliminaries The Question

A Rényi EPI (R-EPI)?

Formally,

1. Let {Xk}nk=1 be d–dimensional independent r.v.’s with densities.
2. Let α ∈ [0,∞], n ∈ N.

Does there exist a positive constant c
(n,d)
α such that

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk) ?
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Preliminaries The Question

A Rényi EPI (R-EPI)?

Formally,

1. Let {Xk}nk=1 be d–dimensional independent r.v.’s with densities.
2. Let α ∈ [0,∞], n ∈ N.

Does there exist a positive constant c
(n,d)
α such that

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk) ?

For independent Gaussian random vectors with proportional
covariances, Nα (

∑n
k=1Xk) =

∑n
k=1Nα(Xk), for every α ∈ [0,∞].

=⇒ c
(n,d)
α ≤ 1, ∀α ∈ [0,∞].
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Preliminaries The Question

Related Work - EPI
1. Shannon, 1948 - the entropy power inequality (EPI)

I Many information-theoretic proofs have been suggested (e.g., Stam -
1959, Gou-Shamai-Verdú - 2006, Rioul - 2011).

2. Zamir and Feder, 1993: a vector generalization of the EPI.

3. Baron and Madiman, 2007: Some generalizations of the EPI, and
connection to the CLT.

4. EPI for discrete random variables:
I Harremöes and Vignat, 2003.
I Jog and Anantharam, 2014.
I Telatar et al., 2014.

5. Costa (1985), Toscani (2015) and Courtade (ISIT 2016):
strengthening the EPI by restriction to some families of distributions.
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Preliminaries The Question

Related Work - Rényi EPI

1. Bercher and Vignat (BV), 2002: for every α ∈ [0,∞],
Nα (

∑n
k=1Xk) ≥ max

1≤k≤n
Nα(Xk).

2. Wang, Woo & Madiman, 2014: lower bound on the Rényi entropy of
convolutions in the integers.

3. Bobkov and Chistyakov (BC), 2015: for every α > 1,

cα = 1
eα

1
α−1 (independently of d and n).

4. Wang and Madiman, 2014: conjectures on the optimal R-EPI.

5. Xu, Melboune & Madiman, ISIT 2016: reverse Rényi EPIs for
s-concave densities (s = 1⇒ log-concavity).

Our work provides the tightest R-EPIs known so far, for α > 1.
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A New Rényi EPI

Theorem 1

Let

{Xk}nk=1 be d–dimensional independent r.v’s with densities.

α > 1, α′ = α
α−1 .

n ∈ N.
Then, the following R-EPI holds:

Nα

(
n∑
k=1

Xk

)
≥ c(n)α

n∑
k=1

Nα(Xk),

with

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
.
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A New Rényi EPI

Theorem 1 Implications

Theorem 1 ⇒ BC bound

Theorem 1 improves the R-EPI by Bobkov and Chistyakov (cα = 1
eα

1
α−1 )

for every α > 1 and n ∈ N; for every α > 1, it asymptotically coincides
with the R-EPI by Bobkov and Chistyakov as n→∞.
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eα

1
α−1 )

for every α > 1 and n ∈ N; for every α > 1, it asymptotically coincides
with the R-EPI by Bobkov and Chistyakov as n→∞.

Theorem 1 ⇒ EPI

If α ↓ 1, Theorem 1 coincides with the EPI.
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A New Rényi EPI

Theorem 1 Implications

Theorem 1 ⇒ BC bound

Theorem 1 improves the R-EPI by Bobkov and Chistyakov (cα = 1
eα

1
α−1 )

for every α > 1 and n ∈ N; for every α > 1, it asymptotically coincides
with the R-EPI by Bobkov and Chistyakov as n→∞.

Theorem 1 ⇒ EPI

If α ↓ 1, Theorem 1 coincides with the EPI.

Asymptotic Tightness of the Result in Theorem 1

If n = 2 and α→∞, c
(n)
α tends to 1

2 which is optimal; achieved when X1

and X2 are uniformly distributed in the cube [0, 1]d.
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A New Rényi EPI

c
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α as a function of α
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Figure: c
(n)
α as a function of α for n = 2, 3, 10 and n→∞

E. Ram (Technion) M.Sc. Exam Presentation January 19, 2017. 15 / 32



A New Rényi EPI

Outline of the Proof of Theorem 1

Main Tool: The Sharpened Young’s Inequality

Let p, q, r ≥ 1 satisfy 1
p +

1
q = 1 + 1

r and let f ∈ Lp(Rd) and g ∈ Lq(Rd)
be non-negative functions. Then

‖f ∗ g‖r ≤
(
ApAq
Ar

) d
2

‖f‖p ‖g‖q,

where At = t
1
t t′−

1
t′ and t′ = t

t−1 . Equality holds if and only if f and g are
Gaussians or r = p = q = 1.
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Main Tool: The Sharpened Young’s Inequality

Let p, q, r ≥ 1 satisfy 1
p +

1
q = 1 + 1

r and let f ∈ Lp(Rd) and g ∈ Lq(Rd)
be non-negative functions. Then

‖f ∗ g‖r ≤
(
ApAq
Ar

) d
2

‖f‖p ‖g‖q,

where At = t
1
t t′−

1
t′ and t′ = t

t−1 . Equality holds if and only if f and g are
Gaussians or r = p = q = 1.

Reversed for p, q, r ∈ (0, 1].

Using mathematical induction:

‖f1 ∗ . . . ∗ fn‖ν ≤ A
n∏
k=1

‖fk‖νk , A =

(
1

Aν

n∏
k=1

Aνk

) d
2

.
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A New Rényi EPI

Outline of the Proof of Theorem 1

Young’s sharpened inequality and the monotonicity property of the Rényi
entropy yield the following observation.
Let Pn = {t ∈ Rn : tk ≥ 0,

∑n
k=1 tk = 1} be the probability simplex and

let α > 1. If
∑n

k=1Nα(Xk) = 1, then

logNα

(
n∑
k=1

Xk

)
≥ f0(t), ∀ t ∈ Pn,

where

f0(t) =
logα
α−1 −D(t‖Nα) + α′

∑n
k=1

(
1− tk

α′

)
log
(
1− tk

α′

)
.

Nα = (Nα(X1), . . . , Nα(Xn)) .

D(t‖Nα) =
∑n

k=1 tk log
(

tk
Nα(Xk)

)
.
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let α > 1. If
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A New Rényi EPI

Outline of the Proof of Theorem 1

Young’s sharpened inequality and the monotonicity property of the Rényi
entropy yield the following observation.
Let Pn = {t ∈ Rn : tk ≥ 0,

∑n
k=1 tk = 1} be the probability simplex and

let α > 1. If
∑n

k=1Nα(Xk) = 1, then

logNα

(
n∑
k=1

Xk

)
≥ f0(t), ∀ t ∈ Pn,

=⇒ The R-EPI can be tightened by maximizing f0(t).

The solution of the optimization problem leads to an implicit bound
in most cases

Instead, we take a sub-optimal choice tk = Nα(Xk) (it can be verified
to be optimal if Nα(Xk) is independent of k).

Some more steps yield Theorem 1.
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Further Tightening the Rényi EPI The Optimization Problem

Sub Optimality

BV bound for n = 2:

Nα(X1 +X2) ≥ max {Nα(X1), Nα(X2)}
≥ 1

2 (Nα(X1) +Nα(X2)), α ∈ [0,∞].

Theorem 1 for n = 2 and α→∞ yields

N∞(X1 +X2) ≥ 1
2 (N∞(X1) +N∞(X2)).

Since the maximal value of two numbers is larger than or equal to
their average, the BV bound is tighter than our bound in Theorem 1
for n = 2 and large enough α’s (unless N∞(X1) = N∞(X2)).
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Further Tightening the Rényi EPI The Optimization Problem

The Optimization Problem

Recall that logNα (
∑n

k=1Xk) ≥ f0(t), ∀ t ∈ Pn.

The optimization problem is not convex

maximize f0(t1, t2, . . . , tn−1, tn)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1
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The optimization problem is not convex

maximize f0(t1, t2, . . . , tn−1, tn)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1

An equivalent problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1
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Further Tightening the Rényi EPI The Optimization Problem

The Optimization Problem

Recall that logNα (
∑n

k=1Xk) ≥ f0(t), ∀ t ∈ Pn.
The optimization problem is not convex

maximize f0(t1, t2, . . . , tn−1, tn)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1

An equivalent problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1

This problem can be shown to be convex by a non trivial use of the
next result from matrix theory (Bunch et al. 1978).
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Further Tightening the Rényi EPI The Optimization Problem

Rank–One Modification Theorem (Bunch et al. 1978)

Let

D ∈ Rn×n be a diagonal matrix with the eigenvalues
d1 ≤ d2 ≤ . . . ≤ dn.
C be a rank-one modification of D i.e., C = D + ρzzT , where
z ∈ Rn, ρ ∈ R, and let λ1 ≤ λ2 ≤ . . . ≤ λn be its eigenvalues.

Then,
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Rank–One Modification Theorem (Bunch et al. 1978)

Let

D ∈ Rn×n be a diagonal matrix with the eigenvalues
d1 ≤ d2 ≤ . . . ≤ dn.
C be a rank-one modification of D i.e., C = D + ρzzT , where
z ∈ Rn, ρ ∈ R, and let λ1 ≤ λ2 ≤ . . . ≤ λn be its eigenvalues.

Then,

1. If ρ > 0, then d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ . . . ≤ dn ≤ λn.
If ρ < 0, then λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ . . . ≤ λn ≤ dn.

2. If dj 6= di and zi, ρ 6= 0, then the inequalities are strict, and for every

i ∈ {1, . . . , n}, λi is a zero of W (x) = 1 + ρ
∑n

j=1
z2i

dj−x .
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Further Tightening the Rényi EPI The Optimization Problem

Applying The Rank–One Modification Theorem

1. The Hessian matrix of f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk):

∇2f0 = D + ρ 1 1T

2. The Rank–One Modification Theorem is used to prove that ∇2f0 is
negative semi-definite, hence f0 is concave.
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Applying The Rank–One Modification Theorem

1. The Hessian matrix of f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk):

∇2f0 = D + ρ 1 1T

2. The Rank–One Modification Theorem is used to prove that ∇2f0 is
negative semi-definite, hence f0 is concave.

3. The optimization problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1

is convex.

4. The solution can be found by solving the KKT conditions.
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Further Tightening the Rényi EPI The Optimization Problem

The KKT Conditions

The optimization problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1

Assume w.l.o.g that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Set ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.
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Further Tightening the Rényi EPI The Optimization Problem

The KKT Conditions

The optimization problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1

Assume w.l.o.g that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Set ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.
After some simplifications, the KKT conditions are:

1. tk(α
′ − tk) = cktn(α

′ − tn), k ∈ {1, . . . , n− 1}
2.
∑n
k=1 tk = 1

3. tk ≥ 0, k ∈ {1, . . . , n}
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Theorem 2

Let X1, . . . , Xn be d–dimensional independent r.v’s with densities and
assume, w.l.o.g, that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Theorem 2

Let X1, . . . , Xn be d–dimensional independent r.v’s with densities and
assume, w.l.o.g, that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Let ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.

let tn ∈ [0, 1] be the unique solution of tn +
∑n−1

k=1 ψk(tn) = 1 with

ψk(x) =
α′−
√
α′2−4ck x(α′−x)

2 , x ∈ [0, 1].

E. Ram (Technion) M.Sc. Exam Presentation January 19, 2017. 23 / 32
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Theorem 2

Let X1, . . . , Xn be d–dimensional independent r.v’s with densities and
assume, w.l.o.g, that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Let ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.

let tn ∈ [0, 1] be the unique solution of tn +
∑n−1

k=1 ψk(tn) = 1 with

ψk(x) =
α′−
√
α′2−4ck x(α′−x)

2 , x ∈ [0, 1].

Define tk = ψk(tn), k ∈ {1, . . . , n− 1}.
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Theorem 2

Let X1, . . . , Xn be d–dimensional independent r.v’s with densities and
assume, w.l.o.g, that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Let ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.

let tn ∈ [0, 1] be the unique solution of tn +
∑n−1

k=1 ψk(tn) = 1 with

ψk(x) =
α′−
√
α′2−4ck x(α′−x)

2 , x ∈ [0, 1].

Define tk = ψk(tn), k ∈ {1, . . . , n− 1}.

Then, the following R-EPI holds:

Nα

(
n∑
k=1

Xk

)
≥ ef0(t1,...,tn)

n∑
k=1

Nα(Xk),
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Theorem 2 Implications

Theorem 2 ⇒ Theorem 1

Theorem 2 improves the R-EPI in Theorem 1 unless Nα(Xk) is
independent of k; in the latter case, the two R-EPIs coincide.
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Theorem 2 Implications

Theorem 2 ⇒ Theorem 1

Theorem 2 improves the R-EPI in Theorem 1 unless Nα(Xk) is
independent of k; in the latter case, the two R-EPIs coincide.

However, Theorem 1 gives a closed-form bound.

Recall that Theorem 1 ⇒ BC bound & the EPI.

Theorem 2 ⇒ BV Bound

Improves the BV bound (Nα (
∑n

k=1Xk) ≥ max
1≤k≤n

Nα(Xk)).

Both bounds asymptotically coincide as α→∞ if and only if
n−1∑
k=1

N∞(Xk) ≤ N∞(Xn)
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Closed-Form Expression of Theorem 2 for n = 2

Corollary 1

Let

X1 and X2 be d–dimensional independent r.v’s with densities.

α > 1, α′ = α
α−1 .

βα = Nα(X1)
Nα(X2)

(Recall that w.l.o.g Nα(X1) ≤ Nα(X2)).

tα =


α′(βα+1)−2βα−

√
(α′ (βα+1))2−8α′βα+4βα
2(1−βα) if βα < 1

1
2 if βα = 1
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Closed-Form Expression of Theorem 2 for n = 2

Corollary 1

The following R-EPI holds:

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
,

where

cα = α
1

α−1 exp

{
−d
(
tα
∥∥ βα
βα + 1

)}(
1− tα

α′

)α′−tα (
1− 1− tα

α′

)α′−1+tα
and d(x‖y) is the binary relative entropy

d(x‖y) = x log
(
x
y

)
+ (1− x) log

(
1−x
1−y

)
, 0 ≤ x, y ≤ 1.
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Closed-Form Expression of Theorem 2 for n = 2

For n = 2 (two summands), our tightest bound in Theorem 2 is
asymptotically tight when α→∞ and is achieved by two independent
d-dimensional random vectors uniformly distributed in the cubes [0,

√
N1]

d

and [0,
√
N2]

d.
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Further Tightening the Rényi EPI A Tighter Rényi EPI

Comparing the R-EPIs (n = 3)
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Figure: A comparison of the R-EPIs from Bobkov&Chistyakov (BC),
Bercher&Vignat (BV), Theorem 1 and Theorem 2 for n = 3
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Summary

Summary - Analytical Tools

Theorem 1:

1. The sharpened Young’s inequality
2. Monotonicity of the Rényi entropy power in its order
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Summary

Summary - Analytical Tools

Theorem 1:

1. The sharpened Young’s inequality
2. Monotonicity of the Rényi entropy power in its order

Theorem 2 - a further improvment:

1. The rank-one modification theorem - proving convexity
2. Convex optimization and solution of the KKT conditions
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Summary

Publications

1. E. Ram and I. Sason, “On Rényi entropy power inequalities,”IEEE
Trans. on Information Theory, vol. 62, no. 12, pp. 6800–6815,
December 2016.

2. E. Ram and I. Sason, “On Rényi entropy power inequalities,”
Proceedings of the 2016 IEEE International Symposium on
Information Theory (ISIT 2016), pp. 2289–2293, Barcelona, Spain,
July 10–15, 2016.

E. Ram (Technion) M.Sc. Exam Presentation January 19, 2017. 29 / 32



Summary Further Research

Further Research: R-EPI For α ∈ [0, 1)

Are our bounding techniques extendible to α < 1?
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Summary Further Research

Further Research: R-EPI For α ∈ [0, 1)

Are our bounding techniques extendible to α < 1?

Unfortunately, not. In this case, Young’s inequality and the
monotonicity property of the Rényi entropy power yield inequalities in
opposite directions.
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Summary Further Research

Further Research: R-EPI For α ∈ [0, 1)

For α = 0, one can use the Brunn-Minkowski (BM) inequality:

µ
1
d (A+B) ≥ µ

1
d (A) + µ

1
d (B).
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Further Research: R-EPI For α ∈ [0, 1)

For α = 0, one can use the Brunn-Minkowski (BM) inequality:

µ
1
d (A+B) ≥ µ

1
d (A) + µ

1
d (B).

I By definition N0(X) = µ
2
d
(
supp(fX)

)
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Further Research: R-EPI For α ∈ [0, 1)

For α = 0, one can use the Brunn-Minkowski (BM) inequality:

µ
1
d (A+B) ≥ µ

1
d (A) + µ

1
d (B).

I By definition N0(X) = µ
2
d
(
supp(fX)

)
I BM yields

√
N0(X + Y ) ≥

√
N0(X) +

√
N0(Y )
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Further Research: R-EPI For α ∈ [0, 1)

For α = 0, one can use the Brunn-Minkowski (BM) inequality:

µ
1
d (A+B) ≥ µ

1
d (A) + µ

1
d (B).

I By definition N0(X) = µ
2
d
(
supp(fX)

)
I BM yields

√
N0(X + Y ) ≥

√
N0(X) +

√
N0(Y )

I By squaring both sides, N0(X + Y ) ≥ N0(X) +N0(Y ), So c0 = 1.
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For α = 0, one can use the Brunn-Minkowski (BM) inequality:

µ
1
d (A+B) ≥ µ

1
d (A) + µ

1
d (B).

I By definition N0(X) = µ
2
d
(
supp(fX)

)
I BM yields

√
N0(X + Y ) ≥

√
N0(X) +

√
N0(Y )

I By squaring both sides, N0(X + Y ) ≥ N0(X) +N0(Y ), So c0 = 1.

From the EPI, c1 = 1.
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Summary Further Research

Further Research: R-EPI For α ∈ [0, 1)

For α = 0, one can use the Brunn-Minkowski (BM) inequality:

µ
1
d (A+B) ≥ µ

1
d (A) + µ

1
d (B).

I By definition N0(X) = µ
2
d
(
supp(fX)

)
I BM yields

√
N0(X + Y ) ≥

√
N0(X) +

√
N0(Y )

I By squaring both sides, N0(X + Y ) ≥ N0(X) +N0(Y ), So c0 = 1.

From the EPI, c1 = 1.

It is conjectured that cα = 1 for all α ∈ (0, 1). This needs to be proved.
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Summary Further Research

R-EPI For α ∈ [0, 1)

Proposition 1 (R-EPI for α ∈ [0, 1))

Let {Xk}nk=1 be independent uniformly distributed random vectors and let
α ∈ [0, 1). Then the following R-EPI holds,

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk)
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Summary Further Research

R-EPI For α ∈ [0, 1)

Proposition 1 (R-EPI for α ∈ [0, 1))

Let {Xk}nk=1 be independent uniformly distributed random vectors and let
α ∈ [0, 1). Then the following R-EPI holds,

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk)

Proof.

1. Monotonicity of the Rényi entropy power in its order:
Nα (

∑n
k=1Xk) ≥ N1 (

∑n
k=1Xk)

2. EPI: N1 (
∑n

k=1Xk) ≥
∑n

k=1N1 (Xk).

3. For uniformly distributed random vectors, N1 (Xk) = Nα (Xk)
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Summary Further Research

R-EPI For α ∈ [0, 1)

Proposition 1 (R-EPI for α ∈ [0, 1))

Let {Xk}nk=1 be independent uniformly distributed random vectors and let
α ∈ [0, 1). Then the following R-EPI holds,

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk)

Also holds (with equality) for Gaussian distributions with proportional
covariances, for every α ∈ [0,∞].
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Summary Further Research

R-EPI For α ∈ [0, 1)

Proposition 1 (R-EPI for α ∈ [0, 1))

Let {Xk}nk=1 be independent uniformly distributed random vectors and let
α ∈ [0, 1). Then the following R-EPI holds,

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk)

Also holds (with equality) for Gaussian distributions with proportional
covariances, for every α ∈ [0,∞].

The uniform and Gaussian cases satisfy the conjecture
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Summary Further Research

Further Research: More Topics

1. Rényi EPIs for discrete random vectors

2. Possible generalizations of the Rényi EPI in a way which generalizes
the result by Feder and Zamir (IEEE Trans. on IT, 1993)

3. Possible generalizations with Rényi measures of the extended EPIs by
Barron and Madiman (IEEE Trans. on IT, 2007)

4. Possible strengthening of the Rényi EPI by restriction to some
families of distributions, e.g.,

I extension of EPIs by Toscani (2015) for log-concave distributions;
I extension of EPIs by Courtade (ISIT 2016).
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Backup Slides

Example: Data Filtering (FIR)

Let Yk = 2Xk −Xk−1 −Xk−2 be an output of a FIR filter, where
{Xk} are i.i.d. random variables.

Using the homogeneity of Nα(·), we can consider the difference
h2(Y )− h2(X):

N2(Yk) ≥ c2 (4N2(Xk) +N2(Xk−1) +N2(Xk−2))

= c2 6N2(Xk)
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Example: Data Filtering (FIR)

Let Yk = 2Xk −Xk−1 −Xk−2 be an output of a FIR filter, where
{Xk} are i.i.d. random variables.

Using the homogeneity of Nα(·), we can consider the difference
h2(Y )− h2(X):

N2(Yk) ≥ c2 (4N2(Xk) +N2(Xk−1) +N2(Xk−2))

= c2 6N2(Xk)

1. Theorem 2: h2(Y )− h2(X) ≥ 0.8195.

2. Theorem 1: h2(Y )− h2(X) ≥ 0.7866.

3. Bobkov and Chistyakov: h2(Y )− h2(X) ≥ 0.7425.

4. Bercher and Vignat: h2(Y )− h2(X) ≥ 0.6931.
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Example: Data Filtering (FIR)

Let Yk = 2Xk −Xk−1 −Xk−2 be an output of a FIR filter, where
{Xk} are i.i.d. random variables.

Using the homogeneity of Nα(·), we can consider the difference
h2(Y )− h2(X):

N2(Yk) ≥ c2 (4N2(Xk) +N2(Xk−1) +N2(Xk−2))

= c2 6N2(Xk)

1. Theorem 2: h2(Y )− h2(X) ≥ 0.8195.

2. Theorem 1: h2(Y )− h2(X) ≥ 0.7866.

3. Bobkov and Chistyakov: h2(Y )− h2(X) ≥ 0.7425.

4. Bercher and Vignat: h2(Y )− h2(X) ≥ 0.6931.

5. If Xk is a Gaussian: h2(Y )− h2(X) = 0.8959.
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An Application of The Rényi Entropy - Example

Bunte and Lapidoth, 2014, “Encoding Tasks and Rényi Entropy”

A task is drawn from a finite set X with probability P .

The task should be described with a fixed number of bits.

No task should be neglected. Not even the atypical ones
(classic source coding cannot be used).

E. Ram (Technion) M.Sc. Exam Presentation January 19, 2017. 32 / 32



Backup Slides

An Application of The Rényi Entropy - Example

Bunte and Lapidoth, 2014, “Encoding Tasks and Rényi Entropy”

A task is drawn from a finite set X with probability P .

The task should be described with a fixed number of bits.

No task should be neglected. Not even the atypical ones
(classic source coding cannot be used).

The encoder partitions X in to M subsets,

f : X → {1, . . . ,M},

such that for every x ∈ X , f−1(f(x)) is the subset that contains x.
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An Application of The Rényi Entropy - Example

Encoding Tasks Theorem

Let {Xi}∞i=1 be a source over X . Let ρ > 0.

1. Direct: If R > lim sup
n→∞

1
nH 1

1+ρ
(Xn), then there exist encoders

fn : X n → {1, . . . , 2nR} such that

lim
n→∞

E
[∣∣f−1n (fn(X

n))
∣∣ρ] = 1.

2. Converse: If R < lim inf
n→∞

1
nH 1

1+ρ
(Xn), then for any choice of

encoders fn : X n → {1, . . . , 2nR},

lim
n→∞

E
[∣∣f−1n (fn(X

n))
∣∣ρ] =∞.
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Proof of Theorem1 - Outline

1. Assume w.l.o.g that
∑n

k=1Nα(Xk) = 1 (homogeneity of the Rényi
entropy power)

2. logNα (
∑n

k=1Xk) ≥ f(t)
= logα

α−1−D(t‖Nα)+α
′∑n

k=1

(
1− tk

α′

)
log
(
1− tk

α′

)
3. Choose tk = Nα(Xk) such that D(t‖Nα) = 0

4. From the convexity of f(x) = (1− x) log(1− x), x ∈ (0, 1),(
1− tk

α′

)
log
(
1− tk

α′

)
≥ log

(
1− 1

nα′

)
+ log e

nα′

− tk
α′

[
log e+ log

(
1− 1

nα′

)]
5. Combining 2., 3. and 4., yields the desired result (since

∑n
k=1 tk = 1)
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Discussion - Tightness

The R-EPI in Theorem 2 provides the tightest R-EPI known to date
for α ∈ (1,∞).
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Discussion - Tightness

The R-EPI in Theorem 2 provides the tightest R-EPI known to date
for α ∈ (1,∞).

Nevertheless, one of the inequalities involved in its derivation is loose:
I The sharpened Young’s inequality: equality only for Gaussians.
I Monotonicity of the Rényi entropy power in its order: Equality only for

uniformly distributed random vectors.
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Discussion - Tightness

The R-EPI in Theorem 2 provides the tightest R-EPI known to date
for α ∈ (1,∞).

Nevertheless, one of the inequalities involved in its derivation is loose:
I The sharpened Young’s inequality: equality only for Gaussians.
I Monotonicity of the Rényi entropy power in its order: Equality only for

uniformly distributed random vectors.

For α =∞ and n = 2, the sharpened Young’s inequality reduces to

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′ .

I Equality holds if f and g are scaled versions of a uniform distribution
on the same convex set.

I This is consistent with the fact that the R-EPIs in Theorems 1 and 2
are asymptotically tight for n = 2 by letting α→∞.
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