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Abstract

One of the well-known inequalities in information theory is the entropy power inequal-
ity (EPI) which has been introduced by Shannon in his 1948 landmark paper. The EPI
has proved to be an instrumental tool in proving converse theorems for the capacity region
of the Gaussian broadcast channel, the capacity region of the Gaussian wire-tap channel,
the capacity region of the Gaussian interference channel, the capacity region of the Gaus-
sian broadcast multiple-input multiple-output (MIMO) channel, and a converse theorem in
multi-terminal lossy compression. Due to its importance, the EPI has been proved with
information-theoretic tools in several insightful ways.

More studies on the theme include EPIs for discrete random variables and some analogies,
generalized EPIs, reverse EPIs, related inequalities to the EPI in terms of rearrangements,
and some refined versions of the EPI for specialized distributions.

The Rényi entropy and divergence have been introduced by Rényi in the sixties, as a
generalization of the Shannon entropy and the Kullack-Leibler relative entropy, and they
evidence a long track record of usefulness in information theory and its applications. It is
therefore of interest to consider the generalization of the EPI to Rényi measures.

This Master thesis focuses on Rényi entropy power inequalities (R-EPI), which generalize
the celebrated EPI of Shannon to the Rényi entropy power. Consider a sum of S, = >, Xj,
independent continuous random vectors taking values in RY, and let a € [1,00]. A Rényi
Entropy Power Inequality provides a lower bound Rényi entropy power of S, of an arbitrary
order « that, up to a multiplicative constant (which may depend in general on n, « and
d), is equal to the sum of the Rényi entropy powers (of the same order «) of the n random
vectors {Xj}}_,. For a = 1, the R-EPIs derived in the thesis by the author coincide with
the entropy power inequality by Shannon.



The first R-EPI is an improvement of a recent R-EPI by Bobkov and Chistyakov (IEEE
Trans. on Information Theory, Feb. 2015) which relies on the sharpened Young’s inequality.
A further improvement of the R-EPI relies on convex optimization and results on rank-one
modification of a real-valued diagonal matrix. The latter form of the R-EPI improves both
the inequality by Bobkov and Chistyakov as well as a bound by Bercher and Vignat, and it
forms the tightest R-EPI known to date. The improvements are exemplified in the context
of data filtering, and are shown to be asymptotically tight as o — oo for n = 2.

This work has been very recently published as a journal paper:

E. Ram and I. Sason, “On Rényi entropy power inequalities,” IEEE Trans. on Information
Theory, vol. 62, no. 12, pp. 6800-6815, December 2016. It was also presented in part at the
ISIT 2016 conference.



List of Abbreviations and Notations

Bobckov and Chistyakov

Bercher and Vignat

Entropy Power Inequality
Karush-Kuhn-Tucker

Rényi Entropy Power Inequality
Probability density function of a random vector X
Dimension of all random vectors

Number of summands

Shannon entropy

Differential entropy

Differential entropy power

Differential Rényi entropy of order o
Differential Rényi entropy power of order «
Holder conjugate of «

L%norm

Convolution operation

Discrete Kullback-Leibler divergence
Binary Kullback-Leibler divergence
Essential supremum functional
n-dimensional probability simplex

Lagrangian of an optimization problem



Chapter 1
Introduction

One of the well-known inequalities in information theory is the entropy power inequality
(EPI) which has been introduced by Shannon [50, Theorem 15]. Let X be a d-dimensional
random vector with a probability density function, let A(X) be its differential entropy, and
let N(X) = exp (2 h(X)) be the entropy power of X. The EPI states that for independent

random vectors { X }}_;, the following inequality holds:

N (Z Xk> > izv(xk) (1.1)

with equality in (1.1) if and only if { X% }}_; are Gaussian random vectors with proportional
covariances.

The EPI has proved to be an instrumental tool in proving converse theorems for the
capacity region of the Gaussian broadcast channel [8], the capacity region of the Gaussian
wire-tap channel [37], the capacity region of the Gaussian interference channel [21], the
capacity region of the Gaussian broadcast multiple-input multiple-output (MIMO) channel
[59], and a converse theorem in multi-terminal lossy compression [43]. Due to its importance,
the EPI has been proved with information-theoretic tools in several insightful ways (see, e.g.,
9], [25], [29], [34, Appendix D], [45], [53], [56]); e.g., the proof in [56] relies on fundamental

relations between information and estimation measures (28], [30]), together with the simple



fact that for estimating a sum of two random variables, it is preferable to have access to the
individual noisy measurements rather than to their sum. More studies on the theme include
EPIs for discrete random variables and some analogies [31, 32, 33, 36, 49, 51, 60], generalized
EPIs [39, 40, 62], reverse EPIs [12, 13, 42, 61], related inequalities to the EPI in terms
of rearrangements [57], and some refined versions of the EPI for specialized distributions
20, 22, 32, 55]. An overview on EPIs is provided in [2]; The reader is also referred to
a preprint of a recent survey paper by Madiman et al. [42] which addresses forward and

reverse EPIs with Rényi measures, and their connections with convex geometry.

The Rényi entropy and divergence have been introduced in [44], and they evidence a long
track record of usefulness in information theory and its applications. These include a source
coding theorem [19], guessing moments [3], generalized cutoff rates and error exponents for
hypothesis testing [24, 52], encoding tasks [18], and a channel coding theorem [47]. Recent
studies of the properties of these Rényi measures have been provided in [26], [27] and [52].
In the following, the differential Rényi entropy and the Rényi entropy power are introduced.

Definition 1 (Differential Rényi entropy). Let X be a random vector which takes values in
R?, and assume that it has a probability density function which is designated by fx. The
differential Rényi entropy of X of order a € (0,1) U (1, 00), denoted by h,(X), is given by

1ia 1og</f;(x)dx> (12)

(0%

= log || fx|la- (1.3)

11—«

ha(X) =

The differential Rényi entropies of orders a = 0, 1, oo are defined by the continuous extension

of he(X) for @ € (0,1) U (1, 00), which yields

ho(X) = log A(supp(fx)), (1.4)
hi(X)=h(X) = —/fx(x) log fx(z) dz, (1.5)
hoo(X) = —log (esssup(fx)) (1.6)



where X in (1.4) is the Lebesgue measure in R

Definition 2 (Rényi entropy power). For a d-dimensional random vector X with density,

the Rényi entropy power of order a € [0, o0] is given by
No(X) =exp (2 ha(X)). (1.7)

Since h,(X) is specialized to the Shannon entropy h(X) for a = 1, the possibility of
generalizing the EPI with Rényi entropy powers has emerged. This question is stated as

follows:

Question 1. Let {X}} be independent d-dimensional random vectors with probability den-
sity functions, and let a € [0, 00] and n € N. Does a Rényi entropy power inequality (R-EPI)
of the form

n

N, (Z Xk> > D N NL(X) (1.8)
k=1

k=1

hold for some positive constant c&n’d) (which may depend on the order a, dimension d, and

number of summands n) 7

In [35, Theorem 2.4], a sort of an R-EPI for the Rényi entropy of order o« > 1 has been
derived with some analogy to the classical EPI; this inequality, however, does not apply
the usual convolution unless @ = 1. In [57, Conjectures 4.3, 4.4], Wang and Madiman
conjectured an R-EPI for an arbitrary finite number of independent random vectors in R?
for > =% . In a recent preprint ([14]) a similar question is proposed and answered; the

d+2-
multiplicative constant )

is forced to be equal to 1, but an exponent is added to each
Rényi entropy power; i.e. N2 (37" | X)) > > 7| NP(X},) for a suitable choice of p.
Question 1 has been recently addressed by Bobkov and Chistyakov [11], showing that

(1.8) holds with

ca:%aﬁ, Va>1 (1.9)



independently of the values of n,d. It is the purpose of this thesis to derive some improved
R-EPIs for @ > 1 (the case of a = 1 refers to the EPI (1.1)). A study of Question 1 for
a € (0,1) is currently an open problem (see [11, p. 709]) and is discussed in Chapter 5.

In view of the close relation in (1.3) between the (differential) Rényi entropy and the L,
norm, the sharpened version of Young’s inequality plays a key role in [11] for the derivation
of an R-EPI, as well as in this thesis for the derivation of some improved R-EPIs. The
sharpened version of Young’s inequality was also used by Dembo et al. [25] for proving the
EPL.

For a € (1,00), let o' = -%5 be Holder’s conjugate. For o > 1, Theorem 1 provides a

new tighter constant in comparison to (1.9) which gets the form

o L 1 na’—1
) =aa1 (11— (1.10)

no!

independently of the dimension d. The new R-EPI with the constant in (1.10) asymptotically
coincides with the tight bound by Rogozin [46] when o — oo and n = 2, and it also
asymptotically coincides with the R-EPI in [11] when n — co. Moreover, the R-EPI with
the new constant in (1.10) is further improved in Theorem 2 by a more involved analysis
which relies on convex analysis and some interesting results from matrix theory; the latter
result yields a closed-form solution for n = 2.

This thesis is organized as follows: In Chapter 2, preliminary material and notations
are introduced. A new R-EPI is derived in Chapter 3 for a > 1, and special cases of
this improved bound are studied. Chapter 4 derives a strengthened R-EPI for a sum of
n > 2 random variables; for n = 2, it is specialized to a bound which is expressed in a
closed form; its computation for n > 2 requires a numerical optimization which is easy to
perform; Section 4.3 exemplifies numerically the tightness of the new R-EPIs in comparison
to some previously reported bounds. Finally, Chapter 5 summarizes this thesis, discusses
the tightness of the R-EPIs in it, and suggests some future research items, including o < 1

case and some more generalizations of EPI related results to the Rényi entropy power.



Chapter 2
Analytical Tools

This chapter includes notation and tools which are essential to the analysis in this thesis. It
starts with a short introduction on the conditional Rényi entropy followed by some properties
of the differential Rényi entropy and Rényi entropy power which are useful for the derivation
of the improved R-EPIs. Next, basic inequalities which play a key role in this thesis are
presented; this includes the sharpened Young’s inequality, and a monotonicity property
of the L, norm. We finish this chapter with some results on rank-one modification of a

symmetric eigenproblem [17].

2.1 Rényi Entropy

In the following, a definition of the conditional Rényi entropy and some properties of the dif-
ferential Rényi entropy and Rényi entropy power defined in Definitions 1 and 2, respectively,
are presented.

In contrast to the conditional (Shannon) entropy, many different definitions have been
suggested for the conditional Rényi entropy in the literature (see [54]). For example, let
X, Y be continuous random vectors taking values in R, with a joint PDF fxy. Recall the
definition of the conditional differential entropy, h(Y|X) = [p. fx(2)h(Y|X = x)dz, where

fx is the marginal PDF of the random vector X. By mimicking this definition, one can



define the conditional Rényi entropy as
ho(Y|X) :/ fx(@)ho(Y|X =z)dz, o € [0, 0]. (2.1)
R4

However, this definition fails to satisfy a basic property that holds for the conditional Shan-

non entropy, namely, that conditioning reduces entropy:
ha(Y]X) < ho(Y), Va € ]0,00]. (2.2)

The monotonicity property in (2.2) will turn out to be useful in Chapter 3, hence a
different definition for the conditional Rényi entropy is needed. The next definition is due
to Arimoto [4], and satisfies the monotonicity property (together with a weak version of the
chain rule [27, Section 4]).

Definition 3 (Conditional Differential Rényi Entropy). Let X, Y be random vectors taking
values in R?. Assume that X and Y given X have probability density functions designated
by fx and fy|x, respectively. The conditional differential Rényi entropy of ¥ given X is
defined as

1) = 525108 ([ e@lfixlolade), 23

where

Q=

it = ( [ fintlo)" (2.4)

Next, properties of the differential Rényi entropy, the conditional Rényi entropy and the

Rényi entropy power, which are relevant to this thesis, are presented:
e In view of (1.3) and (1.7), for v € (0,1) U (1, 00),

Na(X) = (HfXHOc)

_2d/
d

(2.5)

e The differential Rényi entropy h,(X) is monotonically non-increasing in «, and so is
Ny (X). ie., every random vector X, if 0 < 5 < «, then

Ns(X) > Na(X). (2.6)



e The conditional Rényi entropy defined in (2.3) satisfies the monotonicity property in
(2.2).

o If Y = AX + b where A € R4 |A| # 0, b € R%, then for all a € [0, o0]

ha(Y) = ho(X) +log |A], (2.7)
No(Y) = |A|7 No(X). (2.8)

This implies that the Rényi entropy power is a homogeneous functional of order 2 and

it is translation invariant, i.e.,

No(AX) = M Ny(X), VIeER, (2.9)
No(X +b) = No(X), VbeRL (2.10)

In view of (2.9) and (2.10), N, (X) has some similar properties to the variance of X. However,
if we consider a sum of independent random vectors, then Var (>, Xj) = > ,_, Var(Xy)
whereas the Rényi entropy power of a sum of independent random vectors is not equal, in
general, to the sum of the Rényi entropy powers of the individual random vectors (unless

these independent vectors are Gaussian with proportional covariances).

2.2 Basic Inequalities

The derivation of the R-EPIs in this work partially relies on the sharpened Young’s inequality
and the monotonicity of the Rényi entropy in its order. For completeness, we introduce these

results in the following.

Notation 1. For a > 0, let o = =%, ie,,

Q=

+ L4 =1

Note that o > 1 if and only if o/ > 0; if & = 1, we define o = oo. This notation is known
as Holder’s conjugate.
A useful consequence of (2.5) and (2.6) is the following result (a weaker version of it is

given in [11, Lemma 1]):



Corollary 1. Let o € (0,1) U (1,00), and let f € L*(R?) be a probability density function
(i.e., f is a non-negative function with ||f||; = 1). Then, for every 5 € (0,a) with § # 1,

IF15 < II£11S- (2.11)

Proof. Let X be a random vector whose density function is f. In view of (2.5) and (2.6)

/

(Iflla)" 4 = Na(X)

< Ni(X) (2.12)
_20
= flls)
Increasing by the power of —g yields the desired result. O]

Notation 2. For every t € (0,1) U (1, 00), let
Ay = th ¢ (2.13)

and let Ay = A, = 1. Note that for ¢t € [0, o0]

1
Ay = —. 2.14
t At ( )
The sharpened Young’s inequality, first derived by Beckner [6] and re-derived with alter-

native proofs in, e.g., [5] and [16] is given as follows:

Fact 1 (Sharpened Young’s inequality). Let p,q,r > 0 satisfy
1 1 1
Tt (2.15)
P q r

let f € LP(R?) and g € L9(R?) be non-negative functions, and let f x g denote their convo-

lution.
e If p,g,7 > 1, then

A A\ 2
17+l < (22) " 1l Lol (2.16)

10



e If p,g,r <1, then

d
A AN\ 2
I 50l = (2222) 151, ol (247)

Furthermore, (2.16) and (2.17) hold with equalities if and only if f and g are Gaussian
probability density functions.

Note that the condition in (2.15) can be expressed in terms of the Hélder’s conjugates as

follows:
—+ —=—. (2.18)

By using (2.18) and mathematical induction, the sharpened Young’s inequality can be ex-

tended to more than two functions as follows:

Corollary 2. Let v, {v;}7_; > O satisfy > ;| & = =%, let
k

d
1 n 2
A= (A—Vkl:[lAyk> (2.19)

where the right side in (2.19) is defined by (2.13), and let f, € L"*(RY) be non-negative

functions.

o If v, {v}7_, > 1, then

o falls < AT 1kl (2.20)
k=1
o If v, {v}7_, <1, then
s full = AT 1l (2.21)
k=1

with equalities in (2.20) and (2.21) if and only if fj are scaled versions of Gaussian probability

densities for all k.

11



2.3 Rank-One Modification of a Symmetric
Eigenproblem

This chapter is based on a paper by Bunch et al. [17] which addresses the eigenvectors and
eigenvalues (a.k.a. eigensystem) of a rank-one modification of a real-valued diagonal matrix.

We use in this thesis the following result [17]:

Fact 2. Let D € R™*" be a diagonal matrix with the eigenvalues d; < dy < ... < d,,. Let
z € R™ such that [|z]]s =1 and let p € R. Let A; < A < ... < A, be the eigenvalues of the
rank-one modification of D which is given by C' = D + pzz?. Then,

1. \; =d; + pp;, where D" ;=1 and p; >0 forall i e {1,...,n}.
2. If p > 0, then the following interlacing property holds:
dy <M <de < X< .<d, <\, (2.22)
and, if p < 0, then

M<d < <d<...

IN

A < dp. (2.23)

3. If all the eigenvalues of D are different, all the entries of z are non-zero, and p # 0,

then inequalities (2.22) and (2.23) are strict. For ¢ € {1,...,n}, the eigenvalue \; is a

zero of
Wi(x)=1 . 2.24
@) =140 7 (2.24)
7j=1
Note that the requirement ||z|l2 = 1 can be relaxed to z # 0 by letting Z = mn and

p=pllzl3

12



Chapter 3

A New Rényi EPI

In the following, a new R-EPI is derived. This inequality, which is expressed in closed-form,

is tighter than the R-EPT in [11, Theorem I.1].

Theorem 1. Let {X;}7_, be independent random vectors with densities defined on R?, and
letn €N, a>1,a =_-" and S, = > p—1 Xi. Then, the following R-EPT holds:

Na(Sn) > Cgl) zn: Na(Xk:> (3~1)

with

- L 1 na’—1
eV =aeT1 (11— . (3.2)

nao’
Furthermore, the R-EPI in (3.1) has the following properties:
1. Eq. (3.1) improves the R-EPI in [11, Theorem I.1] for every o > 1 and n € N,

2. For all @ > 1, it asymptotically coincides with the R-EPI in [11, Theorem I.1] as

n — oo,

3. In the other limiting case where a | 1, it coincides with the EPI (similarly to [11]),

13



4. If n = 2 and o — o0, the constant ¢ in (3.2) tends to % which is optimal; this constant

is achieved when X; and X, are independent random vectors which are uniformly
distributed in the cube [0, 1]¢.

Proof. In the first stage of this proof, we assume that
No(Xg) >0, ked{l,...,n} (3.3)

which, in view of (2.5), implies that fx, € L%(R?), where fx, is the density of X} for all
ke{l,...,n}. In[11, (12)] it is shown that for o > 1,

No(Sn) = B[ N (Xe) (34)
k=1
with
B= (A, ... A, Ad)™", (3.5)
v, >1, VYke{l,...,n}, (3.6)
, v
V= Vv eR, (3.7)
1 1
- = 3.8
— Vl:: a/? ( )
a/
th=—, Vke{l,...,n} (3.9)
Vi
Consequently, (3.6)—(3.9) yields
te >0, Vke{l,... n} (3.10)

> te=1. (3.11)
k=1

The proof of (3.4), which relies on Corollaries 1 and 2, is introduced in Appendix A.
Similarly to [11, (14)], in view of the homogeneity of the entropy power functional (see

(2.9)), it can be assumed without any loss of generality that

i Na(X,) = 1. (3.12)

14



Hence, to prove (3.1), it is sufficient to show that under the assumption in (3.12)
Na(S,) > e, (3.13)

From this point, we deviate from the proof of [11, Theorem I.1]. Taking logarithms on
both sides of (3.4) and assembling (2.13), (3.5)—(3.11) and (3.12) yield

log No(Sn) > fo(1), (3.14)

where t = (ty,...,t,), and

olt) = 2%~ (gl + S (1= ) og (1- ). B.15)

- k=1

N, = (No(X1),...,No(X0)), (3.16)

DIN,) = tylog (ﬁ) | (3.17)

In view of (3.10) and (3.11), the bound in (3.14) holds for every ¢ € R" such that ) ,_, tx = 1.
Consequently, the R-EPT in [11, Theorem I.1] can be tightened by maximizing the right side
of (3.14), leading to the following optimization problem:

maximize  fy(t)
subject to ty >0, ke {l,...,n}, (3.18)

Dot =1

Note that the convexity of the function

fla) = (1 - g) log (1 - g) .z el0,d] (3.19)

yields that the third term on the right side of (3.15) is convex in t. Since the relative entropy
D(t||N,) is also convex in ¢, the objective function fy in (3.15) is expressed as a difference
of two convex functions in ¢. In order to get an analytical closed-form lower bound on

the solution of the optimization problem in (3.18), we take the sub-optimal choice t = N,

15



(similarly to the proof [11, Theorem I.1]) which yields that D(t||N,) = 0; however, our proof
derives an improved lower bound on the third term of fy(¢) which needs to be independent
of N,. Let

te = No(Xp), 1<k<n, (3.20)

then, in view of (3.14) and (3.20),

log No(Sn) > fo(t) (3.21)
log , ~ iy tx

= 1—— |1 1—-—1. .22

a_1+ak:1( o/) og( o/) (3.22)

Due to the convexity of f in (3.19), for all k € {1,...,n},

ft) > f(2) + f(z) (£, — ). (3.23)

Choosing = = + in the right side of (3.23) yields

3 3 1 ] 3 1
1 Y log (1= ) > 10g 428 B gt log (1 — —— (3.24)
o o " na! no! o no!’

and, in view of (3.12) and (3.20) which yields Y }_, #x = 1, summing over k € {1,...,n} on
both sides of (3.24) implies that

o Z (1 — —) log (1 - —) (na’ —1)log (1 — nZ/) : (3.25)

Finally, assembling (3.21), (3.22) and (3.25) yields (3.13) with ¢{” in (3.2) as required.

In the sequel, we no longer assume that condition (3.3) holds. Define

Ko = {k S {1, . ,TL}I Na(Xk) = 0}, (326)

16



and note that

ha(Sy) = ha (Z Xp+ ) Xk) (3.27)
k¢Ko keko
> hq (Z X + Z Xy ‘ {Xk}kelCo> (3.28)

kKo keko

= hq (Z Xk> (3.29)

where the conditional Rényi entropy is defined according to Arimoto’s proposal in [4] (see
also [27, Section 4]), (3.28) is due to the monotonicity property of the conditional Rényi
entropy (see [27, Theorem 2]), and (3.29) is due to the independence of X, ..., X,,. Since
No(Xy) > 0 for every k ¢ Ko, then from the previous analysis

N, <Z Xk) > > Na(Xa), (3.30)

k¢Ko k¢Ko
where [ =n — |[Ko|. In view of (3.2), it can be verified that ¢ is monotonically decreasing
in n; hence, (3.29), (3.30) and > yield

Na(Sn) > ™S 7 No(Xp). (3.31)

We now turn to prove Items 1)-4).

e To prove Item 1), note that (1.9) and (3.2) yield that M > ¢y forall > 1and n € N.

e Item 2) holds since from (3.2)

lim ") = Laat (3.32)

n—o0

where the right side of (3.32) coincides with the constant ¢, in [11, (3)] (see (1.9)).
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Item 3) holds since « | 1 yields o/ — oo, which implies that for every n € N

lim ¢ = lim ¢, = 1. (3.33)
all all

Hence, by letting o tend to 1, (3.1) and (3.33) yield the EPI in (1.1).

To prove Item 4), note that from (3.2)

1 n—1
lim ¢ = (1 — —) (3.34)

a—00 n

which is monotonically decreasing in n for n > 2, being equal to % for n =2 and % by
letting n tend to oo. Let X be a d-dimensional random vector with density fx, and
let

M(X) = esssup(fx). (3.35)

From (1.6), (1.7) and (3.35), it follows that

Ny (X) = O}l_)ﬂgo No(X) (3.36)
= M 1(X). (3.37)

By assembling (3.1) and (3.37), it follows that if X,..., X, are d-dimensional inde-

pendent random vectors with densities, then

M~i(S,) > (1 - 1>n_1 Xn: M~i(Xy,). (3.38)

This tightens the inequality in [10, Theorem 1] where the coefficient (1 — %)n_l on the right

side of (3.38) has been loosened to 1 (note, however, that they coincide when n — co). For

n = 2, the coefficient % on the right side of (3.38) is tight, and it is achieved when X; and

X, are independent random vectors which are uniformly distributed in the cube [0, 1]¢ [10,
p. 103]. O
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Figure 3.1: A plot of ™ in (3.2), as a function of a, for n = 2,3,10 and n — oc.

) as a function of «, for some values of n, verifying numerically

Figure 3.1 plots ¢
Items 1)—4) in Theorem 1. In [11, Theorem I.1], s independent of n, and it is equal to

Co in (1.8) which is the limit of ¢ in (3.2) by letting n — oo (the solid curve in Figure 3.1).

Remark 1. For independent random variables { X }}_; with densities on R, the result in
(3.38) with d = 1 can be strengthened to (see [10, p. 105] and [46])

3

iy b (3.39)
- 2 2 :
2 M2(X,)

where S, := >}, Xi. Note that (3.38) and (3.39) coincide if n =2 and d = 1.

Example 1. Let X and Y be d-dimensional random vectors with densities fx and fy,

respectively, and assume that the entries of X are i.i.d. as well as those of Y. Let X7, X5,
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Y1, Y5 be independent d-dimensional random vectors where X, X5 are independent copies

of X, and Y7,Y5 are independent copies of Y. Assume that

Pl"[XLk = XQJC] =,

(3.40)
Pr[Yi, =Y, =8

for all k € {1,...,n}. We wish to obtain an upper bound on the probability that X; + Y}
and X, + Y5 are equal. From (1.3), (1.7) (with o = 2), and (3.40)

No(X) = exp (2 ha(X)) (3.41)

- ( [ AW dg)gl (3.42)

=P 1[X; = X,] (3.43)
= H P~4[X, ) = Xoy] (3.44)

k=1
— a2, (3.45)
No(Y) =672, 3.46
Noy(X +Y) =P a[X;+ Y] = X5+ Y5 (3.47)

Assembling (3.1) with n = a = 2, (3.45), (3.46) and (3.47) yield

(SIS

P(X1+Y1=X,+Ys) < (L (0> +577)) 2. (3.48)

The factor % on the base of the exponent on the right side of (3.48), instead of the looser
factor ¢o = 2 which follows from (1.9) with & = 2 (see [11, Theorem 1.1]), improves the
exponential decay rate of the upper bound in (3.48) as a function of the dimension d. The
optimal bound has to be with a coefficient of (04_2 + 5_2) on the base of the exponent in
the right side of (3.48) which is less than or equal to 1; this can be verified since if X and Y’

are independent Gaussian random variables, then

No(X +Y) = Nao(X) + No(Y), (3.49)
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SO,
d
P(X,+Y: =X, +Ys) = (a2 4+ 572)72, (3.50)

This provides a reference for comparing the exponential decay which is implied by ¢, in (1.9),

céQ) in (3.1), and the case where X and Y are independent Gaussian random variables:

2 27
- < —<1. 3.51
e 32 ( )
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Chapter 4

A Further tightening of the R-EPI

4.1 A Tightened R-EPI for n > 2

In the following, we wish to tighten the R-EPI in Theorem 1 for an arbitrary n > 2. It is
first demonstrated that a reduction of the optimization problem in (3.18) to n — 1 variables
(recall that > 7, ¢x = 1) leads to a convex optimization problem. This convexity result is
established by a non-trivial use of Fact 2 in Section 2.3 (see [17]), and it is also shown that
the reduction of the optimization problem in (3.18) from n to n — 1 variables is essential
for its convexity. Consequently, the convex optimization problem is handled by solving the
corresponding Karush-Kuhn-Tucker (KKT) equations. If n = 2, their solution leads to a
closed-form expression which yields the R-EPI in Corollary 3. For n > 2, no solution is
provided in closed form; nevertheless, an efficient algorithm is introduced for solving the
KKT equations for an arbitrary n > 2, and the improvement in the tightness of the new

R-EPI is exemplified numerically in comparison to the bounds in [7], [11] and Theorem 1.
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4.1.1 The optimization problem in (3.18)

In view of (3.15)—(3.18), the maximization problem in (3.18) can be expressed in the form

maximize fo(t) = ,_; 9(tx) + D> p_; trlog N + lsg_(.f

(4.1)
subject to t e P"
where
OV _ry
g(x) = (o — ) log (1 o/) xzlogz, x€]0,1] (4.2)
Nk:Na(Xk), ke {1,,”} (43)

(for simplicity of notation, the dependence of g and Ny, in « has been suppressed in (4.1)),

and P" is the probability simplex

P":{zeR”wkzo,E:mzﬂ}. (4.4)
k=1
The term Y, _, txlog Nj on the right side of (4.1) is linear in ¢, thus the concavity of fy in
t is only affected by the term >";_, g(tx). Since ¢"(z) = f(z,_j;) where z € [0,1], if &/ > 2,
then g is concave on the interval [0, 1]. If o/ € (1,2) (i.e., if @ € (2,00)) then g is not concave

/

on the interval [0, 1]; it is only concave on [0,%], and it is convex on [, 1]. Hence, as a

maximization problem over the variables ¢, ... ,t,, the objective function fy in (4.1) is not

concave if o > 2.

4.1.2 A reduction of the optimization problem in (3.18) to n — 1

variables

In view of (4.4), the substitution

n—1
bh=1-> t (4.5)
k=1
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transforms the maximization problem in (4.1) to the following equivalent problem:

maximize  f(t1,...,tn_1)

subject to t € D!

where

fltr, o tar) = fo (tl,... w1, 1 Ztk) (4.7)

and D" ! is the polyhedron

n—1
n—1 __ .
- 1y--+5n-1)- - Y, ~ . .
D {(t ta1): b >0, ) tk<1} (4.8)

k=1

4.1.3 Proving the convexity of the optimization problem in (4.6)

We wish to show that the objective function f of the optimization problem in (4.6) is concave,
i.e., it is required to assert that all the eigenvalues of the Hessian matrix V2 f are non-positive.
Egs. (4.1) and (4.7) yield

fltr, .o ta1)

E:gﬁ:+9(1—§:m> (4.9)

-1 n—1
log
ti log N, 1-— ti | log N, .
—i—k:lkog k+< Z’f) og + 1

Let

z € [0,1] (4.10)
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then, in view of (4.9) and (4.10), for all (¢y,...,t, 1) € D" !

qgity) 0 .- 0 11 .---1
0 qts) --- 0 n-l 11 --- 1
V2f(t, . te) = | <_2) ‘ , +q<1_ztk> S
: : - : 1 oo T
0 0 - q(tay) 1 1 -+ 1

=D+pll” (4.11)

where

D= dlag(Q(tl)a cee 7Q<tn—1))7
n-1 (4.12)
p=q (1 — Z tk> :
k=1
Recall that if o/ € [2,00) then fy(t1,...,t,) is concave in P", hence, so is f(t1,...,t,_1) in
D! We therefore need only to focus on the case where o’ € (1,2) (i.e., a € (2,00)).
Proposition 1. For every o € (1,2), the function f: D"~' — R in (4.9) is concave.

Proof. See Appendix B. O

4.1.4 Solution of the convex optimization problem in (4.6)

In the following, we solve the convex optimization problem in (4.6) via the Lagrange duality
and KKT conditions (see, e.g., [15, Section 5]). Since the problem is invariant to permuta-
tions of the entries of X = (X,...,X,), it can be assumed without any loss of generality

that the last term of the vector N, in (3.16) is maximal, i.e.,
No(Xy) < No(Xy), ked{l,....,n—1} (4.13)
Moreover, it is assumed that

Na(X,) > 0. (4.14)



The possibility that N,(X,) = 0 leads to a trivial bound since from (4.13), it follows that
No(Xy) = 0 for every k € {1,...,n}; this makes the right side of (1.8) be equal to zero,

while its left side is always non-negative. Let

= ]]gzg:% ke{l,...,n—1}. (4.15)

From (4.13)—(4.15), the sequence {c},}}~| satisfies
0<¢ <1, ke{l,...,n—1} (4.16)

Let t,, be defined as in (4.5). Appendix C provides the technical details which are related to
the solution of the convex optimization problem in (4.6) via the Lagrange duality and KKT
conditions (note that strong duality holds here). The resulting simplified set of constraints

which follow from the KKT conditions (see Appendix C) is given by

tr(a/ —tp) = ctn(a —t,), ke{l,...,n—1} (4.17)
d =1 (4.18)
k=1

t >0, kefl,....n} (4.19)

with the variables ¢ in (4.17)—(4.19).

Note that if N, (X}) is independent of k then, from (4.15), ¢, = 1 forallk € {1,...,n—1}.
Hence, from (4.17) and (4.18), it follows that ¢, = ... = ¢, = 1 (note that the other
possibility where t; = o/ —t,, for some k € {1,...,n — 1} contradicts (4.18) and (4.19) since
in this case Z?:l tj >ty +t, = o > 1). This implies that the selection of the ¢;’s in the
proof of Theorem 1 is optimal when all the entries of the vector IV, are equal; therefore, the
R-EPI considered here improves the bound in Theorem 1 only when N, (X%) depends on the
index k.

In the general case, (4.17) yields a quadratic equation for ¢, whose solutions are given by

tp = % (o/ +\/a'? — deptn(of — tn)> (4.20)
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with o/ = -%=. The possibility of the positive sign in the right side of (4.20) is rejected
since in this case t, + ¢ > o' > 1, which violates (4.18). Hence, from (4.20), for all

ke{l,....n—1}

by = ¢k,a<tn) (421)

where we define

Unale) =1 (! = VaT=dea(a’ =2)), we0,1], (4.22)

In view of (4.18) and (4.21), one first calculates ¢,, € [0, 1] by numerically solving the equation

n—1
tt Y Upalts) =1. (4.23)
k=1

The existence and uniqueness of a solution of (4.23) is proved in Appendix D. Once we
compute t,, all t;’s for k € {1,...,n—1} are computed from (4.21). Finally, the substitution
of t1,...,t, in the right side of (3.14) enables to calculate the improved R-EPI in (3.14), i.e

(Zxk> > exp(fo(ti, .- tn ZN (X5) (4.24)

k=1

with fo in (3.15).
Note that due to the optimal selection of the vector t = (t4,...,t,) in (4.24), the R-EPI
in this chapter provides an improvement over the R-EPI in Theorem 1 whenever N, (X}) is

not fixed as a function of the index k. This leads to the following result:

Theorem 2. Let Xi,..., X, be independent random vectors with probability densities de-
fined on RY, let N, (X1),. .., No(X,) be their respective Rényi entropy powers of order o > 1,
and let o' = —%5. Let the indices of X, ..., X, be set such that N, (X,) is maximal, and let

1. {ck}7Z] be the sequence defined in (4.15);

2. t, € [0,1] be the unique solution of (4.23);
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3. {tx}7Z] be given in (4.21) and (4.22).
Then, the R-EPI in (4.24) holds with fy in (3.15), and it satisfies the following properties:

1. It improves the R-EPI in Theorem 1 unless N, (X%) is independent of &k (consequently,
it also improves the R-EPI in [11, Theorem 1]); if N,(X}) is independent of k, then
the two R-EPIs in Theorem 1 and (4.24) coincide.

2. It improves the Bercher-Vignat (BV) bound in [7] which states that
N, (Z Xk> > max{No(X1), ..., Na(X,)} (4.25)
k=1

and the bounds in (4.24) and (4.25) asymptotically coincide as @ — oo if and only if

where Ny (X) is defined in (3.37).
3. For n = 2, it is expressed in a closed form (see Corollary 3).

4. Tt coincides with the EPI and the two R-EPIs in [11, Theorem 1] and Theorem 1 as
al 1.

Proof. The proof of the R-EPI in (4.24) is provided earlier in this chapter with some addi-

tional details in Appendices B-E. In view of the this analysis:

e Item 1) holds since the proof of the R-EPI in Theorem 1 relies in general on a sub-
optimal choice of the vector ¢ in (3.20), whereas it is set to be optimal in the proof
of Theorem 2 in (4.21)-(4.23). Suppose, however, that N, (X}) is independent of the
index k; in the latter case, the selection of the vector ¢ in the proof of Theorem 1 (see
(3.20)) reduces to ¢ = (%,...,1), which turns to be optimal in the sense of achieving

the maximum of the objective function in (4.9).
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e Item 2) holds since the selection of ¢ in the right side of (3.14) with ¢, =1 and ¢, =0
for all ¢ # k yields

N, (Z )@) > N (X;) (4.27)

k=1

which then leads to (4.25) by a maximization of the right side of (4.27) over k €
{1,...,n}. Appendix E proves that the bounds in (4.24) and (4.25) asymptotically
coincide as a — oo if and only if the condition in (4.26) holds.

e Item 3) is proved in Section 4.2.

e Item 4) holds since the R-EPI obtained in Theorem 2 is at least as tight as the BC
bound in [11, Theorem 1]; the latter coincides with the EPI as we let « tend to 1
(recall that, from (1.9), lim,|; ¢, = 1) which is known to be tight for Gaussian random

vectors with proportional covariances.

]

Figure 4.1 compares the two R-EPIs in Theorems 1 and 2 with those in [11] (see (1.9))
and [7] (see (4.25)) for n = 3 independent random vectors; the abbreviations 'BC’ and 'BV’
stand, respectively, for the latter two bounds. Recall that the four bounds are independent
of the dimension d of the random vectors, and they are plotted in Figure 4.1 for symmetric
and asymmetric cases where (N, (X1), Nuo(X2), No(X3)) = (40, 40,40) and (10, 20,90), re-
spectively (note that in both cases, the sum of the entries is equal to 120). In the former case,
for every a > 1, Theorem 2 provides a lower bound on N,(X; + X5 + X3) which is tighter
than those in [7] and [11]; furthermore, in this special case where N, (X}) is independent of
the index k, the bounds in Theorems 1 and 2 coincide. In the asymmetric case, however,
where (N, (X1), No(X2), No(X3)) = (10,20,90), the bound in Theorem 2 suggests a signifi-
cant improvement over the bound in Theorem 1 due to the sub-optimality of the choice of
the vector £ in the proof of Theorem 1 in comparison to its optimal choice in Theorem 2.

As it is shown in Figure 4.1 and supported by Item 2) of Theorem 2, the bound in this
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Figure 4.1: A comparison of the Rényi entropy power inequalities for n = 3 independent
random vectors according to [11] (BC), [7] (BV), Theorem 1 and the tightest bound in The-
orem 2. The bounds refer to the two cases where (N, (X1), No(X2), No(X3)) = (40,40, 40)
or (10,20,90) (in both cases, the sum of the entries is 120; in the former case, the condition
in (4.26) does not hold, while in the latter it does).

theorem asymptotically coincides with the BV bound (by letting o — o0) in the considered
asymmetric case; however, for every a € (1,00), the bound in Theorem 2 is advantageous
over the BV bound. It is also shown in Figure 4.1 that in this asymmetric case, the BV
bound is advantageous over our bound in Theorem 1 for sufficiently large «; this observation
emphasizes the significance of the optimization of the vector ¢ in the proof of Theorem 2,
yielding the tightest R-EPI known to date for @ > 1. Finally, as it is shown in Figure 4.1,
the R-EPIs of Theorems 1 and 2, as well as [11, Theorem 1], coincide with the EPI as we let

a tend to 1 (from above).
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4.2 A Tightened R-EPI for n =2

We derive in the following a closed-form expression of the R-EPI in Theorem 2 for n = 2
independent random vectors. In the sequel, we make use of the binary relative entropy

function which is defined to be the continuous extension to [0, 1]* of

d(z|ly) = xlog (g) +(1—2)log G - z) | (4.98)

Corollary 3. Let X; and X, be independent random vectors with densities defined on R,
let No(X1), No(X2) be their Rényi entropy powers of order o > 1, and assume without any
loss of generality that N, (X;) < N,(Xs). Let

, Q@
= 4.29
T a1 (4.29)
No(Xy)
Ba = v 4.30
N, (%) (4.30)
o/ (Bat1)=2Ba—1/ (e (Ba+1))2—80/Ba+4Ba .
if B, <1,
t, = 2(1-Fa) 2 (4.31)
i if g, = 1.
Then, the following R-EPI holds:
Na(Xl + XQ) 2 Cq (Na(Xl) + Na(XQ)) (432)

with

e A ta o —ta 1— ta o =14+t
Co = Q7T exp (—d(ta I 6a6+ 1)) (1 = &> (1 -— > . (4.33)

The R-EPI in (4.32) satisfies Items 1)-4) of Theorem 2; specifically, by letting o — oo, the
lower bound on N, (X7 4+ X3) tends to Ny (Xs), which asymptotically coincides with the BV
bound in [7].

Proof. Due the constraints in (4.1), the vector £ can be parameterized in the form ¢t = (¢, 1—t)
for t € [0, 1]; due to the normalization of the vector N, = (Ny(X1), No(X2)) in (3.12), then

_ ( _ba
N, = (Hﬂa’ 1+1,6’a> (4.34)
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and, by (3.15), the maximization in (4.1) is transformed to

(1 + 56!)(1 — t)
)

(- 2o £) (w22}

It can be verified that the objective function in (4.35) is concave on [0,1], it has a right

maximize
te(0,1]

goi — tlog((1+ Ba)t) — (1 —t)log (

o —

(4.35)

derivative at ¢ = 0 which is equal to +o00, and a left derivative at ¢ = 1 which is equal to
—o00. This implies that the maximization of the objective function over [0, 1] is attained at an
interior point of this interval. The optimized value of ¢ is obtained by setting the derivative

of this objective function to zero, leading to the equation

log (2% ) — log (;£51,) = 0. (4.36)

Eq. (4.36) can be expressed as a quadratic equation whose solution is given in (4.31). Sub-
stituting the optimized value t = ¢, in (4.31) into the objective function on the right side
of (4.35) leads to the closed-form solution of the optimization problem in (4.1) for n = 2.
Hence, under the assumption in (3.12) where N, (X;)+ N, (X3) = 1, straightforward algebra
yields that

Na(Xl -+ XQ) 2 Cq (437)

where ¢, is given in (4.33); the relaxation of this assumption requires the multiplication of
the right side of (4.37) by N4(X71) + Na(X2) (due to the homogeneity of the Rényi entropy
power, see (2.9)). Note that, for n = 2, the condition in (4.26) becomes vacuous (since,
by assumption, No(X;) < No(Xs3)) which implies that the bound in (4.32) asymptotically
coincides with the BV bound when o — oc. [

Figure 4.2 compares the two R-EPIs in Theorem 1 and Corollary 3 with those in [11] (see
(1.9)) and [7] (see (4.25)) for n = 2 independent random vectors. The four bounds are plotted
in Figure 4.1 for symmetric and asymmetric cases where (N, (X71), No(X2),) = (10,10) and
(6,14), respectively (note that in both cases, the sum of the entries is equal to 20). Along
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Figure 4.2: A comparison of the Rényi entropy power inequalities for n = 2 independent
random vectors according to [11] (BC), [7] (BV), Theorem 1 and the Corollary 3. The
bounds refer to the two cases where (N, (X;), No(X2) = (10,10) or (6,14) (in both cases,

the sum of the entries is 20).

with the properties of the bounds as described for the general n > 2 case (and exemplified
for n = 3 in Figure 4.1), the bound in Corollary 3 (valid for n = 2) asymptotically coincides
with the BV bound (by letting @ — o0) in both the symmetric and asymmetric cases, as it
is shown in Figure 4.2; indeed, the condition in (4.26) holds for n = 2 and for every value of

(Na(X1), Na(X2)).
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4.3 Example: The Rényi Entropy Difference Between
Data and its Filtering

Let {X(n)} be ii.d. d-dimensional random vectors (the entries of the vector X (n) need not

be independent), with arbitrary densities on RY. Let
L1
Y(n)=> HyX(n—k) (4.38)
k=0

be the filtered data at the output of a finite impulse response (FIR) filter where Hy, ..., Hy_
are fixed non-singular d x d matrices.

In the following, the tightness of several R-EPIs is exemplified by obtaining universal
lower bounds on the difference hq (Y (n)) — ha(X(n)), being also compared with the actual
value of this difference when the i.i.d. inputs are d-dimensional Gaussian random vectors
with i.i.d. entries.

For k € {0,...,L — 1} and every n, we have

ho(Hy X(n — k)) = ha (X(n)) + log|det(Hy)| (4.39)
and
No(Hi X(n — k)
— exp (2 ho (Hy X(n — k)))
— |det(Hy)|* N, (X (n)). (4.40)
Let a > 1, and o/ = 2= Similarly to Theorem 2, it is assumed without loss of gen-

erality that |det(Hy)| < |det(Hy_y)| for all k € {0,...,L — 2}; otherwise, the indices of
Hy,...,H; 1 can be permuted without affecting the differential Rényi entropy of Y (n). In
the setting of the improved R-EPI of Theorem 2, in view of (4.15) and (4.40), for every
ke{0,...,L -2},

NAGARY
ck—<}det(H—L_1)|> (4.41)
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which, in view of the above assumption, implies that ¢, € [0,1] for k € {0,...,L — 2}.
Given the L matrices {Hk}ﬁ;&, the vector (tg,...,t;_1) € [0,1]F is calculated according to
Theorem 2; first t;,_; € [0, 1] is numerically calculated by solving the equation in (4.23) (with
a replacement of 1 and n in (4.23) by 0 and L — 1, respectively), and then the rest of the t;’s
for k € {0,..., L — 2} are being calculated via (4.21) and (4.22). In view of (4.39), (4.40),
and the R-EPI of Theorem 2, it follows that for every n

ha (Y (n)) = ha(X(n))

d{loga 2 L-1
> B (Q 1 + ;9(&)) + Ztk log|det(Hk)‘

k=0

(4.42)

where the function g is given in (4.2).
In view of the derivation so far, it is easy to verify that the R-EPI in Theorem 1 is

equivalent to the following looser bound, which is expressed in closed form:

ha(Y(1)) — ha(X(n))

d L—-1 2
> 3 log (Z‘det(HkHd) (4.43)

k=0

d ( loga La a—1
+§<a_1+(a_1—1) log(l— Ta ))

The R-EPI of [11, Theorem I.1] leads to the following loosened bound in comparison to
(4.43):

ha(Y(1)) = ha(X(n)) >

N

— 2 lo
a g
[log (kzzo‘det(Hk)}‘i> + =T loge (4.44)
and, finally, the BV bound in [7] (see (4.25)) leads to the following loosening of (4.42):

ha (Y(n)) — ha(X(n)) > log <D<r]£1<a£<_l|det(Hk)’) : (4.45)

The differential Rényi entropy of order o € (0, 1)U(1, 00) for a d-dimensional multivariate

Gaussian distribution is given by
dlog a

ha (X (n)) = D ! log((27r)d det(Cov(X(n)))) (4.46)

35



Hence, if the entries of the Gaussian random vector X (n) are i.i.d.

ha(Y(n)) — ha(X(n)) = 4 log (det (g H, Hg)) . (4.47)

k=0

Example 2. Let
Y(n)=2X(n)—X(n—-1)— X(n—2) (4.48)

for every n where {X(n)} are i.i.d. random variables, and consider the difference hy(Y) —
ho(X) in the quadratic differential Rényi entropy. In this example « =2, d =1, L = 3, and
Hy =2, H = —1, Hy = —1. The lower bounds in (4.42), (4.43), (4.44), (4.45) are equal to
0.8195, 0.7866, 0.7425 and 0.6931 nats, respectively (recall that the first two lower bounds
correspond to Theorems 2 and 1 respectively, and the last two bounds correspond to [11]
and [7] respectively. These lower bounds are compared to the achievable value in (4.47), for

an i.i.d. Gaussian input, which is equal to 0.8959 nats.
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Chapter 5

Summary

5.1 Research Results and Tools

This thesis provides two forms of improved Rényi entropy power inequalities (R-EPI) for a
sum of n independent and continuous random vectors over R?. These inequalities are of the
form (1.8), they refer to orders o € (1, 00], and they coincide with the EPI [50] by letting
a — 1. Theorem 1 provides an R-EPI in a closed form, improving the R-EPI by Bobkov and
Chistyakov in [11, Theorem 1]; furthermore, for a sum of two independent random vectors
(n = 2), the R-EPI in Theorem 1 is asymptotically tight when o — 0o. The R-EPI which
is introduced in Theorem 2 can be efficiently calculated via a simple and efficient numerical
algorithm, it is tighter than the R-EPI in Theorem 1 and all previously reported bounds, and
it is currently the best known R-EPI for o € (1, 00]. While Theorem 1 does not necessarily
improve the bound by Bercher and Vignat [7], Theorem 2 does. Corollary 3 provides a
closed-form expression for the R-EPI in Theorem 2 for n = 2. It should be noted that the
R-EPIs in Theorems 1 and 2 coincide when the Rényi entropy powers of the n independent
random vectors are all equal.

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and Chistyakov [11]

with the same analytical tools, namely the monotonicity of N,(X) in a, and the use of the
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sharpened Young’s inequality. Theorem 2, which improves the tightness of the R-EPI in
Theorem 1, relies on the following additional analytical tools: 1) a strong Lagrange duality
of an optimization problem is asserted by invoking a theorem in matrix theory [17] regarding
the rank-one modification of a real-valued diagonal matrix, and 2) a solution of the Karush-

Kuhn-Tucker (KKT) equations of the related optimization problem.

5.1.1 Remarks on Tightness

The R-EPI in Theorem 2 provides the tightest R-EPI known to date for a € (1,00). Nev-
ertheless, it is still not tight since at least one of the inequalities involved in the derivation
of (3.4) (see Appendix A) is loose. These inequalities are the sharpened Young’s inequality
in (2.20), and (2.11). The former inequality holds with equality only for Gaussians, whereas
the latter inequality holds with equality only for a uniformly distributed random variable
(note that in the latter case, the Rényi entropy is independent of its order). For a = 0o and

n = 2, the sharpened Young’s inequality (2.16) reduces to

1S gllse < 1115 gl (5.1)

where p > 1 and p’ = —£5. Equality holds in (5.1) if f and g are scaled versions of a uniform
p

distribution on the same convex set, which is also the same condition for tightness in (2.11);

this is consistent with our conclusion that the R-EPIs in Theorems 1 and 2 are, however,

asymptotically tight for n = 2 by letting o — oc.

5.2 Further Research

5.2.1 The a <1 Case

In view of the derivation of (3.4) (see Appendix A), which relies on the sharpened Young’s
inequality and on the monotonicity of the Rényi entropy power in its order, one might think

that for a < 1, the reverse sharpened Young’s inequality in (2.21) can be used to derive
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an R-EPI (or a reversed version of this inequality). Unfortunately, this is not true since in
this case, (2.11) and (2.21) yield inequalities in opposite directions. However, for a = 0,
the Brunn—Minkowski inequality can be used to derive an R-EPI. For completeness, the

Brunn—Minkowski inequality is presented.

Fact 3 (Brunn—Minkowski inequality). Let A, B C R¢ be two compact sets, and denote by
"+’ the Minkowski sum, i.e., A+ B ={a+b:a€ Abe€ B}. Then,

1 1 1
Nd(A+ B) > Nd(A)+ \d(B), (5.2)
where \ is the Lebesgue measure in R,

Proposition 2 (R-EPI for o = 0). Let {X;}}_; be d-dimensional independent random

vectors. Then,

No (i Xk) > iNO(Xk)‘ (5.3)

Proof. From the definition of ho() in (1.4), it follows that for a random vector X with density
fXa

No(X) = exp (3h0(X)) = A (supp(£x))- (5.4)

If there exists k € {1,...,n} such that Ny(Xj) = oo, then from (5.4), the support set of fx,
has an infinite Lebesgue measure, and from the independence of X1, ..., X, it follows that
the density of > _;_, X}, (which equals fx, *...% fx,) has an infinite Lebesgue measure as well,
so No (D r_, X)) = oo. Hence, we may assume that for every k € {1,...,n}, No(X;) < oo
(or equivalently A (supp(fx,)) < o0). In view of (5.2) and (5.4), it follows that

VNo(X1 4 X3) > /No(X1) + v/ No(Xa). (5.5)

Since the Rényi entropy power is non—negative, by squaring the both sides of (5.5) we get

No(X1 + X3) > No(X1) 4 24/ No(X1) No(X2) + No(X2)
> No(X1) + No(Xo), (5.6)
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which completes the proof for n = 2. The proof for general n follows by a mathematical

induction on n. [

Note that Proposition 2 implies that ¢g = 1 (i.e., the multiplicative constant of the R-EPI
for @« = 0 equals 1). From the EPI in (1.1), it follows that ¢; = 1. Since according to our
R-EPIs in Theorems 1 and 2, ¢, is monotonically decreasing in « for « € (1, 00), this leads

to the following conjecture:

Conjecture 1. Let {X;}}_; be independent random vectors and let o € (0,1). Then,

N, <i Xk> > iNa(Xk). (5.7)

Although our bounding techniques are not extendable for o < 1, some R-EPIs that are

restricted to certain families of distributions can be stated for o < 1.

Proposition 3. Let {X}}_; be independent uniformly distributed random vectors and let
a € [0,1). Then the following R-EPI holds,

N, (Z Xk) > " No(X). (5.8)

Proof. Since a < 1, and the Rényi entropy power is non-increasing in its order, it follows
that

Na (Z Xk> > Ny (Z Xk) : (5.9)
k=1 k=1
which in view of the EPI in (1.1) implies that

N, (i Xk> > zn: N(X5). (5.10)

For uniformly distributed random vectors, the Rényi entropy power is independent of its
order «; in other words, for every k € {1,...,n}, N1(Xy) = Nuo(Xg), hence (5.10) yields

N, (f: Xk> > zn:Na(Xk), (5.11)

which completes the proof. O
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Proposition 3 supports Conjecture 1, and another confirmation comes from the Gaussian
family; for independent Gaussian random vectors with proportional covariances { X }7_; we

have

N, (i Xk> = iNa(Xk), Ya € [0, 00). (5.12)
k=1 k=1

Although these two families of distributions satisfy Conjecture 1, it still needs to be proved

in its full generality.

5.2.2 Further Generalizations

Future research can be done by finding generalizations of results related to the EPI to the
Rényi entropy power. Before presenting some examples to EPI related results, it is mentioned
that trying to generalize these results to the Rényi entropy power by following their proof
and replacing Rényi’s entropy in every instance of the Shannon entropy doesn’t work, since
in every proof there is a use of some property of the Shannon entropy which does not hold
for the Rényi entropy. This means that a different approach to the proof is needed. Possible

generalization of EPI related results to Rényi measures are given in the following.

R-EPIs for discrete random vectors

Although the EPI in (1.1) does not hold, in general, for discrete random vectors (consider
n =2, d =1 and two random variables X; and X, which are actually deterministic; N(X; +
Xy) = N(X;) = N(X3) = 1), many versions of the EPI for some families of discrete random
variables have been suggested [31, 32, 60]; this encourages finding discrete R-EPIs. For the
following examples of discrete EPIs, all random variables are discrete, H(-) stands for the

(discrete) Shannon entropy, and N(-) is the corresponding entropy power:
1) In [31, Theorem 1], it is stated that

H(X +X') > H(X) + g(H(X)) (5.13)
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where X, X’ are integer valued i.i.d random variables, and g: [0,00) — [0,00) is a

non-negative monotonically increasing function such that g(0) = 0 and lim,_,», g(z) =
1
2

+log,(e) (g is given explicilty in [31]). By defining cx = 3 exp{2¢9(H(X))}, (5.13)

yields the desired descrete EPI,
NX +X")>cex (N(X)+ N(X)). (5.14)
Note that if X is deterministic, then H(X) =0 and cy = 3.

2) In [32, Theorem 1.1], an EPI for binomial random variables is given: let X, ~ B(n, 1)

be a binomial random variable with n trials and success probabilty of % Then,

N(Xp + X)) > N(X,) + N(X,n). (5.15)

3) In [60, Theorem 2.5], it is stated that if X and Y are uniformly distributed on some
subsets of Z, then

NX+4+Y)>NX)+NY)-1, (5.16)
and if in addition X and Y are not deterministic, then

N(X +Y) > N(X)+ N(Y). (5.17)

Possible generalization of these discrete versions of EPIs to discrete R-EPIs provide direc-

tions for future research and are motivated by the applications of the discrete Rényi entropy

in information theory (see [19, 3, 18]).

R-EPI for linear transformed vectors

One alternative way to write the EPI in (1.1) is the following: Let {X}}}_; be independent

d-dimensional random vectors and let {)A(: k}7_; be d-dimensional independent Guassians with

propotional covariance matrices such that, for every k € {1,...,n}, h(X;) = h(Xz). Then
h (Z Xk> > h (Z )?k,> . (5.18)
k=1 k=1
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In [62, Theorem 1|, Zamir and Feder introduced a genralized EPI for linear transforma-
tions: Let X = (Xi,...,Xy) be a d-dimensional random vector with independent compo-
nents, and let X = ()? Lyenns )?d) be a Gaussian random vector with independent components

such that h(X;) = h(X;), for every j € {1,...,d}. Then, for every matrix A € R™*¢,
h(AXT) = h (AXT). (5.19)

Note that if m =1 and A = (1,...,1), (5.19) boils down to the EPI in (5.18). However,
for m > 1, one cannot use the EPI to prove (5.19), and in [62] it is proved by induction on
the matrix dimensions m,d. A possible generalization of (5.19) to the Rényi entropy is of

interest.

Generalized R-EPIs for arbitrary subsets of indices

Consider the set [n] = {1...,n} for n > 2, and let C be some arbitrary collection of subsets
of [n]; ie., C = {s: s €2} where 2" is the power set of [n]. For every k € [n], define
re = |{s € C: k € s}| and r = maxepy 7x. Madiman and Barron showed in [40, Theorem 3]

that for independent random variables { Xy }}_;

N (;n; Xk> > %ZN (Z Xk> . (5.20)

seC kes

For the choice of C as the set of singletons, (5.20) reduces to the EPI in (1.1) and for the
choice of C' as the “leave one out” subsets, i.e., C' = {{1,2, cooni\k:1<k< n}, (5.20)
yields another result [1, Theroem 3J:

N (,;:Xk> > — i - zn:N (Zxk> . (5.21)

i=1 ki

Since (5.20) generalizes the EPI and more related inequalities (e.g., (5.21)), a possible

generalization to the Rényi entropy powers of interest.
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Possible Strengthening the R-EPIs

As mentioned in Chapter 1, the EPI in (1.1) is tight and is acheived with equality for

Gaussian random vectors with proportional covariances. However, it can be refined by a

restriction to some families of distributions; this has been done, for example, in [20, 22, 55].

Finding some possible strengthened R-EPIs is of interest and is suggested for future research.

Examples for strengthened EPIs are given in the following:

)

Let X; = X ++/tZ, where X is an arbitrary random vector and Z is a Gaussian random
vector with i.i.d. components having mean zero and variance 1. In [20, Theorem 3],
Costa proved that the function defined by f(t) = N(X;) is concave for every t > 0.
This in turn implies that 20, inequality (8)],

N(X,) > (1 - )N(X) + tN(X + Z), Vte|o,1]. (5.22)

The latter yields the EPI in (1.1); indeed, by substituting 5 = \% and setting 7' = %Z,
it follows from (5.22) and the homogeneity property of the entropy power that
N(X +2Z")> (1 - F)NX)+ EN(X +57)
=(1-H)NX)+N(E+2), vVB>1 (5.23)

s

=

In view of (5.23), by letting 8 — oo, the EPI when the additive noise is Gaussian is
re-established.

In [22, Theorem 2|, a strengthened and generalized EPI is given. To distinguish between
random vectors and variables, random vectors are written, for this example only, in
a bold font. Let X,Z be random vectors and ),V be random variables and let Y =
X + Z. Assume that X and Z are independent given () and that Z is Gaussian (with

an arbitrary covariance matrix) given Q. If given @), X-Y-V forms a Markov chain

(i.e. fV|X,Y,Q = fV\Y,Q)a then

exp {5 (M(Y|Q) = I(X;V|Q))} > exp {7 (h(X|Q) — I(Y; VIQ)} +exp {3 (h(W]Q))} -
(5.24)

44



The unconditioned version of (5.24) is written as follows. If X and Z ~ N(0,X) are
independent, then for every V such that X—(X + Y)-V forms a Markov chain,

NX+Z)exp {2(-I(X;V)} > N(X)exp {2 (—I(X+Z;V))} + N(Z).  (5.25)
The latter implies the EPI in (1.1) if V' is independent of X and Z.

3) In [55, inequality 14], it stated that if X and Y are independent random vectors with

log-concave densities, then
NX+Y)>Rxy(NX)+ N(Y)) (5.26)

where Rxy > 1 and Rxy = 1 if and only if both X and Y are Gaussian random
vectors (Rx y is given explicitly in [55] and serves as a measure of the non-Gaussianity
of the two random vectors X and Y). Possible strengthening of the R-EPIs in this

thesis for log-concave random vectors is suggested as a subject for future research.

We conclude that there are many directions for future research concerning Rényi entropy
power inequalities; the R-EPIs derived in this thesis may have many generalizations and
extensions. It is our hope that the usefulness of the Rényi entropy and the EPI in information
theory will encourage researchers to further study these possible generalizations, and to find

useful applications of these generalized inequalities in information theory.
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Appendix A

Proof of (3.4)

n
Since { X }7_; are independent, the density of S,, = >~ X is the convolution of the densities

k=1
fx,- In view of (2.20) and (2.5), for a > 1,

2 ’

Na(Sn) = (”le kL. % an”a)*%

2 ~z
> A7 [Teer (xll) ™

where

and, due to (2.14) and (2.19),

[NlfsH

A= (Aa, ﬁ Ayk)
k=1

From (A.2) and (A.3) it follows that v, € (1,a] for all k € {1,..

Corollary 1,

Il < Ifxlls, 1<k <n.

46

(A1)

(A.4)

.,n}, hence in view of

(A.5)



Combining (A.1) and (A.5), and defining t;, = Z‘—,, yields
k

[X/(X

Na( A% H I fxlla) & % = AH HNtk (Xy) (A.6)

~

which by setting B = A completes the proof of (3.4) with the constant B as given in
(3.5).
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Appendix B
Proof of Proposition 1

In view of (4.7), if fy is concave, so is f. As it is verified in Section 4.1.1, the function fy
is concave for all a € (1,2) (i.e., & € (2,00)), and hence also f is concave for these values
of . We therefore need to prove the concavity of f in (4.7) whenever o € (1,2) (i.e., if
a € (2,00)), although fj is not concave for these values of a.

Let o € (1,2). If there exists an index k£ € {1,...,n — 1} such that ¢(¢;) = 0, then
ty = 0‘7/ > 1 (see (4.10)). In view of (4.8), it follows that #; < 3 for every other index [ # k in
the set {1,...,n—1}, which in turn implies from (4.10) that ¢(¢;) < 0 for every such index [.
In other words, if there exists an index k € {1,...,n—1} such that ¢(¢x) = 0, then it follows
that q(¢;) <0 foralll € {1,...,n—1}. In view of (4.12), D <0 and p < 0 (to verify that
p < 0, note that since 0 < 1— Z;:ll tj<1l—ty =1-% <1< < then it follows from (4.10)
and (4.12) that p = ¢(1 — Z;:ll t;) < 0); hence, (4.11) implies that V2f(t,...,¢,—1) < 0in
the interior of D"~!, so f is (strictly) concave on D"~

To proceed, the following lemmas will be useful.

Lemma 1. If o/ € (1,2) and = € (0,1 — %), then

+ > 0. (B.1)
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Proof. In view of (4.10), the left side of (B.1) is equal to

<0 >0

A

—— ~
(1—a) (22° =22+ o)
2z —d) (2—2x—d)

—_——— —o
<0 >0

> 0.

Lemma 2. If o/ € (1,2), u,v >0 and u + v < 1—%/,then

Lo 1 1
q(u) gl —u-v) q(1-v)

Proof. In view of (4.10), the left side of (B.2) is equal to

> 0.

>0 >0 <0
7\ 7\
7 N

—~ - N
(2d'u) (&' +v—1) (ut+v—1)
2u—a') 2—2u—2v—a') (2—2v—a)
N 7 \\ s\ 7

-~ -~

<0 >0 >0

Lemma 3. If n > 2, o/ € (1,2) and

then

> 0.

(B.2)

(B.3)

(B.4)



Proof. Lemma 3 is proved by using mathematical induction on n. In view of Lemma 1, (B.4)

holds for n = 2. Assuming its correctness for n, we have

@) a7 (B:5)

where, from (B.3), , = 1 — Y7, t. We prove in the following that (B.4) also holds for

n + 1 when the constraints in (B.3) are satisfied with n + 1, i.e.,

tla 7tn > 07
t <1——,
- 2 (B.6)
i1 =1=) t.
k=1

n+1 1 n—1 1 1 .
; q(tr) - —~ q(ty)  qltn)  q(tnsr)
1 1 1
~ _q(fn) + q(ty) + q(tns) (B.7)
1 1 1
AR Srte)  a(l— St (B.8)
=0 (B.9)

where (B.7) follows from (B.5); (B.8) holds by the equality constraint in (B.6); (B.9) follows
from Lemma 2 by setting u = t,, v = ZZ: ty which satisfy u+v < 1— %/ in view of (B.6).

Hence, it follows by mathematical induction that Lemma 3 holds for every n > 2. O]

In the following, we prove the concavity of f when ¢(t;x) # 0 for all k£ € {1,...,n —
1} (recall that the case where there exits k € {1,...,n — 1} such that ¢(tx) = 0 was
addressed in the paragraph before Lemma 1). Without loss of generality, we prove that
V2f(t) =< 0 when (g(t1),...,q(t,—1)) is a vector whose all entries are distinct. To justify
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this assumption, note that since the function ¢ in (4.10) is monotonically increasing (¢'(t) =

t% + m > (), we actually restrict ourselves under the latter assumption to the case where

the entries of the vector (t1,...,t,_1) are all distinct. Otherwise, if some of the entries of
the vector (ty,...,t, 1) are equal, then the proof that the Hessian matrix is non-positive
definite continues to hold by relying on the satisfiability of this property when all the entries
of (t1,...,t,—1) are distinct, and from the continuity in ¢ of the eigenvalues of the Hessian
matrix V2 f(t).

Since the optimization problem in (4.6) is invariant to a permutation of the entries of ¢,

it is assumed without loss of generality that

q(t1) < qt2) <...<qltn-1). (B.10)

In view of (B.10), there are only two possibilities: either

q(tl) < q(tg) < ... < q(tn_g) < q(tn_l) < 0, (Bll)

or

Q(tl) < q(t2> < ... < Q(tn72> <0< Q(tnfl) <B12)

as if it was possible that ¢(t,—2) > 0, it would have implied that ¢(¢,—1) > ¢(t,—2) > 0 which
in turn yields that ¢, 1 > t, o > %/ This, however, cannot be true since otherwise

n—1

Ztk > tho+tp1>a >1
k=1

which violates the inequality constraint 37—  t; < 1 in (4.8).

The continuation of this proof relies on Fact 2 by Bunch et al. [17] (see Section 2.3), and

on Lemma 3. For the continuation of this proof, let

th=1-> . (B.13)

Case 1: If (B.11) holds, then (4.12) implies that

D <0. (B.14)
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o If ¢(t,) < 0 then p = ¢(t,)117 < 0 which, in view of (4.11) and (B.14), implies that
V2f(ty, ... ta1) < 0.

e Otherwise, if ¢(¢,) > 0 then p > 0 (see (4.12) and (B.13)); from (4.11) and the
interlacing property in (2.22), the eigenvalues Ay, ..., \,_1 of V2f(¢) satisfy

qt1) < A1 < qta) < ... < q(tn—2) < An—2 < q(tn—1) < An—1 (B.15)

where, in view of the third item of Fact 2, the inequalities in (B.15) are strict. From
(B.11) and (B.15), it follows that A;,..., A\,_» < 0. To prove that V2f(ty,...,t, 1) <
0, it remains to show that also A\,_; < 0. In view of the third item of Fact 2 and (4.11),
the eigenvalues of V2f(ty,...,t, 1) satisfy the equation

L+q(t,) Y ——— =0 (B.16)

which therefore implies that, for all k € {1,...,n — 1},

1 1
Z ) ay (B.17)

Let us assume on the contrary that A,_; > 0. Since it is assumed here that ¢(¢,) > 0
then t, > %, and it follows from (B.13) that

n—1 ’
St < 1—% (B.18)
k=1

n—1 1 n—1 1
>>
= mat) TS A —alty) (B.19)
B 1
q(tn)
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Rearrangement of terms in (B.19) yields

n

> Q(ij) <0 (B.20)

j=1

and, in view of the interior of D"~! in (4.8), and (B.13) and (B.18), inequality (B.20)
contradicts the result in Lemma 3. This therefore proves by contradiction that \,_; <
0, so all the n — 1 eigenvalues of the Hessian are negative, and therefore f is strictly

concave under the assumption in (B.11).

Case 2: We now consider the case where (B.12) holds. Under this assumption,
q(tn) <O. (B.21)

To verify (B.21), note that q(t,—1) > 0 yields that ¢,_; > %/; assume by contradiction that
q(t,) > 0, then t, > %/ (see (4.10)) which implies that > 7 ¢; > ¢, +t,1 > o/ > 1 in
contradiction to the equality Z?Zl t; =1 in (B.13); hence, indeed ¢(¢,) < 0. Consequently,

in view of (4.11), let

_ 1 9
C :q(tn) V f(tl, e ,tn_1> <B22)
=D +11" (B.23)
where
_ dia (t1) q(tn-1)
D=d g(q(tn),.. ) ) (B.24)
From (B.12) and (B.21), it follows that
q(ty) _ q(t2) q(tn—2) q(tn-1)
) by T a0 o) (B.25)

It is shown in the following that C' = 0 which, from (B.21) and (B.22), imply that indeed
V2f(ty, ..., ta1) 2 0. Let {\¢}7Z] designate the eigenvalues of C; in view of (B.23) and the
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last two items of Fact 2, it follows that

<0 >0 >0 >0

tn-1) (tn—2) (t2) (t1)
At <82 <8Ry < Ty (B.26)
q(tn) q(tn) q(tn) q(tn)

Hence, (B.26) asserts that s, ..., A,_1 > 0, and it only remains to prove that A\; > 0. From
the third item of Fact 2, and from (B.22), (B.23), (B.24), the eigenvalues {\;}}_; of the

rank-one modification C satisfy the equality

1
HZM—:O (B.27)

n—1 Q(t ) n—1 1
1 >1 — = 0. B.28
T — q(t;) — +Z a(ti) oy ( )
j=1 T 7=1 qta) — M

Consequently, from (B.21) and (B.28), it follows that 7, ﬁ < 0 in contradiction to
Lemma 3. Hence, A\, > 0 for every k € {1,...,n — 1}, which therefore implies that
V2f(t1,...,tn—1) <0 for all (¢1,...,t,_1) in the interior of D"~'. This completes the proof

of Proposition 1.
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Appendix C

Derivation of (4.17)—(4.19) From
Lagrange Duality

We consider the convex optimization problem in (4.6), and solve it via the use of the Lagrange
duality where strong duality holds.

The Lagrangian of the convex optimization problem in (4.6) is given by

‘L(tla'--atnfl;Ala-"aAn)

n—1 n—1 n—1
+ (1 — Ztk) logNn+Z)\ktk+)\n (1 — Ztk)
k=1 k=1
where A > 0, the function g is defined in (4.2), and Ny := N, (Xj) (see (4.3)).
In view of the Lagrangian in (C.1) and the function ¢ defined in (4.2), straightforward

calculations of the partial derivatives of L with respect to ¢, for k € {1,...,n — 1} yields

=g'(ty) —¢(1—t;— ... —t,_1) +log (%:8?:;) + A — A\

— _log (tk(l - %)) +log (tn (1 — %)) +log (ngz;) A=A (C2)
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where ¢, ;=1 — Z;i ty. By setting the partial derivatives in (C.2) to zero, and exponenti-

ating both sides of the equation, we get for all k € {1,...,n—1}

REETE R “3)

In view of (C.3) and the definition of {c; }7—] in (4.15), we obtain that for all k € {1,...,n—1}
tr(a) —t) = cptn(a’ —t,) exp(Ar, — A\pn). (C.4)

Consequently, (C.4), the definition of ¢,, and the slackness conditions lead to the following

set, of constraints:

tx >0, ke{l,...,n} (C.5)
> = (C.6)
k=1

e >0, ked{l,...,n} (C.7)
ety =0, ke{l,...,n} (C.8)
tr(a —ty) = cxtn () — t,) exp(M\e — \p), ke€{l,...,n—1} (C.9)

with the variables A and ¢ in (C.5)—(C.9).

Consider first the case where
No(X) >0, VYke{l,...,n—1} (C.10)
which in view of (4.15), implies
>0, Vke{l,....,n—1} (C.11)
Under the assumption in (C.10), we prove that
Ao =0, Vke{l,...,n}. (C.12)

Assume on the contrary that there exists an index k such that Ay # 0. This would imply
from (C.8) that ¢, = 0. If K = n (i.e., if t, = 0) then it follows from (C.9) that also t;, = 0
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for all k € {1,...,n} (recall that o/ > 1), which violates the equality constraint in (C.6).
Otherwise, if t;, = 0 for some k < n, then it follows from (C.9) and (C.11) that ¢,, = 0 which
leads to the same contradiction as above.

The substitution of (C.12) into the right side of (C.9) gives the simplified equation in
(4.17). In view of (C.5) and (C.6), this leads to the simplified set of KKT constraints in
(4.17)-(4.19).

Finally, if the assumption in (C.10) does not hold, i.e., N,(X;) = 0 for some k €
{1,...,n—1}, then the optimal solution satisfies t; = 0 (with the convention that 0-log0 = 0)
since any other assignment makes the objective function in (4.9) be equal to —oo. In addi-
tion, in this case ¢, = 0, so the simplified set of KKT constraints in (4.17)—(4.19) still yields

the optimal solution t.
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Appendix D

On the existence and uniqueness of
the solution to (4.23)

Define
n—1
v)=x+Y thex(x), x€[0,1], (D.1)
k=1

and note that we need to show that there exists a unique solution of the equation ¢, (x) =1

where = € [0,1]. From the continuity of ¢,(-) and since ¢,(0) = 0 and

n—1

Ga(1) =1+ (1) > 1, (D.2)

the existence of such a solution is assured. To prove uniqueness, consider two cases: o > 2
and 1 < o < 2.
The derivative of ¢,(x) is given by

(D.3)

so if o/ > 2, then ¢, (z) is monotonically increasing in [0, 1], hence the solution t,, € [0, 1] of

the equation (4.23) is unique.
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If o/ € (1,2), then
o (x) >0, zel0,%] (D.4)
Note that

o/? —der(ol —x) = '*(1 — ¢) + (20 — )3,

thus in view of (D.3),

C
Ol (x) =1+ 5 . (D.5)
k=1, [cp + o?(1—ck)
4(z—5)?

Eq. (D.5) implies that ¢,,(-) is monotonically decreasing in (%, 1]; in other words, ¢,(-) is
concave in the interval (%/, 1]).

Assume on the contrary that there are two solutions, 0 < z; < 25 < 1 to (4.23), i.e.,

$a(t1) = Pa(z2) = 1. (D.6)

Eq. (D.6) implies that there exists ¢ € (x1,22) such that ¢/ (¢) = 0 and from (D.4), ¢ €
(%, 2). Since ¢, (-) is monotonically decreasing in (<, 1], it follows that ¢/,(z) < 0 for all z €

(¢,1). Hence, ¢,(+) is monotonically decreasing in (x2, 1), which leads to the contradiction

1 < @a(l) < galw2) = 1.

This therefore demonstrates the uniqueness of the solution in both cases.
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Appendix E

On the Asymptotic Equivalence of
(4.24) and (4.25)

If Noo(Xi) = 0 for all k& € {1,...,n}, the bounds in (4.24) and (4.25) obviously coincide
asymptotically as @« — oo. In addition, in this case, the condition in (4.26) clearly holds
as well. It is therefore assumed that N (X}) is strictly positive for at least one value of

k € {1,...,n} which, under the assumption in (4.13), yields that
No(X,) > 0. (E.1)

Let ¢}, be defined as

x _71: Na(Xk) . NOO(Xk)
%= N XD T Na(Xa) (E2)

In view of (E.2), the condition in (4.26) is equivalent to

S
—

cp <L (E.3)
1

e
Il

Hence, it remains to show that the the tightest R-EPI in (4.24) and the BV bound in (4.25)
asymptotically coincide, by letting o« — oo, if and only if the condition in (E.3) holds.
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Let ¢4 : [0,1] — R be the function defined in (D.1) for o € (1,00), and define

Buelr) = lim o) (B.4)

for x € [0,1]. In view of (4.22), (D.1) and (E.2), the limit in (E.4) is given by

—

n—

boo(z) =z + 1 (1—\/1—4(;;3;(1—3:)) (E.5)

1

£
Il

for € [0,1]. Recall that under the assumption in (4.13), the selection of ¢, = 1 in (4.9)
leads to the BV bound in (4.25). Hence, in view of (4.23), if t = 1 is the unique solution of

Oo(t) =1, te€]0,1] (E.6)

then the bounds in (4.24) and (4.25) asymptotically coincide by letting o — oo. Note that,
$(0) =0, (E.7)

Poo(1) = 1. (E.8)

From (E.8), ¢t = 1 is a solution of (E.6) regardless of the sequence {c;}. Moreover, from
(£5),

n—1

, B (1 —2x)
¢M(x)_1+; V1—dca(l—2) (E.9)
Plo(x) >0, Vael(0,3), (E.10)
Ho)=1-c E11)

The function ¢, (-) is monotonically decreasing in the interval [3, 1]; this concavity property
of ¢ can be justified by Appendix D since the function ¢,(-) is concave in [%/, 1Jand o/ — 1
by letting o — oo. Thus, if the condition in (E.3) holds, then ¢/ _(z) > 0 for all z € (0, 1)
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which, in view of (E.8), yields that ¢ = 1 is the unique solution of (E.6). This implies that
the tightest R-EPI in (4.24) and the BV bound in (4.25) asymptotically coincide by letting

a — OQ.

To prove the ’only if’ part, one needs to show that if the condition in (E.3) does not
hold then the bounds in (4.24) and (4.25) do not coincide asymptotically in the limit where
a — oo; in the latter case, we prove that our bound in (4.24) is tighter than (4.25). If (E.3)
does not hold, then (E.11) implies that

P(1) <0. (E.12)

o0

Hence, from (E.8), there exists zg € (0, 1) such that ¢o.(xg) > 1 which, in view of (E.7) and
the continuity of ¢ (-), implies that there exists t € (0, o) which is a solution of (E.6). This
implies that there are two different solutions of (E.6) in the interval [0,1]. Let t%) € (0,1)

and t® = 1 denote such solutions, i.e.,
tW <@ =1 (E.13)

Note that there are no solutions of the equation ¢ (t) = 1 in [0, 1], except for t(!) and ¢ = 1
1 1

since ¢oo(-) is monotonically increasing in [0, 5] and it is concave in [3, 1] with ¢oo(1) = 1.
We need to show that () leads to an R-EPI which is tighter than the R-EPI in (4.25);
the bound in (4.25) corresponds to £ = 1 under the assumption in (4.13). For every a > 1,
let t(cv) be the unique solution of (4.23) (see Appendix D). It follows that the limit of any
convergent subsequence {t(a,)}, as a,, — 00, is either ¢ € (0,1) or t® = 1. In the sequel,
if the condition in (4.26) is not satisfied, we show that every such subsequence tends to
t(M € (0,1), which therefore implies that
lim t(a) =tM < 1. (E.14)

a—0o0

From (E.12) and the continuity of ¢o.(:), it follows that there exists § > 0 such that

boo(z) > 1, Y € (1—3,1). (E.15)
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In addition, since ¢,(-) is continuous in « for every x € [0, 1], it follows from (E.15) that
there exists o > 1 such that ¢,(x) > 1 for all & > ap and = € (1 — 4, 1] (note that the
rightmost point is included in this interval in view of (D.2)). Hence, since by definition
¢a(t(a)) =1 for all a € (1,00) then ¢(a) < 1—§ for all @ > ap. This therefore proves that
every subsequence {t(a,)} tends to t(") as a,, — oo (since it cannot converge to t) = 1),
which yields (E.14). Hence, the R-EPI in Theorem 2 asymptotically yields a tighter bound

than (4.25) when a@ — o0; this therefore proves the ’only if’ part of our claim.
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