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4.1 A comparison of the Rényi entropy power inequalities for n = 3 indepen-

dent random vectors according to [11] (BC), [7] (BV), Theorem 1 and the

tightest bound in Theorem 2. The bounds refer to the two cases where

(Nα(X1), Nα(X2), Nα(X3)) = (40, 40, 40) or (10, 20, 90) (in both cases, the

sum of the entries is 120; in the former case, the condition in (4.26) does not

hold, while in the latter it does). . . . . . . . . . . . . . . . . . . . . . . . . . 30
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Abstract

One of the well-known inequalities in information theory is the entropy power inequal-

ity (EPI) which has been introduced by Shannon in his 1948 landmark paper. The EPI

has proved to be an instrumental tool in proving converse theorems for the capacity region

of the Gaussian broadcast channel, the capacity region of the Gaussian wire-tap channel,

the capacity region of the Gaussian interference channel, the capacity region of the Gaus-

sian broadcast multiple-input multiple-output (MIMO) channel, and a converse theorem in

multi-terminal lossy compression. Due to its importance, the EPI has been proved with

information-theoretic tools in several insightful ways.

More studies on the theme include EPIs for discrete random variables and some analogies,

generalized EPIs, reverse EPIs, related inequalities to the EPI in terms of rearrangements,

and some refined versions of the EPI for specialized distributions.

The Rényi entropy and divergence have been introduced by Rényi in the sixties, as a

generalization of the Shannon entropy and the Kullack-Leibler relative entropy, and they

evidence a long track record of usefulness in information theory and its applications. It is

therefore of interest to consider the generalization of the EPI to Rényi measures.

This Master thesis focuses on Rényi entropy power inequalities (R-EPI), which generalize

the celebrated EPI of Shannon to the Rényi entropy power. Consider a sum of Sn =
∑n

k=1Xk

independent continuous random vectors taking values in Rd, and let α ∈ [1,∞]. A Rényi

Entropy Power Inequality provides a lower bound Rényi entropy power of Sn of an arbitrary

order α that, up to a multiplicative constant (which may depend in general on n, α and

d), is equal to the sum of the Rényi entropy powers (of the same order α) of the n random

vectors {Xk}nk=1. For α = 1, the R-EPIs derived in the thesis by the author coincide with

the entropy power inequality by Shannon.
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The first R-EPI is an improvement of a recent R-EPI by Bobkov and Chistyakov (IEEE

Trans. on Information Theory, Feb. 2015) which relies on the sharpened Young’s inequality.

A further improvement of the R-EPI relies on convex optimization and results on rank-one

modification of a real-valued diagonal matrix. The latter form of the R-EPI improves both

the inequality by Bobkov and Chistyakov as well as a bound by Bercher and Vignat, and it

forms the tightest R-EPI known to date. The improvements are exemplified in the context

of data filtering, and are shown to be asymptotically tight as α→∞ for n = 2.

This work has been very recently published as a journal paper:

E. Ram and I. Sason, “On Rényi entropy power inequalities,” IEEE Trans. on Information

Theory, vol. 62, no. 12, pp. 6800–6815, December 2016. It was also presented in part at the

ISIT 2016 conference.
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List of Abbreviations and Notations

BC Bobckov and Chistyakov

BV Bercher and Vignat

EPI Entropy Power Inequality

KKT Karush-Kuhn-Tucker

R-EPI Rényi Entropy Power Inequality

fX Probability density function of a random vector X

d Dimension of all random vectors

n Number of summands

H(·) Shannon entropy

h(·) Differential entropy

N(·) Differential entropy power

hα(·) Differential Rényi entropy of order α

Nα(·) Differential Rényi entropy power of order α

α′ Hölder conjugate of α

‖ · ‖α Lα-norm

∗ Convolution operation

D(·||·) Discrete Kullback-Leibler divergence

d(·||·) Binary Kullback-Leibler divergence

M(·) Essential supremum functional

Pn n-dimensional probability simplex

L(. . . ; . . .) Lagrangian of an optimization problem
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Chapter 1

Introduction

One of the well-known inequalities in information theory is the entropy power inequality

(EPI) which has been introduced by Shannon [50, Theorem 15]. Let X be a d-dimensional

random vector with a probability density function, let h(X) be its differential entropy, and

let N(X) = exp
(
2
d
h(X)

)
be the entropy power of X. The EPI states that for independent

random vectors {Xk}nk=1, the following inequality holds:

N

(
n∑
k=1

Xk

)
≥

n∑
k=1

N(Xk) (1.1)

with equality in (1.1) if and only if {Xk}nk=1 are Gaussian random vectors with proportional

covariances.

The EPI has proved to be an instrumental tool in proving converse theorems for the

capacity region of the Gaussian broadcast channel [8], the capacity region of the Gaussian

wire-tap channel [37], the capacity region of the Gaussian interference channel [21], the

capacity region of the Gaussian broadcast multiple-input multiple-output (MIMO) channel

[59], and a converse theorem in multi-terminal lossy compression [43]. Due to its importance,

the EPI has been proved with information-theoretic tools in several insightful ways (see, e.g.,

[9], [25], [29], [34, Appendix D], [45], [53], [56]); e.g., the proof in [56] relies on fundamental

relations between information and estimation measures ([28], [30]), together with the simple
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fact that for estimating a sum of two random variables, it is preferable to have access to the

individual noisy measurements rather than to their sum. More studies on the theme include

EPIs for discrete random variables and some analogies [31, 32, 33, 36, 49, 51, 60], generalized

EPIs [39, 40, 62], reverse EPIs [12, 13, 42, 61], related inequalities to the EPI in terms

of rearrangements [57], and some refined versions of the EPI for specialized distributions

[20, 22, 32, 55]. An overview on EPIs is provided in [2]; The reader is also referred to

a preprint of a recent survey paper by Madiman et al. [42] which addresses forward and

reverse EPIs with Rényi measures, and their connections with convex geometry.

The Rényi entropy and divergence have been introduced in [44], and they evidence a long

track record of usefulness in information theory and its applications. These include a source

coding theorem [19], guessing moments [3], generalized cutoff rates and error exponents for

hypothesis testing [24, 52], encoding tasks [18], and a channel coding theorem [47]. Recent

studies of the properties of these Rényi measures have been provided in [26], [27] and [52].

In the following, the differential Rényi entropy and the Rényi entropy power are introduced.

Definition 1 (Differential Rényi entropy). Let X be a random vector which takes values in

Rd, and assume that it has a probability density function which is designated by fX . The

differential Rényi entropy of X of order α ∈ (0, 1) ∪ (1,∞), denoted by hα(X), is given by

hα(X) =
1

1− α
log

( ∫
Rd

fαX(x) dx

)
(1.2)

=
α

1− α
log ‖fX‖α. (1.3)

The differential Rényi entropies of orders α = 0, 1,∞ are defined by the continuous extension

of hα(X) for α ∈ (0, 1) ∪ (1,∞), which yields

h0(X) = log λ
(
supp(fX)

)
, (1.4)

h1(X) = h(X) = −
∫
Rd

fX(x) log fX(x) dx, (1.5)

h∞(X) = − log
(
ess sup(fX)

)
(1.6)
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where λ in (1.4) is the Lebesgue measure in Rd.

Definition 2 (Rényi entropy power). For a d-dimensional random vector X with density,

the Rényi entropy power of order α ∈ [0,∞] is given by

Nα(X) = exp
(
2
d
hα(X)

)
. (1.7)

Since hα(X) is specialized to the Shannon entropy h(X) for α = 1, the possibility of

generalizing the EPI with Rényi entropy powers has emerged. This question is stated as

follows:

Question 1. Let {Xk} be independent d-dimensional random vectors with probability den-

sity functions, and let α ∈ [0,∞] and n ∈ N. Does a Rényi entropy power inequality (R-EPI)

of the form

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk) (1.8)

hold for some positive constant c
(n,d)
α (which may depend on the order α, dimension d, and

number of summands n) ?

In [35, Theorem 2.4], a sort of an R-EPI for the Rényi entropy of order α ≥ 1 has been

derived with some analogy to the classical EPI; this inequality, however, does not apply

the usual convolution unless α = 1. In [57, Conjectures 4.3, 4.4], Wang and Madiman

conjectured an R-EPI for an arbitrary finite number of independent random vectors in Rd

for α > d
d+2

. In a recent preprint ([14]) a similar question is proposed and answered; the

multiplicative constant c
(n,d)
α is forced to be equal to 1, but an exponent is added to each

Rényi entropy power; i.e. Np
α (
∑n

k=1Xk) ≥
∑n

k=1N
p
α(Xk) for a suitable choice of p.

Question 1 has been recently addressed by Bobkov and Chistyakov [11], showing that

(1.8) holds with

cα = 1
e
α

1
α−1 , ∀α > 1 (1.9)
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independently of the values of n, d. It is the purpose of this thesis to derive some improved

R-EPIs for α > 1 (the case of α = 1 refers to the EPI (1.1)). A study of Question 1 for

α ∈ (0, 1) is currently an open problem (see [11, p. 709]) and is discussed in Chapter 5.

In view of the close relation in (1.3) between the (differential) Rényi entropy and the Lα

norm, the sharpened version of Young’s inequality plays a key role in [11] for the derivation

of an R-EPI, as well as in this thesis for the derivation of some improved R-EPIs. The

sharpened version of Young’s inequality was also used by Dembo et al. [25] for proving the

EPI.

For α ∈ (1,∞), let α′ = α
α−1 be Hölder’s conjugate. For α > 1, Theorem 1 provides a

new tighter constant in comparison to (1.9) which gets the form

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
(1.10)

independently of the dimension d. The new R-EPI with the constant in (1.10) asymptotically

coincides with the tight bound by Rogozin [46] when α → ∞ and n = 2, and it also

asymptotically coincides with the R-EPI in [11] when n → ∞. Moreover, the R-EPI with

the new constant in (1.10) is further improved in Theorem 2 by a more involved analysis

which relies on convex analysis and some interesting results from matrix theory; the latter

result yields a closed-form solution for n = 2.

This thesis is organized as follows: In Chapter 2, preliminary material and notations

are introduced. A new R-EPI is derived in Chapter 3 for α > 1, and special cases of

this improved bound are studied. Chapter 4 derives a strengthened R-EPI for a sum of

n ≥ 2 random variables; for n = 2, it is specialized to a bound which is expressed in a

closed form; its computation for n > 2 requires a numerical optimization which is easy to

perform; Section 4.3 exemplifies numerically the tightness of the new R-EPIs in comparison

to some previously reported bounds. Finally, Chapter 5 summarizes this thesis, discusses

the tightness of the R-EPIs in it, and suggests some future research items, including α < 1

case and some more generalizations of EPI related results to the Rényi entropy power.
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Chapter 2

Analytical Tools

This chapter includes notation and tools which are essential to the analysis in this thesis. It

starts with a short introduction on the conditional Rényi entropy followed by some properties

of the differential Rényi entropy and Rényi entropy power which are useful for the derivation

of the improved R-EPIs. Next, basic inequalities which play a key role in this thesis are

presented; this includes the sharpened Young’s inequality, and a monotonicity property

of the Lα norm. We finish this chapter with some results on rank-one modification of a

symmetric eigenproblem [17].

2.1 Rényi Entropy

In the following, a definition of the conditional Rényi entropy and some properties of the dif-

ferential Rényi entropy and Rényi entropy power defined in Definitions 1 and 2, respectively,

are presented.

In contrast to the conditional (Shannon) entropy, many different definitions have been

suggested for the conditional Rényi entropy in the literature (see [54]). For example, let

X, Y be continuous random vectors taking values in Rd, with a joint PDF fX,Y . Recall the

definition of the conditional differential entropy, h(Y |X) =
∫
Rd fX(x)h(Y |X = x)dx, where

fX is the marginal PDF of the random vector X. By mimicking this definition, one can

7



define the conditional Rényi entropy as

hα(Y |X) =

∫
Rd
fX(x)hα(Y |X = x)dx, α ∈ [0,∞]. (2.1)

However, this definition fails to satisfy a basic property that holds for the conditional Shan-

non entropy, namely, that conditioning reduces entropy:

hα(Y |X) ≤ hα(Y ), ∀α ∈ [0,∞]. (2.2)

The monotonicity property in (2.2) will turn out to be useful in Chapter 3, hence a

different definition for the conditional Rényi entropy is needed. The next definition is due

to Arimoto [4], and satisfies the monotonicity property (together with a weak version of the

chain rule [27, Section 4]).

Definition 3 (Conditional Differential Rényi Entropy). Let X, Y be random vectors taking

values in Rd. Assume that X and Y given X have probability density functions designated

by fX and fY |X , respectively. The conditional differential Rényi entropy of Y given X is

defined as

hα(Y |X) = α
1−α log

(∫
Rd
fX(x)‖fY |X(·|x)‖αdx

)
, (2.3)

where

‖fY |X(·|x)‖α =

(∫
Rd
fαY |X(y|x)

) 1
α

. (2.4)

Next, properties of the differential Rényi entropy, the conditional Rényi entropy and the

Rényi entropy power, which are relevant to this thesis, are presented:

• In view of (1.3) and (1.7), for α ∈ (0, 1) ∪ (1,∞),

Nα(X) = (‖fX‖α)−
2α′
d . (2.5)

• The differential Rényi entropy hα(X) is monotonically non-increasing in α, and so is

Nα(X). i.e., every random vector X, if 0 ≤ β ≤ α, then

Nβ(X) ≥ Nα(X). (2.6)

8



• The conditional Rényi entropy defined in (2.3) satisfies the monotonicity property in

(2.2).

• If Y = AX + b where A ∈ Rd×d, |A| 6= 0, b ∈ Rd, then for all α ∈ [0,∞]

hα(Y ) = hα(X) + log |A|, (2.7)

Nα(Y ) = |A|
2
d Nα(X). (2.8)

This implies that the Rényi entropy power is a homogeneous functional of order 2 and

it is translation invariant, i.e.,

Nα(λX) = λ2Nα(X), ∀λ ∈ R, (2.9)

Nα(X + b) = Nα(X), ∀ b ∈ Rd. (2.10)

In view of (2.9) and (2.10), Nα(X) has some similar properties to the variance of X. However,

if we consider a sum of independent random vectors, then Var (
∑n

k=1Xk) =
∑n

k=1 Var(Xk)

whereas the Rényi entropy power of a sum of independent random vectors is not equal, in

general, to the sum of the Rényi entropy powers of the individual random vectors (unless

these independent vectors are Gaussian with proportional covariances).

2.2 Basic Inequalities

The derivation of the R-EPIs in this work partially relies on the sharpened Young’s inequality

and the monotonicity of the Rényi entropy in its order. For completeness, we introduce these

results in the following.

Notation 1. For α > 0, let α′ = α
α−1 , i.e., 1

α
+ 1

α′
= 1.

Note that α > 1 if and only if α′ > 0; if α = 1, we define α′ =∞. This notation is known

as Hölder’s conjugate.

A useful consequence of (2.5) and (2.6) is the following result (a weaker version of it is

given in [11, Lemma 1]):

9



Corollary 1. Let α ∈ (0, 1) ∪ (1,∞), and let f ∈ Lα(Rd) be a probability density function

(i.e., f is a non-negative function with ‖f‖1 = 1). Then, for every β ∈ (0, α) with β 6= 1,

‖f‖β
′

β ≤ ‖f‖
α′

α . (2.11)

Proof. Let X be a random vector whose density function is f . In view of (2.5) and (2.6)

(‖f‖α)−
2α′

d = Nα(X)

≤ Nβ(X)

= (‖f‖β)−
2β′

d .

(2.12)

Increasing by the power of −d
2

yields the desired result.

Notation 2. For every t ∈ (0, 1) ∪ (1,∞), let

At = t
1
t |t′|−

1
|t′| (2.13)

and let A1 = A∞ = 1. Note that for t ∈ [0,∞]

At′ =
1

At
. (2.14)

The sharpened Young’s inequality, first derived by Beckner [6] and re-derived with alter-

native proofs in, e.g., [5] and [16] is given as follows:

Fact 1 (Sharpened Young’s inequality). Let p, q, r > 0 satisfy

1

p
+

1

q
= 1 +

1

r
, (2.15)

let f ∈ Lp(Rd) and g ∈ Lq(Rd) be non-negative functions, and let f ∗ g denote their convo-

lution.

• If p, q, r > 1, then

‖f ∗ g‖r ≤
(
ApAq
Ar

) d
2

‖f‖p ‖g‖q. (2.16)
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• If p, q, r < 1, then

‖f ∗ g‖r ≥
(
ApAq
Ar

) d
2

‖f‖p ‖g‖q. (2.17)

Furthermore, (2.16) and (2.17) hold with equalities if and only if f and g are Gaussian

probability density functions.

Note that the condition in (2.15) can be expressed in terms of the Hölder’s conjugates as

follows:

1

p′
+

1

q′
=

1

r′
. (2.18)

By using (2.18) and mathematical induction, the sharpened Young’s inequality can be ex-

tended to more than two functions as follows:

Corollary 2. Let ν, {νk}nk=1 > 0 satisfy
∑n

k=1
1
ν′k

= 1
ν′

, let

A =

(
1

Aν

n∏
k=1

Aνk

) d
2

(2.19)

where the right side in (2.19) is defined by (2.13), and let fk ∈ Lνk(Rd) be non-negative

functions.

• If ν, {νk}nk=1 > 1, then

‖f1 ∗ . . . ∗ fn‖ν ≤ A
n∏
k=1

‖fk‖νk . (2.20)

• If ν, {νk}nk=1 < 1, then

‖f1 ∗ . . . ∗ fn‖ν ≥ A
n∏
k=1

‖fk‖νk (2.21)

with equalities in (2.20) and (2.21) if and only if fk are scaled versions of Gaussian probability

densities for all k.

11



2.3 Rank-One Modification of a Symmetric

Eigenproblem

This chapter is based on a paper by Bunch et al. [17] which addresses the eigenvectors and

eigenvalues (a.k.a. eigensystem) of a rank-one modification of a real-valued diagonal matrix.

We use in this thesis the following result [17]:

Fact 2. Let D ∈ Rn×n be a diagonal matrix with the eigenvalues d1 ≤ d2 ≤ . . . ≤ dn. Let

z ∈ Rn such that ‖z‖2 = 1 and let ρ ∈ R. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of the

rank-one modification of D which is given by C = D + ρzzT . Then,

1. λi = di + ρµi, where
∑n

i=1 µi = 1 and µi ≥ 0 for all i ∈ {1, . . . , n}.

2. If ρ > 0, then the following interlacing property holds:

d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ . . . ≤ dn ≤ λn (2.22)

and, if ρ < 0, then

λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ . . . ≤ λn ≤ dn. (2.23)

3. If all the eigenvalues of D are different, all the entries of z are non-zero, and ρ 6= 0,

then inequalities (2.22) and (2.23) are strict. For i ∈ {1, . . . , n}, the eigenvalue λi is a

zero of

W (x) = 1 + ρ

n∑
j=1

z2i
dj − x

. (2.24)

Note that the requirement ‖z‖2 = 1 can be relaxed to z 6= 0 by letting ẑ = z
‖z‖2 and

ρ̂ = ρ‖z‖22.

12



Chapter 3

A New Rényi EPI

In the following, a new R-EPI is derived. This inequality, which is expressed in closed-form,

is tighter than the R-EPI in [11, Theorem I.1].

Theorem 1. Let {Xk}nk=1 be independent random vectors with densities defined on Rd, and

let n ∈ N, α > 1, α′ = α
α−1 and Sn =

∑n
k=1Xk. Then, the following R-EPI holds:

Nα(Sn) ≥ c(n)α

n∑
k=1

Nα(Xk) (3.1)

with

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
. (3.2)

Furthermore, the R-EPI in (3.1) has the following properties:

1. Eq. (3.1) improves the R-EPI in [11, Theorem I.1] for every α > 1 and n ∈ N,

2. For all α > 1, it asymptotically coincides with the R-EPI in [11, Theorem I.1] as

n→∞,

3. In the other limiting case where α ↓ 1, it coincides with the EPI (similarly to [11]),

13



4. If n = 2 and α→∞, the constant c
(n)
α in (3.2) tends to 1

2
which is optimal; this constant

is achieved when X1 and X2 are independent random vectors which are uniformly

distributed in the cube [0, 1]d.

Proof. In the first stage of this proof, we assume that

Nα(Xk) > 0, k ∈ {1, . . . , n} (3.3)

which, in view of (2.5), implies that fXk ∈ Lα(Rd), where fXk is the density of Xk for all

k ∈ {1, . . . , n}. In [11, (12)] it is shown that for α > 1,

Nα(Sn) ≥ B
n∏
k=1

N tk
α (Xk) (3.4)

with

B =
(
Aν1 . . . AνnAα′

)−α′
, (3.5)

νk > 1, ∀ k ∈ {1, . . . , n}, (3.6)

ν ′ =
ν

ν − 1
, ∀ ν ∈ R, (3.7)

n∑
k=1

1

ν ′k
=

1

α′
, (3.8)

tk =
α′

ν ′k
, ∀ k ∈ {1, . . . , n}. (3.9)

Consequently, (3.6)–(3.9) yields

tk > 0, ∀ k ∈ {1, . . . , n}, (3.10)
n∑
k=1

tk = 1. (3.11)

The proof of (3.4), which relies on Corollaries 1 and 2, is introduced in Appendix A.

Similarly to [11, (14)], in view of the homogeneity of the entropy power functional (see

(2.9)), it can be assumed without any loss of generality that

n∑
k=1

Nα(Xk) = 1. (3.12)
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Hence, to prove (3.1), it is sufficient to show that under the assumption in (3.12)

Nα(Sn) ≥ c(n)α . (3.13)

From this point, we deviate from the proof of [11, Theorem I.1]. Taking logarithms on

both sides of (3.4) and assembling (2.13), (3.5)–(3.11) and (3.12) yield

logNα(Sn) ≥ f0(t), (3.14)

where t = (t1, . . . , tn), and

f0(t) =
logα

α− 1
−D(t‖Nα) + α′

n∑
k=1

(
1− tk

α′

)
log

(
1− tk

α′

)
, (3.15)

Nα = (Nα(X1), . . . , Nα(Xn)) , (3.16)

D(t‖Nα) =
n∑
k=1

tk log

(
tk

Nα(Xk)

)
. (3.17)

In view of (3.10) and (3.11), the bound in (3.14) holds for every t ∈ Rn
+ such that

∑n
k=1 tk = 1.

Consequently, the R-EPI in [11, Theorem I.1] can be tightened by maximizing the right side

of (3.14), leading to the following optimization problem:

maximize f0(t)

subject to tk ≥ 0, k ∈ {1, . . . , n},∑n
k=1 tk = 1.

(3.18)

Note that the convexity of the function

f(x) =
(

1− x

α′

)
log
(

1− x

α′

)
, x ∈ [0, α′] (3.19)

yields that the third term on the right side of (3.15) is convex in t. Since the relative entropy

D(t‖Nα) is also convex in t, the objective function f0 in (3.15) is expressed as a difference

of two convex functions in t. In order to get an analytical closed-form lower bound on

the solution of the optimization problem in (3.18), we take the sub-optimal choice t = Nα
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(similarly to the proof [11, Theorem I.1]) which yields that D(t‖Nα) = 0; however, our proof

derives an improved lower bound on the third term of f0(t) which needs to be independent

of Nα. Let

t̂k = Nα(Xk), 1 ≤ k ≤ n, (3.20)

then, in view of (3.14) and (3.20),

logNα(Sn) ≥ f0(t̂) (3.21)

=
logα

α− 1
+ α′

n∑
k=1

(
1− t̂k

α′

)
log

(
1− t̂k

α′

)
. (3.22)

Due to the convexity of f in (3.19), for all k ∈ {1, . . . , n},

f(t̂k) ≥ f(x) + f ′(x) (t̂k − x). (3.23)

Choosing x = 1
n

in the right side of (3.23) yields(
1− t̂k

α′

)
log

(
1− t̂k

α′

)
≥ log

(
1− 1

nα′

)
+

log e

nα′
− t̂k
α′

[
log e+ log

(
1− 1

nα′

)]
(3.24)

and, in view of (3.12) and (3.20) which yields
∑n

k=1 t̂k = 1, summing over k ∈ {1, . . . , n} on

both sides of (3.24) implies that

α′
n∑
k=1

(
1− t̂k

α′

)
log

(
1− t̂k

α′

)
≥ (nα′ − 1) log

(
1− 1

nα′

)
. (3.25)

Finally, assembling (3.21), (3.22) and (3.25) yields (3.13) with c
(n)
α in (3.2) as required.

In the sequel, we no longer assume that condition (3.3) holds. Define

K0 = {k ∈ {1, . . . , n} : Nα(Xk) = 0}, (3.26)

16



and note that

hα(Sn) = hα

(∑
k/∈K0

Xk +
∑
k∈K0

Xk

)
(3.27)

≥ hα

(∑
k/∈K0

Xk +
∑
k∈K0

Xk

∣∣∣ {Xk}k∈K0

)
(3.28)

= hα

(∑
k/∈K0

Xk

)
(3.29)

where the conditional Rényi entropy is defined according to Arimoto’s proposal in [4] (see

also [27, Section 4]), (3.28) is due to the monotonicity property of the conditional Rényi

entropy (see [27, Theorem 2]), and (3.29) is due to the independence of X1, . . . , Xn. Since

Nα(Xk) > 0 for every k /∈ K0, then from the previous analysis

Nα

(∑
k/∈K0

Xk

)
≥ c(l)α

∑
k/∈K0

Nα(Xk), (3.30)

where l = n− |K0|. In view of (3.2), it can be verified that c
(n)
α is monotonically decreasing

in n; hence, (3.29), (3.30) and c
(l)
α ≥ c

(n)
α yield

Nα(Sn) ≥ c(n)α

n∑
k=1

Nα(Xk). (3.31)

We now turn to prove Items 1)–4).

• To prove Item 1), note that (1.9) and (3.2) yield that c
(n)
α > cα for all α > 1 and n ∈ N.

• Item 2) holds since from (3.2)

lim
n→∞

c(n)α = 1
e
α

1
α−1 (3.32)

where the right side of (3.32) coincides with the constant cα in [11, (3)] (see (1.9)).

17



• Item 3) holds since α ↓ 1 yields α′ →∞, which implies that for every n ∈ N

lim
α↓1

c(n)α = lim
α↓1

cα = 1. (3.33)

Hence, by letting α tend to 1, (3.1) and (3.33) yield the EPI in (1.1).

• To prove Item 4), note that from (3.2)

lim
α→∞

c(n)α =

(
1− 1

n

)n−1
(3.34)

which is monotonically decreasing in n for n ≥ 2, being equal to 1
2

for n = 2 and 1
e

by

letting n tend to ∞. Let X be a d-dimensional random vector with density fX , and

let

M(X) := ess sup(fX). (3.35)

From (1.6), (1.7) and (3.35), it follows that

N∞(X) := lim
α→∞

Nα(X) (3.36)

= M− 2
d (X). (3.37)

By assembling (3.1) and (3.37), it follows that if X1, . . . , Xn are d-dimensional inde-

pendent random vectors with densities, then

M− 2
d (Sn) ≥

(
1− 1

n

)n−1 n∑
k=1

M− 2
d (Xk). (3.38)

This tightens the inequality in [10, Theorem 1] where the coefficient
(
1− 1

n

)n−1
on the right

side of (3.38) has been loosened to 1
e

(note, however, that they coincide when n→∞). For

n = 2, the coefficient 1
2

on the right side of (3.38) is tight, and it is achieved when X1 and

X2 are independent random vectors which are uniformly distributed in the cube [0, 1]d [10,

p. 103].
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Figure 3.1: A plot of c
(n)
α in (3.2), as a function of α, for n = 2, 3, 10 and n→∞.

Figure 3.1 plots c
(n)
α as a function of α, for some values of n, verifying numerically

Items 1)–4) in Theorem 1. In [11, Theorem I.1], c
(n)
α is independent of n, and it is equal to

cα in (1.8) which is the limit of c
(n)
α in (3.2) by letting n→∞ (the solid curve in Figure 3.1).

Remark 1. For independent random variables {Xk}nk=1 with densities on R, the result in

(3.38) with d = 1 can be strengthened to (see [10, p. 105] and [46])

1

M2(Sn)
≥ 1

2

n∑
k=1

1

M2(Xk)
(3.39)

where Sn :=
∑n

k=1Xk. Note that (3.38) and (3.39) coincide if n = 2 and d = 1.

Example 1. Let X and Y be d-dimensional random vectors with densities fX and fY ,

respectively, and assume that the entries of X are i.i.d. as well as those of Y . Let X1, X2,
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Y1, Y2 be independent d-dimensional random vectors where X1, X2 are independent copies

of X, and Y1, Y2 are independent copies of Y . Assume that

Pr[X1,k = X2,k] = α,

Pr[Y1,k = Y2,k] = β
(3.40)

for all k ∈ {1, . . . , n}. We wish to obtain an upper bound on the probability that X1 + Y1

and X2 + Y2 are equal. From (1.3), (1.7) (with α = 2), and (3.40)

N2(X) = exp
(
2
d
h2(X)

)
(3.41)

=

(∫
Rd
f 2
X(x) dx

)−2
d

(3.42)

= P−
2
d [X1 = X2] (3.43)

=
d∏

k=1

P−
2
d [X1,k = X2,k] (3.44)

= α−2, (3.45)

N2(Y ) = β−2, (3.46)

N2(X + Y ) = P−
2
d [X1 + Y1 = X2 + Y2]. (3.47)

Assembling (3.1) with n = α = 2, (3.45), (3.46) and (3.47) yield

P(X1 + Y1 = X2 + Y2) ≤
(
27
32

(
α−2 + β−2

))− d
2 . (3.48)

The factor 27
32

on the base of the exponent on the right side of (3.48), instead of the looser

factor c2 = 2
e

which follows from (1.9) with α = 2 (see [11, Theorem I.1]), improves the

exponential decay rate of the upper bound in (3.48) as a function of the dimension d. The

optimal bound has to be with a coefficient of
(
α−2 + β−2

)
on the base of the exponent in

the right side of (3.48) which is less than or equal to 1; this can be verified since if X and Y

are independent Gaussian random variables, then

N2(X + Y ) = N2(X) +N2(Y ), (3.49)
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so,

P(X1 + Y1 = X2 + Y2) =
(
α−2 + β−2

)−d
2 . (3.50)

This provides a reference for comparing the exponential decay which is implied by c2 in (1.9),

c
(2)
2 in (3.1), and the case where X and Y are independent Gaussian random variables:

2

e
<

27

32
< 1. (3.51)
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Chapter 4

A Further tightening of the R-EPI

4.1 A Tightened R-EPI for n ≥ 2

In the following, we wish to tighten the R-EPI in Theorem 1 for an arbitrary n ≥ 2. It is

first demonstrated that a reduction of the optimization problem in (3.18) to n− 1 variables

(recall that
∑n

k=1 tk = 1) leads to a convex optimization problem. This convexity result is

established by a non-trivial use of Fact 2 in Section 2.3 (see [17]), and it is also shown that

the reduction of the optimization problem in (3.18) from n to n − 1 variables is essential

for its convexity. Consequently, the convex optimization problem is handled by solving the

corresponding Karush-Kuhn-Tucker (KKT) equations. If n = 2, their solution leads to a

closed-form expression which yields the R-EPI in Corollary 3. For n > 2, no solution is

provided in closed form; nevertheless, an efficient algorithm is introduced for solving the

KKT equations for an arbitrary n > 2, and the improvement in the tightness of the new

R-EPI is exemplified numerically in comparison to the bounds in [7], [11] and Theorem 1.
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4.1.1 The optimization problem in (3.18)

In view of (3.15)–(3.18), the maximization problem in (3.18) can be expressed in the form

maximize f0(t) =
∑n

k=1 g(tk) +
∑n

k=1 tk logNk + logα
α−1

subject to t ∈ Pn
(4.1)

where

g(x) = (α′ − x) log
(

1− x

α′

)
− x log x, x ∈ [0, 1] (4.2)

Nk = Nα(Xk), k ∈ {1, . . . , n} (4.3)

(for simplicity of notation, the dependence of g and Nk in α has been suppressed in (4.1)),

and Pn is the probability simplex

Pn =

{
t ∈ Rn : tk ≥ 0,

n∑
k=1

tk = 1

}
. (4.4)

The term
∑n

k=1 tk logNk on the right side of (4.1) is linear in t, thus the concavity of f0 in

t is only affected by the term
∑n

k=1 g(tk). Since g′′(x) = 2x−α′
x(α′−x) where x ∈ [0, 1], if α′ ≥ 2,

then g is concave on the interval [0, 1]. If α′ ∈ (1, 2) (i.e., if α ∈ (2,∞)) then g is not concave

on the interval [0, 1]; it is only concave on [0, α
′

2
], and it is convex on [α

′

2
, 1]. Hence, as a

maximization problem over the variables t1, . . . , tn, the objective function f0 in (4.1) is not

concave if α > 2.

4.1.2 A reduction of the optimization problem in (3.18) to n − 1

variables

In view of (4.4), the substitution

tn = 1−
n−1∑
k=1

tk (4.5)
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transforms the maximization problem in (4.1) to the following equivalent problem:

maximize f(t1, . . . , tn−1)

subject to t ∈ Dn−1
(4.6)

where

f(t1, . . . , tn−1) = f0

(
t1, . . . , tn−1, 1−

n−1∑
k=1

tk

)
(4.7)

and Dn−1 is the polyhedron

Dn−1 =

{
(t1, . . . , tn−1) : tk ≥ 0,

n−1∑
k=1

tk ≤ 1

}
. (4.8)

4.1.3 Proving the convexity of the optimization problem in (4.6)

We wish to show that the objective function f of the optimization problem in (4.6) is concave,

i.e., it is required to assert that all the eigenvalues of the Hessian matrix∇2f are non-positive.

Eqs. (4.1) and (4.7) yield

f(t1, . . . , tn−1)

=
n−1∑
k=1

g(tk) + g

(
1−

n−1∑
k=1

tk

)

+
n−1∑
k=1

tk logNk +

(
1−

n−1∑
k=1

tk

)
logNn +

logα

α− 1
.

(4.9)

Let

q(x) = g′′(x) =
2x− α′

x(α′ − x)
, x ∈ [0, 1] (4.10)
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then, in view of (4.9) and (4.10), for all (t1, . . . , tn−1) ∈ Dn−1

∇2f(t1, . . . , tn−1) =


q(t1) 0 · · · 0

0 q(t2) · · · 0
...

...
. . .

...

0 0 · · · q(tn−1)

+ q

(
1−

n−1∑
k=1

tk

)
1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


= D + ρ 1 1T (4.11)

where

D = diag(q(t1), . . . , q(tn−1)),

ρ = q

(
1−

n−1∑
k=1

tk

)
.

(4.12)

Recall that if α′ ∈ [2,∞) then f0(t1, . . . , tn) is concave in Pn, hence, so is f(t1, . . . , tn−1) in

Dn−1. We therefore need only to focus on the case where α′ ∈ (1, 2) (i.e., α ∈ (2,∞)).

Proposition 1. For every α′ ∈ (1, 2), the function f : Dn−1 → R in (4.9) is concave.

Proof. See Appendix B.

4.1.4 Solution of the convex optimization problem in (4.6)

In the following, we solve the convex optimization problem in (4.6) via the Lagrange duality

and KKT conditions (see, e.g., [15, Section 5]). Since the problem is invariant to permuta-

tions of the entries of X = (X1, . . . , Xn), it can be assumed without any loss of generality

that the last term of the vector Nα in (3.16) is maximal, i.e.,

Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}. (4.13)

Moreover, it is assumed that

Nα(Xn) > 0. (4.14)
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The possibility that Nα(Xn) = 0 leads to a trivial bound since from (4.13), it follows that

Nα(Xk) = 0 for every k ∈ {1, . . . , n}; this makes the right side of (1.8) be equal to zero,

while its left side is always non-negative. Let

ck =
Nα(Xk)

Nα(Xn)
, k ∈ {1, . . . , n− 1}. (4.15)

From (4.13)–(4.15), the sequence {ck}n−1k=1 satisfies

0 ≤ ck ≤ 1, k ∈ {1, . . . , n− 1}. (4.16)

Let tn be defined as in (4.5). Appendix C provides the technical details which are related to

the solution of the convex optimization problem in (4.6) via the Lagrange duality and KKT

conditions (note that strong duality holds here). The resulting simplified set of constraints

which follow from the KKT conditions (see Appendix C) is given by

tk(α
′ − tk) = cktn(α′ − tn), k ∈ {1, . . . , n− 1} (4.17)

n∑
k=1

tk = 1 (4.18)

tk ≥ 0, k ∈ {1, . . . , n} (4.19)

with the variables t in (4.17)–(4.19).

Note that if Nα(Xk) is independent of k then, from (4.15), ck = 1 for all k ∈ {1, . . . , n−1}.
Hence, from (4.17) and (4.18), it follows that t1 = . . . = tn = 1

n
(note that the other

possibility where tk = α′− tn for some k ∈ {1, . . . , n− 1} contradicts (4.18) and (4.19) since

in this case
∑n

j=1 tj ≥ tk + tn = α′ > 1). This implies that the selection of the tk’s in the

proof of Theorem 1 is optimal when all the entries of the vector Nα are equal; therefore, the

R-EPI considered here improves the bound in Theorem 1 only when Nα(Xk) depends on the

index k.

In the general case, (4.17) yields a quadratic equation for tk whose solutions are given by

tk = 1
2

(
α′ ±

√
α′ 2 − 4cktn(α′ − tn)

)
(4.20)
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with α′ = α
α−1 . The possibility of the positive sign in the right side of (4.20) is rejected

since in this case tn + tk ≥ α′ > 1, which violates (4.18). Hence, from (4.20), for all

k ∈ {1, . . . , n− 1}

tk = ψk,α(tn) (4.21)

where we define

ψk,α(x) = 1
2

(
α′ −

√
α′ 2 − 4ck x(α′ − x)

)
, x ∈ [0, 1]. (4.22)

In view of (4.18) and (4.21), one first calculates tn ∈ [0, 1] by numerically solving the equation

tn +
n−1∑
k=1

ψk,α(tn) = 1. (4.23)

The existence and uniqueness of a solution of (4.23) is proved in Appendix D. Once we

compute tn, all tk’s for k ∈ {1, . . . , n−1} are computed from (4.21). Finally, the substitution

of t1, . . . , tn in the right side of (3.14) enables to calculate the improved R-EPI in (3.14), i.e.,

Nα

(
n∑
k=1

Xk

)
≥ exp

(
f0(t1, . . . , tn)

) n∑
k=1

Nα(Xk) (4.24)

with f0 in (3.15).

Note that due to the optimal selection of the vector t = (t1, . . . , tn) in (4.24), the R-EPI

in this chapter provides an improvement over the R-EPI in Theorem 1 whenever Nα(Xk) is

not fixed as a function of the index k. This leads to the following result:

Theorem 2. Let X1, . . . , Xn be independent random vectors with probability densities de-

fined on Rd, let Nα(X1), . . . , Nα(Xn) be their respective Rényi entropy powers of order α > 1,

and let α′ = α
α−1 . Let the indices of X1, . . . , Xn be set such that Nα(Xn) is maximal, and let

1. {ck}n−1k=1 be the sequence defined in (4.15);

2. tn ∈ [0, 1] be the unique solution of (4.23);
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3. {tk}n−1k=1 be given in (4.21) and (4.22).

Then, the R-EPI in (4.24) holds with f0 in (3.15), and it satisfies the following properties:

1. It improves the R-EPI in Theorem 1 unless Nα(Xk) is independent of k (consequently,

it also improves the R-EPI in [11, Theorem 1]); if Nα(Xk) is independent of k, then

the two R-EPIs in Theorem 1 and (4.24) coincide.

2. It improves the Bercher-Vignat (BV) bound in [7] which states that

Nα

(
n∑
k=1

Xk

)
≥ max

{
Nα(X1), . . . , Nα(Xn)

}
(4.25)

and the bounds in (4.24) and (4.25) asymptotically coincide as α→∞ if and only if

n−1∑
k=1

N∞(Xk) ≤ N∞(Xn) (4.26)

where N∞(X) is defined in (3.37).

3. For n = 2, it is expressed in a closed form (see Corollary 3).

4. It coincides with the EPI and the two R-EPIs in [11, Theorem 1] and Theorem 1 as

α ↓ 1.

Proof. The proof of the R-EPI in (4.24) is provided earlier in this chapter with some addi-

tional details in Appendices B–E. In view of the this analysis:

• Item 1) holds since the proof of the R-EPI in Theorem 1 relies in general on a sub-

optimal choice of the vector t in (3.20), whereas it is set to be optimal in the proof

of Theorem 2 in (4.21)–(4.23). Suppose, however, that Nα(Xk) is independent of the

index k; in the latter case, the selection of the vector t in the proof of Theorem 1 (see

(3.20)) reduces to t =
(
1
n
, . . . , 1

n

)
, which turns to be optimal in the sense of achieving

the maximum of the objective function in (4.9).
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• Item 2) holds since the selection of t in the right side of (3.14) with tk = 1 and ti = 0

for all i 6= k yields

Nα

(
n∑
k=1

Xk

)
≥ Nα(Xk) (4.27)

which then leads to (4.25) by a maximization of the right side of (4.27) over k ∈
{1, . . . , n}. Appendix E proves that the bounds in (4.24) and (4.25) asymptotically

coincide as α→∞ if and only if the condition in (4.26) holds.

• Item 3) is proved in Section 4.2.

• Item 4) holds since the R-EPI obtained in Theorem 2 is at least as tight as the BC

bound in [11, Theorem 1]; the latter coincides with the EPI as we let α tend to 1

(recall that, from (1.9), limα↓1 cα = 1) which is known to be tight for Gaussian random

vectors with proportional covariances.

Figure 4.1 compares the two R-EPIs in Theorems 1 and 2 with those in [11] (see (1.9))

and [7] (see (4.25)) for n = 3 independent random vectors; the abbreviations ’BC’ and ’BV’

stand, respectively, for the latter two bounds. Recall that the four bounds are independent

of the dimension d of the random vectors, and they are plotted in Figure 4.1 for symmetric

and asymmetric cases where (Nα(X1), Nα(X2), Nα(X3)) = (40, 40, 40) and (10, 20, 90), re-

spectively (note that in both cases, the sum of the entries is equal to 120). In the former case,

for every α > 1, Theorem 2 provides a lower bound on Nα(X1 + X2 + X3) which is tighter

than those in [7] and [11]; furthermore, in this special case where Nα(Xk) is independent of

the index k, the bounds in Theorems 1 and 2 coincide. In the asymmetric case, however,

where (Nα(X1), Nα(X2), Nα(X3)) = (10, 20, 90), the bound in Theorem 2 suggests a signifi-

cant improvement over the bound in Theorem 1 due to the sub-optimality of the choice of

the vector t in the proof of Theorem 1 in comparison to its optimal choice in Theorem 2.

As it is shown in Figure 4.1 and supported by Item 2) of Theorem 2, the bound in this
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Figure 4.1: A comparison of the Rényi entropy power inequalities for n = 3 independent

random vectors according to [11] (BC), [7] (BV), Theorem 1 and the tightest bound in The-

orem 2. The bounds refer to the two cases where (Nα(X1), Nα(X2), Nα(X3)) = (40, 40, 40)

or (10, 20, 90) (in both cases, the sum of the entries is 120; in the former case, the condition

in (4.26) does not hold, while in the latter it does).

theorem asymptotically coincides with the BV bound (by letting α→∞) in the considered

asymmetric case; however, for every α ∈ (1,∞), the bound in Theorem 2 is advantageous

over the BV bound. It is also shown in Figure 4.1 that in this asymmetric case, the BV

bound is advantageous over our bound in Theorem 1 for sufficiently large α; this observation

emphasizes the significance of the optimization of the vector t in the proof of Theorem 2,

yielding the tightest R-EPI known to date for α > 1. Finally, as it is shown in Figure 4.1,

the R-EPIs of Theorems 1 and 2, as well as [11, Theorem 1], coincide with the EPI as we let

α tend to 1 (from above).
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4.2 A Tightened R-EPI for n = 2

We derive in the following a closed-form expression of the R-EPI in Theorem 2 for n = 2

independent random vectors. In the sequel, we make use of the binary relative entropy

function which is defined to be the continuous extension to [0, 1]2 of

d(x‖y) = x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
. (4.28)

Corollary 3. Let X1 and X2 be independent random vectors with densities defined on Rd,

let Nα(X1), Nα(X2) be their Rényi entropy powers of order α > 1, and assume without any

loss of generality that Nα(X1) ≤ Nα(X2). Let

α′ =
α

α− 1
, (4.29)

βα =
Nα(X1)

Nα(X2)
, (4.30)

tα =


α′(βα+1)−2βα−

√
(α′ (βα+1))2−8α′βα+4βα

2(1−βα) if βα < 1,

1
2

if βα = 1.
(4.31)

Then, the following R-EPI holds:

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
(4.32)

with

cα = α
1

α−1 exp

(
−d
(
tα
∥∥ βα
βα + 1

)) (
1− tα

α′

)α′−tα (
1− 1− tα

α′

)α′−1+tα
. (4.33)

The R-EPI in (4.32) satisfies Items 1)–4) of Theorem 2; specifically, by letting α→∞, the

lower bound on Nα(X1 +X2) tends to N∞(X2), which asymptotically coincides with the BV

bound in [7].

Proof. Due the constraints in (4.1), the vector t can be parameterized in the form t = (t, 1−t)
for t ∈ [0, 1]; due to the normalization of the vector Nα = (Nα(X1), Nα(X2)) in (3.12), then

Nα =
(

βα
1+βα

, 1
1+βα

)
(4.34)

31



and, by (3.15), the maximization in (4.1) is transformed to

maximize
t∈[0,1]

{
logα

α− 1
− t log

(
(1 + βα)t

)
− (1− t) log

(
(1 + βα)(1− t)

βα

)
+α′

[(
1− t

α′

)
log

(
1− t

α′

)
+

(
1− 1− t

α′

)
log

(
1− 1− t

α′

)]}
.

(4.35)

It can be verified that the objective function in (4.35) is concave on [0, 1], it has a right

derivative at t = 0 which is equal to +∞, and a left derivative at t = 1 which is equal to

−∞. This implies that the maximization of the objective function over [0, 1] is attained at an

interior point of this interval. The optimized value of t is obtained by setting the derivative

of this objective function to zero, leading to the equation

log
(

(1−t)βα
t

)
− log

(
α′−t
α′−1+t

)
= 0. (4.36)

Eq. (4.36) can be expressed as a quadratic equation whose solution is given in (4.31). Sub-

stituting the optimized value t = tα in (4.31) into the objective function on the right side

of (4.35) leads to the closed-form solution of the optimization problem in (4.1) for n = 2.

Hence, under the assumption in (3.12) where Nα(X1)+Nα(X2) = 1, straightforward algebra

yields that

Nα(X1 +X2) ≥ cα (4.37)

where cα is given in (4.33); the relaxation of this assumption requires the multiplication of

the right side of (4.37) by Nα(X1) +Nα(X2) (due to the homogeneity of the Rényi entropy

power, see (2.9)). Note that, for n = 2, the condition in (4.26) becomes vacuous (since,

by assumption, N∞(X1) ≤ N∞(X2)) which implies that the bound in (4.32) asymptotically

coincides with the BV bound when α→∞.

Figure 4.2 compares the two R-EPIs in Theorem 1 and Corollary 3 with those in [11] (see

(1.9)) and [7] (see (4.25)) for n = 2 independent random vectors. The four bounds are plotted

in Figure 4.1 for symmetric and asymmetric cases where (Nα(X1), Nα(X2), ) = (10, 10) and

(6, 14), respectively (note that in both cases, the sum of the entries is equal to 20). Along
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Figure 4.2: A comparison of the Rényi entropy power inequalities for n = 2 independent

random vectors according to [11] (BC), [7] (BV), Theorem 1 and the Corollary 3. The

bounds refer to the two cases where (Nα(X1), Nα(X2) = (10, 10) or (6, 14) (in both cases,

the sum of the entries is 20).

with the properties of the bounds as described for the general n ≥ 2 case (and exemplified

for n = 3 in Figure 4.1), the bound in Corollary 3 (valid for n = 2) asymptotically coincides

with the BV bound (by letting α→∞) in both the symmetric and asymmetric cases, as it

is shown in Figure 4.2; indeed, the condition in (4.26) holds for n = 2 and for every value of

(Nα(X1), Nα(X2)).
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4.3 Example: The Rényi Entropy Difference Between

Data and its Filtering

Let {X(n)} be i.i.d. d-dimensional random vectors (the entries of the vector X(n) need not

be independent), with arbitrary densities on Rd. Let

Y (n) =
L−1∑
k=0

HkX(n− k) (4.38)

be the filtered data at the output of a finite impulse response (FIR) filter where H0, . . . ,HL−1

are fixed non-singular d× d matrices.

In the following, the tightness of several R-EPIs is exemplified by obtaining universal

lower bounds on the difference hα
(
Y (n)

)
− hα

(
X(n)

)
, being also compared with the actual

value of this difference when the i.i.d. inputs are d-dimensional Gaussian random vectors

with i.i.d. entries.

For k ∈ {0, . . . , L− 1} and every n, we have

hα
(
HkX(n− k)

)
= hα

(
X(n)

)
+ log

∣∣det(Hk)
∣∣ (4.39)

and

Nα

(
HkX(n− k)

)
= exp

(
2
d
hα
(
HkX(n− k)

))
=
∣∣det(Hk)

∣∣ 2d Nα

(
X(n)

)
. (4.40)

Let α > 1, and α′ = α
α−1 . Similarly to Theorem 2, it is assumed without loss of gen-

erality that
∣∣det(Hk)

∣∣ ≤ ∣∣det(HL−1)
∣∣ for all k ∈ {0, . . . , L − 2}; otherwise, the indices of

H0, . . . ,HL−1 can be permuted without affecting the differential Rényi entropy of Y (n). In

the setting of the improved R-EPI of Theorem 2, in view of (4.15) and (4.40), for every

k ∈ {0, . . . , L− 2},

ck =

( ∣∣det(Hk)
∣∣∣∣det(HL−1)
∣∣
) 2

d

(4.41)
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which, in view of the above assumption, implies that ck ∈ [0, 1] for k ∈ {0, . . . , L − 2}.
Given the L matrices {Hk}L−1k=0 , the vector (t0, . . . , tl−1) ∈ [0, 1]L is calculated according to

Theorem 2; first tL−1 ∈ [0, 1] is numerically calculated by solving the equation in (4.23) (with

a replacement of 1 and n in (4.23) by 0 and L−1, respectively), and then the rest of the tk’s

for k ∈ {0, . . . , L − 2} are being calculated via (4.21) and (4.22). In view of (4.39), (4.40),

and the R-EPI of Theorem 2, it follows that for every n

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2

(
logα

α− 1
+

L−1∑
k=0

g(tk)

)
+

L−1∑
k=0

tk log
∣∣det(Hk)

∣∣ (4.42)

where the function g is given in (4.2).

In view of the derivation so far, it is easy to verify that the R-EPI in Theorem 1 is

equivalent to the following looser bound, which is expressed in closed form:

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2
· log

(
L−1∑
k=0

∣∣det(Hk)
∣∣ 2d)

+
d

2

(
logα

α− 1
+

(
Lα

α− 1
− 1

)
log

(
1− α− 1

Lα

))
.

(4.43)

The R-EPI of [11, Theorem I.1] leads to the following loosened bound in comparison to

(4.43):

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2

[
log

(
L−1∑
k=0

∣∣det(Hk)
∣∣ 2d)+

logα

α− 1
− log e

]
(4.44)

and, finally, the BV bound in [7] (see (4.25)) leads to the following loosening of (4.42):

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ log

(
max

0≤k≤L−1

∣∣det(Hk)
∣∣) . (4.45)

The differential Rényi entropy of order α ∈ (0, 1)∪(1,∞) for a d-dimensional multivariate

Gaussian distribution is given by

hα
(
X(n)

)
=

d logα

2(α− 1)
+ 1

2
log
(

(2π)d det
(
Cov(X(n))

))
(4.46)
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Hence, if the entries of the Gaussian random vector X(n) are i.i.d.

hα
(
Y (n)

)
− hα

(
X(n)

)
= 1

2
log

(
det

(
L−1∑
k=0

Hk HT
k

))
. (4.47)

Example 2. Let

Y (n) = 2X(n)−X(n− 1)−X(n− 2) (4.48)

for every n where {X(n)} are i.i.d. random variables, and consider the difference h2(Y ) −
h2(X) in the quadratic differential Rényi entropy. In this example α = 2, d = 1, L = 3, and

H0 = 2, H1 = −1, H2 = −1. The lower bounds in (4.42), (4.43), (4.44), (4.45) are equal to

0.8195, 0.7866, 0.7425 and 0.6931 nats, respectively (recall that the first two lower bounds

correspond to Theorems 2 and 1 respectively, and the last two bounds correspond to [11]

and [7] respectively. These lower bounds are compared to the achievable value in (4.47), for

an i.i.d. Gaussian input, which is equal to 0.8959 nats.
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Chapter 5

Summary

5.1 Research Results and Tools

This thesis provides two forms of improved Rényi entropy power inequalities (R-EPI) for a

sum of n independent and continuous random vectors over Rd. These inequalities are of the

form (1.8), they refer to orders α ∈ (1,∞], and they coincide with the EPI [50] by letting

α→ 1. Theorem 1 provides an R-EPI in a closed form, improving the R-EPI by Bobkov and

Chistyakov in [11, Theorem 1]; furthermore, for a sum of two independent random vectors

(n = 2), the R-EPI in Theorem 1 is asymptotically tight when α → ∞. The R-EPI which

is introduced in Theorem 2 can be efficiently calculated via a simple and efficient numerical

algorithm, it is tighter than the R-EPI in Theorem 1 and all previously reported bounds, and

it is currently the best known R-EPI for α ∈ (1,∞]. While Theorem 1 does not necessarily

improve the bound by Bercher and Vignat [7], Theorem 2 does. Corollary 3 provides a

closed-form expression for the R-EPI in Theorem 2 for n = 2. It should be noted that the

R-EPIs in Theorems 1 and 2 coincide when the Rényi entropy powers of the n independent

random vectors are all equal.

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and Chistyakov [11]

with the same analytical tools, namely the monotonicity of Nα(X) in α, and the use of the
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sharpened Young’s inequality. Theorem 2, which improves the tightness of the R-EPI in

Theorem 1, relies on the following additional analytical tools: 1) a strong Lagrange duality

of an optimization problem is asserted by invoking a theorem in matrix theory [17] regarding

the rank-one modification of a real-valued diagonal matrix, and 2) a solution of the Karush-

Kuhn-Tucker (KKT) equations of the related optimization problem.

5.1.1 Remarks on Tightness

The R-EPI in Theorem 2 provides the tightest R-EPI known to date for α ∈ (1,∞). Nev-

ertheless, it is still not tight since at least one of the inequalities involved in the derivation

of (3.4) (see Appendix A) is loose. These inequalities are the sharpened Young’s inequality

in (2.20), and (2.11). The former inequality holds with equality only for Gaussians, whereas

the latter inequality holds with equality only for a uniformly distributed random variable

(note that in the latter case, the Rényi entropy is independent of its order). For α =∞ and

n = 2, the sharpened Young’s inequality (2.16) reduces to

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′ , (5.1)

where p > 1 and p′ = p
p−1 . Equality holds in (5.1) if f and g are scaled versions of a uniform

distribution on the same convex set, which is also the same condition for tightness in (2.11);

this is consistent with our conclusion that the R-EPIs in Theorems 1 and 2 are, however,

asymptotically tight for n = 2 by letting α→∞.

5.2 Further Research

5.2.1 The α < 1 Case

In view of the derivation of (3.4) (see Appendix A), which relies on the sharpened Young’s

inequality and on the monotonicity of the Rényi entropy power in its order, one might think

that for α < 1, the reverse sharpened Young’s inequality in (2.21) can be used to derive
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an R-EPI (or a reversed version of this inequality). Unfortunately, this is not true since in

this case, (2.11) and (2.21) yield inequalities in opposite directions. However, for α = 0,

the Brunn–Minkowski inequality can be used to derive an R-EPI. For completeness, the

Brunn–Minkowski inequality is presented.

Fact 3 (Brunn–Minkowski inequality). Let A,B ⊆ Rd be two compact sets, and denote by

’+’ the Minkowski sum, i.e., A+B = {a+ b : a ∈ A, b ∈ B}. Then,

λ
1
d (A+B) ≥ λ

1
d (A) + λ

1
d (B), (5.2)

where λ is the Lebesgue measure in Rd.

Proposition 2 (R-EPI for α = 0). Let {Xk}nk=1 be d-dimensional independent random

vectors. Then,

N0

(
n∑
k=1

Xk

)
≥

n∑
k=1

N0(Xk). (5.3)

Proof. From the definition of h0(·) in (1.4), it follows that for a random vector X with density

fX ,

N0(X) = exp
(
2
d
h0(X)

)
= λ

2
d
(
supp(fX)

)
. (5.4)

If there exists k ∈ {1, . . . , n} such that N0(Xk) =∞, then from (5.4), the support set of fXk

has an infinite Lebesgue measure, and from the independence of X1, . . . , Xn it follows that

the density of
∑n

k=1Xk (which equals fX1∗. . .∗fXn) has an infinite Lebesgue measure as well,

so N0 (
∑n

k=1Xk) = ∞. Hence, we may assume that for every k ∈ {1, . . . , n}, N0(Xk) < ∞
(or equivalently λ (supp(fXk)) <∞). In view of (5.2) and (5.4), it follows that√

N0(X1 +X2) ≥
√
N0(X1) +

√
N0(X2). (5.5)

Since the Rényi entropy power is non–negative, by squaring the both sides of (5.5) we get

N0(X1 +X2) ≥ N0(X1) + 2
√
N0(X1)N0(X2) +N0(X2)

≥ N0(X1) +N0(X2), (5.6)
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which completes the proof for n = 2. The proof for general n follows by a mathematical

induction on n.

Note that Proposition 2 implies that c0 = 1 (i.e., the multiplicative constant of the R-EPI

for α = 0 equals 1). From the EPI in (1.1), it follows that c1 = 1. Since according to our

R-EPIs in Theorems 1 and 2, cα is monotonically decreasing in α for α ∈ (1,∞), this leads

to the following conjecture:

Conjecture 1. Let {Xk}nk=1 be independent random vectors and let α ∈ (0, 1). Then,

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk). (5.7)

Although our bounding techniques are not extendable for α < 1, some R-EPIs that are

restricted to certain families of distributions can be stated for α < 1.

Proposition 3. Let {Xk}nk=1 be independent uniformly distributed random vectors and let

α ∈ [0, 1). Then the following R-EPI holds,

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk). (5.8)

Proof. Since α < 1, and the Rényi entropy power is non-increasing in its order, it follows

that

Nα

(
n∑
k=1

Xk

)
≥ N1

(
n∑
k=1

Xk

)
, (5.9)

which in view of the EPI in (1.1) implies that

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

N1(Xk). (5.10)

For uniformly distributed random vectors, the Rényi entropy power is independent of its

order α; in other words, for every k ∈ {1, . . . , n}, N1(Xk) = Nα(Xk), hence (5.10) yields

Nα

(
n∑
k=1

Xk

)
≥

n∑
k=1

Nα(Xk), (5.11)

which completes the proof.

40



Proposition 3 supports Conjecture 1, and another confirmation comes from the Gaussian

family; for independent Gaussian random vectors with proportional covariances {Xk}nk=1 we

have

Nα

(
n∑
k=1

Xk

)
=

n∑
k=1

Nα(Xk), ∀α ∈ [0,∞]. (5.12)

Although these two families of distributions satisfy Conjecture 1, it still needs to be proved

in its full generality.

5.2.2 Further Generalizations

Future research can be done by finding generalizations of results related to the EPI to the

Rényi entropy power. Before presenting some examples to EPI related results, it is mentioned

that trying to generalize these results to the Rényi entropy power by following their proof

and replacing Rényi’s entropy in every instance of the Shannon entropy doesn’t work, since

in every proof there is a use of some property of the Shannon entropy which does not hold

for the Rényi entropy. This means that a different approach to the proof is needed. Possible

generalization of EPI related results to Rényi measures are given in the following.

R-EPIs for discrete random vectors

Although the EPI in (1.1) does not hold, in general, for discrete random vectors (consider

n = 2, d = 1 and two random variables X1 and X2 which are actually deterministic; N(X1 +

X2) = N(X1) = N(X2) = 1), many versions of the EPI for some families of discrete random

variables have been suggested [31, 32, 60]; this encourages finding discrete R-EPIs. For the

following examples of discrete EPIs, all random variables are discrete, H(·) stands for the

(discrete) Shannon entropy, and N(·) is the corresponding entropy power:

1) In [31, Theorem 1], it is stated that

H(X +X ′) ≥ H(X) + g(H(X)) (5.13)
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where X,X ′ are integer valued i.i.d random variables, and g : [0,∞) → [0,∞) is a

non-negative monotonically increasing function such that g(0) = 0 and limx→∞ g(x) =
1
8

log2(e) (g is given explicilty in [31]). By defining cX = 1
2

exp{2g(H(X))}, (5.13)

yields the desired descrete EPI,

N(X +X ′) ≥ cX (N(X) +N(X ′)). (5.14)

Note that if X is deterministic, then H(X) = 0 and cX = 1
2
.

2) In [32, Theorem 1.1], an EPI for binomial random variables is given: let Xn ∼ B(n, 1
2
)

be a binomial random variable with n trials and success probabilty of 1
2
. Then,

N(Xn +Xm) ≥ N(Xn) +N(Xm). (5.15)

3) In [60, Theorem 2.5], it is stated that if X and Y are uniformly distributed on some

subsets of Z, then

N(X + Y ) ≥ N(X) +N(Y )− 1, (5.16)

and if in addition X and Y are not deterministic, then

N(X + Y ) ≥ N(X) +N(Y ). (5.17)

Possible generalization of these discrete versions of EPIs to discrete R-EPIs provide direc-

tions for future research and are motivated by the applications of the discrete Rényi entropy

in information theory (see [19, 3, 18]).

R-EPI for linear transformed vectors

One alternative way to write the EPI in (1.1) is the following: Let {Xk}nk=1 be independent

d-dimensional random vectors and let {X̃k}nk=1 be d-dimensional independent Guassians with

propotional covariance matrices such that, for every k ∈ {1, . . . , n}, h(Xk) = h(X̃k). Then

h

(
n∑
k=1

Xk

)
≥ h

(
n∑
k=1

X̃k

)
. (5.18)
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In [62, Theorem 1], Zamir and Feder introduced a genralized EPI for linear transforma-

tions: Let X = (X1, . . . , Xd) be a d-dimensional random vector with independent compo-

nents, and let X̃ = (X̃1, . . . , X̃d) be a Gaussian random vector with independent components

such that h(Xj) = h(X̃j), for every j ∈ {1, . . . , d}. Then, for every matrix A ∈ Rm×d,

h
(
AXT

)
≥ h

(
AX̃T

)
. (5.19)

Note that if m = 1 and A = (1, . . . , 1), (5.19) boils down to the EPI in (5.18). However,

for m > 1, one cannot use the EPI to prove (5.19), and in [62] it is proved by induction on

the matrix dimensions m, d. A possible generalization of (5.19) to the Rényi entropy is of

interest.

Generalized R-EPIs for arbitrary subsets of indices

Consider the set [n] = {1 . . . , n} for n ≥ 2, and let C be some arbitrary collection of subsets

of [n]; i.e., C =
{
s : s ∈ 2[n]

}
, where 2[n] is the power set of [n]. For every k ∈ [n], define

rk = |{s ∈ C : k ∈ s}| and r = maxk∈[n] rk. Madiman and Barron showed in [40, Theorem 3]

that for independent random variables {Xk}nk=1

N

(
n∑
k=1

Xk

)
≥ 1

r

∑
s∈C

N

(∑
k∈s

Xk

)
. (5.20)

For the choice of C as the set of singletons, (5.20) reduces to the EPI in (1.1) and for the

choice of C as the “leave one out” subsets, i.e., C =
{
{1, 2, . . . , n} \ k : 1 ≤ k ≤ n

}
, (5.20)

yields another result [1, Theroem 3]:

N

(
n∑
k=1

Xk

)
≥ 1

n− 1

n∑
i=1

N

(∑
k 6=i

Xk

)
. (5.21)

Since (5.20) generalizes the EPI and more related inequalities (e.g., (5.21)), a possible

generalization to the Rényi entropy powers of interest.
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Possible Strengthening the R-EPIs

As mentioned in Chapter 1, the EPI in (1.1) is tight and is acheived with equality for

Gaussian random vectors with proportional covariances. However, it can be refined by a

restriction to some families of distributions; this has been done, for example, in [20, 22, 55].

Finding some possible strengthened R-EPIs is of interest and is suggested for future research.

Examples for strengthened EPIs are given in the following:

1) Let Xt = X+
√
tZ, where X is an arbitrary random vector and Z is a Gaussian random

vector with i.i.d. components having mean zero and variance 1. In [20, Theorem 3],

Costa proved that the function defined by f(t) = N(Xt) is concave for every t ≥ 0.

This in turn implies that [20, inequality (8)],

N(Xt) ≥ (1− t)N(X) + tN(X + Z), ∀t ∈ [0, 1]. (5.22)

The latter yields the EPI in (1.1); indeed, by substituting β = 1√
t

and setting Z ′ = 1
β
Z,

it follows from (5.22) and the homogeneity property of the entropy power that

N(X + Z ′) ≥ (1− 1
β2 )N(X) + 1

β2N(X + βZ ′)

= (1− 1
β2 )N(X) +N(X

β2 + Z ′), ∀β ≥ 1. (5.23)

In view of (5.23), by letting β → ∞, the EPI when the additive noise is Gaussian is

re-established.

2) In [22, Theorem 2], a strengthened and generalized EPI is given. To distinguish between

random vectors and variables, random vectors are written, for this example only, in

a bold font. Let X,Z be random vectors and Q, V be random variables and let Y =

X + Z. Assume that X and Z are independent given Q and that Z is Gaussian (with

an arbitrary covariance matrix) given Q. If given Q, X–Y–V forms a Markov chain

(i.e. fV |X,Y,Q = fV |Y,Q), then

exp
{

2
d

(h(Y|Q)− I(X;V |Q))
}
≥ exp

{
2
d

(h(X|Q)− I(Y;V |Q)
}

+ exp
{

2
d

(h(W|Q))
}
.

(5.24)
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The unconditioned version of (5.24) is written as follows. If X and Z ∼ N(0,Σ) are

independent, then for every V such that X–(X + Y)–V forms a Markov chain,

N(X + Z) exp
{

2
d

(−I(X;V ))
}
≥ N(X) exp

{
2
d

(−I(X + Z;V ))
}

+N(Z). (5.25)

The latter implies the EPI in (1.1) if V is independent of X and Z.

3) In [55, inequality 14], it stated that if X and Y are independent random vectors with

log-concave densities, then

N(X + Y ) ≥ RX,Y (N(X) +N(Y )) (5.26)

where RX,Y ≥ 1 and RX,Y = 1 if and only if both X and Y are Gaussian random

vectors (RX,Y is given explicitly in [55] and serves as a measure of the non-Gaussianity

of the two random vectors X and Y ). Possible strengthening of the R-EPIs in this

thesis for log-concave random vectors is suggested as a subject for future research.

We conclude that there are many directions for future research concerning Rényi entropy

power inequalities; the R-EPIs derived in this thesis may have many generalizations and

extensions. It is our hope that the usefulness of the Rényi entropy and the EPI in information

theory will encourage researchers to further study these possible generalizations, and to find

useful applications of these generalized inequalities in information theory.

45



Appendix A

Proof of (3.4)

Since {Xk}nk=1 are independent, the density of Sn =
n∑
k=1

Xk is the convolution of the densities

fXk . In view of (2.20) and (2.5), for α > 1,

Nα(Sn) = (‖fX1 ∗ . . . ∗ fXn‖α)−
2α′
d

≥ A−
2α′
d

∏n
k=1 (‖fXk‖νk)

− 2α′
d

(A.1)

where

νk > 1, 1 ≤ k ≤ n (A.2)
n∑
k=1

1

ν ′k
=

1

α′
(A.3)

and, due to (2.14) and (2.19),

A =

(
Aα′

n∏
k=1

Aνk

) d
2

. (A.4)

From (A.2) and (A.3) it follows that νk ∈ (1, α] for all k ∈ {1, . . . , n}, hence in view of

Corollary 1,

‖fXk‖
ν′k
νk ≤ ‖fXk‖α

′

α , 1 ≤ k ≤ n. (A.5)
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Combining (A.1) and (A.5), and defining tk = α′

ν′k
yields

Nα(Sn) ≥ A−
2α′
d

n∏
k=1

(‖fXk‖α)
− 2α′

d
· α
′

ν′
k = A−

2α′
d

n∏
k=1

N tk
α (Xk) (A.6)

which by setting B = A−
2α′
d completes the proof of (3.4) with the constant B as given in

(3.5).
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Appendix B

Proof of Proposition 1

In view of (4.7), if f0 is concave, so is f . As it is verified in Section 4.1.1, the function f0

is concave for all α ∈ (1, 2) (i.e., α′ ∈ (2,∞)), and hence also f is concave for these values

of α. We therefore need to prove the concavity of f in (4.7) whenever α′ ∈ (1, 2) (i.e., if

α ∈ (2,∞)), although f0 is not concave for these values of α.

Let α′ ∈ (1, 2). If there exists an index k ∈ {1, . . . , n − 1} such that q(tk) = 0, then

tk = α′

2
> 1

2
(see (4.10)). In view of (4.8), it follows that tl <

1
2

for every other index l 6= k in

the set {1, . . . , n−1}, which in turn implies from (4.10) that q(tl) < 0 for every such index l.

In other words, if there exists an index k ∈ {1, . . . , n−1} such that q(tk) = 0, then it follows

that q(tl) ≤ 0 for all l ∈ {1, . . . , n − 1}. In view of (4.12), D � 0 and ρ < 0 (to verify that

ρ < 0, note that since 0 ≤ 1−
∑n−1

j=1 tj ≤ 1− tk = 1− α′

2
< 1

2
< α′

2
then it follows from (4.10)

and (4.12) that ρ = q
(
1−

∑n−1
j=1 tj

)
< 0); hence, (4.11) implies that ∇2f(t1, . . . , tn−1) ≺ 0 in

the interior of Dn−1, so f is (strictly) concave on Dn−1.
To proceed, the following lemmas will be useful.

Lemma 1. If α′ ∈ (1, 2) and x ∈ (0, 1− α′

2
), then

1

q(x)
+

1

q(1− x)
> 0. (B.1)

48



Proof. In view of (4.10), the left side of (B.1) is equal to

<0︷ ︸︸ ︷
(1− α′)

>0︷ ︸︸ ︷
(2x2 − 2x+ α′)

(2x− α′)︸ ︷︷ ︸
<0

(2− 2x− α′)︸ ︷︷ ︸
>0

> 0.

Lemma 2. If α′ ∈ (1, 2), u, v > 0 and u+ v < 1− α′

2
, then

1

q(u)
+

1

q(1− u− v)
− 1

q(1− v)
> 0. (B.2)

Proof. In view of (4.10), the left side of (B.2) is equal to

>0︷ ︸︸ ︷
(2α′u)

>0︷ ︸︸ ︷
(α′ + v − 1)

<0︷ ︸︸ ︷
(u+ v − 1)

(2u− α′)︸ ︷︷ ︸
<0

(2− 2u− 2v − α′)︸ ︷︷ ︸
>0

(2− 2v − α′)︸ ︷︷ ︸
>0

> 0.

Lemma 3. If n ≥ 2, α′ ∈ (1, 2) and

t1, . . . , tn−1 > 0,
n−1∑
k=1

tk < 1− α′

2
,

tn = 1−
n−1∑
k=1

tk

(B.3)

then

n∑
k=1

1

q(tk)
> 0. (B.4)
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Proof. Lemma 3 is proved by using mathematical induction on n. In view of Lemma 1, (B.4)

holds for n = 2. Assuming its correctness for n, we have

n−1∑
j=1

1

q(tj)
+

1

q(tn)
> 0 (B.5)

where, from (B.3), tn = 1 −
∑n−1

k=1 tk. We prove in the following that (B.4) also holds for

n+ 1 when the constraints in (B.3) are satisfied with n+ 1, i.e.,

t1, . . . , tn > 0,
n∑
k=1

tk < 1− α′

2
,

tn+1 = 1−
n∑
k=1

tk.

(B.6)

Consequently, the left side of (B.4) is equal to

n+1∑
k=1

1

q(tk)
=

n−1∑
k=1

1

q(tk)
+

1

q(tn)
+

1

q(tn+1)

> − 1

q(tn)
+

1

q(tn)
+

1

q(tn+1)
(B.7)

=
1

q(tn)
+

1

q (1−
∑n

k=1 tk)
− 1

q(1−
∑n−1

k=1 tk)
(B.8)

> 0 (B.9)

where (B.7) follows from (B.5); (B.8) holds by the equality constraint in (B.6); (B.9) follows

from Lemma 2 by setting u = tn, v =
∑n−1

k=1 tk which satisfy u+ v < 1− α′

2
in view of (B.6).

Hence, it follows by mathematical induction that Lemma 3 holds for every n ≥ 2.

In the following, we prove the concavity of f when q(tk) 6= 0 for all k ∈ {1, . . . , n −
1} (recall that the case where there exits k ∈ {1, . . . , n − 1} such that q(tk) = 0 was

addressed in the paragraph before Lemma 1). Without loss of generality, we prove that

∇2f(t) � 0 when
(
q(t1), . . . , q(tn−1)

)
is a vector whose all entries are distinct. To justify
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this assumption, note that since the function q in (4.10) is monotonically increasing (q′(t) =
1
t2

+ 1
(α′−t)2 > 0), we actually restrict ourselves under the latter assumption to the case where

the entries of the vector (t1, . . . , tn−1) are all distinct. Otherwise, if some of the entries of

the vector (t1, . . . , tn−1) are equal, then the proof that the Hessian matrix is non-positive

definite continues to hold by relying on the satisfiability of this property when all the entries

of (t1, . . . , tn−1) are distinct, and from the continuity in t of the eigenvalues of the Hessian

matrix ∇2f(t).

Since the optimization problem in (4.6) is invariant to a permutation of the entries of t,

it is assumed without loss of generality that

q(t1) < q(t2) < . . . < q(tn−1). (B.10)

In view of (B.10), there are only two possibilities: either

q(t1) < q(t2) < . . . < q(tn−2) < q(tn−1) < 0, (B.11)

or

q(t1) < q(t2) < . . . < q(tn−2) < 0 < q(tn−1) (B.12)

as if it was possible that q(tn−2) ≥ 0, it would have implied that q(tn−1) > q(tn−2) ≥ 0 which

in turn yields that tn−1 > tn−2 ≥ α′

2
. This, however, cannot be true since otherwise

n−1∑
k=1

tk ≥ tn−2 + tn−1 > α′ > 1

which violates the inequality constraint
∑n−1

k=1 tk ≤ 1 in (4.8).

The continuation of this proof relies on Fact 2 by Bunch et al. [17] (see Section 2.3), and

on Lemma 3. For the continuation of this proof, let

tn = 1−
n−1∑
k=1

tk. (B.13)

Case 1: If (B.11) holds, then (4.12) implies that

D ≺ 0. (B.14)
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• If q(tn) < 0 then ρ = q(tn)11T ≺ 0 which, in view of (4.11) and (B.14), implies that

∇2f(t1, . . . , tn−1) ≺ 0.

• Otherwise, if q(tn) > 0 then ρ > 0 (see (4.12) and (B.13)); from (4.11) and the

interlacing property in (2.22), the eigenvalues λ1, . . . , λn−1 of ∇2f(t) satisfy

q(t1) < λ1 < q(t2) < . . . < q(tn−2) < λn−2 < q(tn−1) < λn−1 (B.15)

where, in view of the third item of Fact 2, the inequalities in (B.15) are strict. From

(B.11) and (B.15), it follows that λ1, . . . , λn−2 < 0. To prove that ∇2f(t1, . . . , tn−1) ≺
0, it remains to show that also λn−1 < 0. In view of the third item of Fact 2 and (4.11),

the eigenvalues of ∇2f(t1, . . . , tn−1) satisfy the equation

1 + q(tn)
n−1∑
j=1

1

q(tj)− λ
= 0 (B.16)

which therefore implies that, for all k ∈ {1, . . . , n− 1},

n−1∑
j=1

1

λk − q(tj)
=

1

q(tn)
. (B.17)

Let us assume on the contrary that λn−1 > 0. Since it is assumed here that q(tn) > 0

then tn >
α′

2
, and it follows from (B.13) that

n−1∑
k=1

tk < 1− α′

2
. (B.18)

Since q(tj) < 0 for all j ∈ {1, . . . , n− 1}, if λn−1 > 0, then in view of (B.17)

n−1∑
j=1

1

−q(tj)
≥

n−1∑
j=1

1

λn−1 − q(tj)

=
1

q(tn)
.

(B.19)
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Rearrangement of terms in (B.19) yields

n∑
j=1

1

q(tj)
≤ 0 (B.20)

and, in view of the interior of Dn−1 in (4.8), and (B.13) and (B.18), inequality (B.20)

contradicts the result in Lemma 3. This therefore proves by contradiction that λn−1 <

0, so all the n − 1 eigenvalues of the Hessian are negative, and therefore f is strictly

concave under the assumption in (B.11).

Case 2: We now consider the case where (B.12) holds. Under this assumption,

q(tn) < 0. (B.21)

To verify (B.21), note that q(tn−1) > 0 yields that tn−1 >
α′

2
; assume by contradiction that

q(tn) ≥ 0, then tn ≥ α′

2
(see (4.10)) which implies that

∑n
j=1 tj ≥ tn + tn−1 > α′ > 1 in

contradiction to the equality
∑n

j=1 tj = 1 in (B.13); hence, indeed q(tn) < 0. Consequently,

in view of (4.11), let

C =
1

q(tn)
∇2f(t1, . . . , tn−1) (B.22)

= D + 11T (B.23)

where

D = diag

(
q(t1)

q(tn)
, . . . ,

q(tn−1)

q(tn)

)
. (B.24)

From (B.12) and (B.21), it follows that

q(t1)

q(tn)
>
q(t2)

q(tn)
> . . . >

q(tn−2)

q(tn)
> 0 >

q(tn−1)

q(tn)
. (B.25)

It is shown in the following that C � 0 which, from (B.21) and (B.22), imply that indeed

∇2f(t1, . . . , tn−1) � 0. Let {λk}n−1k=1 designate the eigenvalues of C; in view of (B.23) and the

53



last two items of Fact 2, it follows that

<0︷ ︸︸ ︷
q(tn−1)

q(tn)
< λ1 <

>0︷ ︸︸ ︷
q(tn−2)

q(tn)
< λ2 < . . . <

>0︷ ︸︸ ︷
q(t2)

q(tn)
< λn−2 <

>0︷ ︸︸ ︷
q(t1)

q(tn)
< λn−1. (B.26)

Hence, (B.26) asserts that λ2, . . . , λn−1 > 0, and it only remains to prove that λ1 > 0. From

the third item of Fact 2, and from (B.22), (B.23), (B.24), the eigenvalues {λk}nk=1 of the

rank-one modification C satisfy the equality

1 +
n−1∑
j=1

1
q(tj)

q(tn)
− λk

= 0 (B.27)

for all k ∈ {1, . . . , n− 1}. Assume on the contrary that λ1 ≤ 0, then from (B.27)

1 +
n−1∑
j=1

q(tn)

q(tj)
≥ 1 +

n−1∑
j=1

1
q(tj)

q(tn)
− λ1

= 0. (B.28)

Consequently, from (B.21) and (B.28), it follows that
∑n

j=1
1

q(tj)
≤ 0 in contradiction to

Lemma 3. Hence, λk > 0 for every k ∈ {1, . . . , n − 1}, which therefore implies that

∇2f(t1, . . . , tn−1) ≺ 0 for all (t1, . . . , tn−1) in the interior of Dn−1. This completes the proof

of Proposition 1.
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Appendix C

Derivation of (4.17)–(4.19) From

Lagrange Duality

We consider the convex optimization problem in (4.6), and solve it via the use of the Lagrange

duality where strong duality holds.

The Lagrangian of the convex optimization problem in (4.6) is given by

L(t1, . . . , tn−1;λ1, . . . , λn)

=
n−1∑
k=1

g(tk) + g

(
1−

n−1∑
k=1

tk

)
+

n−1∑
k=1

tk logNk

+

(
1−

n−1∑
k=1

tk

)
logNn +

n−1∑
k=1

λktk + λn

(
1−

n−1∑
k=1

tk

) (C.1)

where λ � 0, the function g is defined in (4.2), and Nk := Nα(Xk) (see (4.3)).

In view of the Lagrangian in (C.1) and the function g defined in (4.2), straightforward

calculations of the partial derivatives of L with respect to tk for k ∈ {1, . . . , n− 1} yields

∂L

∂tk
= g′(tk)− g′(1− t1 − . . .− tn−1) + log

(
Nα(Xk)

Nα(Xn)

)
+ λk − λn

= − log

(
tk

(
1− tk

α′

))
+ log

(
tn

(
1− tn

α′

))
+ log

(
Nα(Xk)

Nα(Xn)

)
+ λk − λn (C.2)
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where tn := 1−
∑n−1

k=1 tk. By setting the partial derivatives in (C.2) to zero, and exponenti-

ating both sides of the equation, we get for all k ∈ {1, . . . , n− 1}

tn(α′ − tn)

tk(α′ − tk)
=
Nα(Xn)

Nα(Xk)
· exp(λn − λk). (C.3)

In view of (C.3) and the definition of {ck}n−1k=1 in (4.15), we obtain that for all k ∈ {1, . . . , n−1}

tk(α
′ − tk) = ck tn(α′ − tn) exp(λk − λn). (C.4)

Consequently, (C.4), the definition of tn, and the slackness conditions lead to the following

set of constraints:

tk ≥ 0, k ∈ {1, . . . , n} (C.5)
n∑
k=1

tk = 1 (C.6)

λk ≥ 0, k ∈ {1, . . . , n} (C.7)

λktk = 0, k ∈ {1, . . . , n} (C.8)

tk(α
′ − tk) = cktn(α′ − tn) exp(λk − λn), k ∈ {1, . . . , n− 1} (C.9)

with the variables λ and t in (C.5)–(C.9).

Consider first the case where

Nα(Xk) > 0, ∀ k ∈ {1, . . . , n− 1} (C.10)

which in view of (4.15), implies

ck > 0, ∀ k ∈ {1, . . . , n− 1}. (C.11)

Under the assumption in (C.10), we prove that

λk = 0, ∀ k ∈ {1, . . . , n}. (C.12)

Assume on the contrary that there exists an index k such that λk 6= 0. This would imply

from (C.8) that tk = 0. If k = n (i.e., if tn = 0) then it follows from (C.9) that also tk = 0

56



for all k ∈ {1, . . . , n} (recall that α′ > 1), which violates the equality constraint in (C.6).

Otherwise, if tk = 0 for some k < n, then it follows from (C.9) and (C.11) that tn = 0 which

leads to the same contradiction as above.

The substitution of (C.12) into the right side of (C.9) gives the simplified equation in

(4.17). In view of (C.5) and (C.6), this leads to the simplified set of KKT constraints in

(4.17)–(4.19).

Finally, if the assumption in (C.10) does not hold, i.e., Nα(Xk) = 0 for some k ∈
{1, . . . , n−1}, then the optimal solution satisfies tk = 0 (with the convention that 0·log 0 = 0)

since any other assignment makes the objective function in (4.9) be equal to −∞. In addi-

tion, in this case ck = 0, so the simplified set of KKT constraints in (4.17)–(4.19) still yields

the optimal solution t.
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Appendix D

On the existence and uniqueness of

the solution to (4.23)

Define

φα(x) = x+
n−1∑
k=1

ψα,k(x), x ∈ [0, 1], (D.1)

and note that we need to show that there exists a unique solution of the equation φα(x) = 1

where x ∈ [0, 1]. From the continuity of φα(·) and since φα(0) = 0 and

φα(1) = 1 +
n−1∑
k=1

ψk(1) > 1, (D.2)

the existence of such a solution is assured. To prove uniqueness, consider two cases: α′ ≥ 2

and 1 < α′ < 2.

The derivative of φα(x) is given by

φ′α(x) = 1 +
n−1∑
k=1

ck(α
′ − 2x)√

α′2 − 4ckx(α′ − x)
, (D.3)

so if α′ ≥ 2, then φα(x) is monotonically increasing in [0, 1], hence the solution tn ∈ [0, 1] of

the equation (4.23) is unique.
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If α′ ∈ (1, 2), then

φ′α(x) > 0, x ∈ [0, α
′

2
]. (D.4)

Note that

α′ 2 − 4ckx(α′ − x) = α′ 2(1− ck) + ck(2x− α′)2,

thus in view of (D.3),

φ′α(x) = 1 +
n−1∑
k=1

ck√
ck + α′2(1−ck)

4(x−α′
2
)2

. (D.5)

Eq. (D.5) implies that φ′α(·) is monotonically decreasing in (α
′

2
, 1]; in other words, φα(·) is

concave in the interval (α
′

2
, 1]).

Assume on the contrary that there are two solutions, 0 < x1 < x2 < 1 to (4.23), i.e.,

φα(x1) = φα(x2) = 1. (D.6)

Eq. (D.6) implies that there exists c ∈ (x1, x2) such that φ′α(c) = 0 and from (D.4), c ∈
(α
′

2
, x2). Since φ′α(·) is monotonically decreasing in (α

′

2
, 1], it follows that φ′α(x) < 0 for all x ∈

(c, 1). Hence, φα(·) is monotonically decreasing in (x2, 1), which leads to the contradiction

1 < φα(1) < φα(x2) = 1.

This therefore demonstrates the uniqueness of the solution in both cases.
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Appendix E

On the Asymptotic Equivalence of

(4.24) and (4.25)

If N∞(Xk) = 0 for all k ∈ {1, . . . , n}, the bounds in (4.24) and (4.25) obviously coincide

asymptotically as α → ∞. In addition, in this case, the condition in (4.26) clearly holds

as well. It is therefore assumed that N∞(Xk) is strictly positive for at least one value of

k ∈ {1, . . . , n} which, under the assumption in (4.13), yields that

N∞(Xn) > 0. (E.1)

Let c?k be defined as

c?k = lim
α→∞

Nα(Xk)

Nα(Xn)
=
N∞(Xk)

N∞(Xn)
. (E.2)

In view of (E.2), the condition in (4.26) is equivalent to

n−1∑
k=1

c?k ≤ 1. (E.3)

Hence, it remains to show that the the tightest R-EPI in (4.24) and the BV bound in (4.25)

asymptotically coincide, by letting α→∞, if and only if the condition in (E.3) holds.
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Let φα : [0, 1]→ R be the function defined in (D.1) for α ∈ (1,∞), and define

φ∞(x) = lim
α→∞

φα(x) (E.4)

for x ∈ [0, 1]. In view of (4.22), (D.1) and (E.2), the limit in (E.4) is given by

φ∞(x) = x+ 1
2

n−1∑
k=1

(
1−

√
1− 4c?k x(1− x)

)
(E.5)

for x ∈ [0, 1]. Recall that under the assumption in (4.13), the selection of tn = 1 in (4.9)

leads to the BV bound in (4.25). Hence, in view of (4.23), if t = 1 is the unique solution of

φ∞(t) = 1, t ∈ [0, 1] (E.6)

then the bounds in (4.24) and (4.25) asymptotically coincide by letting α→∞. Note that,

φ∞(0) = 0, (E.7)

φ∞(1) = 1. (E.8)

From (E.8), t = 1 is a solution of (E.6) regardless of the sequence {c?k}. Moreover, from

(E.5),

φ′∞(x) = 1 +
n−1∑
k=1

c?k (1− 2x)√
1− 4c?k x(1− x)

, (E.9)

so

φ′∞(x) > 0, ∀x ∈ (0, 1
2
), (E.10)

φ′∞(1) = 1−
n−1∑
k=1

c?k. (E.11)

The function φ′∞(·) is monotonically decreasing in the interval [1
2
, 1]; this concavity property

of φ∞ can be justified by Appendix D since the function φα(·) is concave in [α
′

2
, 1] and α′ → 1

by letting α → ∞. Thus, if the condition in (E.3) holds, then φ′∞(x) > 0 for all x ∈ (0, 1)
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which, in view of (E.8), yields that t = 1 is the unique solution of (E.6). This implies that

the tightest R-EPI in (4.24) and the BV bound in (4.25) asymptotically coincide by letting

α→∞.

To prove the ’only if’ part, one needs to show that if the condition in (E.3) does not

hold then the bounds in (4.24) and (4.25) do not coincide asymptotically in the limit where

α→∞; in the latter case, we prove that our bound in (4.24) is tighter than (4.25). If (E.3)

does not hold, then (E.11) implies that

φ′∞(1) < 0. (E.12)

Hence, from (E.8), there exists x0 ∈ (0, 1) such that φ∞(x0) > 1 which, in view of (E.7) and

the continuity of φ∞(·), implies that there exists t ∈ (0, x0) which is a solution of (E.6). This

implies that there are two different solutions of (E.6) in the interval [0, 1]. Let t(1) ∈ (0, 1)

and t(2) = 1 denote such solutions, i.e.,

t(1) < t(2) = 1. (E.13)

Note that there are no solutions of the equation φ∞(t) = 1 in [0, 1], except for t(1) and t(2) = 1

since φ∞(·) is monotonically increasing in [0, 1
2
] and it is concave in [1

2
, 1] with φ∞(1) = 1.

We need to show that t(1) leads to an R-EPI which is tighter than the R-EPI in (4.25);

the bound in (4.25) corresponds to t(2) = 1 under the assumption in (4.13). For every α > 1,

let t(α) be the unique solution of (4.23) (see Appendix D). It follows that the limit of any

convergent subsequence {t(αn)}, as αn →∞, is either t(1) ∈ (0, 1) or t(2) = 1. In the sequel,

if the condition in (4.26) is not satisfied, we show that every such subsequence tends to

t(1) ∈ (0, 1), which therefore implies that

lim
α→∞

t(α) = t(1) < 1. (E.14)

From (E.12) and the continuity of φ∞(·), it follows that there exists δ > 0 such that

φ∞(x) > 1, ∀x ∈ (1− δ, 1). (E.15)
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In addition, since φα(·) is continuous in α for every x ∈ [0, 1], it follows from (E.15) that

there exists α0 > 1 such that φα(x) > 1 for all α > α0 and x ∈ (1 − δ, 1] (note that the

rightmost point is included in this interval in view of (D.2)). Hence, since by definition

φα
(
t(α)

)
= 1 for all α ∈ (1,∞) then t(α) ≤ 1− δ for all α > α0. This therefore proves that

every subsequence {t(αn)} tends to t(1) as αn → ∞ (since it cannot converge to t(2) = 1),

which yields (E.14). Hence, the R-EPI in Theorem 2 asymptotically yields a tighter bound

than (4.25) when α→∞; this therefore proves the ’only if’ part of our claim.
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 תקציר

אשר  Entropy Power Inequality (EPI)אחד מאי השוויונים הידועים בתורת האינפורמציה הוא ה 

זה ישנם שימושים רבים בתורת  שוויון. לאי 1948הוצג במאמרו פורץ הדרך של שאנון משנת 

עבור מספר בעיות שמשלבות ( converse theoremsהאינפורמציה שעיקרם משפטים הפוכים )

( interference( הגאוסי, ערוץ ההפרעה )broadcastבתוכן ווקטור אקראי גאוסי: ערוץ ההפצה )

( בתורת rate-distortion עיוות )-קצב פונקציית( הגאוסי, wire-tapהגאוסי, ערוץ ההאזנה )

 (.MIMOיציאות )מרובה כניסות ומרובה הגאוסי האינפורמציה מרובת משתמשים וערוץ ההפצה 

 בתורת האינפורמציה, מספר הוכחות הוצעו עבורו לאורך השנים.  EPIבגלל החשיבות הרבה שיש ל

מוכללים,  EPIבדידים,  אקראייםעבור וקטורים  EPI-גרסאות של ה כוללותקשורות עוד תוצאות 

EPI הפוכים, וחיזוקים של ה-EPI  אקראייםעבור משפחות מסוימות של וקטורים. 

בתחילת  (Alfred Rényiהוצגו לראשונה ע"י אלפרד רני ) Rényiוהדיברגנץ של  Rényiהאנטרופיה של 

ויש להם  ,( Kullback-Liebler Divergenceכהכללה לאנטרופיה של שאנון ולדיברגנץ ) 60-שנות ה

 , החל מקידוד מקור ועד לקידוד ערוץ. האינפורמציהשימושים רבים בתורת 

, כלומר למצוא Rényiהמדד המתאים לו במידות עבור  EPI-התמקדת בהכללת הזו מתזת המאסטר 

EPI)-Rényi Entropy Power Inequality (R . יהי
1

n

n k

k

S X


  סכום שלn  וקטורים אקראיים

,1),ויהי  dהמקבלים ערכים בסטטיסטית רציפים בלתי תלויים  ]  ה .-EPI-R חסם  מציג

של  Rényi Entropy Powerתחתון על ה 
nS  מסדר  אשר עד כדי קבוע כפלי )אשר יכול להיות ,

 Rényi Entropy( שווה לסכום של ה  nובמספר הווקטורים האקראיים  d, במימד  תלוי בסדר 

Power  מסדר של כל אחד מ-n  הווקטורים האקראיים
1{ }n

k kX 
1עבור   . , ה-sEPI-R 

  הקלאסי של שאנון. EPI-עם ה יםמתלכדו בתזה זו חשפות

Lלנורמת  Rényi Entropy Powerהרב בין ה הדמיוןעקב 
, ישנו שימוש בהגדרות ותוצאות  

 . -Youngו  Hölder  ,Minkowski מאנליזה פונקציונלית. תוצאות אלו כוללות אי שוויונים של 



 ב
 

מוצגים הכלים האנליטיים אשר חשובים להבנה מלאה של  2בפרק התזה מאורגנת באופן הבא: 

 המטריצותותוצאה מתורת  ,Rényi: אי שוויונים, תכונות חשובות של מידות םתהליך פיתוח החס

מטריצה אלכסונית ממשית לאילו של מטריצה אחרת  של רכים העצמייםאשר מקשרת בין הע

 (.The Rank-One Modification Theoremאחת שלה )שמהווה שינוי בדרגה 

ידי -קודם שהוצג לאחרונה על  R-EPIשיפור של  והוא מהווה 3מוצג בפרק הראשון  R-EPI-ה

Bobkov and Chistyakov (IEEE Trans. on information Theory, Feb. 2015  ) אשר מתבסס על

2nהינו הדוק אסימפטוטית עבור  הראשון EPI-R-ה. Young הגרסה ההדוקה של אי השוויון של  

כאשר  ,  והוא מתלכד במקרה זה עם תוצאה ישנה שלRogozin . 

ופתרון תנאי  קמורהמתבסס על אופטימיזציה , והוא 4נעשה בפרק  R-EPIשיפור נוסף של ה  

Karush-Kuhn-Tucker (KKT) תוצאות על . הוכחת קמירות בעיית האופטימיזציה מתבססת

החסם  ,באופן כללי, הינו ההדוק ביותר שידוע. 4בפרק  R-EPI-ההקשורות לתורת המטריצות. 

. אם זאת, ויעיל אינו נתון בצורה סגורה וניתן לחשבו בעזרת אלגוריתם נומרי פשוטהמשופר 

2nר ולמשל עבבמקרים מסוימים ניתן להציגו בצורה סגורה,   .ה-EPI-R מושוויםפרים המשו 

בהקשר של סינון  Bercher and Vignatו  Bobkov and Chistyakov לתוצאות קודמות של 

. אל מול כל (FIRבמסנן בעל תגובה להלם סופית ) וקטורים אקראיים בלתי תלויים ושווי התפלגות

המסנן נעשה של פלט  מסדר  Rényi The Entropy Powerה החסמים הנ"ל, חישוב מדויק של 

 זה מאפשר לנו לראות עד כמה החסם שלנו טוב )קרוב לתוצאה המדויקת(.  עבור וקטורים גאוסיים;

דיון , ישנו סיכום של תוצאות המחקר והכלים האנליטיים שבהם נעשה שימוש. 5לסיום, בפרק 

ר הקשורות בהכללת הצעות להמשך מחקו ל החסמים שניתנים בתזה מוצגהדיקות שבנוגע ל

ניתנות גם  (0,1]לתחומים של  EPI-Rובהרחבת ה  Rényi Entropy Power-תוצאות נוספות ל

 .כן
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