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Motivation

@ Recently, a new capacity-achieving type of codes, sparse regression
codes (SPARCs), has been suggested (Joseph and Barron '12) for

> reliable communication over memoryless channels
> lossy compression of memoryless and stationary sources

with continuous alphabets
@ Current analysis is mostly asymptotic.

@ This work is focused on the finite-length analysis of SPARCs for lossy
compression of stationary memoryless sources.
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Early Works on SPARCs

A. Joseph and A. Barron, “Least squares superposition codes of
moderate dictionary size are reliable at rates up to capacity,” 2012

A. Joseph and A. Barron, “Fast sparse superposition codes have near
exponential error probability for R < C,” 2014

R. Venkataramanan, A. Joseph and S. Tatikonda, “Lossy compression
via sparse linear regression: performance under minimum-distance
encoding,” 2014

@ R. Venkataramanan, T. Sarkar and S. Tatikonda, “Lossy compression
via sparse linear regression: computationally efficient encoding and
decoding,” 2014

o J. Barbier and F. Krzakala, “Approximate message-passing decoder
and capacity-achieving sparse superposition codes,” 2017
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Lossy Compression Problem Setup

R nats per sample . .
S51,...,5, —>{ encoder decoder F’ S1,...,5,

o Mean-squared distortion criterion 1||S — S|]2.

@ S is a memoryless stationary source with continuous alphabet.
o In particular: memoryless Gaussian source, for which D(R) = o2e—2R.
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Sparse Regression Codes

Section 1 Section 2 Section L
M columns M columns M columns
)
A= n
7
_ T
,8 = ( (5] | (@) | e ’ CL )

Entries of A are i.i.d. ~ N/(0, %) known a-priori to encoder+decoder.
A consists of L sections with M columns each.

Entries of B are sparse: exactly one non-zero entry per section.
Entries of 8 are pre-fixed.

Codewords of the SPARC are the linear combinations AS.
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Sparse Regression Codes

Section 1 Section 2 Section L
M columns M columns M columns
A= n
T
,3 = ( C1 ’ (@) ’ e ’ CL )
@ Locations of non-zero entries {c1, ,...,c } in B are determined by

the input bits.
@ Decoder receives Y= A + Z and has to find ﬁA
o Total codewords M- = exp(nR) = R = HlEM
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Choosing M and L

Section 1 Section 2 Section L
M columns M columns M columns
\
A= n
_ T
,8 = ( C1 | C ’ e ’ CL )

For set values of n and R there are many valid choices for M and L

Example (Constant L = 1)
@ Can be reliable for any rate R < C.

@ But the size of A grows exponentially in n.
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Choosing M and L

Practical choice: M = L? for some b > 0 J

In this case,
nR= Llog M= bl logL.

To solve L for given n, R and b, we make use of the Lambert W-function,
which is the inverse relation of the function f{z) = z€”.
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Lambert W-Function

@ Applying the Lambert W-function gives

G

@ In our work, we derived new tight upper and lower bounds.

log |
W(x) = log x — log log x+ O < °8 ng) .
log x

b+1
o M = [P implies that the size of the design matrix is ML ~ ( a ) .
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Power Allocation

Section 1 Section 2 Section L
M columns M columns M columns
A= n
7
T
,8 = ( C1 ’ (@) ’ e ’ CL )

@ Non-zero coefficients of § are pre-fixed: ¢; = +/nP; forie {1,...,L}.

@ Power restriction is met by Z,Lzl Pi=P.
Examples
o Flat: P;="©

o Exponentially decaying: P; < e/t for some a > 0
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Lossy Compression with SPARCs

Section 1 Section 2 Section L
M columns M columns M columns
A= n
_ T
,3 = ( C1 ’ (@) ’ e ’ CL )

e Entries are i.i.d. ~ N(0,1).

@ No power restriction = coefficients {c1,...,c,} are chosen to
minimize distortion.

e R= L'OgM , with our setting where M = L?, b > 0.
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Optimal Encoding
Optimal Encoder

Minimum distance encoding:

B = argmin||S — AB||2,
B

where S is the source sequence and || - || is the Euclidean norm.

Theorem (Venkataramanan and Tatikonda '17)

For a memoryless Gaussian source S with zero mean and variance o
there exists a sequence of rate R SPARCs with

7

P (%HS —AJ|? > D) < e ME(RD)+0())

where E*(R, D) is the optimal error exponent

@ Not feasible since the number of codewords is exponential in n.
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Successive Cancellation Encoding

Successive Cancellation Encoder [Venkataramanan et al., '14]
@ Set Rg =S

e Forie {1,...,L}, choose the mi-th column in section i with
R
m; £  argmax <Aj, '—1> )
Fi—1)M<j<iM IRl
where A; is the j's column of A.
@ Define recursively the residual

Ri=R;_; _CiAm“ i€ {1,...,L},

with ¢; = o/ 28 (1 — 2B)""

o After L steps, 3 is a sparse vector comprised of values {c;}} in indices
{m;}} and zero elsewhere. The codeword is AS.

V.
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Successive Cancellation Encoding

Theorem (Venkataramanan et al., '14)

For an ergodic source S with mean 0 and variance o2, the encoding

algorithm produces a codeword A that satisfies the following for large
enough M and L,

1
P (;ns _ABIP > o2e2R(1+ eRA)z) < Po+pL+ oo,

where A = 0o + 5R(d1 + 02) for any positive constants o, d1 and 2 such
that A < %, and with

S
POIP(

S| MR N\t
o 7% p2=<8|ogl\/l) ’
p1 = 2MLemi/8

where | - | = % is the scaled norm.
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Successive Cancellation Encoding

Corollary
e If S is a memoryless Gaussian source sequence, the SPARC attains
the distortion-rate function.

o For any distortion D greater than D(R) = o?e~2R, the probability of
excess distortion decays exponentially in n.

Complexity
L stages involving M inner products of vectors of length n = O(nML)
The encoder is polynomial in n

What is missing?
@ No finite-length source sequence analysis

o Very loose bound
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Preliminaries

Notation

Let Xi,...,Xuy be i.i.d. standard Gaussian random variables, then

Zy = max X;
ictl,.om "

epm = E[ZM]

Lemma [Cramér '46]

log log M + log 4w — 2 Iog log M
=+/2logM —
M o 2\/2log M O logM )’

where 7 is the Euler-Mascheroni constant
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Preliminaries (cont.)

Upper Bound on ey
For all M > 1,

ey < 2logM

Proof: by invoking Jensen's inequality,

M
exp(ten) < Elexp (tZy)] < Y Efexp (tX)] = Mexp (3 2)
i=1

logM t
= em < + =

27

for all t > 0. Minimization over t yields t = y/2log M, which leads to the
required result.
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Preliminaries (cont.)
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Modification of the Encoder

Reminder
In each step:

Ri_1
m; =  arg max <Aj, —> ,
F(i—1)M<j<iM [Ri—1]]
Ri=Ri_1 — cAnm,

with ¢; = o/ 2F (1 - %’)i—l

Can we choose better coefficients {ci,...,c.}, so that |R;|? is smaller?

é 2¢; em
Rif>~ Riaf |14 —— — F—=
IR1[>  [Riz1] V/n
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Modification of the Encoder

10°

107t

107

Distortion-Rate for Different Values of L (b = 2)

oL=34
=L =48
L =70
L =100
—D(R)

0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34
R

After minimization,

Ci =

o2e?, (1 eM>i—1

n n

6'2 i

|R,'|2 =~ 0'2 (1 — —M)
n

Remark: replacing

ey~ /2logM

yields the original {c;}E
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New Main Theorem: Definitions

Definition: p; and p,
For arbitrary 01,62 > 0, let

L L
1 1
P1:P<Z;|7i|>5l)a P2—P<Z;|€i|>52)a

where {y;}5; and {e;}L; are defined by

Ri_
(A ) = o1+

|Ami|2 =1+
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New Main Theorem

Theorem 1

For an ergodic source S with mean 0 and variance ¢, the encoding
algorithm produces a codeword Af that satisfies the following for L > 10R,

L
P(%HS —ABH2 > o2 <1 = %) 1+ WLA)2> < po+ p1+ p2,

-~

aL,a
where A = §g + 5R(d1 + 92) for any positive constants dg, 61 and d2 such

that A < % and where 5

€
=1+_—M
i +2(n—e2)
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Discussion

Main Message

@ The modified coding scheme performs favorably for finite length
codes.

@ It is robust in the following sense: for any ergodic source, the
proposed encoder achieves the optimal distortion-rate function of an
i.i.d Gaussian source with the same variance.

Note

Asymptotically, the difference between the Gaussian distortion-rate
function D(R) = 02e~2R and ay A, can be arbitrarily small, by choosing
proper L and A.
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Main contributions

o Better performance with the modified encoder for finite-length codes.

@ Analysis of the modified encoder with finite L and M.

@ The bound on the probability of excess distortion is substantially
tighter.

Gal Livny (Technion) Lossy Compression via SPARCs 02/05/2019 24 /38



Outline of Proof

Notation
Denote the multiplicative deviation of |R;|? from its approximated value by
JAV

IRi2 = o2 ( — ?) (1+A;)?

Idea:
@ Find a recursion for A;
@ Use this recursion to bound A, by taking the worst case scenario at
each step
o Worst case scenario: the deviations Ag, {v;}£; and {¢;}L; are
maximal and have the same sign
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Upper Bound on py (General Case)

For all § € (0,1),

2 (| -1] > 5) < ferrlirear-wema Gl
: <

t>0
+ inf {e”[t(1—5)2+'°€ M (~5)] }

t>0

where:

@ X is a random variable with zero mean and finite variance o2.

o Mye(t) is the moment-generating function of X2.

@ S is an i.i.d. source sequence of length n, with S; ~ Px.

Proof: apply the Chernoff Bound twice

The bound is exponentially decaying in n
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Exact Expression for py (Gaussian Case)

Let S be an i.i.d. source sequence of length n, generated according to the
Gaussian distribution A/(0,0?), and let 6 € (0,1). Then,

B _(n n(1+95)? _(n n(l—20)
Po—l—’Y(E;T +7 > 5
where 7 is the incomplete Gamma function,
¥ (a,x) = - /X tletdt.
7 r(a) Jo

@ Proof: follows from Hi—‘f ~ x?(n) (Chi-squared distributed with n
degrees of freedom)
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Upper Bound on p;

For all § € (0,1),
1 L
A
P1=P<Z;|Wi|>5>
et(1=9) \"
< | inf — | (5,9 +nt
- (o<'?<;{<\/1+2t 7(3:4+ )

o t(+o) \ " .
* <\/1—2t> [1_7(

Reminders:
® Vi = ‘Ami’2 -1

@ 7(-,-) denotes the incomplete Gamma function
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Upper Bound on p; - Proof

Concept of proof:
@ The columns of A are i.i.d.
@ Chernoff's bound

o Forany ke {1,..., ML}, we have 37 | A?, ~ x?(n), where Aj is
the (J, k) entry in matrix A
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Upper Bound on p;

For all 6 € (0,1),

. L
1 o0
p2 =P (Z D lel > 5) = (LQE {e_tem/ ez (2) dz}> ’
=1 >

where fz, (-) is the probability density function of Zy.

@ Reminder: ¢; is the random variable which stands for the deviation

Ri1 >
max A; =em(l+€)).
(il)M<j§iM< IR m( )

e Concept of proof: Chernoff bound after showing that {e;}L ; are i.i.d.

Gal Livny (Technion) Lossy Compression via SPARCs 02/05/2019 30/38



Upper Bound on p;

Reminder

[e's) L
)

Efficient Computation of the Bound

The infimum in the bound of p, is a minimum, and can be obtained
numerically by the bisection method in the interval [0, t},], with

., 1 Liog V2M
= Vtzn(—2em)

Concept of proof:
o Convexity

@ When t = tj,, the derivative is positive
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The Complete Bound - Comparison

@ The simulation was conducted as follows:

» Fix parameters R, b, 02, €
» Calculate the minimal n such that

P||S — AB|? > o2 2R(1 4+ 1) | <,
for a range of values n > 0

@ The following figures use R = 0.5, 0> = 1 and ¢ = 0.01
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The Complete Bound - Comparison
r T T T T O o] ]
[ S . \Q\G B
10° 8 I =t o
I . |
[ o,
107 ~al, G
r Tasa ]
10° ¢
10° E 5
c i i
10* e T Eggg g Sooy
10° ¢
107
F|—e—b=2 1
101 |—=-b=25 E
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The Complete Bound - Comparison

108 ¢ ‘ T ‘ 1
i SN ]
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Deviation from the Distortion-Rate Function

A _
Bounds on D p = ‘aL,A —o%e 2R‘

@ For a large enough L,

Blog log L L)loglog L
og log +O<€()ogog

<D
log L log L )_ L&

where ¢(+) is a non-negative function with (L) . 0 and B> 0.
— 00

o If A = Alosloel \ith 5 constant A > %, then for a large enough L,

blog L
- Cloglog L O(e(L) IoglogL) ’

D
LA = log L log L
with C > 0.
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Deviation from the Distortion-Rate Function

Conclusions:
@ The deviation from the distortion-rate function is upper bounded by

0] (%) with probability that tends to 1 as L — cc.

@ Using Theorem 1, no significant improvement can be made to the
upper bound.

Note

@ The demand for the source sequence to be memoryless Gaussian is
necessary to apply the upper bound on pg.

@ For other memoryless source distributions, the same results can be
achieved under a suitable condition.
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Topics for Future Work

Further Tightening the bound on the probability of excess distortion.

@ Can the lossy compression scheme be generalized, in order to
approach the rate-distortion function of non-Gaussian sources?

@ Improving the tradeoff between complexity and performance of
SPARCs .

Channel coding via Spatially-coupled SPARCs shows better empirical
results than with regular SPARCs. Finite blocklength analysis is
currently missing, as well as lossy compression.
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Thank You!
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Modification to the Encoder

Lemma (Venkataramanan, Sarkar, Tatikonda '14)

Let {Aj}szl be N mutually independent random vectors of length n, and
suppose that the components of each vector are i.i.d. standard Gaussian
random variables. Let R be a random vector independent of {A;} Y,
whose support lies on the n-dimensional unit sphere, i.e.,

n
>i-t
i=1
and let
Tj=(A;,R)

for every j€ {1,..., N}. Then, {TJ}J’\L1 are i.i.d. standard Gaussian
random variables which are independent of R
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Outline of Proof

Notation

Denote the multiplicative deviation of |R;|?> from its approximated value by
A,

) i
R = o (1 - e7M) (1+ A7)

Idea: find a recursion for A;, and by it control the deviation after L steps,
AL

26,’ R,'_ R,‘_
RI2 = R 1P + & |A, - 26lR1l] <Am,-, 1 >
n IRi—1|

2\ e
_ 2 €m . 2 M 2 . . ,
=0 <1— e > [(I—I—A,_l) + - e%/, (A, 1+7,—2e,(1+A,_1)>}
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Outline of Proof

2
= (1+ A,-)2 =(1+ Ai—1)2 + < eM2 ) (A,?_l + i —2e(1+ Ai—l))
n—ey,

Next step to bound A;: define event A to satisfy the following conditions,

IS]
7—1‘ < do

L
° %Zi:l [vil < 01
o 1Y r el <6

By the union bound,
P(A%) < po+p1+p2
What remains: finding a bound on A; conditioning on event A
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Outline of Proof

Lemma
For L > 10R, conditioning on event A,

2eM

|A|<|A0|M/+ ZV‘/_’ Il +lel),  ie{L,..., L}

v

The lemma is proved by induction, utilizing the recursion of A;, and taking
the worst case scenario: the deviations Ao, {7/}, and {e;}L are
maximal and have the same sign

= Ap < |Ag|ut + -

L

2 Z (il + &)

M j=

<wh <5o+ ezeé (51+52)>
M

< wtA
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Upper Bound on p;, - Proof
First show that {e;}L; are i.i.d.
Define

i Ri—1 : . :
70 <AJ.,HRI__1”>, je{li—-1)M+1,....iM)

08 (10T
@ The entries of A are i.i.d. = A;is independent of R;_; conditioned
on {TU=1 . T Ry} forany je {(i—1)M+1,...,iM}
° {TJ(.i)} are i.i.d. standard Gaussian random variables (previous lemma)
iM
= Fryjri-v, ro Ry = Fron = H F7§f>,

and applying recursively,

L
Fry 700,70 = Fry | [ Fro
i=1
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Upper Bound on p;, - Proof

Conclusions:

o {T()} are i.i.d. Gaussian random vectors
@ They are independent of Rg

@ Their components are i.i.d. standard Gaussian random variables
The maximal values of { T()},

70

V= max ,
(i-1)M<j<im 1

are i.i.d. ~ Zy; the deviations {e,-},-Lzl, given by ¢; = e—‘ﬁ, —1, arei.id.

— The Lemma follows from Chernoff’s bound

But can this bound be computed efficiently? J
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Efficient Computation of the Upper Bound on p;
The bound can be rewritten as

[e.e]
po < exp (L sup {teM5 — log </ et‘z_e"ﬂfZM(z) dz> })
t>0 —00

Define, for t > 0,

us m(t) = c(lit <Iog </ et‘z_e"’”sz(z) dz> - teM5>
—o0

B EUZM — eM| et|ZM_eM|:|
- E[et|ZM*eM|]

— 6M5

us m(t) is monotonically increasing (Cauchy-Schwarz inequality)
= the supremum can be obtained by the bisection method in the interval
[0, t3,] for any t}, > 0 such that us m(ty,) > 0

But does such t}, always exist? J
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Efficient Computation of the Upper Bound on p;

If t*M = $ |Og <%), then U(;’M(t*M) Z 0

Proof: it is enough to show that

E [|ZM — ewm| etMZM_eM‘] —emE [etmz"/’_em] >0

since 6 € (0,1). Analysis of the expression yields

E [|ZM — e ef/mZM—qu — eyE [et’,i,,IZM—eMI}

_ / (12— em] — em) = f, (2)dz

—00

> el <sz( 2ep) e M\/7>
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First ltem

Lemma

Let S be a memoryless Gaussian source sequence. If A = A'b%'g"fl‘ for

some A > %, there exists a division of A into dp, 41 and &, such that

lim po+p1+p2=0
L—o0

Previously,

2 2
3nd néy

po+pL <2 & +2Mle s

= Ifdg =01 = IoéL’ then lim; oo po+p1 =0
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. Aloglog L
For py, if 6r = blig% ,

po < exp [—Lsup { <teM52 — log </ et‘Z*eM|fZM(z) dz>> H
t>0 —00

A€, log log M °
< exp [—L ('V’loc;glvc;g — log (/ evlz=eulf, (2) dz))}

For a large enough M, the integral can be bounded by C- ey, for a
constant C > 0. From ey < /2log M,

e%/, log log M

c
4log M +&

log(enm) + C <
and since A > %,

lim pp =0

L—o00
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po Comparison

The bound from previous works for the Gaussian case was

_3m0%
po < 2e 4
Comparison:
(n, 6) Exact po Lemma 1 | Previous
(Lemma 2) Bound Bound
(10, 0.1) 0.66 >1 >1
(1000, 0.1) | 7.86-107° [ 6.19-10°° [ 1.1-10°3

Gal Livny (Technion)
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p1 Comparison

The upper bound on p; in previous works was

né?
p1 < 2MLe &
Comparison:
(n, L, M, 9) Lemma 3 | Looser Bound | Previous
Bound (Remark) Bound
(102, 10, 10%, 0.25) | 1.83-10~* | 3.30-10~* > 1
(103, 10, 103, 0.10) | 1.57-10°8 | 1.83-10°8 > 1
Gal Livny (Technion) Lossy Compression via SPARCs 02/05/2019
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p> Comparison

The upper bound on py in previous works was

M25
p2 < <

8log M

Comparison:

-

(L, M, 9) New Bound

Previous Bound

(10, 100, 0.25) | 1.95-10~2 > 1
(10, 1000, 0.1) | 7.96-10°1 >1
(10, 10%, 0.25) | 4.15-10~ 11 4.7-1072

Remark

The probability p, is defined differently in previous works, since the
deviations {e;}L ; are defined in relation to a different approximation
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Lambert W Function

Known Bounds [Hoorfar and Hassani, '08]
For every x > ¢,

1 logl log |
log x — log log x + = 108108 X < W(x) < log x — log log x + & 0570EX
2 logx e—1 logx
Two bounds on exp(W(x)) can be derived from this bound:
e Applying exp(x) on both sides of the inequalities
e Using the identity exp(W(x)) = m
Gal Livny (Technion)
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New Bounds Derived in This Work

For every x> e,
s(x) < MY < ¢(x),

with

W gy °

X

log x — log Iog(ﬁ) ’

log log x
2 jogx—log [log [ ) —log (1 — 298X
V) = logx—log (og (Iogx o 1+ log x
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Lambert W Function - Bound Comparison

Comparison Between the Bounds of exp(W/(x))

1.4 T

— New Bound
---0Id Bound 1
------ Old Bound 2

Old Bound 1 -
exp(bound)

Old Bound 2 - uses
(W) = 1y

0.8 !
10!
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Decoders

Optimal Decoder

Maximum likelihood decoder:

A

p=argmin|Y—Ag],
B

where Y is the output sequence of the channel

o With flat power allocation, for all R < C, the error probability decays
exponentially in n [Joseph and Barron '12]

@ Impractical: complexity grows exponentially in n
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Adaptive Successive Hard-threshold Decoder

Idea: iteratively pick columns of A whose inner product with a residual is
over a fixed threshold

Complexity
The complexity of the decoder is O (n*M) = Polynomial in n J

With exponentially decaying power allocation,

Performance [Joseph and Barron '14]
For R < Cpy,

_ __R)2
Pe S e L(CM R) C]_’

where

s __@
cwc(1-22)
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Soft Decision Decoders

Two soft-decision decoders:
o Adaptive successive soft-decision decoder [Barron and Cho '12]
@ Approximate message-passing (AMP) decoder [Barbier and Krzakala
'17], [Rush, Grieg and Venkataramanan '17]

Idea: iteratively update the posterior probabilities of each entry of 3 being
the true non-zero in its section

Performance

With exponential power allocation, for any R < C, the error probability of
the soft-decision decoders decays exponentially in m, where cis a
constant that depends on the scheme

Performance is empirically better than the hard-decision decoder
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Deviation from the Distortion-Rate Function

Reminder (from Theorem 1)

1
P (;HS —AB|? > aL,A) < po+p1L+p2

Definition

Dia = ‘OéL,A - Uzé_zR‘

We showed that

lim lim DLA =0
A—0L—sc0
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