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Abstract

One of the main goals of information theory has been to design practical codes for reliable
transmission and lossy compression, approaching the fundamental information-theoretic limits
with feasible complexity. Recently, a new type of codes has been suggested for reliable com-
munication over memoryless channels, and for lossy compression of memoryless and stationary
sources with continuous alphabets. These codes, named as sparse regression codes (SPARCs)
or sparse superposition codes, rely on a coding technique where the codewords are linear com-
binations of columns of the design matrix of the code. SPARCs were originally developed for
communication over the additive white Gaussian noise (AWGN) channel, and they were proved
to asymptotically achieve the channel capacity. Subsequently, SPARCs were adapted for lossy
compression, and it was shown that they asymptotically attain the rate-distortion function of
a Gaussian memoryless source with a computational complexity which grows polynomially in
the blocklength of the source output.

The main focus of this thesis is the examination of the performance of SPARCs for lossy
compression of memoryless sources, obtained by tightening the existing asymptotic bounds
on the probability of excess distortion, and by adapting these bounds to finite blocklengths.
Furthermore, an improvement of the encoding scheme for lossy compression with SPARCs
is proposed, analyzed, and examined by computer simulations. We also discuss the tradeoff

between performance and complexity of SPARCs in the context of lossy compression.
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Chapter 1

Introduction

1.1 Background on Sparse Regression Codes

From its inception, one of the goals of coding theory has been to design high-performance and
low-complexity codes for reliable communication over noisy channels and for lossless or lossy
data compression. While it is well known that such codes exist in principle when no system
constraints on complexity and delay are imposed [1], the main practical challenge has been
to construct codes with low computational and storage complexity for both the encoder and
decoder while approaching the information-theoretic fundamental limits of source and channel
coding in practice. Starting from the 1990’s, several practical codes which asymptotically
approach these theoretical limits have been designed such as turbo codes [2], codes defined on
sparse graph (e.g., low-density parity-check (LDPC) codes) [3], polar codes [4, 5] and spatially-
coupled LDPC codes [6]. These codes, however, have been mainly studied for discrete-input
channels and sources with a discrete output alphabet.

There are yet many channel and source models of practical interest with a continuous
alphabet. In particular, the additive white Gaussian noise (AWGN) channel and the Gaussian
memoryless source have been of special interest (e.g., [1, 7, 8]). A recently developed approach

for these cases is the sparse regression code (SPARC) (a.k.a. sparse superposition code) [9].

X; @ Y,

|

N; ~ N(07 02)
Figure 1.1: The AWGN channel

For the AWGN channel model (Figure 1.1), independent and identically distributed (i.i.d.)

2 are added to input

samples of an additive Gaussian noise with zero mean and variance o
symbols which are subject to an input power constraint P. The capacity of the AWGN channel
is given by C' = 1log, (1 + U—P2> bits per channel use [1]. The aim of the designer is to reliably
transmit information over the channel at rates approaching the channel capacity with a decoding
error probability which asymptotically decays to zero when the blocklength n of the code is

increased, while keeping the processing delay and encoding/decoding complexity reasonable.
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Gaussian codebooks, for which each codeword is an i.i.d. Gaussian random vector, have been
proved to achieve the capacity of the AWGN channel. However, these codes are not practical
due to the high decoding complexity of un-structured Gaussian codebooks. In practice, the
popular approach for communication over the AWGN channel is coded modulation, a method
which consists of two separate steps: finite-alphabet coding and modulation; one example is a
combination of a standard modulation scheme like Quadrature Amplitude Moderation (QAM)
and a known capacity-achieving binary code, such as LDPC codes [10]. While these methods
show good empirical results in simulation and practice, it has not been proved that they manage
to achieve the capacity of the AWGN channel. Other proposed codes for communication over
the AWGN channel are lattice codes; however, they are infeasible for high dimensional lattices
[11].

A SPARC code is a type of a structured Gaussian codebook, which manages to achieve
similar results in performance with reasonable complexity. A SPARC code has an n x N design
matrix A with i.i.d. Gaussian entries, where n is the blocklength. The columns of the matrix
A are divided into L sections of M columns each (see Figure 1.2), and hence N = ML. A

SPARC codeword is a linear combination of L columns of the matrix A, one from each section.

Section 1 Section 2 Section L
M columns M columns M columns

Figure 1.2: A is an n x N matrix, divided
into L sections with M columns each

For coding over a noisy channel, the entries of the design matrix A are i.i.d. Gaussian
random variables with zero mean and variance equal to % A codeword of a SPARC is a linear
combination of L columns from A, one from each section; it is obtained by multiplying the
design matrix A by a sparse (column) vector 8 = {81, B2, ...,0n}" of length N, which contains
a single non-zero entry in each of the L blocks of M consecutive entries, i.e., there exists exactly
one non-zero f3; for i € {1,..., M}, one non-zero f; for i € {M +1,...,2M}, and finally one
non-zero [3; for i € {(L —1)M +1,...,LM}. The values of the non-zero entries {3;} in each
section are determined to accommodate the average power constraint P per channel symbol,
and therefore they are set to {/nP;}r_; with Zle P; = P. For lossy compression, the entries
of the design matrix A are i.i.d. samples of a standard Gaussian distribution, and the non-zero
entries of the sparse vector § are determined to minimize the distortion in the reconstruction,

as it is explained in Chapter 3.



Since there are L sections with M columns each, the total number of codewords in the
SPARC is M*. This holds since each such codeword corresponds to one possible choice of the
sparse vector (3 (recall that the values of the non-zero entries in each of the L segments are
fixed, and there are M possibilities for choosing the single non-zero entry of 5 in each segment).
Hence, since the number of codewords exp(nR) is equal to ML, the code rate R satisfies the

equality
nR = Llog M (1.1)

where, unless mentioned explicitly, the logarithms are expressed on the natural base. For a
pair of values of blocklength n and code rate R, there are multiple valid choices for M and L.
For example, picking L = 1, we have an unstructured Gaussian codebook since the matrix A
is comprised of one big section; in this case, the number of columns in A grows exponentially
in n. A more practical choice, which is often used for SPARCs, is M = L for some positive

constant b; here, (1.1) gives

nR =0Llog L, (1.2)

ot (W), »

where W (-) denotes the Lambert W function [12]; this function, as presented in Section 2.2, is
the inverse function of f(z) = ze® for x > —21. In view of the following asymptotic result for

the Lambert W function (see (2.25)):

(1.4)

logl
W(z) =logz —loglogx + O (M)

log x

and, since the number of columns in the design matrix A is equal to ML = L**!, it therefore

follows that the number of columns in A grows only polynomially in n (more precisely, it scales
b+1
like (z2) ).

Codewords of a SPARC are statistically dependent when they are constructed by linear

combinations which contain at least one shared column; this is equivalent to having at least
one shared non-zero entry in the sparse vectors which are used to construct the two codewords
from the design matrix.

The decision on how to allocate the power among the L non-zero entries of the sparse
vector § has a large effect on the performance of the SPARC. Two possible power allocations
which have been studied in the literature are the flat power allocation where P; = % for all
j € {1,...,L}, and the exponentially decaying power allocation with P; = Cexp(—ayj) for
a>0andj € {l,..., L} (the former is a special case of the latter when a | 0). For both power
allocations, it has been proved that there exists a decoder which asymptotically approaches the

channel capacity [13, 14].



Channel Coding with Sparse Regression Codes

Yy
i ———{Bancoder ——{(y1) | ——{ Decoder——

Message Channel Decoded message

Figure 1.3: A standard channel coding set-up

For communication over the AWGN channel, encoding with SPARCs is done as follows: each
input block of & = nR bits is partitioned into L blocks of log, M bits, so that each of these
blocks is a binary representation of an integer between 0 and M — 1. The non-zero entry in
every section of the sparse vector f is at the index of that integer plus one, and the input
codeword to be sent through the channel is given by Ap.

The error probability of a SPARC is measured by its section error rate,
1 L
gsec = 221{55%65}7 (15)

where B is the decoded version of the vector 5, and 3, represents the sub-vector of the sparse
vector 8 in section ¢ € {1,...,L}. The section error rate denotes the fraction of sections
which are decoded erroneously. Assuming a uniform mapping between the input stream to the
encoder (and, therefore, an equi-probable distribution for the non-zero index in each section),
the bit error rate is approximately equal to one-half the section error rate, i.e., Eper & %Ssec. For
a given decoding algorithm, it is of interest to bound the probability P (€. > €) as a function
of € > 0. In order to improve the decoding error probability of the message, one can use a
concatenated code where the SPARC serves as an inner code and a Reed-Solomon (RS) code is
the outer code; an RS code of rate 1 — 2¢, whose symbols over the Galois field are represented
by log, M bits, can correct up to a fraction € of the section errors in the SPARC.

Several decoders were proposed and analyzed for SPARCs. The first one, analyzed in [13],
is an optimal decoder when the codewords are equally likely, and it is based on the following

decision rule:
Bopt = arg min [y - AB|?, (1.6)

where y = (y1,...,y,) is the output sequence of the channel, and the minimum is taken over all
possible sparse vectors 5. Joseph and Barron showed in [13] that, at all rates below the channel
capacity, the error probability of the optimal decoder decays exponentially in n; however, this
decoder is not practical computationally since the minimization in (1.6) is performed over an
exponentially growing number of vectors in n.

The adaptive successive decoder, which originally appeared in [14], was the first practical
decoder to be proposed for SPARCs. The decoding goes as follows: in Step 1, the decoder
calculates the inner products between every column of the design matrix A with the normalized

output sequence y, (i.e., Hg—”), and the results are compared to a pre-specified threshold. For



each inner product that exceeds this threshold, the corresponding column in A is picked as
part of the solution, and therefore at the end of the step, we have the first estimate for the
sparse vector Bl. In step ¢, for ¢ > 1, a residual R; is produced according to R; = R;_1 — ABi
with Ryg = y. Then, the decoder calculates the inner products between the columns of A and
the normalized residual Hg—z”, and again picks those (from the as yet undecoded sections) who
surpass the pre-specified threshold. The number of steps the decoder runs is predetermined,
but it may finish beforehand if one column has been already selected from each section, or if
no inner product surpasses the threshold in a certain step.

Consider the AWGN channel with average power constraint P, and assume a power alloca-
tion of the SPARC which is given by P, o exp(—a¥) for £ € {1,...,L} and a > 0. The error
probability of the adaptive successive decoder was analyzed in [14], providing an upper bound
which decays exponentially in L at any rate below the channel capacity. The empirical results
at rates close to capacity are, however, quite large for the section error rate when practical
blocklengths are used.

The next two suggested decoders for SPARCs are iterative soft-decision decoders. Both of
them aim to iteratively update the posterior probabilities of each entry of S being the true
non-zero in its section. The objective of these decoders is to produce a test statistics vector at

each iteration which has the form
stat; ~ ﬁ + Tizi, (17)

where Z; is a standard Gaussian random variable independent of 5. The test statistics sequence
stat; is what one would expect to receive at the output of an AWGN channel with noise variance
2. From the test statistics vector, it is possible to extract the next estimate for 3°, by using

the optimal Bayesian estimator,

5i+1 = E[ﬁ|5 + TiZi = St&ti] = m(stati), (18)
where 7; denotes the conditional expectation. For index j in section ¢ € {1,..., L} of 3, we
have

exp(v/nP; s;/T?
ni;(s) = V/nby p( 5i/77) (1.9)

Zk€seQ eXp( \Y% nPf Sk/Ti2) .

2

In addition to updating 3° iteratively, we must also update the variance 77 accordingly, so

that it reflects the variance of the difference between 3 and 3°. Starting with 72 = o + P, we
define

7! —‘72"‘%EHB—TZ(ﬁ‘FTi—lZi—l)HQ, (1.10)

with the expectation being over both g and Z; ;. This way, the variance of the Gaussian

part of stat; would consist of two independent terms: one is the inherent Gaussian noise of the



channel, and the other derived from the difference between 5 and its estimate 3¢. The recursion

function of 7; can be rewritten as
=0+ P(1 —2(1,_1)), (1.11)

where x; £ z(7;_1) is the expected value of a function of standard Gaussian random variables,
and has an exact expression in [18, Sec.3|. In [18], it is shown that for rates below the channel
capacity and with an exponential power allocation, the recursion of 7; has a fixed point close
to 02, i.e. that the gap between * and 8 diminishes.

However, the open question is still how to generate the coveted test statistics sequence
stat;, which should be approximately equal to S + 7;Z; in each step. The adaptive-successive
soft-decision decoder proposes one method to reach this goal. It is based on the following fits:
Fit; £y, Fit, 2 ABY, ..., Fit; £ AB". From these fits, we recursively define G;: set Gy £y,
and subsequently define G; to be the part of Fit; that is orthogonal to Gg, G1,...,G;_1. The

actual components from which we build the test statistics vector are Z;, which are defined as

ATG,
Zp=n —— (1.12)
G
for k£ > 0. Then, we define
stat; = 7; Z e Zi + B (1.13)

k=0

The coefficients {\;} are chosen so that the demand on the distribution of the test statistics in
(1.7) is met.
Choosing suitable values for {\;} is based upon identifying what the distribution of {2}

is, which was outlined in [15]. One possible choice, first proposed in [16],

LY :(— —,/ 72,... ,/i2 —> (1.14)

In [16], it is shown that this choice guarantees an approximately correct distribution for stat;;
as a result, it is proved that for every rate below the channel capacity, with the exponen-
tially decaying power allocation, the error probability of this decoder decays exponentially in
n/(logn)**1 where k is the number of steps the decoder executes.

Another way to obtain a test statistics sequence stat; which satisfies (1.7) is used by the
approximate message-passing (AMP) decoder. Originally, the AMP decoding algorithm gives a

fast solution to the problem

8 =argmin { |y - A3+ XI5 (1.15)
B

for some A > 0. This is not quite the problem which the decoder of the SPARC needs to solve,



since in (1.6) the minimum is only over possible codewords, i.e. that there is exactly one non-
zero entry in each section of 3, rather than over all possible vectors. However, if the decoding
problem could be described with min-sum like message passing updates, then an AMP decoder
could find an approximate solution to it, as per [17]. This was done in [18], with the following

set of update rules:

i1 )2
I‘i:y—ABi—i-rQ (P—HB || )’ (1.16)
stat; = A'r! + B, (1.17)

and with 3° and 7; updating according to (1.8) and (1.10) respectively. In [19] it was proved
that the error probability of the AMP decoder decays exponentially in n/(logn)*?, where T is
the number of iterations that is required for a successful decoding.

In terms of computational complexity, both soft-decision decoders are similar, and require
O(nN) time; in practice, the adaptive successive soft-decision decoder is more costly, as each
iteration requires orthogonalization and expensive computation of coefficients. The computa-
tional complexity can be reduced by replacing the i.i.d. Gaussian design matrix A with lines
randomly selected from an N x N Hadamard matrix as suggested in [18]; this reduces the
computational complexity of the AMP decoder to O(M Llog L), and greatly improves storage
complexity, as the matrix does not have to be saved in the memory.

Some other improvements to the SPARCs have recently been proposed. Spatially coupled
SPARCs, in which the design matrix A is comprised of blocks with different variances, appear to
have better empirical results than regular SPARCs [20],[21]. Other suggested techniques include
new power allocation routines, using an outer LDPC code, and using an online estimate of the
parameter 77 (see (1.10)) [22].

Lossy Compression with Sparse Regression Codes

As it is mentioned above, SPARCs can be also utilized for lossy compression of sources with con-
tinuous alphabet. Specifically, for a memoryless Gaussian source with zero mean and variance

0%, SPARCs can approach its distortion-rate function with the mean-square error distortion:
D(R) = %%, (1.18)

For general zero-mean ergodic sources with a fixed variance, SPARCs attain the distortion-rate
function of a Gaussian memoryless source in (1.18); this is the best possible feat for universal
lossy compression of zero-mean ergodic sources with fixed variance when Gaussian codebooks
are utilized [23].

The construction of SPARCs for lossy source compression is similar to channel coding, with
codewords of the form AS where the design matrix A is composed of i.i.d. standard Gaussian
entries, and the sparse vector § has a single non-zero entry in each section. The only difference

in comparison to SPARCs for power-limited channel coding is that the non-zero entries of 8



are not subject to satisfy a power constraint, so that they can be chosen arbitrarily to help the
source encoder to reduce the distortion.
Similarly to optimal decoding in communication over a noisy channel, optimal encoding for

lossy compression is based on the following rule:

Bopt = argmin [|S — AB|?, (1.19)
B

where S is a source sequence of length n, and the minimization is carried over all possible sparse
vectors 5 whose non-zero entries in each of the L sections are fixed. Every non-zero index in
each section of 3, is converted into a sequence of log, M bits based on its index in the section,

hence the rate of the code is

_ LlogM
-—

R (1.20)
The reconstructed approximation of the source S in the decoder is S = A,B’opt. Papers [24] and
[25] show that with this optimal encoding scheme, the excess-distortion probability which is
given by ]P(%Hs — ABOptH2 > D) decays exponentially in the source blocklength n, with the
optimal excess-distortion exponent for memoryless discrete and Gaussian sources. This is in
contrast to the error exponent of optimal decoding of SPARCs over the AWGN channel, which
is sub-optimal.

Since the optimal encoder is impractical due to the fact that the number of codewords grows
exponentially with n, a sub-optimal feasible encoder for lossy compression was designed and
suggested in [26]. This proposal is a variant of successive cancellation, in which the non-zero

indices in every section of 3 are picked sequentially: the encoder initializes a residual vector to

Ry = S, and chooses the non-zero index m; in each section ¢ € {1..., L} of A, as the one which
maximizes the inner product between the columns of A and the normalized residual ”;{?—:i”.

The residual is updated by
Ri = Ri—l — CiAmia (121)

where

op\ i1
¢ = \/202 log M (1 - TR> : (1.22)

and is also the non-zero coefficients of 5. At the end of the run, the encoded codeword is Aj.
A more detailed description of the encoding algorithm is provided in Chapter 3.

In [26], it is proved that the probability of excess distortion for this feasible encoder expo-
nentially tends to 0 in n. While the results in [26] show that the rate-distortion function is
asymptotically achievable for a memoryless Gaussian source, there are no explicit implications
for the case where the blocklength of the source is finite; furthermore, even though the bound

on the excess distortion decays exponentially to 0, it is rather loose for practical values of n.

10



1.2 Structure of the Thesis

We outline in the following the structure of the thesis.

Chapter 2 provides preliminaries, notation, and new related results on Lambert’s W

function which are relevant to our analysis.

Chapter 3 proposes a new version of lossy compression with SPARCs, improving the
performance of the algorithm in [26], especially at high code rates. This is done by using

better approximations than those used in [26].

Chapter 4 provides an asymptotic analysis of the encoding algorithm, demonstrating that

the distortion-rate function of a Gaussian memoryless source is achievable.

In Chapter 5, an adaptation of the main theorem from [26] is derived for lossy compression
of memoryless Gaussian sources with SPARCs of finite blocklength. The new theorem is
derived in view of the modifications which follow from the new compression algorithm,
and by improving the upper bound on the probability of excess distortion from [26].
It is further shown that the new theorem is applicable for memoryless non-Gaussian
sources as well, and that SPARCs can successfully compress any memoryless source with a
finite second moment up to the compression rate which corresponds to the rate-distortion

function of a Gaussian memoryless source with the same variance.

In Chapter 6, we find an asymptotic upper bound on the gap to the distortion-rate
function which follows from the main result in Theorem 1 for the memoryless Gaussian

case. The result scales similarly to [26], but it has a better (smaller) coefficient.

Chapter 7 contains computer simulations of the new algorithm for lossy compression with
SPARCs: first, we compare the performance of our improved algorithm to its original
version in [26]; then, we examine the quality of our bound on the probability of excess

distortion from Theorem 1 by comparing the bound with computer simulations.

Chapter 8 summarizes briefly this thesis, and provides some open questions.

11



Chapter 2

Preliminaries, and New Related
Results for the Lambert W Function

Chapter 2 is organized as follows: the first section is dedicated to the basic notation and
basic results that are used throughout this thesis. The second section introduces the Lambert
W function, and known approximations and bounds for it are detailed. Then, new tighter
upper and lower bounds on the Lambert W function are derived in the third section, and they
compared numerically to the previously known bounds. In the last section of the chapter,
a closed-form approximation for the expected value of the maximum of M ii.d. standard
Gaussian random variables is presented, which is used multiple times in the course of this

thesis.

2.1 Preliminaries and Notation

Throughout this document, unless stated otherwise, logarithms are on the natural base.

Notation 1. Let r,s € R". The norm, scaled norm, and inner product are given, respectively,
by

1
n 2
lrll = 7“3) : (2.1)

=11 (2:2)

(r,s) = p_Tisi (2.3)

Notation 2. Let ® be the cumulative distribution function of a standard Gaussian random

variable, ¢ the corresponding probability density function, and () the complementary Gaussian

12



cumulative distribution function, i.e.

1 22
2)=d'(2) = e 7, 2.5
o) = ¥(2) = 2:5)
Q(z) =1-2(2) =1-Q(—2), (2.6)
for all z € R.
Notation 3. Let X1,..., X, bei.i.d. standard Gaussian random variables. Let their maximum
and its expected value be denoted by
Zy = max X, (2.7)
1e{1,...,.M}
e =E[Zy]. (2.8)

The cumulative distribution function of Z,; satisfies

Fz,(2) = P(le{r{ﬁ?(M} X; < z) (2.9)
=P(X) <2)P(Xo<2z2)---P(Xy <2) 2.10)
= oM (2), (2.11)

for all z € R. Consequently, the probability density function of Z,; is given by

fz,(2) = FéM(z) = M@Mﬁl(z)gb(z) (2.12)
— MQY (—2)6(2), (213

for all z € R; and thus, the expectation ey; in (2.8) satisfies

em :/ 2 fz,,(z)dz. (2.14)
Lemma 1. Let Xq,..., X be i.i.d. standard Gaussian random variables, then

en < +/2log M. (2.15)

Proof. By invoking Jensen’s inequality, it follows from (2.7) and (2.8) that for all t € R,
M

exp(tey) < Elexp (t Zy)] < Y Elexp (tX;)] = Mexp (3£7), (2.16)

=1

13



which implies that for all ¢ > 0,

en <

leading to the required result.

Minimization of the right side of (2.17) over ¢ > 0 yields the optimized value t = \/2log M,

Remark. The proof appears in [27, Eq. (A.3)]. This result can be specialized from the maximal
inequality in [28, Lemma 2.3] by letting 7' = {1,..., M}, A=R and ¥(t) = t* for all t € R.

2.2 The Lambert 1V Function

The Lambert W function is a set of functions, namely the branches of the inverse relation of

Lt
>

the function f(z) = ze®. Hence, the function W (-) satisfies the identity

for all z € C. Since the function f is not injective (i.e., it is one-to-one), the relation W is
multi-valued (except at zero). If the attention is restricted to real-valued W, then the complex

variable z is replaced by the real variable x, and the relation is defined only for x > —%, and it
is double valued on (

1,0) (see Figure 2.1).

z=W(z) eV,

T

T

The Two Real Branches of W (x)

T T

0
S
— -1
= '.
_9 \‘
3 :
' _Wo(l')
' --- Woi(z)
—4 ! I | I
—1 0 1 2 3 4

Figure 2.1: The two real branches of the Lambert W function. The solid line is

Wo(z), the principal branch; the dashed line is W_; ().

The additional constraint W > —1 defines a single-valued function, denoted by Wy(x)

14




where Wo(0) = 0 and Wo(—1) = —1, which refers to the principal branch of the Lambert W
function (the solid line in Figure 2.1). The secondary (lower) branch (see the dashed line in
Figure 2.1) satisfies W > —1, and it is denoted by W_;(x), decreasing from W_;(—%) = —1
to W_1(07) = —oo. Unless the branch is not explicitly stated, it refers to the principal branch
Wp.

Among its uses, the Lambert W function can be employed to solve exponential equations.

For example, the equation xb6® = a has the solution

~ Wi(alogb)

2.1
log b (2.19)

In [12], many other practical applications of Lambert-W function are detailed, which show how
important it is to have good approximations and bounds on this function.

We begin by presenting some known results. Two useful identities that are derived directly
from (2.18) are

MN@ = T o0, (2.20)

logW(z) =logz — W(z), foraz > 0. (2.21)

The following asymptotic expansion to W (z) was developed in [12] for large values of z,

W(x) = logz — loglog z + Z Z crm(loglog x)™(log 2) =™, (2.22)
k=0 m=1
with cgm = (_Wi,)k [++m], and where [t+7] is a Stirling cycle number of the first kind, defined by
z(z+1)...(x+n-1) :Z[z]xk (2.23)
k=0

This expansion is absolutely convergent, and can be expressed (after rearranging terms) as

Ly  Ly(—=2+ Ly)  Ly(6 — 9Ly +2L3) L3
W(x) =Ly — Ly + — o= 2.24
(x) 1 2+ I, + oL + 6L + i) (2.24)
where Ly := logz and Ly := loglogz. In [30], the following upper and lower bounds were
proved:
1 loglog x e loglogx
logz — loglogx + = <W(z) <logz —loglogx + — (2.25)

2 logx e—1 logx

for every x > e.
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2.3 New Bounds on the Lambert 1V Function

The next lemma provides new bounds to the Lambert W function, which are tighter than the

previously known ones.

Lemma 2. Forxz > e,

s(x) < V@ < t(x), (2.26)
with

A X

£ 2.2
(o) 2 2 (2.27)
t(z) 2 ° , (2.28)

log x — log log<$>

a B x B B log log x

v(x) = logx — log (log (_logx) log (1 T T lon s ng)) . (2.29)

Furthermore, both the upper and lower bounds coincide if and only if x = e.

Proof. From [30, Theorem 2.5|, for all z > 1,

1
W(z) > (%) (logz — loglog z + 1) (2.30)
log x
=1 ———— -logl 2.31
og T loga og log x, (2.31)

with equality if and only if © = e. Denote the right side of (2.31) by f(x). The function f is

log x
1+logx

increasing functions in this domain. Since f(e) = 1, we have f(x) > 1 for all > e. Thus,

monotonically increasing on [e, 00) since both and (log z — loglog x 4 1) are nonnegative

taking logarithms on both sides of (2.31) gives

logW(x) > log (logx — % -log log 1’) (2.32)
= loglog z + log (1 - %) . (2.33)
From (2.21),
W(z) =logz —log W (x) (2.34)
< logz — loglog x — log <1 — i()fl%) (2.35)
= log (10:;$> —log (1 - %) : (2.36)
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where (2.35) follows from (2.33). Hence,

x loglog x
W(z) < ) - _ PeTer ,
log W (x) < log (log (logw) log (1 o logx)) , (2.37)

and by invoking (2.21) once again, it follows that

W(z) =logz —log W (x) (2.38)
x log log x
>1 —1 1 — ) —1 1— ——— 2.
(i) e(-2)) e
= v(x), (2.40)

with (2.40) is due to the definition of v in (2.29). The function v is positive on [e, 00), since for

Tr>e

v(x) > logx — log (logx — log (1 * 10536_;;05 1ng)) (2.41)
> log x — log (log = + log (1 + log z)) (2.42)
> logx — log (2 log x + log (Z)) (2.43)
= log <2logx jlog (%)) (2.44)
>3 — 3 log2 (2.45)
~ 0.4603, (2.46)

where (2.41) holds since loglogz > 0 for x > e; (2.42) holds since logx > loglogx for = > e;
(2.43) holds since 22 > 1+ logx for z > ¢; (2.45) is obtained by minimization of the right side

of (2.44) for x > e where the minimal value is attained at v = %2, Therefore, for all x > e,
log W (z) > logv(z), (2.47)
and then we continue in a similar fashion where from (2.21)

W(z) =logz —log W (x) (2.48)

where (2.49) follows from (2.47). Again using (2.21),

W(x) =logz — log W(x) (2.50)
> logx — loglog o) (2.51)
~ i (2.52)



with ¢(z) as defined in (2.28). Since

% — log z — loglog (%)

> logxz — loglog <&>

> log(0.46¢) > 0.22,

where (2.54) is due to (2.45), and (2.55) is found by minimization. Thus,

log W(z) > log <%) ,

and using (2.21) one last time,

W(z) =logz — log W (x)
< logt(z).

From (2.52) and (2.58) and the identity in (2.20), it follows that for all z > e,

T
— <@ < t(x).
logt(x) — c < @)

Corollary 1. For large x,

log 1
W(z) ~logx — loglogz + o808t
log x
Proof. From Lemma 2 and (2.20),
T <W(z) <logt(x)

— x ogt(x

t(x) — =08
For large =,

t(a) .

~ log x — loglog(+%-)’

log z
and therefore,

T~ loglog  —
—— =~ logz — loglo
t(z) . 508 log =

= log x — log(log x — log log x)

= logx — log (logx (1 —

log log x
log x
log log x

~ logx — loglog x + ,
log x
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(2.53)

(2.54)
(2.55)

(2.56)

(2.60)

(2.61)

(2.62)

(2.63)
(2.64)

(2.65)

(2.66)



where in (2.66), the first-order Taylor approximation log(1 — x) &~ —z was used. Consequently,

T

(2.67)

logt(x) =~ log

log x — log log (10255)

=logx — log <logx — log log (L>) (2.68)

log x
log 1
~ log z — log <log:p <1 _ % ng>) (2.69)
log x
log 1
~ logx — loglog x + 0808 % (2.70)
log

]

Comparison to existing bounds: From the previously known bound in (2.25), we have

’ exp Lloglogx <V < exp ¢ loglogz . (2.71)
log 2 logx - - e—1 logx

log x

Another bound can be derived by using the inequality in (2.25) once more, this time along with
the identity in (2.20),

i < V6 < ? (2.72)

logx—loglogx%—ﬁ% N B logx—loglogx+%-1oig)§x~

Figure 2.2 shows the ratio between each of the bounds in (2.26), (2.71) and (2.72) and the exact

value of e . The new bound, in (2.26), is a significant improvement to the those in (2.71)

and (2.72), and is almost identical to V@),
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Comparison Between the Bounds of W (z)

— New Bound (2.26)

135 ,--s, --- Old Bound (2.71) |
------ 0O1d Bound (2.72)

1.4 ———
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Figure 2.2: Comparison of the upper and lower bounds on the Lambert W
function: the solid line is the ratio between the new upper and lower bounds
in (2.26) and the exact value of ¢V (®)| the dashed line is the ratio between the
bounds in (2.71) and the exact value of €"V(®) and the dotted line is the ratio
between the bounds in (2.72) and the exact value of e"(*). The new upper and
lower bounds are much tighter than the previously reported bounds, and they are

almost equal to the exact value of e"V'(®).

2.4 A Closed-Form Approximation for e;;

The following lemma gives a closed-form asymptotic approximation to ey, as defined in (2.8).
It relies on [29], which describes a general method to find the expected value of extreme values

of M continuously distributed random variables. As an example, the method is applied to the
Gaussian distribution.

Lemma 3. For large M, the following asymptotic result holds:

loglog M + log 4w — 27 loglog M
=+/2log M — O ———], 2.73
M o8 22 Tog M O\ g a1 (2.73)
where 7y is the Fuler-Mascheroni constant,
"1
= 'rLll—I)Iolo (gl e log n) ~ 0.577216. (2.74)
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Proof. Let &y be the following random variable,
En = M(L—D(Zy)), (2.75)

with ® and Z); as defined in (2.4) and (2.7), respectively. The cumulative distribution function
of £ is given by

FéM (:L‘) = IP(fM < $) (2.76)
- IP(l - % < <I>(ZM)> (2.77)
_ / s )M(DMl(t) (1) dt, (2.78)

where (2.78) follows from (2.12). By applying Leibniz’s integral rule, the probability density

function is given by
fen (@) = F,, (z) (2.79)
(e (=) oo (=) i (0 e
) el ) () e

- (1 _ %)M_l : (2.82)

for all x € [0, M]. By letting M — oo, the function fe,, (x) converges to

lim fe,(z)=¢" x>0. (2.83)

M—o0

Since f¢,,(z) is uniformly bounded for all M on every finite interval of x, the distribution of
&v as M — oo is equal to the exponential probability density function in (2.83). We continue

by expressing Z,; as function of £y,. From its definition in (2.75),

* 1 t2
Ey=M e~z dt. 2.84
M . Von (2.84)
Since
P(Zy <0) = dM(0) =27, (2.85)

it follows that, as M — oo, the probability that Z;; > 0 tends to 1 exponentially in M.
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Integrating (2.84) by parts, we have

e [ () e

1 z3 >~ 1 t2
_ 1 -3 / Z et dt. (2.87)

N I
g(x) = € 7 A dt (2.88)
for x > 0. Then,
3 a2 | — I
g’(x)——ﬁe Q—Pe 2"‘;6 2 (289)
3l
=——e 2 <0, (2.90)
x
and
zh—>nolo g(x)=0. (2.91)

Since the function g(-) is monotonically decreasing on (0, 00), and it tends to 0 as we let x — oo,

it is nonnegative on (0, 00), i.e.
e 1 2 1 z2
/ e z<—e 2, x>0 (2.92)
Hence, (2.87) can be rewritten as
V2 &y 1 73y 1
=—=e 2 (140 —= 2.93
i 7€ + Zﬁ) , (2.93)

M? 2 1
= ol = VATl <1 + O (%» : (2.94)

The random variable &, is bounded asymptotically in probability as follows:

¢ 1 ¢ log M T\ M—1
o < < o B ‘
tninf P <logM Stu < logM) lnin L (1 M) de (2:95)
og
17M1<}g]\4
T M-1
= l}\zn_glof /1_ et My™ " dy (2.96)

M

. 1 M log M\

where (2.95) follows from &,,’s probability density function in (2.82), and (2.96) comes from
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substituting y = 1 — . From the inequality log(1 — z) < —z for x € |0, 1),
M

, logM)M , ( ( logM))
lim su 1-— = limsup exp | Mlog (1 — 2.98
<l ! (2.99)
imsup — :
=0. (2.100)
Similarly, from the inequality log(1 — z) > —z — 2? for z € [0, 1],
liminf (1 ! M—l' inf M1 1 ! (2.101)
Mot MlogM ) — Mo CP\MO8 Mlog M '
1 1
> limi — — .
= lninf exp ( log M Mlog? M) (2.102)
=1. (2.103)
Consequently, as M — oo, &y is upper bounded by log M and lower bounded by bglM with
probability that tends to 1, and henceforth we assume that
L e <logl (2.104)
og M. )
log M — M= 208

In view of (2.94), we next use the Lambert W function. Using the asymptotic approximation

in Corollary 1,

(2.105)

log1
W(z) =logz —loglogx + O (M)

log x

we have

M? log log M 1
2 — 2) — — =)= — . 2.1
log(M?) — log(27&3,) — log log (27r§%4> +0 ( log M ) v+ O (ijw) (2.106)

Therefore,

log 2m + 2log &pr + 108;(2 log M — 10g(27rf§4)) +0 (10{5)?%4]”)

Zy =+/2logM -A\|1—
M & 2log M ’

(2.107)

and by using another Taylor approximation where (1 — x)l/ 2x1-— %x for values of x which
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are close to zero, it follows that

log 27 + 2log &ur + log(2log M — log(2m&3,)) + O <10fgolgO§4M>

Zy =+/2logM | 1— 2.1
M ©8 4log M (2.108)
J2log M log(2log M — log(27w&3;)) + log 27 log log log M
_= (0] — —_ e .
& 2¢/2log M v2log M log!® M
(2.109)
Finally, we use a Taylor approximation for log(x),
log log M + log 47 log & log log M
Zy =+/2log M — — — . 2.110
M °8 2+/2log M v2log M log™® M ( )
Therefore, in view of (2.83), the expected value of Z), is approximately equal to
loglog M + log 4m — 2v log log M
=/2log M — O|————1, 2.111
M o8 2v/2log M * log"® M ( )
where we rely on the following identity:
v = —/ e 'logt dt. (2.112)
0
O

Two important results stem from Lemma 3. First, a simpler (albeit less accurate) asymptotic

approximation of e;; can be acquired,

lim — =1, (2.113)

M—oo /2 log M

second, we can deduce that for a large enough M,

loglog M + log 4w loglog M — 2~
\/2log M — < < \/2log M — ) 2.114
o8 2¢/2log M = oM = o8 2y/2log M ( )

Remark. In (2.106), the approximation from Corollary 1 was applied rather than the tight

bounds of Lemma 2, even though a close approximation of e, for finite M could be extracted
by using it. However, using Lemma 2 is unnecessary for our purpose, since there are approx-
imations of ey, which are sufficiently tight even for small values of M. Figure 2.3 shows a

comparison between e, as calculated by its expression in (2.14), and several approximations:

1. Upper bound: /2log M (2.115)

2. Approx. 1: \/log (W) (2.116)
27
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3. Approx. 2: \/log (27r101g\4(2¥2)) (QIOZ{M + 1) (2.117)

4. Approx. 3: (1-7)Q7 ' (3) +1Q7* (&) (2.118)
5 T T T T T T T T T T T T T T T T T T T T
4.5 :
4 -
3.5
3 -
251
—E[Zu]
/7 — Upper Bound
1.5 /) --- Approx. 1 i
/ Approx. 2
--- Approx. 3
1 \(/\\H\ Lo Lo Lo L1
10° 10 102 103 10* 10°
T

Figure 2.3: A comparison between ey; and its approximations. The bold line is
an exact calculation of ej;. The solid line is the upper bound (2.115), The dashed
line is approximation 1 (2.116), The dotted line is approximation 2 (2.117), The
dash-dot line is approximation 3 (2.118).
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Chapter 3

Lossy Compression with the Sparse

Regression Codebook

The following lossy compression algorithm is the one which was described in [26]. We then
propose a modification to the encoder which improves the performance of the compression, and

enables reaching a tighter upper bound on the probability of excess distortion.

3.1 Original Encoding Algorithm

Let S be an ergodic source, emitting a sequence of length n whose symbols have zero mean and
variance %. Let A be an n x N matrix with i.i.d. A(0,1) entries independent of S, and let
N = ML with M > L and M, L € N. Let b satisfy M = L.

Conceptually, the columns of the matrix A are divided into L sections with M columns
each; a codeword is generated by a linear combination of L columns, one from every section.
The linear combination can be thought of as multiplying A with a sparse vector S of length
N, consisting of a single non-zero entry in M consecutive components.

Thus, if the rate R of the code is expressed in nats per source symbol, the number of

codewords is M* = exp(nR), and therefore
nR = Llog M = bLlog L. (3.1)

The non-zero entries of 3 are marked by {c;}%, and are given by

o (12 32

The Algorithm. The codeword AB , that corresponds to a source sequence S of length n, is

determined in the following way:

1. Set Ry = S. (3.3)
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2. Forie {1,..., L}, choose

m; =  arg max <A iy >, (3.4)

ptiemi<j<int \ Rzt |

where A; is the j’s column in the matrix A, and define recursively

Ri = Rifl - CzAmZ (35)

3. At the end of the L’th step, the sparse vector B of length N is comprised of the values of
{c;}E | in indices {m;}E | respectively, and its entries are zero elsewhere. The codeword

after the lossy compression is equal to Af.

3.2 Modified Encoding Algorithm

The modification in the encoding algorithm from the one described in Section 3.1, is a new set

of coefficients {c;}~ ;. Instead of using (3.2), we propose the following,

2 i—1
¢ =—a _IM) o je{l,..., L} (3.6)

n

with ey, as defined in (2.8). In Chapter 4, the reason for the change is explained more thor-
oughly, but in essence the improvement is due to the fact that e;; is a more accurate ap-
proximation of the maximum of M i.i.d. standard Gaussian random variables than /2log M.
Indeed, by replacing the asymptotic approximation ey; ~ v/2log M in (3.6), we have

i—1
(o /2logM\/<1_210gM> (3.7)
n n
2R 2R\
= — (1 - — 3.8
a\/L( L) | (33)

which is identical to (3.2). The improvement that this change induces is more significant for

higher values of the rate R and lower values of the source blocklength n, as can be seen in the

computer simulations in Chapter 7, Figure 7.1.
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Chapter 4
Preliminary Asymptotic Analysis

To be self-contained, we provide the following result:

Lemma 4. [26, Lemma 1]. Let {A;}}., be N mutually independent random vectors of length n,
and suppose that the components of each vector are i.i.d. standard Gaussian random variables.

Let R be a random vector independent of {Aj}jyzl whose support lies on the n-dimensional unit

sphere, i.e.,
i =1, (4.1)
i=1
and let
T; = (A, R) (4.2)
for every j € {1,...,N}. Then, {T;}}_, are i.i.d. standard Gaussian random variables which

are independent of R.

Proof. The joint probability density function of {T]}j\[:1 is given by

frim, oyt ta, . tn) = from,. rwr(ti,ta, ... iy, r)dr (4.3)

= / fT1,T2 7777 TN|R(t17 tQ, P ,tNlI') fR(I') dI‘7 (44)

for all t = (t1,...,tx) € RY. By assumption, for all j € {1,...,N}, A; = (A ;... ,An,j)T
is a column Gaussian random vector with i.i.d. components of zero mean and a unit variance.
Since the vectors {A; }jvzl are mutually independent and are also independent of R, the random
variables {Tj}j\f:l are mutually independent given R. Furthermore, since a linear combination of

jointly Gaussian random variables is Gaussian, the random variable T} is Gaussian conditioned
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on R, and

E[T;|R=r] =

ZAZ ]rz = I‘] - En:E[AZ,]]TZ =0, (45)
i=1

Z Ai,jri R = I’] = iVar[Ai,j]r? = ZT’ZZ = 1, (46)

i=1 i=1

Var[T;|R = r] = Var

where (4.6) is due to (4.1), and since {A; ;} are independent and of unit variance. Therefore,

from, our(tlr) = [ o) (4.7)

for all r € R™ such that ||r| = 1, with ¢ as given in (2.5). Substituting (4.7) into (4.4) gives

N N

frimean(®) = [ TLott) fute)de = [ ot (43)
"i=1 i=1
The random vector (77, ...,Ty) therefore has i.i.d. standard Gaussian components. [

Let S, A and {R;}~, be as defined by the encoding algorithm in Section 3.2. If L is large
enough, so is n (see (3.1)), and by the ergodicity of S and the law of large numbers, we get
from (2.2) that

1 n
IS|? = EZS? ~ E[S?] = o, (4.9)
A2 = ZAQ. ~E[A};] =1, Vje{l,....N} (4.10)

In addition, Lemma 4 implies that for all j € {M(i — 1) + 1,..., Mi}, the inner products
<A- R;1H> are M i.i.d. standard Gaussian random variables, so for large M,

17 R
Ri—l Ri—l >
A, = max A, — Yme 4.11
< : ||Ri_1||> <z—1>M+1sm-M< PR (4-11)

with ey as defined in (2.8), and the approximation in the right side of (4.11) follows from the

concentration of 7y, around its average ey [27, (A.7)]. The goal is to find an approximation
for the residue after L steps, |Rr|?, and additionally, to show that our choice for {c;}%; in (3.6)

achieves the minimal residue at each step of the recursion in Section 3.2. From (2.2) and (3.5),

2¢;
|R| = |Rz 1| +C |Am1| __<AmuRz 1> (4-12)
c? 2c; ey
~ R, (1 i G e 413
Rl FIRAP T R ) (413)

where (4.13) holds due to the approximations in (4.10) and (4.11). Let t; = for all

\R—I
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ie{l,...,L}. In order to determine the value of ¢; which minimizes the right side of (4.13) -
thus approximating the solution of the minimization problem of |R;| - we set the derivative of
f(t;) =2 — 2“% + 1 to zero, and get t; = % The minimum of the approximated residue is
therefore given by

2 2 e
IRi|” ~ [Ri — ) (4.14)
e

Using the approximation in (4.9), |Ro| = |S| = o, and it follows from (4.14) and (4.15) that
2 e :
IR| %02( ——M) (4.16)
n

2 i—1
:TM ( _%M) | (4.17)

which coincides with {¢;}Z, in (3.6). After L steps of the recursion,

2 2 e%u "

The following Proposition shows that for a large enough L, the residue in (4.18) is approximately

equal to o2e2%, the distortion-rate function of a memoryless Gaussian source.

Proposition 1. Let M = Lb for some b > 0. Let R > 0 satisfy (3.1). Then,

2\ "
lim (1 - —M) =e 2R, (4.19)
L—o0o n
with ey given in (2.8).
Proof. From (2.114),
2 L L
2log M — loglog M — log4
lim sup (1 — e—M) < lim sup (1 _ 208 0808 o8 7T) (4.20)
L—00 n L—o0 n
L
2R loglog L + log 4b
=limsup [ 1 — — + ©8 Of + log Bom (4.21)
L—00 L EL IOgL
2R -
= limsup (1 ——(1- f(L))) (4.22)
L—o0 L
. 2R
= limsup exp | Llog|1—— (1 — f(L)) (4.23)
L—oo L
where (4.21) follows from (3.1) and M = L°, and with
log log L + log 4b
F(L) 2 og log L + log 46 (4.24)

2blog L
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From the inequality log(1 — z) < —z for z € [0, 1),

9 L
lim sup (1 — e—M) < limsup e 2H+2RS(L) (4.25)
L—o0 n L—oo
=e2f, (4.26)

For the lower bound we use (2.15) and (3.1) to get

9 L L
2log M

lim inf (1 - e—M) > lim inf (1 _ =08 ) (4.27)

L—oo n L—oo n

- 2R\ "

= llll/glorolf (1 - T) (4.28)
=e 2R, (4.29)
From (4.25)—(4.26) and (4.27)—(4.29), the result in (4.19) follows. O

The asymptotic analysis in Chapter 4 yields the achievability of the Gaussian distortion-
rate function. The result in [26] is similar, but it is validated under the approximation
en ~ +/2log M (see (2.113)), and although asymptotically 62% ~ 2L it was not clear whether
(4.19) holds without replacing ey, with its approximations.

The change we make in the recursion is taking the sequence of {c;}, as given in (3.6),
without relying on the approximation of e;; by /2log M. This modification has two principal
effects: on the one hand, it improves the approximation for (4.11), enabling us to get a tighter
bound to the probability of excess distortion; but, on the other hand, it increases the residue
after the L’th step, |[Rz|. As mentioned above, despite the increase in |Ry| the distortion-rate

function is still approachable, making our choice for {c;}-, a valid one.
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Chapter 5

Non-Asymptotic Upper Bound on the

Distortion

This chapter derives a probabilistic non-asymptotic upper bound on the distortion of the
SPARC from Section 3.2. First, Theorem 1 in Chapter 5.1 bounds the probability of ex-
cess distortion by the sum of three separate probabilities; then, in Sections 5.2-5.4 we prove
that each of these three probabilities tend to 0 exponentially with n, the length of the source.

Theorem 2 summarizes the results of this section, for the case of a memoryless Gaussian source.

5.1 Main Theorem

The following theorem relies on [26, Theorem 1]. However, it has three important modifications:
first, the algorithm analyzed by Theorem 1 has been modified in the set of parameters {c¢;}
as described in Section 3.2, in order to improve the performance of the code. Second, it is
stated for finite L and M, rather than having just an asymptotic result for large enough M
and L; finally, the bound on the probability of excess distortion is substantially tightened in

comparison to [26].

Theorem 1. Let S be an ergodic source sequence of length n whose symbols have zero mean

and variance 0. Let &y, 01,0 be positive constants such that

A £ do+5R (51 + 52) < (51)

DN | —

Let A be an n X ML matriz with i.i.d. N(0,1) entries independent of S, with M > L and
M, L € N satisfying (3.1). Let b satisfy M = L°. For the SPARC defined by the matriz A and
for L > 10R, the encoding algorithm in Section 3.2 produces a codeword AB, for which

2

L
P||S—AB2 > o2 <1—%M> (1—|—wLA)2 < po + p1 + po, (5.2)
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with ey as defined in (2.8), and

e
21 M
w +2(n_6?\4)7 (5.3)
_pl |8l _
po="P 1] > do|, (5.4)
o

L
1
m:PZZJQ>4, (5.6)

where v; and €; are defined to satisfy

A,

forie{l,...,L}.

R; > < Ri1 >
max (A, LN (AL —en(l+6), 5.7
(i—l)M<j<iM< 7R IR;_1]| u( ) &1)

2=1+4, (5.8)

Proof. We first find an accurate recursion for |R;|. To that end, we denote the multiplicative

deviation of |R;|?

from its approximated value in (4.16) by A, i.e.,

2

|mP:£<Lf%>u+AN, (5.9)

with A; > —1. According to the recursion in (3.5), and the notation in (2.2),

2¢i|[Ri || R
|RZ|2 - |]':{i_1|2 + 012 |A'mz|2 - Amia (510)
n R
_0'2 1—@ i_1<1‘|‘A' )2+02(1+ 4)_2@0- _@ 15(1—|—A )6 (1+€>
= n i—1 i Vi NG n i-1) €M i
(5.11)
A\ s € 2e2
:ﬁ(_“%> {u+&4)+i%ﬂ+%y~ﬁiﬂ+&qxufﬂ (5.12)
2 ' 1+ JAVES )2 62 262
Y R AN Kt i1 My P LA (e
7 ( n n—e%, +n_e%\4( + i) n—efw( + (1 +¢)
(5.13)
n i—1 n— 6%\4 i—1 i i i—1 s .

where (5.11) holds by assembling (5.7)—(5.9); (5.12) follows from (3.6). Thus, we obtain the
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following recursion for A;:

2

(1+8) = (14+ M) + <n L ) (A2, 47 = 26(1+ Aiy)).

— 2,
Let A be the event which satisfies the following conditions:
1. ‘@ - 1‘ < 6o,
L
2. %21:1 |%‘ <4y,
3.+ 2 i lal < 6.

By the union bound, it follows that

P[A°] < po + p1 + p2,

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

where pg, p1 and py are the probabilities defined in (5.4)—(5.6). We next derive an upper bound

for the distortion in (5.9) after the final step conditioned on the event A.

Lemma 5. For L > 10R, conditioning on the event A, we have

A > Ay —

2e? : »
n—AgQ Z(|’Yj\+\€j|), i=1,...,L.
M

Proof: See Appendix 1.

Lemma 6. For L > 10R, conditioning on the event A,

i 2¢3 i i )
A < Ao’ + =23 " w' (|l + lel), i€ {L,... L}
j=1

2

with w as defined in (5.3).

Proof: See Appendix 2.

Lemma 6 guarantees that conditioning on the event A, for L > 10R,

22, <~
Azl < JAolw® + My "t (] + |es])
n eMj:1
i (1A e 24D 5~ bl e
= wh [ Ao + ) w R
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Since w > 1 (see (5.3) and (A.2)), and from (5.16)—(5.18),

L
2L
ALl < w® <|A0|+ 2 Z %|+|€J|> (5.24)
S et
2¢%, L
(5 + 6M2 (51+52)), (5.25)
M
=wA, (5.27)

where in (5.25), |Ag| < dp due to (3.3), (5.9) and (5.16), (5.26) holds due to (A.3), and (5.27)
holds due to (5.1). By the definition of Ay, in (5.9),

2 L
Ry = o? (1 - 7M> (14 ALY (5.28)
e2 \ L 2
<o (1 - %) (14 w"A) (5.29)

holds under the conditioning on the event A. Therefore,

2 L
|RL|* > o? (1 - %) (1+w"A)?| < PlA (5.30)
< po+p1+ p, (5.31)
where (5.31) is (5.19). O

Discussion on Theorem 1: Theorem 1 determines that the probability of excess distortion
as in the left side of (5.30), is bounded by the sum of the probabilities pg, p; and py as defined
n (5.4)—(5.6).

1. By their definition, only py depends on the distribution of the source sequence S. Since
we assume that S is ergodic, py tends asymptotically to 0 by letting n — oco. In Lemma 7
we show that under a condition, which applies to the Gaussian case among others, pg

decays to zero exponentially in n.

2. Lemmas 9 and 10 give tight exponential bounds on p; and p, respectively. Thus, when
the conditions of Lemma 7 hold, the probability of excess distortion decays exponentially

with n.

3. Asymptotically, the difference between the Gaussian distortion-rate function,
D(R) = g% %, (5.32)

2 L
and o? (1 - 67M> (1+ wLA)2 (see the left side in (5.30)), can be arbitrarily small, by a

proper choice of L and A (i.e., L large enough and A small enough and close to zero).
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This holds since by the definition of w in (5.3),

wh = (1 + %)L (5.33)

n—ei,
ex; L
< exp (L) (5.34)
2(n —€%))
S €5R/47 (535)

where (5.34) follows from the inequality 1 + = < ¢” for € R, and (5.35) follows from
(A.4). Therefore, from Proposition 1, for every € > 0 there exist L' > 10R and A > 0
such that

2 L
e
o? (1 — —M) (1+w"A)* < 0% ?F(1 +¢) (5.36)
n
for all L > L'. Hence, it achieves the distortion-rate function of a memoryless Gaussian
source; otherwise, for other memoryless i.i.d. source models, it achieves the distortion-rate

function of a Gaussian source with the same variance.

5.2 Exact Expression for p; and Exponential Upper Bounds

In this section, Lemma 7 gives an upper bound to py for a general source S under certain
conditions, followed by two examples (an i.i.d. Gaussian source and an i.i.d. Uniform source);

in Lemma 8, an accurate expression for pg is acquired for the i.i.d. Gaussian case.

Lemma 7. Let X be a random variable with zero mean and variance o?, such that X? has
a moment-generating function Mx=2(t) in a neighborhood of t = 0. Let S be an i.i.d. source
sequence of length n, generated according to the probability distribution of X, and let § € (0,1).
Then,

po &P ( Bl_y). 5) < inf {00 M Ga)TL g ferlti-0os M (5]
o t>0 t>0
(5.37)
which decays exponentially to O with n.
Proof. From (2.2),
S||? S||?
po =P (@ >n(l+ (5)2) +P (u <n(l— (5)2) . (5.38)
o o

The upper bound follows from the Chernoff bound. Applying it on the first term in the right
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side of (5.38) yields
p (18I >n(l+6)? | <infQ e+ ﬁE o (5.39)
o? = >0 '

e ()} e
:gg{ n(1+0)* ppn, <U2>} (5.41)

Similarly, by applying the Chernoff bound on the second term in (5.38), we have
P M <n(l1—6)?) <inf{ (197 ﬁ]E e_tié (5.42)
o2 ~ >0 "
—inf J ey, (~ L)L (5.43)
>0 X o?

Combining (5.38), (5.39)—(5.41) and (5.42)—(5.43) yields (5.37). Let fi(t) and f2(t) be the

following functions,

fi(t) £ t(1+6)* — log My= (%) , (5.44)
fa(t) £ (1 = §)* + log Mz (-%) : (5.45)
Then,
/ _ 2 Mé@ (%)
fit) = (149) S () M (£)7 (5.46)
/p) s My (=)
f2(t) - ( 5) - o2 MX2 (_%)7 (547)
and at t =0,
f1(0) = f2(0) =0, (5.48)
f1(0)= (146> —-1>0, (5.49)
f0)=(1-6>-1<0. (5.50)
Therefore, there exists t; > 0 and t5 > 0 such that
filty) >0, (5.51)
fa(t2) <0. (5.52)

From (5.37), (5.44), (5.45), (5.51) and (5.52), py has a bound that is exponentially decreasing
with n to 0. U

37



Example 1 (Memoryless Gaussian Source). If S is an i.i.d. source sequence of length n,

generated according to the Gaussian distribution A(0, 0?), then

My () = (1 - 20%) 7,

(5.53)
and from (5.37) we have
po < inf {e—"[t<l+5>2+%1°g<l—2t>]} +inf {en[t<1—5>2—%1°g<1+2t>]} . (5.54)
0<t<3} >0
In order to minimize the terms in (5.54), we define
fi(t) 21 +0)* + %log(l —2t), (5.55)
folt) 2 t(1— 6)2 — %log(l +21), (5.56)
and set the derivative of f; and f5 to zero to find the optimal t’s,
- % 2(1—i5)2 (5.57)
- ﬁ - % (5.58)
Substituting ¢ and ¢ into (5.54) yields
po < 67%(62+267210g(1+5)) _’_67%(527257210g(176))‘ (5.59)

Example 2 (Memoryless Uniform Source). If S is an i.i.d.

source sequence of length n,
generated according to the Uniform distribution over [—a, a] for some a > 0, then

NG
1 [° a—erﬁ av't), fort >0
MXz(t)—/ e dy = 2V (V)

a)_q N

(5.60)
2/ erf (a —t) , fort <0,

where erf(+) is the Gaussian error function and erfi(-) is the Gaussian imaginary error function,

exf(z) 2 % /0 ieSst, (5.61)
exfi(z) 2 % /O e“ds, (5.62)
for 2 > 0. Then, from (5.37),
po < in {exp (—n (t(l +6)% — log (2{/_% orfi <\/§>))) }
+inf {exp <n <t(1 —§)% +log <2\\/% erf (@)))) } . (5.63)
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Lemma 8. Let S be an i.i.d. source sequence of length n, generated according to the Gaussian
distribution N'(0,0?), and let 6 € (0,1). Then,

pOéIP<‘§—1‘>5>zl—f_y(g,n(lTW>+7y<g,n(lT_6)2> (5.64)

where 7 s the incomplete Gamma function,

5 (a,x) = / tte~tdt. (5.65)
0

Proof. Following the assumption of the lemma, ”§|2|2 is Chi-squared distributed with n degrees

of freedom. Continuing from (5.38), we have

%) 175_16_% n(1-6)? x%—16—§
nes 22T (3) 0 2:T (3)
n(146)? 21 -2 n(1-6)> 21 -2
R R S P [ (567
0 2:T (3) 0 25T (3)
1 e’y 2.1, 1 a9 21,
1 — — / (E>2 e 2dr + —— / —<§)2 e 2dx (5.68)
r'(%) Jo 2\2 r'(%) Jo 2\2
n(1_5)2

1 2(1+0)° 1 z .
' (3) Jo 0
_(n n(l+96)> _(n n(1-=95)>
7(2’ 2 T 2T (5.70)

]

Table 5.1 presents a brief comparison between the exact expression of p, for the Gaussian
case in (5.64), the bound in (5.59) and the bound from [26],

73n62

po <2 i (5.71)

For certain values of n and ¢, only the exact expression can be used to evaluate the probability
Po, since the bounds in (5.59) and (5.71) can be greater than 1. For other values, the exact

expression is significantly better than both bounds.

(n, 0) Exact py | Chernoff Bound (New) | Looser Chernoff Bound [26]
(5.64) (5.59) (5.71)
(10, 0.1) 0.66 >1 >1
(1000, 0.1) | 7.86- 109 6.10- 107 11-10°

Table 5.1: Comparison between the exact value of pg and its Chernoff upper bounds.
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5.3 An Upper Bound on p;

Lemma 9. Let {A,,,} forie {1,...,L} be the columns of the matriz A as defined in (3.4),
and let v; be given by

-1, 1<i<L. (5.72)

Vi = |Am1

Then, for all 6 € (0,1),
| L
A
p=P (Z 121 |vil > 5) (5.73)

_ nt)} }) ' (5.74)

St1=0) \ " o140 \ "
< | inf —_ _(ﬁ,ﬂ—i-nt)—i-(—) [1—_ 2z
0<t<;{(\/1+2t> T\202 v1-2t 7(2 2

where (-, ) denotes the incomplete Gamma function in (5.65).

Proof. From (5.72) and (5.73),

1 L
p1:]P<ZZ||Ami|2—1|>5>. (5.75)
=1

Since the columns in each section of the matrix A arei.i.d., for an arbitrary sequence of columns
(A}, with ks € {(i — )M +1,...,iM}, we have

1 L
plzP(z;HAkﬁ—lym) (5.76)
11
— P (ZZ EZAiki—l >5>, (5.77)
i=1 j=1

L
} are i.i.d. random variables. Applying the Chernoff bound to (5.77)
i=1

and {

yields

1N\ g2
w 2je1 Aj — 1

n L
p < inf {6 ( o S 4,1 } (5.78)

Since Ajx, ~ N(0,1), the random variable X; £ > 51 A%, is Chi-squared distributed with n

degrees of freedom, and

E [et’%X“lq = 1 / el p5- 15y (5.79)
0

1 " t n & t n
= (et/ e (2+i)eg3 14y + e_t/ e_(;_n)za:fldx) . (5.80)
22T (5) \ Jo n

Both integrals in the right side of (5.80) can be expressed in terms of the incomplete Gamma
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function as follows:

n 1 t n t+% %71 1
/ e*(§+;)"”x5—1dx = / e’ (1 ° (1 ) ds (5-81)
0 0 2 T 3T

@) () G5 o

and, similarly for t € (0, %),

ee 1_t n e S %_1 1
/ e~ (3-%)e 310y = / e’ < — ) (1 ) ds (5.83)
n it \37n i
2 n
2

- tﬂ . (5.84)

Note that the integral on the left side of (5.83) diverges to +oo for all ¢ > %. Substituting
(5.82) and (5.84) into the right side of (5.80) gives

E [etﬁxrlq = n 57(2 ity et n_\’ [1—W(
n —+ 2t 272 n — 2t

for all ¢ € (0, 5). Substituting ¢ — nt in (5.85) and then optimizing numerically (5.78) over the

oo t)} (5.85)

free parameter ¢ € (0, 5), we get the bound on py in (5.74). ]

Remark. A looser but more simple bound than (5.74), not involving the incomplete Gamma
function, can be readily derived from (5.74) by relying on the fact that 0 < J(a,z) < 1 for
a > 0 and x > 0. This yields

t1=8) \ " o~ \ "\ ”
< int + . 5.86
o= oi?<;{<\/1+2t> <\/1—2t> } (5:86)
(n, L, M, 6) Chernoff Bound | Looser Bound | Bound in [26, (15)]
(5.74) (5.86) (5.87)
(102, 10, 10%,0.25) | 1.83.10° 33010 >1
(10, 10, 107, 0.10) | 1.57-10°% 1.83-10°° ST

Table 5.2: Comparison between upper bounds on pq

Table 5.2 compares the upper bounds on p; in (5.74) and (5.86) with the bound in [26]:

né2

p1 < 2MLe 5. (5.87)

As is illustrated in Table 5.2, the bound on p; in (5.86) is fairly tight in comparison to (5.74),

whereas its upper bound in (5.87) (see [26, (15)]) is loose and it may even exceed 1.
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5.4 An Upper Bound on p,

Lemma 10. Fori € {1,...,L}, let ¢ be a random variable which stands for the deviation as
defined in (5.7):

max <A Riy >:eM(1—|—ei). (5.88)

-)M<j<ivr \ 77 |[Ry_q]|

Then, for all § € (0,1),
1 L
A E

0 L
< (%gg {e_teM‘S/ etl=emlf, (2) dz}) : (5.90)

where fz,,(+) is the probability density function in (2.13). Moreover, the infimum in the right

side of (5.90) is a minimum, which can be restricted to the finite interval [0,t},] with

, 1 V2M
thy = alog (ﬁfZM(—QeM)) . (5.91)

Proof. Define the following random variables for i € {1,..., L}:

TO L (T - T, (5.92)
with
(@) & R; : : .
7} = Aj,m s jE{(Z-l)M-Fl,,ZM} (593)
i1

Each of the M coordinates in the random vector T® is a function of two random vectors:
one of the random columns A; in the i’th section of the matrix A, and the random vec-
tor R;—1. In view of (3.5), it follows by induction that the random vector R;_; is a func-
tion of {A4,..., Au_1)m, Ro} only, while A; for j € {(i — 1)M +1,...,iM} is independent of
{A1, ..., Au—1)m, Ro}; therefore A is independent of R;_;. Furthermore, since {10V TM Ry}
is a function of {Ay,..., Ai_1)am, Ro}, then A for j € {(i —1)M +1,...,iM} remains inde-
pendent of R;_; conditioned on {70~ .. TW Rgy}. Therefore, according to Lemma 4,

M
FT(i)‘T(Fl) ..... T Ry = Fro = H FT_(Z'), 1€ {1, R ,L}. (594)
j=(—DM+1
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Applying recursively yields

Fror = Fro Froyr, = Fro Frov, (5.95)
Fror 1@ = Fryr) Froyro vy = Fro Fro) Fro, (5.96)
L
Fr,r, 1) = FR, HFTm- (5.97)
i=1
Hence, from Lemma 4, {T®¥} are ii.d. Gaussian random vectors for i € {1,...,L}, and

independent of Ry, whose components are i.i.d. standard Gaussian random variables. It follows

that the maximums of the random vectors {7},

Vi=  max TV ie{l,... L} (5.98)

(i—1)M+1<j<iM 7

are i.i.d. random variables which are distributed like Zy; (see (2.7)). Therefore, the deviations

{e;}E |, given by ¢; = e‘;; — 1, are also i.i.d. random variables. Applying Chernoft’s bound to

the right side of (5.89) yields

1 & . _ a1\
po=P (Z ; le;] > 5) <inf (e " E [€f ‘D (5.99)

>0
L
zZ
= (inf {e‘t‘s E [et ! ] }) (5.100)
>0

oo L
_ (%gg {eteMtS/ etlzfeM|fZM(z) dz}) 7 (5101)

where (5.101) follows from (5.100) by the mapping t — eyst. Following (5.101),

p2 < exp (—L sup {teM5 — log (/ etlememl ) (2) dz) }) . (5.102)
t>0 —00

Define, for ¢ > 0,

us (1) = % (log (/OO etlememl £, (2) dz) - teM(5) (5.103)

[e.9]

- fjooo et\zfeM‘fZM(z) dz €M '
B (12— enl o)

E [@t|ZM—6M|]

— e, (5.105)
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so the derivative of u; s is equal to

T (T exr)?e! 2 en ] B [elv—enl] — (B [|Zy — eay| ef2—enrl])* (5.106)
oM (E [et1Za—eal]) '

> 0, (5.107)

where (5.107) follows from the Cauchy-Schwarz inequality; thus, us s is monotonically increas-
ing. Therefore, the infimum in (5.102) can be obtained numerically by the bisection method in
the interval [0, ¢},] for any ¢}, > 0 such that wus s (t3,) > 0.

Let t3, be as given in (5.91). From (5.105), since § € (0,1),

E “ZM — €M| et‘ZM_eM‘]
'U/(;,M(t> > E [6t|ZM—€M‘] — €M, (5108)
so, it is sufficient to show that
E [|Zy — en| etlPrenml] — ey B [efilZr—enl] > . (5.109)
For t > 0,
E [|ZM _ €M| €t|ZM—€M|} —eyE [et\ZM—qu
_ / (12 = ent] — ear) el p, () d2 (5.110)
renr -
_ / (—2)etf=enlf, (2)ds+ / (= — 2enr) elenl £, (2)d2 (5.111)
—00 em

> (/_BM(_Z) 6t|2_6M|fZM(z) dz — /OEM zet|z—6M|fZM (z) dZ) + /26M (Z _ QGM)et\z—eM\fZM(z) dz,

2en em

(5.112)

where (5.112) holds since the integrand of the left integral in (5.111) is non-negative for z €
(—00, 0], and since the integrand of the right integral is non-negative for z € [2e;;,00). From
(2.13), note that fz,,(z) < \/% for all z € R, and that fz,,(-) is monotonically increasing on
(—o0, 0]. Consequently, we get from (5.110)—(5.112) that

—e —e e M € M €
E [|ZM . €M| 6t\ZM M|j| —ey E [et\ZM M‘:| > 6?\46% MfZM(_2€M> . 6?\/[\/?61& Mo eﬂﬁet M
(5.113)
2 te 2 te
= e3 (fZM(—QeM) e'eM — M\/%) e"M. (5.114)
For t = t},, the right side of (5.114) is equal to 0, and therefore us a/(¢5,) > 0. O
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(L, M, 0) Chernoff Bound | Bound in [26, (15)]
(5.90) (5.115)
(10, 100, 0.25) 1.95-1072 >1
(10, 1000, 0.1) 7.96 - 1071 >1
(10, 10%, 0.25) | 4.15-10 11 17-10°2

Table 5.3: Comparison between upper bounds on ps

Table 5.3 compares the bound in (5.90) with the corresponding bound from [26, (15)],

M26 -L
p2 < <8logM) . (5.115)

It should be mentioned that our probability ps is not identical to the one in [26], since the
deviations {¢;}2, are defined differently; however, the two probabilities should be similar for

large values of L.

5.5 Summary

The following theorem summarizes the results we have proved in Sections 5.1-5.4.

Theorem 2. Let S be an i.i.d. source sequence of length n, generated according to the Gaussian
distribution N(0,0?). Let 8y, 61,05 be positive constants such that

A2 5 +5R(6+6) < (5.116)

N | —

Let A be as defined in Section 3.2. For the SPARC with the matriz A and for L > 10R, the

encoding algorithm in Section 3.2 produces a codeword AB, for which

1= (g n(1 +5o)2) s (g n(1;50)2)

2 L
PlIS—AB?2>02(1—) (1+whA)?
| o] >0< " (+w ) 5 5

]
—

et=01) \ " o t1+61)\ "
o it (s34 + (S=) [1-
0<t<§{(\/1+2t> 202 V1-—2t

00 L
+ <;1:r>1£{6_t6M62/ etl=emlf, (2) dz}) : (5.117)

with ey as defined in (2.8) and where fz,,(-) the probability density function in (2.13).
Proof. Apply Lemma 8, Lemma 9 and Lemma 10 on pg, p; and ps respectively in Theorem 1. [

Table 5.4 compares the bound in (5.117) with the bound in [26],

512 2 —2R R A2 _anef _n M\
PlIS—ABP2> 0% 2R (14 A)}<26 S 2MLe S 4 (o) L ()
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(n, L, M, dg, 01, 02) Our Bound | Bound in [26]
(5.117) (5.118)
(10°, 10, 10%, 0.05, 0.1, 0.1) 0.82 > 1
(103, 50, 2.5 -10%, 0.05, 0.1, 0.1) 0.044 >1
(5- 102, 50, 1.25 - 10°, 0.03, 0.2, 0.2) 0.0027 0.069

Table 5.4: Comparison between upper bounds on the probability of excess distortion

which is proven for sufficiently large M and L. The probabilities in (5.117) and (5.118) describe
different events, as is evident from their expressions. Furthermore, the encoding algorithm in

Section 3.2 is an altered version of the one in [26]. However, for large values of n and for small
values of A, they should be similar.
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Chapter 6

Gap to the Distortion-Rate vs.
Complexity

Throughout Chapter 5, we show that Theorem 1 gives an upper bound on the probability of
excess distortion for the SPARC from Section 3.2; however, Chapter 5 does not give explicit
indication as to how rapidly the excess distortion decays with n, i.e. how fast the distortion of
the SPARC tends to the distortion-rate function of a memoryless Gaussian source, as function
of the source block size n. In this section, an upper bound on this convergence rate is proved
for the case of a memoryless Gaussian source, and it is shown that this bound cannot be
significantly improved via Theorem 1.

Let o, L, M and n be as defined in the encoding algorithm in Section 3.2. For some positive

A< %, define ay A as

2

L
apa = o? ( —e—M) (1—|—wLA)2, (6.1)

n

with ey as defined in (2.8) and w as in (5.3). oy a is the "reference point” to which the excess
distortion is compared in Theorem 1; as previously shown in Chapter 5, from Proposition 1

and (5.35),

lim lim ajpa = o%e 2%, (6.2)
A—0L—oo

the distortion-rate function of a memoryless Gaussian source. Let Dy, o be

2 _—2R

Dpa= |aL,A —oe Y, (6.3)

the difference between the Gaussian distortion-rate function and the reference point. From
(6.2), it is clear that

lim lim DL,A = O, (64)

A—0 L—o00

hence the reference point tends to the Gaussian distortion-rate function when L — oo and
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A — 0. Two points remain unclear, however:

1. What is a sufficient condition on A as function of L, so that the upper bound to the

probability of excess distortion in Theorem 1 tends to 0 with n.
2. Using A that holds the condition of item 1, what is the convergence rate of Dy A to 0.

In order to resolve item 1, we show that if

_ Aloglog L

blog L (65)

for some A > i, then the upper bound in Theorem 1 decreases to 0 with n for the case of a

memoryless Gaussian source.

Lemma 11. Let py and p; be the probabilities defined in (5.4)—(5.5). If the source sequence S

1
log L’

is generated by a memoryless Gaussian distribution, then for 6y = 6, =
lim pg + p1 = 0. (6.6)
L—oo

Proof. From (5.71) and (5.87),

3ndg no?

) +2MLexp (—?> . (6.7)

Po +p1 < 2exp (—

Therefore, if § = §; = —

" loglL?

I 4 <li (2 ( 5 > 4 2M Lex ( n )) (6.8)
111 Su 111 su exX — — .
L—>oop PoTDP1 > L—)oop p 410g2 I p 810g2L

301 bL
— i 2exp (2 ) 4 oM Lexp | ——r— 6.9
12“5!2‘”( exp( 4RlogL> i exp( 8RlogL>) (69)
— 0, (6.10)

where (6.9) is due to (3.1). Since py + p; > 0, the limit in (6.6) exists and is equal to 0. O

Lemma 12. Let Zy; and ey be defined as in (2.7) and (2.8) respectively. Then,

1 [ 1
lim sup — gemlz—en| 2)dr < 13.6 4+ ——. 6.11
M—>oop et ) o fZM( ) 2\/5 ( )

Proof: See Appendix 3.

Corollary 2. Let py be the probability defined in (5.6). If §, = 288L £ some constant

blog L
A> }1, then

lim py = 0. (6.12)
L—o0
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Proof. From (5.90),

o |t (s e ([ o

Ae?, loglog M o
< exp {—L ( eﬂﬁo(;g]\;g —log (/ eemlmenml £, (2) dz))} : (6.14)

where (6.14) follows from (3.1) and by choosing ¢ = ejp;. According to Lemma 12, for a large

enough M,
log (/ eemlz=emly, (2) dz> <log(ey - C), (6.15)
where C' = 13.6 + ﬁ Thus, from (2.113), for a large enough M,
e Ae?, loglog M
log (/_OO eenlzenlf, (%) dz) < MlogM (6.16)
when A > 1. From (6.14) and (6.16), we have
lim py = 0. (6.17)
L—o0o

]

Lemma 11 and Corollary 2 imply that for a memoryless Gaussian source, choosing A =

Aloglog L
blog L

(5.1)), such that

for some A > 411 guarantees that there exists a partition of A into dy, 1 and Jy (see

lim pg + p1 +p2 = 0, (6.18)
L—oco

where py—py are defined as in (5.4)—(5.6). Hence, for such a A, the probability of excess

distortion in Theorem 1 tends to 0 with n. The next step is finding the convergence rate of

Dy to 0 when A = Aloglog L " this end, we first prove the following lemma:

blog L
Lemma 13. Let M, L, n, R and b as defined in the encoding algorithm in Section 3.2. Then,
. log L et - 2R R sk
] 1— M) e = e~ 6.19
LI—I}olologlogL (( n) ‘ b (6.19)

with epr as given in (2.8).

Proof: See Appendix 4.

Lemma 14. Let M, L, n, R and b as defined in the encoding algorithm in Section 3.2. Then,

limsup L (w” —e) = R%e", (6.20)

L—oo
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with w as given in (5.3).

Proof. From (5.34),

2 L

limsup L (wL — R) <limsup L (exp (%) — eR) (6.21)
L—oo L—oo 2(” - GM)
bLlog L
<limsup L | exp ; °8 —eft (6.22)
L—o0 2(Llog L —blog L)

RQ

= han_iip Le®? (exp (L — R> — 1) : (6.23)

where (6.22) follows from (3.1). Using L’Hopital’s rule,

. 212,R R2
limsup L (w” —R) <limsup ————exp | ——— 6.24
msup L ( ) Stmsup 7 p(L—R) (6.24)
= R%M. (6.25)
O

Corollary 3. Let L, R, b and o be as defined in the encoding algorithm in Section 3.2. Then,

for a large enough L,

2,—2R
loglog L Ro’e L0 (M) < Dpa, (6.26)

log L b

where Dy, A is as defined in (6.3), and where €(-) is some non-negative function such that

lim e(L) = 0. (6.27)
L—oo
Furthermore, if
Aloglog L
=_° ©°7 6.28
blog L ( )
for some constant A > }L, then for a large enough L,
log log L oR gy O e(L)loglog L
Dpa<—>"—(R 2A —+ 0| ——. 6.29
L& = log L ( ¢ hade )b+ log L ( )
Proof. From Lemma 13, there exists a non-negative function €(-) such that
lim (L) =0, (6.30)
L—oo
and
R o2r _ e(L) < oel (f e ’ _e2m| < Boon + e(L); (6.31)
b ~ loglog L n ~ b ’ '



therefore,

2 L
e 2 4 —log log L <§€2R — G(L)) < ( — e—M) <e?F 4 logli[/ (E‘EQR + G(L)> .

log L b n - log L b
(6.32)
Similarly, from Lemma 14,
L ~ R 1

w” <et+0 (Z) : (6.33)

By definition of ay, A in (6.1),

e2,\" 2

apa =0’ (1 — WM) (1+whA)", (6.34)

and so, according to (6.32) and (6.33),

log log L L) loglog L 1\)?
ara < 0 (+&E+<>¢> (HeRMAo (_)) (6.35)

log L b log L L
log log L L)loglog L 1
<o (e 2R 4 0g 108 _EG—QR_I_E( ) log log 1+ e2BA2 4 26RA + AO [ =
log L b log L L
(6.36)
_ loglogL (R _ 2A _ e(L)loglog L
< 42 |,—2R L _op 24 _R ‘
<o [e + log L (be + ;¢ )]+O( Toe L , (6.37)
where (6.37) is due to (5.35) and (6.28). Therefore,
loglog L (Ro? _,, 2Ac? , e(L)loglog L
Dpa < e .
Y ( e e ) 10 o L (6.38)
On the other hand, from (6.32),
_ loglog. R _ e(L)loglog L 2
S 2 2R A or 1 LA ‘
apa >0 (e + el e g L (1+w"A) (6.39)
_ loglogL. R _ €(L)loglog L
=7 (6 T )+O( gL ) (6.40)

where (6.40) is due to w, A > 0, as per their definitions in (5.1) and (5.3). Subsequently, we

have

Dia> loglog L Ro?e2 Lo (e(L) log log L) '

6.41
log L b log L ( )

O

Two conclusions can be drawn from Corollary 3. Firstly, the inequality in (6.26) gives an

asymptotic lower bound on Dy A regardless of the distribution of the source sequence S and of
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A; thus, it shows that using Theorem 1, the best possible upper bound to the gap between the

distortion of the SPARC and the distortion-rate function of a memoryless Gaussian source is

(6.42)

loglog L Ro?e 2R Lo e(L)loglog L
log L b log L ’

where ¢(+) is some non-negative function such that e(L) T 0. Secondly, for the case of a
memoryless Gaussian source sequence S, (6.29) asymptotmally upper bounds Dy, A for a specific
sequence of A, such that the probability of excess distortion in Theorem 1 decays to 0. Hence,

it proves that asymptotically,

loglog L (Ro? ,p 240 4 e(L)loglog L
— ol ————— 6.43
log L ( p ¢ T )T log L (6.43)

is an upper bound to the gap with probability that tends to 1. The asymptotic lower bound
in (6.42) suggests that this upper bound cannot be significantly improved using Theorem 1,
since the difference between the lower and upper bounds is only in the coefficient, rather than
in their asymptotic behavior.

In [26], a similar result can be derived, wherein the upper bound on the gap between the

distortion of the SPARC and the distortion-rate function of a memoryless Gaussian source is

loglog L o%c % loglog L\”
. O —_— ; 6.44
log L b + log L ’ (6.44)

in comparison with the upper bound in (6.43), our coefficient is smaller, especially for low

values of R.
Remark. The demand for the source sequence to be memoryless Gaussian is necessary solely to
be able to apply the upper bound on pg in Lemma 11. For other memoryless source distributions,

the same results as in Corollary 3 can be achieved, as long as pg —— 0 for §p = ﬁ
L—oo 08
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Chapter 7

Computer Simulations

7.1 Comparison Between the Performance of the Two

Encoding Algorithms

As previously stated, the algorithm presented in Section 3.2 is slightly different than the al-
gorithm in [26], as the set of coefficients {c;}~ | was changed to minimize the distortion. The
computer simulation in this section compares the performance of the two SPARCs, with regard
to the distortion as function of the rate. The simulation was conducted by generating an i.i.d.
Gaussian source sequence S with zero mean and unit variance, with b = 2,3 and over a range
of values for the rate R and L (the number of sections in the matrix A). Each data point in
Figures 7.1a and 7.1b is an average over a total of 100 iterations; every iteration was simulated
by randomly generating a source sequence S and a matrix A, and calculating the distortion
between the codeword and the source sequence for both algorithms.

Figures 7.1a and 7.1b show that for all R’s and L’s examined, and for both b = 2 and b = 3,
the algorithm presented in Section 3.2 performs better than the one in [26]. The improvement
is especially significant for higher values of R, because then the less accurate approximation
used in [26] for the maximum of M i.i.d. Gaussian random variables is more prominent than

for lower R’s.
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Figure 7.1: The distortion as function of the rate for several values of L with
b = 2,3. The solid lines were calculated using the algorithm in Section 3.2;
the dashed lines were calculated according to the algorithm in [26]; the bold
line is the Distortion-Rate function.
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7.2 Comparison Between the Upper Bound on the Prob-
ability of Excess Distortion and the Simulated Re-

sults

In Chapter 5, an upper bound on the probability of excess distortion is achieved for a finite
source blocklength n, which significantly improves the existing bound from [26]. In this section,
we compare the improvement of the bound while taking into account the difference between
the two encoding algorithms; furthermore, we analyze the tradeoff between the performance
of the SPARC and its computational complexity derived by Theorem 2, and compare it to a
computer simulation.

For the analysis of the tradeoff between complexity and performance guaranteed by The-
orem 2, we fix the parameters R, b, 0% and €, and calculate the minimal blocklength n such
that

P|[|S— ASP > a2 (1 +1)| <e, (7.1)

for a range of values of > 0. From (5.2), the condition in (7.1) boils down to the following

conditions,

* Pot+pitpr < (7.2)
2 L
. ( - %\/1) (1+ wLA)2 < e (1 +9). (7.3)

Therefore, finding the minimal blocklength n derived from Theorem 2 was performed numeri-

cally as follows:
1. Set the parameters R, b, 02, € and 7. Pick an initial value n = ny.
2. For i >0,

2.1. Compute L and M given n = n; (see (3.1) and recall that M = L?).
2.2. Find a maximal value for A from (7.3).

2.3. Compute the minimal value of P = py + p1 + p» (see (5.64), (5.74), (5.90)) under
condition (5.1). The minimization is taken with respect to the two free parameters
dp and 6; which then restrict dy in (5.1).

2.4. If P > ¢, set njy1 = 2n; and return to Step 2.1. If P < ¢, set Npax = Ny, Mnin = 5

and exit the loop.
3. Perform the bisection method in the interval [nmyin, Nmax]:

3.1. Set n; = E(nmax + nminﬂ.
3.2. Perform Steps 2.1-2.3 with n = n;.
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3.3. If P > ¢, set ny;, = n and return to Step 3.1. If P < ¢, set nya.x = n and return to
Step 3.1. If nyax = Nmin + 1, then exit the loop.

In addition, a simulation was conducted to find the actual necessary minimal blocklength n for
the SPARC from Section 3.2, such that it has a distortion greater than D with probability of at
most €. The simulation was carried out by generating random source sequences S and matrices
A for different values of n, and calculating the distortion D that € of them exceed.

Figure 7.2 shows a comparison between the minimal blocklength n derived from Theorem 2,
and the minimal blocklength n acquired via the simulation of the SPARC. It is evident from
Figure 7.2 that a considerable difference exists between the two values; this gap implies that
the bound in Theorem 2 is not tight. The reason for this difference is mainly due to taking the
"worst case scenario” for |A;| in each of the L steps of Lemma 6, and then summing over them
(See (B.11)—(B.15)).

Figure 7.3 shows a comparison between the minimal blocklength n derived from Theorem 2
and the one derived from [26, Theorem 1]. Since the upper bound on the probability of excess
distortion was improved, the minimal blocklength n from Theorem 2 is significantly lower, as

expected.
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Figure 7.2: Comparison of the minimum blocklength n as func-
tion of the multiplicative gap from the Rate-Distortion, with
R =0.5, 0> =1 and € = 0.01. The solid lines are from the simu-
lation, the dotted lines are derived from our bound.
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Chapter 8

Research Summary and Open

Questions

8.1 Research Results

The main goal of this thesis was to develop bounds to the probability of excess distortion of
SPARC:s for finite-length lossy compression with sparse regressing codes, and thereby to find
the tradeoff between the complexity of the codes and their performance. During the process
toward this goal, several contributions were made.

In Chapter 2, new tight upper and lower bounds on the Lambert W function are derived,
which constitute a major improvement to the existing lower and upper bounds. The Lambert
W function was then used in the estimate of expected value of the maximum among standard
i.i.d. Gaussian random variables (denoted by eyy).

In Chapter 3, a modified version of the SPARC encoding algorithm is presented, on the
basis of ey rather than its approximated value (which is an upper bound on e,;). The modified
algorithm improves the performance of the SPARCs, as it is supported by our computer simu-
lations, especially for the higher rates. Subsequently, it enables us to derive improved bounds
on the probability of excess distortion.

After providing a preliminary analysis in Chapter 4, our main result is introduced and
proved in Chapter 5. This gives an upper bound on the probability of excess distortion for
lossy compression of an ergodic source using the modified SPARC encoding algorithm from
Chapter 3. In contrast to previous works, Theorem 1 is proved for finite blocklength n. The
bound in Theorem 1 is expressed as the sum of three separate probabilities, one of which
depends on the distribution of the source; the three probabilities are bounded individually in
Chapter 5, and the complete bound for the Gaussian i.i.d. case is provided in Theorem 2.

Relying on Theorem 1, Chapter 6 tackles the rate in which the distortion of our SPARC lossy
compression scheme approaches the distortion-rate function, as the blocklength n grows. An
asymptotic upper bound on this rate is proved, which scales in a similar fashion to previously
known results, albeit with smaller coefficients; however, we also show that no better asymptotic

bound can be developed, as long as we rely on Theorem 1.

o8



8.2 Open Questions

Several subjects which were discussed in this research are left open for further research. The
principal issue is the tightness of the bound in Theorem 1: while it is a significant improvement
to the previously known bound in [26], the computer simulations show that there still is a non-
negligible gap between the bound and the empirical performance of the SPARCs. The reason
for this disparity revolves around the method in which the probability of excess distortion is
bounded. As explained thoroughly in Chapter 3, the lossy compression encoding is performed
in L steps, where at each step ¢ € {1,..., L}, a column is picked in section i of the design matrix
A. In order to prove Theorem 1, the absolute value of the deviation A; (see definition in (5.9))
is bounded, and the bound allows for the "worst case scenario”: the absolute value of the
deviation from the previous step, |A;_1], is added to the absolute value of the deviation created
in the current step. In practice, it is very unlikely that all L deviations have the same sign,
which justifies the gap between the bound and the empirical results. To reach a tight bound
to the probability of excess distortion, we must take into account the sign of the individual
deviation at each step.

A related open question is the asymptotic scaling of the gap between the distortion-rate

function and the performance of the SPARCs. In Chapter 6, for the case of an i.i.d. Gaussian

loglogn

g >; for a general

source, it is shown that the gap tends to 0 in n at least as fast as O (
memoryless source, the rate of the decay depends on the distribution of the source. However, it
is still not clear whether the gap indeed decays to 0 at this rate or in a (much) faster rate. We
have only shown that no bound can be developed which is asymptotically better while using
Theorem 1.

Another possible future research direction is to develop a generalization to the lossy com-
pression scheme of the SPARCs. The main theorem of the thesis, Theorem 1, is applicable to
all ergodic and memoryless sources, not only a memoryless Gaussian source. However, it proves
that all memoryless and ergodic sources approach the distortion-rate function of a memoryless
Gaussian source when compressed by SPARCs, rather than their corresponding distortion-rate
functions; as per [23], this is the best possible result that can be reached using a Gaussian
codebook. An interesting open question is whether it is possible to apply the sparse regression
method to other sources, even finite alphabet sources, and reach their respective asymptotic
informational-theoretic limits.

From a more practical perspective, the aim of any code for lossy compression is not only
to have good asymptotic performance, but also to work well for finite, reasonable blocklengths.
Using the proposed algorithm in Chapter 3, the compression complexity increases polynomially
in n. Although this growth rate in complexity is reasonable, in practice, it is not feasible
to use the encoding algorithm with blocklengths exceeding several hundred source symbols.
One improvement is to use a Hadamard-based design matrix A instead of the structureless
i.i.d. standard Gaussian design matrix from Chapter 3, as suggested in [18]; this significantly
decreases the complexity of the encoder, since it is possible to use the fast Hadamard transform.

However, no theoretical guarantees for SPARCs with Hadamard-based design matrices have

29



been developed so far (to the best of our knowledge), which could be an interesting direction
for further research.

A different path to achieve better performance by SPARCs could be obtained by spatially
coupled SPARCs (SC-SPARCs), where the design matrix A contains coupling between blocks.
Recent results in [20] and [21] indicate promising empirical performance of the SC-SPARCs for
channel coding, although they have not yet been adapted for lossy compression, and no finite

blocklength analysis has been performed for these modern coding techniques.
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Appendix A
Proof of Lemma 5

We first show that if (5.20) holds for some ¢ € {1,..., L}, then A; > —1. Since L > 2R, from
(2.15),

L
n:}—%logM>210gMze?w, (A.1)
2 2
GMQ > 0. (A.2)
Furthermore, from (3.1),
2¢2,L 4Llog M 4bLlog L 4L
n—ey n—2logM  ZLlogL —2blog L 52

Let R be fixed. Then the right side of (A.3) is a function of the form f(z) = -2 of the free
parameter r = %. Since f is a monotonically decreasing function on (a, c0) when d > 0, under
the assumption that £ > 10, the maximum of the right side of (A.3) is attained at & = 10.

Substituting this value in the right side of (A.3) implies that

22 L
n€M€2 < 5R. (A.4)
—tm

We conclude from (5.20), (A.2) and (A.4) that conditioning on A, for i € {1..., L},

2e3, L~ + el
AZ>A o M J J A5
0 n—e?M; L (A.5)
> 6y — 5R(6; + by) (A.6)
1
—— A.
st (A.7)

where (A.7) holds due to the assumption in (5.1).
We next prove (5.20) by induction. For ¢ = 0, it is trivial. Assume that (5.20) holds for
some ¢ — 1, and prove for i < L. The induction hypothesis together with (A.5)—(A.7) imply
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that

1
1+ Ai—l > 5, (AS)

and therefore, using (5.15) and (A.2) yields

2
(1+A)?>(1+A)— - iMQ (|%,| + 2|e] (1 + Ai_1)> (A.9)
M

:(1+Ai1)2[1— e << bl 2l )] (A.10)

n— 6%\4 1+ Ai71)2 1+ Ai,1

To prove that the expression in the second term in the right side of (A.10) is positive, notice
that from (A.8),

3 2
‘M il €| des,
= il +leil) A1l
n_e%\/[ ((1+A1—1>2+1+A1_1 _n_eﬁ/j (|7|+‘6|> ( )
and from (5.17)—(5.18), (A.4) and (A.11),
& DL 29 <a0me, 46 <1 (A12)
n-— 6?\/[ (1 + Ai,1)2 1+ Aifl - 1 2 5 .

where the last inequality holds due to (5.1). This proves that the right side of (A.10) is positive,
which allows taking the square root of both sides of the inequality,

LA > (14 Ay |1 il 2 : (A.13)
b= i1 TL—G%W <1+Az‘_1)2 1+Ai—1 '
e 7] 2|ei
> (1+ A ) |1 —M : ! A.14
2 (1 1){ n— ey ((1+A11)2+1+A11)] (A1)
N il + 2| (A.15)
1 n—e?w ]-+Ai—1 ! ’ ’

where (A.14) holds since v/z > z for all z € [0, 1]. Consequently,

A A, il e (A.16)
- n—e?w 1+Ai—1
2 . .
S AL, - 2e5 (|7l ;r 1)) (A17)
2e3,L <= |yl + el
> A 2 Z J J A18
= 0 n—e?\/l — L ) ( )

where (A.17) is due to (A.8), and (A.18) from the induction hypothesis, i.e. that (5.20) holds

for some 7 — 1.
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Appendix B
Proof of Lemma 6

We prove the lemma by induction. For i = 1, by (5.15) and (A.2),

2

(&
1+ A1) = (1+A) + —2L <Ag+%_261(1+A0)> (B.1)
n— ey
2
e
< (L4 [B0])* + =2 (A3 + ] + 2ler] (1+ |Ao])) (B.2)
M
and therefore,
et Y A 2l \]*
1+A, <(1+1]A [1+ M ( 0 + + >] B.3
D T i T Ay TR IA .

e2 A2 |71 2|
<(1+1A {1+ M ( 0 __ + + )} B.4
(L 120]) 2n —e3p) \(1+]A)%  (141]A¢))°>  1+]A (B-4)

where (B.4) relies of the inequality v/1 + 2 < 1 + ¢ which holds for 2 > 0. Consequently,

Ar < Ay 4 M 8l g (B.5)
P o —e2) \ 14|00 14 ]|A] ! ‘
2
(&
< |A M _ (A 2 2 B.
<| 0'*2(71—@34) (| Ao] + 2|71 + 2[ex]) (B.6)
€ €
< |Ay| 1+2(n_6%4) +n_€%4 (|71] + lea]) - (B.7)

From Lemma 5,

2¢3, 2¢2,
Ay > Ag — 5 (| +lel) = = Ao - 5 (Il +lel) - (B.8)
Combining (B.7) and (B.8) yields
A< JAo] (14 D)+ 2 ) (B.9)
€ .
1] = 0 2(77,—6?\/[) n_e?\/[ 71 1
2¢2,
= [Ag|w + 5= (Il +lei]) (B.10)
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where the inequality in (B.10) holds by the definition in (5.3). We next assume that (5.21)

holds for some ¢ — 1, and prove for ¢ < L. From (5.15), and using identical arguments to

(B.1)—(B.7), it follows that

€2, e,
A <Al 1+ 2 Y R— (Il + le]) -

2(n — ey, e
From (A.17),
2¢2 2e2
Ai > Aioy = = (|l + lal) > —=[Aia| = =5 (Jnl + le])

n—~ey ST

and combining (B.11) and (B.12) yields
2e2

A < |Aicafw + =25 (|l + Jeil) -

with w as defined in (5.3). Using the induction hypothesis,
i—1 2eM i—j— 1 62
A < | [Aofw™t + =1, Zw (il + les) | w + == (jl + e
7 i

A

Z |’7J| + leil)-

= |A0|wiJr
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Appendix C

Proof of Lemma 12

EM

/ eeM|zfeM|fZM (Z) dz = / eeM(zfeM)fZM (Z) dz + / efeM(zfeM)fZM (Z) dz.

0o en —00

For the first integral in the right side of (C.1), from (2.13),

oo ]\46_6?W o 1.2
emEmen) £, (2)dz = / eMz 3 # HM=1)1og(1-Q(2))
/EM " V2T em

Since log(1 — Q(z)) < 0 for all z € R,

o0 —e o0
/ eeM(z—eM)fZM (z)dz < M e / eeMZ=52 ],
em V2T Jey

2
78M o0
RS T
21 Jen
1.2
M e 2¢M & _ 1,2
= e 2% du
V2T 0
1 !
= ~Me 2%
2
Therefore,
‘ o0 ens(e—enr) ) elogl\/l—%e?w
limsup — efmiEmen) f (2) dz < limsup
M—oo €M em M —o0 em
1

22’

where in (C.8) we used the following limit,

2

log(M) — e, 1
Mo loglog(M) 2’
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which follows from (2.73). For the second integral in the right side of (C.1), from (2.13),

em em Af e
/ e—eM(z—eM)fZM (Z) dz = ;ﬂ_ e—eMZ—%ZZ-‘r(M—l) log(1-Q(2)) dz (ClO)

</ " () dzt / M s+ [ e c

—0o0 en

NI

where

A M
gu(z) = \/—2—7r

We now bound each of the three integrals in (C.11) individually. For the first,

exp (e?w —epz — %zz + (M —1)log (1 — Q(z))) : (C.12)

e2 0 ’ ’
M; M / e—eMz—%ZQ‘i‘(M_l)log(l_Q(z)) dz < \]/W2_/ e—eMz—%z2—(M—1)1og(2) dz (013)
\V 4T —00 [T o
3 oo
_ M e(Ml)log(Z)/ eeMF =37 (C.14)
s 0
3 oo
_ ]\é o~ (M-1)log(2) / e~3Gmen’+id 4 (C.15)
T 0
V2

S M3 6’_(M_1) 10g(2)—|—%e?w7 (017)

—€M

where (C.13) is due to Q(x) >
for x € R. From (C.17),

for < 0 and due to (2.15), and (C.17) follows from Q(z) < 1

1
2

0
lim sup/ gnm(z)dz < limsup e (M-1)log(2)+ 3¢, +3log M _ (C.18)

M —o0 — 00 M —o00

The second integral in (C.11) is similarly bounded as follows,

e2 em—3
M em / o o—emz— 322 H(M—=1)log(1-Q(2)) 4,
V2r Jo

3 exr—3%
<« M7 r-n10g(1-Q(en—1)) / U meni g, (C.19)
2 0

3 eM—3
:M_2@<M1>1og<1ce<ws>>+;e%w / Tt (c20)
\V 4T 0

— M3 e(Mfl)10g(17Q(eM*%))+%eij (Q(BM) i Q (26M N l)) (021)
< M3 e~ M-0Q(e—5)+341 0 e, (C.22)
< M3 e~ (M=DQ(en—3) (C.23)

where (C.19) is due to (2.15) and since Q(x) is monotonically decreasing for z € R, (C.22)
follows from the inequality log(1 — ) < —x for z € [0,1), and (C.23) follows from Q(z) < e~2*".
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From the known inequality Q(z) > % - =€ ,
1
M~ 3 L L(ep—1)2t10g(a-1)
3log(M) — (M = 1)Q (en — §) < 3log(M) — e alearz) o8l
(e~ ) e
(C.24)
= 3log(M) — o _2% L eloa(M-1)=3e}+3en—g
11 Vi
(C.25)
From (2.15), (C.23) and (C.25),
em=3 €M — l 1 1.2 41 1
lim Sup/ g (2)dz < limsup exp | 3log(M) — elos(M-1)—zeltzen—g
M—oco Jo M—o0 (M——) —|—1 2T
(C.26)
< limsup exp | 3elo8los(M) _ M~ % 1 ezM—s | =
. M- (eM——) +1 \/71'
(C.27)

since ey &~ y/2log M (see (2.113)). The third integral in (C.11) can be bounded as follows,

e2 e
M e / Y e kM- los(1-Q() g, < ML i max {e—eMz—éz2+<M—1>log(l—cxz))}
\ 2 61\/1_% 2\/ 6M77<z<eM
(C.28)
M eeM max {e—eMz—%z2—(M—1)Q(z)}
2\/% em—3<z<en
(C.29)
where (C.29) follows from the inequality log(1 — z) < —x for x € [0,1). Define
N z°
Fla) 2 en+ 54 (M~ 1)Q() (C.30)
for z € [exs — 3, en]. The derivative of f(z) is
M—1) 2
flla)=em+a— 1) )6_7. (C.31)

V2r

To find the minimum of f(z) in the interval, we set the derivative to zero and define € 2 ey, — 1z,

which yields the following implicit equation,

26M—6—M_1exp( M):0 (C.32)

1
=e=ey — \/210g 2€M_€)\/%). (C.33)
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To make sure that there exists € € [0, %] such that the implicit equation in (C.33) has a solution,
the following step proves that the expression on the right side of (C.33) is positive and arbitrarily

small for a large enough M. On the one hand,

o oo () = Vo - - )
(C.34)

< \/m (1 B log(M — 1) N log ((QeM — e)@))

log M log M

(C.35)

B 2 M V2log ((2en — €)V/2r)
_HlogM-log(M_l)—l— N , (C.36)

where (C.34) follows from (2.15) and (C.35) due to /z > z for x € [0, 1]. Therefore,

) M-1
S (eM— % 210g(<zeM_em)) = A

On the other hand,

M -1 log log M + log(4 M-1
eM—\/Qlog(( )Z\/QlogM— oglog M + log( 7r)—\/2log<( )

2en — €)V 21 2v/2log M 2enr — €)V21
(C.38)
log log M + log(4) log ((2er — €)v/2m)
> /21 - 11—
= V2log M {1 4log M L log M
(C.39)
log ((2er — €)v2m)  loglog M + log(4n)
> 4/ —
- 210gM( 2log M 4log M
(C.40)
1
= m <10g ((2€M—€)\/%> —log <\/ 47T10gM>>
(C.41)
1 2€M — €
= 1 C.42
Vv2log M °8 (\/ZIOgM) ’ (C42)

where (C.38) follows from (2.114) for a large enough M, and (C.40) is due to /1 —2 <1 — 3
for x € [0,1]. From (2.113), (C.42) implies that for a large enough M,

enr — \/ 2log <<2€ Ajw__e)l \/%) > 0. (C.43)
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Since for a large enough M the right side of (C.33) is almost constant for € € [0, %], the implicit

,%] according to the intermediate value theorem.

Therefore, the minimum of f(z) when z € ey — 3, en] Is at

Tt = \/ 2log ((2634__6)1 @) (C.44)

for some € € [0, 3]. Substituting (C.44) into (C.29) we have

em 1 M-—-1 M-—-1
z)dz < exp [ log M 4+ €%, — e 21o ( >—lo < >
/eM—1 g () P ( s M M\/ & (2epr — €)V/2m & (2epr — €)V/2m

equation in (C.33) has a solution for € € [0

2 Ve
(C.45)
= M]\{ . (eM — %) exp (efw — eM\/Q log ((Ze]\jw—_e)l\/%>) (C.46)
< MMi : (eM - %) exp (\/m (eM - \/210g (%))) ,
(C.47)

where (C.45) follows from Q(z) > 0 for € R and (C.47) from (2.15) and since € > 0. From
(2.114), for large enough M,

oM M € loglog M — 2~ M—-1
gu(z)dz < ey — = )exp | 2log M — — 2\/longog <—> .
/EM; -1 ( 2) ( 2 V167 log M
(C.48)

=

Define

g(x) 222 — logm - 2\/x2 — zlog(V167z). (C.49)

Then,

g (x)=2— 1 <x2 — zlog(V 167TZE)> o <2x — log(V167z) — x - ! 4—7T> (C.50)

2z V1brx Vo
o 1 2z log(v167z) — 3 (C51)
2 \/:c2 — zlog(v/167x)
o 2i 2z —log(V16mx) N 1 (C.52)
. \/.1:2 — xlog(v/167x) 2\/.1:2 — xlog(v/167x)
DY P 1log*(V167z) 1 1 1 (C53)
22 — xlog(v/167x) 2z | _ log(v16ma) ' '

T
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Since

1 B
=" 1<t, fortelo, 31, (C.54)
1-vV14+t< -t fortel,8], (C.55)

then for a large enough x,

o<+

<0. (C.57)

When z > —€® ~ 59.3, the conditions in (C.54), (C.55) and (C.57) are held, and therefore
g'(r) <0 (C.58)

for x > 60. Thus, when M > exp(60) the exponent in (C.48) is monotonically decreasing with
M, and subsequently for a large enough M,

loglog M — 2y M -1
2log M — — 24 [log M'1 e < 13.6 C.59
eXP< og 5 \/og og( Wﬂ(}gM)) : (C.59)
and therefore,
1 eMm
lim sup — gum(z)dz < 13.6. (C.60)

M—oo €M Jep—1

Combining (C.1), (C.8), (C.11), (C.18), (C.27) and (C.60), we have (6.11).
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Appendix D
Proof of Lemma 13

From (2.114),

i log L ]
imsup ——— e
Lﬁoop loglog L

log L 21og M — loglog M — log 47\ ©
<hmsupL (1 °8 0808 °8 W) —6_2R> (D.1)

oo loglog L n
log L 1 log L + log 47b
= limsup _o8% 1- °8 Obg +logen —e2F (D.2)
oo loglog L zLlog L
log L - —2R
=1 — | [ 1— f(L — D.3
msup L ( - f@) ). (03)
where (D.2) follows from (3.1) and with
loglog L + log 47b
L)£ : D.4
f(L) blog L (D.4)

Continuing from (D.3),

log L 2 \*
lim sup 08~ 1 M) e 2R
L—oo loglog L n

< lim sup IOLLL (exp (L log (1 — % (1— f(L)))) — eQR) (D.5)

Lo logl

log L
< i 0T (2BA(L) _ 1) 2R D.6
o ey (- ) (05

where (D.6) follows from the inequality log(1 — ) < —x for « € [0,1). Define £ £ loglal

log L
Then,

lo gL e2 L 1 R
lim sup ———— (1 — —M) —e?® ) <lim supg (e?(&e) — 1) e 2R, (D.7)

L—oo loglog L €50
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for an arbitrarily small € > 0. Hence, from L’Hopital’s rule,

log L 2\"
lim sup 08~ (1 — e—M) —e ) <limsup Ee%@“)*m (D.8)
L—oo loglog L n es0 b
_ %6—2R+Re/b‘ (D.9)

Since the result in (D.9) is true for an arbitrarily small e > 0,

log L 2 \F R
lim sup 8L 1-— VAR I e 2R | < 2R, (D.10)
L—oo loglog L n b

On the other hand, from (2.114),

log L 2 \" log L 2R B
liminf —=>—— | (1 -2 ) —¢?| >liminf —>—— | (1 -==(1—g(L)) | —e**
lLIggol loglog L (( n> ¢ 1er5£ loglog L L (1=9(L)) ‘ ’

(D.11)
where
(L)AloglongLlogb—?y 1 loglog L + log b — 2 2 (D.12)
= 2log L blog L 220 1og L ' '
Continuing from (D.11),
) L
lim inf & 1S 2R
L—oo loglog L n
> liminf —=—— Llog | 1— 2 (1—g(L)) | —e2" (D.13)
L—o0 og logL P ©8 L g ¢ '
> liminf —28 1 (¢ @) = 21 )2 — e
X —_ — JR— J—
L—00 log logL P 9 L g
D.14)
imint —22 L (oxp (2R 1 2Rg(L) - ME (0 = g(L))?) - e2n
= X - — —
L—00 log 10 L P g L g ’
(D.15)
where in (D.14) we used the inequality log(1 — z) > —z — 2? for = € [0, 3]. Define & £ lolgol%.

Then, for an arbitrarily small € > 0,

lim inf _logL_ 1-— i ’ —e 2R ) > lim inf1 exp | —2R + Ef —¢) —e?f) (D.16)
L—oo loglog L n T oes0 & P b ‘ '

= %e_m—e, (D.17)
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where (D.17) is due to L’Hopital’s rule; since € is an arbitrarily small positive number,

o log L e - —2R R _or
1 f—=—111—") — > — D.18
o loglog L (( n) ‘ =3 ( )

Combining (D.10) and (D.18) yields (6.19).
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DM TIPANPA POV, TIPN OVINII NN I19WNT DNINIONI NNY YXIN PINKD)
92Y20 DT AN DTN DY NOODIAN TYITPN NNPIDD NNT INPITIN
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