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1. Introduction

Since the error performance of coded communication systems rarely admits exact expressions, tight

analytical bounds serve as a useful theoretical and engineering tool for assessing performance and

for gaining insight into the effect of the main system parameters. As specific good codes are hard

to identify, the performance of ensembles of codes is usually considered. Fano [14] and Gallager [15]

upper bounds were introduced as efficient tools to determine the error exponents of the ensemble

of random codes, providing informative results up to the ultimate capacity limit. Since the advent

of information theory, the search for efficient coding systems has motivated the introduction of

efficient bounding techniques tailored to specific codes or some carefully chosen ensembles of codes.

A classical example is the adaptation of the Fano upper bounding technique [14] to specific codes,

as reported in the seminal dissertation by Gallager [17] (to be referred to as the Gallager-Fano 1961

bound). The incentive for introducing and applying such bounds has increased with the recent

introduction of turbo codes [5] and the rediscovery of low-density parity-check (LDPC) codes [21].

Clearly, the desired bounds must not be subject to the union bound limitation, since for long

blocks these ensembles of turbo-like codes perform reliably at rates which are considerably above

the cutoff rate (R0) of the channel (recalling that union bounds for long codes are not informative

at the portion of the rate region above R0, where the performance of these capacity-approaching

codes is most appealing). Although maximum likelihood (ML) decoding is in general prohibitively

complex for long codes, the derivation of upper bounds on the ML decoding error probability is

of interest, providing an ultimate indication of the system performance. Further, the structure of

efficient codes is usually not available, necessitating efficient bounds on performance to rely only

on basic features, such as the distance spectrum and input-output weight enumeration function

(IOWEF) of the examined codes. These latter features can usually be found by some analytical

methods (e.g, [22]).

In classical treatments, due to the difficulty in the analytic characterization of optimal codes,

random codes were introduced ([14], [15], [16]). This is still the case with modern approaches and

practical coding techniques, where ensembles of codes (e.g., turbo [5] and LDPC codes [17]) lend

themselves to analytical treatment, while this is not necessarily the case for specifically chosen codes

within these families. A desirable feature is to identify efficient bounding techniques encompassing

both specific codes and ensembles.

In our work, we focus on the second version of the recently introduced bounds by Duman and Salehi

([11], [12]), whose derivation is based on the 1965 Gallager bounding technique ([15], [16]). Though

originally derived for binary signaling over an additive white Gaussian noise (AWGN) channel, we

demonstrate here its considerable generality and show that it provides the natural bridge between

the 1961 and 1965 Gallager bounds ([15], [17]). It is suitable for both random and specific codes
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[7], as well as for either bit or block error probability analysis. It is also demonstrated here that a

large class of efficient recent bounds or their Chernoff versions are special cases of the generalized

second version of the Duman and Salehi (DS2) bound. We exemplify the use of this generalized

bound in various settings, such as the fully interleaved fading channel ([26],[27]).

In an important recent contribution, Divsalar [7] has introduced some efficient and easily applicable

bounds, and has also provided insightful observations on the Duman and Salehi bounding technique

([11], [12]) in view of other bounds. In our setting, we shall use and build on some of the interesting

observations in [7].

The paper is organized as follows: The 1965 Gallager bound ([15], [16]) and the DS2 bound [12]

are presented as preliminary material in Section 2. These two upper bounds form the underlying

bounding technique in this paper, as we rely on them throughout. In Section 3, the 1961 Gallager-

Fano bound [17] is presented, and some interconnections among the Gallager bounds and the DS2

bound are demonstrated. It is shown in Section 3 that the DS2 bound provides the natural bridge

between the 1961 and 1965 Gallager bounds. In Section 4, it is demonstrated that many reported

bounds on the ML decoding error probability (which were originally derived independently) can be

considered as special cases of the DS2 bound. The 1965 Gallager random coding bound is extended

in Section 5 to the mismatched decoding regime, where the decoder operates in a ML fashion, but

may use a mismatched metric. These Gallager-type bounds which are derived for the mismatched

decoding regime can be applied to deterministic codes and ensembles. Some reported results ([18],

[19], [23]) are derived in Section 5, based on an alternative approach which appropriately limits the

code ensemble. Some applications and examples of these bounds are presented in Section 6, which

include fully interleaved fading channels and mismatched metrics. Finally, Section 7 concludes the

paper and three appendices provide supplementary technical details.

2. Preliminaries (Basic Bounds)

2.1. The 1965 Gallager bound

It is well known that the ML decoding error probability conditioned on an arbitrary transmitted

(length-N) codeword xm (Pe|m), is upper bounded by the 1965 Gallager bound ([15], [16]):

Pe|m ≤
∑

y

pN (y|xm)


 ∑

m′ 6=m

(
pN (y|xm′

)
pN (y|xm)

)λ



ρ

, λ, ρ ≥ 0 . (1)

Here, y designates the observation vector (of N components) and pN (y|x) is the channel’s transition

probability measure. The upper bound (1) is usually not easily evaluated in terms of basic features
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of particular codes, except for example, orthogonal codes and the special case of ρ = 1 and λ = 1
2

(which yields the Bhattacharyya-union bound).

For discrete, memoryless and output-symmetric channels, the upper bound (1) is not directly

applicable for actual code performance calculation, since it cannot be factored into single-letter

expressions (because of the ρth power which operates on the inner summation of (1)). Therefore,

the bound does not lend itself to code performance calculation in terms of the distance spectrum of

the ensemble of codes. This difficulty could be circumvented had the ρth power in (1) been taken

over the expression
∑

y



pN (y|xm)

∑

m′ 6=m

(
pN (y|xm′

)
pN (y|xm)

)λ


 (instead of its actual location in the

inner summation of the bound (1)).

For ensembles of random block codes, where the codewords are independently selected with an

arbitrary probability distribution qN (x), Gallager derived an upper bound on the average ML

decoding error probability (where the average is over the randomly and independently selected

codewords). By invoking the Jensen inequality in (1) (E[xρ] ≤ (E[x])ρ where 0 ≤ ρ ≤ 1), and

setting λ = 1
1+ρ , the 1965 Gallager random coding bound is obtained:

Pe ≤ (M − 1)ρ
∑

y

(∑
x

qN (x) pN (y|x)
1

1+ρ

)1+ρ

, 0 ≤ ρ ≤ 1 . (2)

Here Pe designates the average decoding error probability, and M is the number of the codewords.

For the particular case of a memoryless channel
(
pN (y|x) =

N∏

i=1

p(yi|xi)
)

and a memoryless input

distribution
(
qN (x) =

N∏

i=1

q(xi)
)
, the Gallager random coding bound (2) admits the form:

Pe ≤ e−N ·E(R,q) , (3)

where R = ln M
N is the code rate (in nats per channel use) and the associated error exponent is

E(R, q) = max
0≤ρ≤1



− ln


∑

y

(∑
x

q(x) p(y|x)
1

1+ρ

)1+ρ

− ρR



 . (4)

2.2. The DS2 bound

The Duman and Salehi bounding technique ([11],[12]) originates from the 1965 Gallager bound: Let

ψm
N (y) be an arbitrary probability measure (which may also depend on the transmitted codeword
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xm). The 1965 Gallager bound (1) then yields:

Pe|m ≤
∑

y

ψm
N (y) · ψm

N (y)−1 · pN (y|xm) ·

 ∑

m′ 6=m

(
pN (y|xm′

)
pN (y|xm)

)λ



ρ

=
∑

y

ψm
N (y) ·


ψm

N (y)−
1
ρ · pN (y|xm)

1
ρ ·

∑

m′ 6=m

(
pN (y|xm′

)
pN (y|xm)

)λ



ρ

, λ, ρ ≥ 0 .

(5)

By invoking the Jensen inequality in (5), the DS2 bound results [12]:

Pe|m ≤

 ∑

m′ 6=m

∑
y

pN (y|xm)
1
ρ · ψm

N (y)1−
1
ρ ·

(
pN (y|xm′

)
pN (y|xm)

)λ



ρ

, 0 ≤ ρ ≤ 1 , λ ≥ 0 . (6)

Let Gm
N (y) be an arbitrary non-negative function of y, and let the probability density function

ψm
N (y) be:

ψm
N (y) =

Gm
N (y) · pN (y|xm)∑

y

Gm
N (y) · pN (y|xm)

. (7)

The functions Gm
N (y) and ψm

N (y) are referred to as the un-normalized and normalized tilting mea-

sures respectively. The substitution of (7) into (6) yields:

Pe|m ≤

∑

y

Gm
N (y) · pN (y|xm)




1−ρ

·




∑

m′ 6=m

∑
y

pN (y|xm) ·Gm
N (y)1−

1
ρ ·

(
pN (y|xm′

)
pN (y|xm)

)λ




ρ

, 0 ≤ ρ ≤ 1 , λ ≥ 0 . (8)

The upper bound (8) was also derived in [7, Eq. (62)]. For the class of memoryless channels, and

for the choice of ψm
N (y) as ψm

N (y) =
N∏

i=1

ψm(yi) (recalling that the function ψm may also depend

on the transmitted codeword xm), the upper bound (8) is relatively easily evaluated (similarly to

the standard union bounds) for particular block codes. In that case, (8) is calculable in terms

of the distance spectrum, not requiring the fine details of the code structure. Moreover, (8) is

also amenable to some generalizations, such as for the class of discrete memoryless channels with

arbitrary input and output alphabets.
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3. Interconnections and Observations

3.1. The random coding version of the DS2 bound

We show here that the random coding version of the DS2 bound coincides with the well known

Gallager 1965 bound for random codes.

For the ensemble of random codes, where the N -length codewords are randomly and independently

selected with respect to the input distribution qN (x), the DS2 bound yields the following upper

bound on the conditional decoding error probability:

Pe|m ≤ (M − 1)ρ ·

∑

y

pN (y|xm) ·Gm
N (y)




1−ρ

·




∑
y

pN (y|xm) ·Gm
N (y)1−

1
ρ ·

∑

x′
qN (x′) ·

(
pN (y|x′)
pN (y|xm)

)λ




ρ

, (9)

where 0 ≤ ρ ≤ 1 and λ ≥ 0.

The optimal non-negative function Gm
N (y) minimizing (9) is:

Gm
N (y) =


∑

x′
qN (x′) ·

(
pN (y|x′)
pN (y|xm)

)λ



ρ

. (10)

The substitution of (10) into (9) gives:

Pe|m ≤ (M − 1)ρ ·
∑

y



pN (y|xm) ·


∑

x′
qN (x′) ·

(
pN (y|x′)
pN (y|xm)

)λ



ρ
 . (11)

After averaging over the transmitted codeword xm, which is randomly selected with respect to

the input distribution qN (xm), (11) yields the following upper bound on the ML decoding error

probability:

Pe ≤ (M − 1)ρ ·
∑

y





(∑
x

qN (x) · pN (y|x)1−λρ

)
·

∑

x′
qN (x′) · pN (y|x′)λ




ρ
 . (12)

Letting λ = 1
1+ρ , the standard random coding Gallager bound [15] results. It is hence demonstrated

that in the standard random coding setting, no penalty is incurred for invoking the Jensen inequality

in the optimized DS2 bound.
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3.2. Relations to the Gallager-Fano 1961 bound

In this subsection we present the Gallager-Fano 1961 bound [17] and study its relation to the DS2

bound.

3.2.1. The 1961 Gallager-Fano bound

In his monograph on low-density parity-check codes [17], Gallager introduced a general upper bound

on the ML decoding error probability for block codes operating over binary-input and output-

symmetric channels. This bound depends on the distance spectrum of the N -length block code

(or ensemble of codes), and therefore it can be applied to both ensembles as well as specific codes

(as opposed to the Gallager 1965 bound which applies essentially to the ensemble of random block

codes). The derivation of this bound is based on Fano’s 1961 bounding technique [14] for random

codes, which is adapted in [17] to specific codes. The concept of this bound is shortly detailed in

the following:

Let xm be the transmitted codeword and define the tilted ML metric:

Dm(xm′
, y) = ln

(
fm

N (y)
pN (y|xm′)

)
, (13)

where xm′
is an arbitrary codeword, pN (y|x) is the conditional transition probability of the channel,

and fm
N (y) is an arbitrary function which is positive if pN (y|xm′

) is positive for any m′ (and may

also depend on the transmitted message). Note that Dm(·, ·) is in general not computable at the

receiver; it is used here as a conceptual tool to evaluate the upper bound on the decoding error

probability. If ML decoding is applied, an error occurs if for some m′ 6= m:

Dm(xm′
, y) ≤ Dm(xm, y) . (14)

The received set Y N is divided into two disjoint subsets:

Y N = Y N
g

⋃
Y N

b ,

Y N
g =

{
y : Dm(xm, y) ≤ Nd

}
,

Y N
b =

{
y : Dm(xm, y) > Nd

}
,

(15)

where d is an arbitrary real number.

The conditional ML decoding error probability can be expressed as a sum of two terms:

Pe|m = Prob (error , y ∈ Y N
b ) + Prob (error , y ∈ Y N

g ) , (16)
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which leads to the following upper bound on the conditional decoding error probability:

Pe|m ≤ Prob (y ∈ Y N
b ) + Prob (error , y ∈ Y N

g ) . (17)

Inequality (17) is the starting point of many efficient bounds, for example the Berlekamp tangential

bound [4], Hughes bound, Poltyrev tangential sphere bound [24] and Engdahl and Zigangirov bound

[13]. In the Fano-Gallager approach, the regions Y N
g , Y N

b are related to the choice of the arbitrary

function f in (13). At this stage, Fano [14] proceeded with the Chernoff bounding technique and

the random coding approach, while Gallager bound [17] is better suited to treat particular codes.

Based on the Chernoff bound:

Prob (y ∈ Y N
b ) ≤ E(esW ) , s ≥ 0 , (18)

where

W = ln
(

fm
N (y)

pN (y|xm)

)
−Nd . (19)

The second term in (17) is also upper bounded by a combination of the union and the Chernoff

bounds, which then yields:

Prob (error , y ∈ Y N
g )

= Prob
(
Dm(xm′

, y) ≤ Dm(xm, y) for some m′ 6= m, y ∈ Y N
g

)

≤
∑

m′ 6=m

Prob
(
Dm(xm′

, y) ≤ Dm(xm, y) , Dm(xm, y) ≤ Nd
)

≤
∑

m′ 6=m

E
(
exp(t · Zm′ + r ·W )

)
, t ≥ 0, r ≤ 0 , (20)

where, based on (13), Zm′ = Dm(xm, y)−Dm(xm′
, y) = ln

(
pN (y|xm′ )
pN (y|xm)

)
and W is defined in (19). In

[17], Gallager assumed a binary linear block code operating over a binary-input, output-symmetric

and memoryless channel. Under these assumptions, the discussion in [17] was restricted to functions

fm
N (y) which can be expressed in the product form:

fm
N (y) =

N∏

i=1

f(yi) , (21)

(where the function f does not depend here on the index i). For simplifying the derivation of the

Gallager-Fano 1961 bound [17], it was also assumed that the non-negative function f is even, i.e:

f(y) = f(−y) for all values of y.
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Let {Sl}N
l=0 designate the distance spectrum of the considered block code. Based on (17)-(20) and

by optimally setting t = 1−r
2 , the Gallager-Fano 1961 bound [17] reads:

Pe ≤ g(s)N · exp(−Nsd) +
N∑

l=0

Sl · [h(r)]l · [g(r)]N−l · exp(−Nrd) , (22)

where s ≥ 0, r ≤ 0, −∞ < d < +∞, t ≥ 0. By the symmetry of the channel and the function f :

g(s) =
1
2
·
∑

y

(
[p0(y)]1−s + [p1(y)]1−s

)
· f(y)s ,

h(r) =
∑

y

[p0(y) · p1(y)]
1−r
2 · f(y)r .

(23)

The upper bound (22) on the ML decoding error probability depends on the distance spectrum

of the considered block code, and therefore it applies to fixed codes and structured ensembles of

codes. It can be also verified (though not mentioned in [17]) that the optimization of the parameter

d in (22), yielding the tightest bound within this family, assumes the expression:

Pe ≤ 2H(ρ) · g(s)N(1−ρ) ·
(

N∑

l=0

Sl · h(r)l · g(r)N−l

)ρ

. (24)

Here ρ = s
s−r (0 ≤ ρ ≤ 1) and H(ρ) = −ρ log2(ρ) − (1 − ρ) log2 (1 − ρ) is the binary entropy

function. The optimization of the function f in (22) yields an implicit solution (as indicated in [17,

Eq. (3.40)]). The following sub-optimal and explicit solution for the non-negative and symmetric

function f was proposed by Gallager [17, Eq. (3.41)]:

f(y) = k ·





[
P0(y)

1−r
2 + P1(y)

1−r
2

]2

P0(y)1−s + P1(y)1−s





1
s−r

, (25)

where the constant k in Eq. (25) is arbitrary and cancels out in the bound.

3.2.2. The connection between the Gallager-Fano 1961 bound and the DS2 bound

The optimization over the parameter d (or e−Nd) in the Gallager-Fano 1961 bound on the condi-

tional decoding error probability (see Eq. (17)-(20)) and the setting ρ = s
s−r (0 ≤ ρ ≤ 1 as s ≥ 0
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and r ≤ 0) gives:

Pe|m ≤ 2H(ρ) ·

∑

y

pN (y|xm) ·
(

fm
N (y)

pN (y|xm)

)s



1−ρ

·




∑

m′ 6=m

∑
y

pN (y|xm) ·
(

pN (y|xm′
)

pN (y|xm)

)t

·
(

fm
N (y)

pm
N (y|xm)

)s

(
1− 1

ρ

)


ρ

, 0 ≤ ρ ≤ 1 .

(26)

as was first indicated by Divsalar [7, Eqs. (71), (72)].

Divsalar [7] has renamed t by λ (where t is the non-negative parameter introduced in (20)) and has

also set:

Gm
N (y) =

(
fm

N (y)
pN (y|xm)

)s

, (27)

deriving then the DS2 bound (8) with an additional factor of 2H(ρ) (where 1 ≤ 2H(ρ) ≤ 2). This

demonstrates the superiority of the DS2 bound over the Gallager-Fano 1961 bounding technique

when applied to a particular code or ensemble of codes. It has been demonstrated in [33] that the

Gallager-Fano 1961 bound equals the 1965 Gallager random coding bound (12) up to the 2H(ρ)

coefficient, where as shown before, the latter agrees with the optimized DS2 bound.

3.3. A geometric interpretation of the Gallager type bounds

The connections between the Gallager-Fano tilting measure and the Duman and Salehi normalized

and un-normalized tilting measures (which are designated here by fm
N (y), ψm

N (y) and Gm
N (y) re-

spectively) are indicated in Eqs. (7), (27), and they also provide some geometric interpretations of

various reported bounds. The measure fm
N (y) in the Gallager-Fano 1961 setting, which in general

does not imply a product form, entails a geometric interpretation associated with the conditions in

the inequalities (15), specifying the disjoint regions Y N
g , Y N

b ⊆ Y N . The geometric interpretation

of the Gallager-Fano 1961 bound is not necessarily unique, as measures fm
N (y) of different functional

structure may imply equivalent conditions in the inequality:

ln
(

fm
N (y)

pN (y|xm)

)
≤ Nd . (28)

This non-uniqueness property is due to the shifting and factoring invariance of inequality (28)

and since the parameter d is also subjected to optimization. We demonstrate here the connection

between the non-unique measure fm
N (y) and its associated decision region, and to that end we

discuss some reported upper bounds on the ML decoding error probability for the binary-input
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AWGN channel. All of these upper bounds are based on inequality (16). In order to demonstrate

the non-uniqueness feature of the Gallager-Fano tilting measure, we shall focus on the Divsalar

bound [7].

The conditional density function for the binary-input AWGN channel is:

pN (y|xm) =
N∏

l=1

{
1√
2π

· exp
[
−1

2
· (yl − γ · xm

l )2
]}

, (29)

where γ =
√

2REb
N0

. Here xm
l designates the l-th symbol of the m-th codeword.

Divsalar bound [7] is specified by the associated decision region

Y N
g =

{
y |

N∑

l=1

(yl − ηγ · xm
l )2 ≤ N · r2

}
, (30)

which implies that the region Y N
g is an N -dimensional sphere with radius

√
N · r2 and a center

that is located along the line connecting the origin to the codeword xm and at distance
√

N ηγ

from the origin (the coordinates of the codeword xm are either 1 or −1). The parameters r, η are

analytically optimized in Divsalar bound [7]. It can be verified that the following Fano-Gallager

tilting measures in (28) can be associated with the same decision region (30):

fm
N (y) =

N∏

l=1

{
exp

(
1
2

(
1
η
− 1

)
· (yl)2

)}
, (31a)

fm
N (y) =

N∏

l=1

{
exp

(γ

2
· (1− η) · xm

l · yl

)}
, (31b)

fm
N (y) =

N∏

l=1

{
exp

(
−θ · (yl − φ · xm

l )2
)}

, where φ = γ ·
(
η +

1− η

2θ

)
, θ 6= 0 , (31c)

as a shift in the value of the parameter d in (15) before its optimization has no implications on the

bound. Although the three tilting measures fm
N (y) imply the same decision region Y N

g , the second

and third measures ((31b),(31c)) are amenable to generalizations for the class of fully interleaved

fading channels, as opposed to the first measure which demonstrates a different functional behavior

(as the exponential term is quadratic in {yi}).
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4. Special Cases of the DS2 Bound

In this section we demonstrate that many reported bounds can be considered as special cases of

the generalized DS2 bound. 1 Some of these observations have been reported in [7],[33].

4.1. Shulman and Feder bound

We derive here the Shulman and Feder bound [36] as a particular case of the DS2 bound. Let

C be a binary and linear block code of length N and rate R = log2 M
N bits per channel use,

with a distance spectrum {Sk}N
k=0. Suppose that the all-zero codeword (x0) is transmitted over a

memoryless binary-input and symmetric-output channel with a transition probability p(y|x) and

that ML decoding is performed. In order to be able to express the upper bound (8) in terms of

the distance spectrum of the block code C, we restrict our attention here to the special case where

the un-normalized Duman and Salehi tilting measure G0
N (y) can be expressed in a product form:

G0
N (y) =

N∏

i=1

g(yi). Based on the upper bound (8):

Pe|0 ≤
(∑

y

g(y) · p(y|0)

)N(1−ρ)

· 2−N(1−R)ρ





N∑

l=0

(
Sl

2−N(1−R)
(
N
l

)
)(

N

l

)(∑
y

p(y|0)g(y)1−
1
ρ

)N−l (∑
y

p(y|0)1−λp(y|1)λg(y)1−
1
ρ

)l




ρ

≤
(∑

y

g(y) · p(y|0)

)N(1−ρ)

·
(

max
0≤l≤N

Sl

2−N(1−R)
(
N
l

)
)ρ

· 2−N(1−R)ρ

·
(∑

y

p(y|0) · g(y)1−
1
ρ +

∑
y

p(y|0)1−λ · p(y|1)λ · g(y)1−
1
ρ

)Nρ

. (32)

By setting:

g(y) =
[

1
2 · p(y|0)

1
1+ρ + 1

2 · p(y|1)
1

1+ρ

]ρ
· p(y|0)

−ρ
1+ρ , λ =

1
1 + ρ

, (33)

1The first version of the Duman and Salehi bounds which is introduced in this section is also demonstrated to be

a particular case of the DS2 bound. Therefore, we introduced the latter bound in Section 2, before the presentation

of their first version bound in Section 4.
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and after some straight forward algebra invoking the channel’s symmetry, we get:

Pe|0 ≤ 2NRρ ·
(∑

y

[
1
2

p(y|0)
1

1+ρ +
1
2

p(y|1)
1

1+ρ

]1+ρ
)N

·
(

max
0≤l≤N

Sl

2−N(1−R)
(
N
l

)
)ρ

, (34)

which agrees with Shulman and Feder bound [36]. Based on the DS2 bound, a generalization of

the Shulman and Feder bound is detailed in Appendix A.

4.2. Upper bounds on the ML decoding error probability for the binary-input

AWGN channel

In this sub-section, we present various upper bounds on the ML decoding error probability for

the binary-input AWGN channels. We demonstrate here that these reported bounds, which were

originally derived independently, are special cases of the DS2 bound. In general, this is done

by choosing for every such upper bound an appropriate probability tilting measure, and then by

re-deriving this bound as a special case of the DS2 bound of Section 2.

4.2.1. Duman and Salehi bound (first version)

The first version of the Duman and Salehi bound [11] for a binary-input AWGN channel is a special

case of the DS2 bound [12], where the normalized tilting measure is:

ψm
N (y) =

N∏

l=1

ψm(yl) =
N∏

l=1





√
α

2π
· exp


−α

2
·
(

yl − β

α
·
√

2Es

N0
· xm

l

)2





 . (35)

We assume here that the components of the codeword xm are either −1 or +1 for a ‘0’ or ‘1’

input respectively. Based on the connection between the normalized and the un-normalized tilting

measures (7), and since the upper bound (8) is invariant to scaling of the un-normalized tilting, it

is also a particular case of (8), where the un-normalized tilting measure is:

Gm
N (y) =

N∏

l=1



exp


−α

2
·
(

yl − β

α
·
√

2Es

N0
· xm

l

)2

+
1
2
·
(

yl −
√

2Es

N0
· xm

l

)2





 . (36)

A binary and linear block code is then partitioned to constant Hamming weight subcodes (each of

them also includes the all-zero codeword). The conditional ML decoding error probability is upper

bounded by (6), where the all-zero vector is assumed to be the transmitted codeword. Due to the

channel symmetry and the linearity of the code, an overall union bound over the subcodes yields:

Pe = Pe|0 ≤
N∑

d=dmin

Pe|0(d) , (37)
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where dmin is the minimum Hamming distance of the N -length block code and Pe|0(d) is the

conditional decoding error probability with respect to the subcode with a constant Hamming weight

d. By (6), Pe|0(d) is upper bounded,

Pe|0(d) ≤ (Sd)ρ ·
(∫ +∞

−∞
p0(y)

1
ρ · ψ(y)1−

1
ρ dy

)(N−d)ρ

·
(∫ +∞

−∞
p0(y)

1−λρ
ρ · p1(y)λ · ψ(y)1−

1
ρ dy

)dρ

,

(38)

where 0 ≤ ρ ≤ 1, λ > 0, and

p0(y) =
1√
2π

· exp


−1

2
·
(

y +
√

2REb

N0

)2

 , (39)

p1(y) = p0(−y) , −∞ < y < +∞

designate the transition probabilities of the binary-input AWGN channel.

By substituting (35),(39) into (38), the optimization over the parameters λ ≥ 0 and β in [11] results:

β∗ =
1− d

N
1
α − d

N · (1− ρ)
, λ∗ =

1
2
·
(

β∗ +
1− β∗

ρ

)
. (40)

The substitution of (35), (39) and (40) into (38) then yields:

Pe|0(d) ≤ (Sd)ρ · αN(1−ρ)
2 ·

(
α− α− 1

ρ

)−Nρ
2

· exp





N ·
(

REb

N0

)
·


−1 +

(β∗)2 · (1− ρ)
α

+
ρ · (1− d

N

) ·
(
β∗ + 1−β∗

ρ

)2

α− α−1
ρ








. (41)

The bound (41) is the first version of the Duman and Salehi bounds [11] and it is numerically

optimized over the range: 0 ≤ α < 1
1−ρ , 0 < ρ ≤ 1.

4.2.2. Viterbi and Viterbi bound (first version)

The Viterbi and Viterbi bound [39] is an upper bound on the ML decoding error probability for

BPSK modulated block codes operating over a binary-input AWGN channel. It can be verified

that it is also a particular case of the first version of Duman and Salehi bounds by substituting

α = 1 in (40) and (41), which yields:

Pe ≤ (Sd)ρ · exp

(
−NREb

N0
·

(
d
N

) · ρ
1− d

N · (1− ρ)

)
, 0 ≤ ρ ≤ 1 . (42)

14



The optimization over the parameter ρ gives then the Viterbi & Viterbi upper bound [39], which

reads:

Pe ≤ exp
(
−N · Ev1(rd)

)
, (43)

where

rd =
ln(Sd)

N
, c =

Es

N0
=

REb

N0
, (44)

Ev1(rd) =





(
d

N

)
c− rd , 0 ≤ rd

c
≤ d

N
·
(

1− d

N

)
,



√

c−

√√√√√√√
rd ·

(
1− d

N

)

d

N




2

,
d

N
·
(

1− d

N

)
≤ rd

c
≤

d
N

1− d
N

.

(45)

4.2.3. Viterbi and Viterbi bound (second version)

The second version of the Viterbi and Viterbi bounds [38] is based on the Gallager-Fano 1961 bound

and it reads:

Pe|0(l) ≤ exp
(
−N · Ev2(rl)

)
, (46)

where rl = ln(Sl)
N and,

Ev2(rl) = max
0≤ρ≤1

{
−ρrl +

l

N
· ln

(
h̄(ρ)

)
+

(
1− l

N

)
· ln

(
ḡ(ρ)

)
− (1− ρ) · ln

(
h̄(ρ) + ḡ(ρ)

)}
.

(47)

Based on the symmetry of the binary-input and memoryless channel, we get from (23),(25) and

the substitution ρ = s
s−r (where s ≥ 0, r ≤ 0 and 0 ≤ ρ ≤ 1):

h̄(ρ)
4
= h(r) =

∑
y

[
p0(y)

1
1+ρ + p0(−y)

1
1+ρ

]−(1−ρ)
·
[
p0(y) · p0(−y)

] 1
1+ρ

,

ḡ(ρ)
4
= g(r) =

∑
y

[
p0(y)

1
1+ρ + p0(−y)

1
1+ρ

]−(1−ρ)
· p0(y)

2
1+ρ .

(48)

For continuous output channels, the summation in (48) should of course be replaced by integrals.

This bound is again a special case of the DS2 bound, as noticed by substituting in (8) the un-
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normalized tilting measure:

Gm
N (y) =

N∏

l=1

{(
p(yl|0)

1
1+ρ + p(yl|1)

1
1+ρ

)ρ
· p(yl|0)−

ρ
1+ρ

}
. (49)

4.2.4. Divsalar bound

Divsalar bound [7] is in fact a particular case of the Gallager-Fano 1961 bounding technique for a

binary-input AWGN channel (see subsection 3.3). This bound which is given in [7] in closed form

reads:

Pe ≤
N∑

d=dmin

min
{

exp
(
−N · E(c, d, β∗)

)
, Sd ·Q(

√
2dc)

}
, (50)

where

E(c, d, β) = −rd +
1
2
· ln

[
β + (1− β) · exp(2 · rd)

]
+

(
d
N

) · β
1− (

d
N

) · (1− β)
, (51)

β∗ =

√√√√
(

1− d
N

d
N

)
2c

1− exp(−2 rd)
+

(
1− d

N
d
N

)2 [
(1 + c)2 − 1

]
−

(
1− d

N
d
N

)
(1 + c), (52)

Q(x) =
1√
2π

∫ +∞

x
exp

(
− t2

2

)
dt , (53)

and the parameters c, rd are specified in (44). The bound is valid for Eb
N0

values which are not below

a certain threshold:

Eb

N0
≥ 1

R
· max
0≤d≤N(1−R)

(
(1− exp(−2 rd)) (1− d

N )

2 · ( d
N

)
)

. (54)

Based on (7) and (27), one obtains the following relation between the Fano-Gallager tilting measure

(fm
N (y)) and the Duman and Salehi normalized tilting measure ( ψm

N (y)):

ψm
N (y) =

fm
N (y)s · pm

N (y|xm)1−s

∑
y

fm
N (y)s · pm

N (y|xm)1−s
. (55)

By substituting into (55) the Fano-Gallager tilting measure (fm
N ) in (31c) and the conditional

probability density function (pm
N ) for the binary-input AWGN channel (29), then the normalized
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tilting measure (ψm
N ) for Divsalar bound coincides with the normalized tilting measure in (35). This

result is verified by setting the parameters as follows:

α = (2θ − 1)s + 1 , β = (2θ − 1)ηs + 1 . (56)

This is the grounds for the observation in [7] that Divsalar bound is a closed form version of the

Duman and Salehi (first version) bound [11].

4.2.5. Engdahl and Zigangirov bound

In Engdahl and Zigangirov bound [13] which was derived for a binary-input AWGN channel, the

decision region Y N
g associated with the transmitted codeword xm is an N -dimensional plane:

Y N
g =

{
y |

N∑

l=1

yl · xm
l ≥ Nd

}
. (57)

The motivation for (57) is that inside the good region (i.e, y ∈ Y N
g ), the correlation between the

received vector y and the transmitted codeword xm is not expected to be too small. Therefore, it

is above a certain threshold (Nd), where the parameter d is to be optimized, as to get the tightest

upper bound within the family of bounds (28) and the associated decision region Y N
g in (57). The

following Fano-Gallager tilting measure can be associated with the same decision region Y N
g :

fm
N (y) =

N∏

l=1

{
exp

(
−1

2
· y2

l + β · yl · xm
l

)}
, (58)

where β 6= γ (γ is introduced in (29)). The free parameter β in (58) demonstrates again that there

might be some functionally different Fano-Gallager tilting measures which imply the same decision

region (based on the definition of the regions in (15)). It is interesting to note, that for this specific

choice of a decision region (57), it was demonstrated in [13] that there is no need to invoke the

Chernoff bounds for the binary-input AWGN channel, and the two terms in the right hand side of

(17) can be exactly calculated.

4.2.6. The Chernoff version of various bounds for the binary-input AWGN channel

In his paper [7], Divsalar derived simplified Chernoff versions of some upper bounds, which result as

particular cases of the Fano-Gallager 1961 bounding technique. These simplified Chernoff versions

include the following bounds:
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The Chernoff version of the sphere bound: This bound results as a particular case of the

decision region in Divsalar bound (31), where η = 1.

The Chernoff version of the tangential bound [4]: This version coincides with the first

version of the Viterbi and Viterbi bound [39]. It can be shown that the relevant Fano-Gallager

decision region is a plane, which is also the case for Engdahl and Zigangirov bound [13]. However,

as noted above, in the latter bound the Chernoff bounding technique is not invoked, improving

thus the bound for a finite block length.

The Chernoff version of the tangential sphere bound: The tangential sphere bound of

Poltyrev [24] happens often to be the tightest reported upper bound for block codes which are

transmitted over a binary-input AWGN channel and ML decoded (see e.g., [30]–[32]). However,

in the random coding setting, it fails to reproduce the random coding exponent [24] while the

DS2 bound does. This bound involves a numerical solution of an associated optimization equation

([30, Eq. (6)]), and it is therefore not expressed in closed form. In his paper [7], Divsalar derived

a simplified Chernoff version of the tangential sphere bound. That upper bound is shown in [7]

to have the same error exponent as the tangential sphere bound of Poltyrev, and therefore the

loosening of the tangential sphere bound by invoking the Chernoff bounding technique, does not

carry any implications on the tightness of the bound for asymptotically infinite block length.

Due to the connection of the Fano-Gallager tilting measure to the Duman and Salehi variation,

it is evident that the Chernoff versions of these bounds can be also viewed as special cases of the

DS2 bound. It should be emphasized that the mentioned bounds above were originally developed

without resorting to Chernoff bounding technique, yielding thus tighter versions of these bounds.

4.3. Upper bounds on the ML decoding error probability for fully interleaved

fading channels with perfect channel state information at the receiver

We demonstrate here various variations of the DS2 bound when applied to the class of fully in-

terleaved Rayleigh fading channels with perfect channel state information at the receiver. This

problem is treated in detail in [8],[34],[26]-[28] and here we present in a comparative fashion some

insightful results. The model is:

y = a · x + n , (59)

where y stands for the received signal, x stands for the BPSK modulated input signal (that is

±√2Es) and n designates the additive zero mean and N0
2 variance Gaussian noise component. The

fading a is assumed to be perfectly known at the receiver and hence is considered to be real valued,
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as the receiver compensates for any phase rotation. Due to the ideal interleaving, the channel is

assumed to be memoryless. The bounds are based on first decomposing the code to constant-weight

subcodes (where every subcode also includes the all-zero codeword), over which a union bound is

invoked as in (37).

4.3.1. Optimized DS2 bound

In [26] the measure:

Ψ(y, a) =
N∏

l=1

ψ(yl, al) , (60)

is optimized to yield the best possible DS2 bound (6), where (y, a) are interpreted as the available

measurements at the receiver. In [26],[27],[28] the results are extended to the Rician channel.

4.3.2. Exponential tilting measure

In [34], a sub-optimal selection for ψ in (60) is suggested which in fact is motivated by the Duman

and Salehi (first version) bound [11]. An exponential tilting is also applied in [34] to the fading

sample a (treated as a measurement), which gives rise to the exponential tilting measure:

ψ(y, a) =

√
α
2π · exp

[
−α

2 ·
(
y − au ·

√
2Es
N0

)2

− αv2a2Es
N0

]
· p(a)

∫ +∞

0
p(a) · exp

(
−αv2a2Es

N0

)
· da

, (61)

where α ≥ 0, −∞ < u < +∞, −∞ < v < +∞, and p(a) designates the probability density function

of the independent fading samples. That yields a closed form upper bound in [34], which reads:

Pe|0(d) ≤ (Sd)ρ · α−N(1−ρ)
2 ·

(
α− α− 1

ρ

)−Nρ
2

·
(

1
1 + t

)N(1−ρ)

·
(

1
1 + ε

)dρ

·
(

1
1 + v

)(N−d)ρ

, (62)
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with:

t =
α · ν2 · Es

N0
, (63a)

v =
Es

N0
·


α(u2 + ν2)− α(u2 + ν2)− 1

ρ
−

(
αu− αu−1

ρ

)2

α− α−1
ρ


 , (63b)

ε =
Es

N0
·


α(u2 + ν2)− α(u2 + ν2)− 1

ρ
−

(
αu− αu−1

ρ − 2λ
)2

α− α−1
ρ


 . (63c)

This bound is in fact equivalent to the Divsalar and Biglieri bound [8] which has been derived

via a geometric extension of the associated decision region in Divsalar bound [7] (by rotating the

displaced sphere region in [7]). The bound (61)-(63) also yields to an extension of the Viterbi and

Viterbi (first version) bound for fully interleaved fading channels and perfect CSI at the receiver

(see [34]), by setting:

α = 1 , u = 1− ξρ , ν =
√

1− (1− ξρ)2 , λ =
1 + ξ · (1− ρ)

2
. (64)

In [34], the DS2 bound associated with the exponential tilting measure (61) is also applied to the

fully interleaved Rician fading channel. As a special case, it yields the Duman and Salehi (first

version) bound for a binary-input AWGN channel, where the Rician parameter K standing for the

power ratio of the direct and the diffused received paths, goes to infinity. The bounds are depicted

in Fig. 2 for the ’repeat and accumulate’ (RA) codes (an ensemble of turbo-like codes which was

introduced by Divsalar, Jin and McEliece [9]) operating over a fully interleaved Rayleigh fading

channel. The penalty for the gradual specialization of the DS2 bound by constraining the selection

ψ in (60) is explicitly indicated.

5. Gallager-type Bounds for the Mismatched Decoding Regime

In this section we generalize the DS2 bound for a mismatched decoding metric. The basic setting

is as before, that is a codeword x is conveyed via a channel of transition probability pN (y|x). The

decoder operates in a ML fashion, but may use a mismatched metric QN (y|x). Namely, code xj

out of the M possible equiprobable codewords is declared if

QN (y|xj) > QN (y|xi) , ∀ i 6= j , i = 1, 2 , . . . , M , (65)
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and ties are randomly resolved. The matched case results when QN (y|x) = pN (y|x). In general,

QN (y|x) is not necessarily normalized to yield a probability measure.

We first employ the Duman and Salehi bounding technique in this setting and then examine the

performance of random ensembles of codes.

5.1. The mismatched Duman and Salehi bound

The standard Gallager upper bound on the conditional decoding error probability for the mis-

matched case Pe|m (conditioned on the transmitted codeword xm) is given by

Pe|m ≤
∑

y

pN (y|xm) ·

 ∑

m′ 6=m

(
QN (y|xm′

)
QN (y|xm)

)λ



ρ

, λ, ρ ≥ 0 . (66)

By invoking the Duman and Salehi bounding technique as described in section 2.2, then starting

from (66) yields in parallel to (6),

Pe|m ≤

 ∑

m′ 6=m

∑
y

pN (y|xm)
1
ρ · ψm

N (y)1−
1
ρ ·

(
QN (y|xm′

)
QN (y|xm)

)λ



ρ

, λ ≥ 0, 0 ≤ ρ ≤ 1 , (67)

where as in section 2.2, ψm
N (y) is the normalized Duman and Salehi tilting measure. In parallel to

(8), the DS2 bound with the un-normalized tilting measure reads:

Pe|m ≤

∑

y

Gm
N (y) · pN (y|xm)




1−ρ

·

 ∑

m′ 6=m

∑
y

pN (y|xm) ·Gm
N (y)1−

1
ρ ·

(
QN (y|xm′

)
QN (y|xm)

)λ



ρ

, 0 ≤ ρ ≤ 1 , λ ≥ 0 . (68)

The advantage of this bound, as compared to the original Gallager mismatched bound (66), is as in

the matched case: The possible utilization for specific codes and ensembles. This is demonstrated

in Section 4.2 for a fully interleaved fading channel with a faulty channel state information.

5.2. Ensembles of random codes

In this subsection, we examine the bound for a random coding strategy. As in the matched regime,

for a general distribution of codewords qN (x), the DS2 bound with the optimized tilting measure

reconstructs the 1965 Gallager random coding bound. We therefore continue with the mismatched
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Gallager bound (66) and restrict our attention to ensembles of codes where each codeword satisfies

the inequality:

Nε− δ ≤ ΓN (xj) < Nε , δ > 0 , j = 1, 2 , . . . , M , (69)

where ΓN (xj) stands for an arbitrary cost function involved in the transmission of the codeword

xj and ε is a positive constant, both to be specified. For a codebook satisfying the inequality (69)

(for every codeword), we further loosen the bound (66) letting,

Pe|m ≤
∑

y

pN (y|xm) ·

 ∑

m′ 6=m

(
QN (y|xm′

)
QN (y|xm)

)λ

·
(

eΓN (xm′ )

eΓN (xm)

)
· eδ




ρ

, λ, ρ ≥ 0 . (70)

This is since for every value of j (j = 1, 2 , . . . , M), the inequality: eΓN (xm′ )
eΓN (xm) · eδ > 1 holds for any

codebook satisfying (69). Now, we select randomly and independently each codeword in such a

codebook by the probability law αN (x). The upper bound on the decoding error probability over

this ensemble equals:

Pe ≤
∑

y

∑
xm

αN (xm)pN (y|xm)
∑

x1

∑

x2

· · ·
∑

xm−1

∑

xm+1

· · ·
∑

xM





M∏
i=1

i 6=m

αN (xi)


∑

j 6=m

(
QN (y|xj)
QN (y|xm)

)λ
eΓN (xj)

eΓN (xm)
eδ




ρ




,

(71)

where λ, ρ ≥ 0.

As indicated in (69), the measure αN (x) satisfies:

αN (x) ≡ 0 ∀ x where ΓN (x) /∈ [Nε− δ, Nε) . (72)

In principle, the parameter δ introduced in (69) may depend on N . Invoking the Jensen inequality

in (71) yields the following upper bound on the decoding error probability:

Pe ≤ (M − 1)ρ · eδρ ·
∑

y

∑
x

αN (x) · pN (y|x) ·




∑

x′
αN (x′) ·

(
QN (y|x′)
QN (y|x)

)λ

· eΓN (x′)

eΓN (x)





ρ

, (73)

where 0 ≤ ρ ≤ 1, λ ≥ 0, and the superscript of xm was removed (as the bound is clearly invariant

to the transmitted codeword). Let qN (x) be an arbitrary probability measure and we set,

αN (x) =
qN (x)

µα
, (74)

where based on (69):

µα = µα(Γ, δ, ε) =
∑

x : ΓN (x)∈[Nε−δ,Nε)

qN (x) . (75)
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The substitution of (74) into (73) yields:

Pe ≤ (M − 1)ρ · eδρ

(µα)1+ρ
·
∑

y

∑
x

qN (x) · pN (y|x) ·




∑

x′
qN (x′) ·

(
QN (y|x′)
QN (y|x)

)λ

· eΓN (x′)

eΓN (x)





ρ

, (76)

where λ ≥ 0, 0 ≤ ρ ≤ 1 and δ > 0. We may further loosen the bound (76) by replacing eδρ

(µα)1+ρ by

eδ

µ2
α
, as δ > 0, 0 ≤ ρ ≤ 1 and µα ≤ 1. This yields:

Pe ≤ eδ

µ2
α

Mρ ·
∑

y

∑
x

qN (x) · pN (y|x) ·




∑

x′
qN (x′) ·

(
QN (y|x′)
QN (y|x)

)λ

· eΓN (x′)

eΓN (x)





ρ

, (77)

where we have also upper bounded M − 1 by M . Let the channel probability law pN (y|x) and the

mismatched metric QN (y|x) be memoryless:

pN (y|x) =
N∏

k=1

p(yk|xk), QN (y|x) =
N∏

k=1

Q(yk|xk) , (78)

and we also set an i.i.d. probability measure qN (x):

qN (x) =
N∏

k=1

q(xk) . (79)

Let the cost function ΓN (x) be an additive function:

ΓN (x) =
N∑

k=1

γ(xk) . (80)

Substituting (78)-(80) into (77) yields the single letter expression,

Pe ≤ eδ

µ2
α

· eρ RN ·
[∑

y

∑
x

q(x) · p(y|x) ·
(∑

x′
q(x′) ·

(
Q(y|x′)
Q(y|x)

)λ

· eγ(x′)

eγ(x)

)ρ]N

, (81)

where the rate R equals R = ln(M)
N . Alternatively,

Pe ≤ eδ

µ2
α

· e−N [E0(q,γ,ρ,λ)−ρR] , (82)

where

E0(q, γ, ρ, λ) = − ln

[∑
y

∑
x

q(x) · p(y|x) ·
(∑

x′
q(x′) ·

(
Q(y|x′)
Q(y|x)

)λ

· eγ(x′)

eγ(x)

)ρ]
. (83)
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Before turning to treat the exponent in (82), let us estimate µα for fixed (N -independent) δ. Based

on (75) and (80):

µα = Prob

(
−δ ≤

N∑

k=1

γ(xk)−Nε < 0

)
, (84)

where xk, k = 1, 2 , . . . , N , are i.i.d. random variables governed by the single-letter probability

measure q(x). Now, we choose ε to satisfy:

ε =
∑

x

q(x) · γ(x) , (85)

for a fixed γ(x). Similarly to Gallager [16], one can estimate µα for N →∞, yielding

lim
N→∞

√
N · µα =

δ√
2πσ2

, (86)

where

σ2 =
∑

x

q(x) · γ(x)2 −
(∑

x

q(x) · γ(x)

)2

. (87)

This is directly found based on (84) by the central limit property as follows:

µα = Prob

(
−δ√
N
≤ 1√

N
·

N∑

k=1

γ(xk)−
√

Nε < 0

)

−→
N→∞ Prob

( −δ√
N
≤ N(0, σ2) < 0

)
≈

δ√
N
¿ 1

δ√
N
· 1√

2πσ2
. (88)

The pre-exponent factor in (82) can be optimized over δ ≥ 0 to yield,

min
δ>0

lim
N→∞

1
N

eδ

µ2
α

= min
δ>0

(2πσ2) · eδ

δ2
= (2πσ2) · e2

4
, (89)

which demonstrates that the behavior of the pre-exponent in (82) is asymptotically proportional to

N (with N →∞). Thus for finite ε (85) and σ2 (87), the pre-exponent in (82) has no exponential

implications as it behaves asymptotically like a ln (N)
N term in the exponent. For a fixed input

distribution q(x), we then attempt to maximize the error exponent

E(R, q) = sup
0≤ρ≤1

λ≥0

γ(x)

(
E0(q, γ, ρ, λ)− ρR

)
, (90)
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where γ(x) is a real function yielding finite ε and σ2 in (85) and (87) respectively. Consider the

rate equation:

R =
∂

∂ρ

(
E0(q, γ, ρ, λ)

)
= eE0(q,γ,ρ,λ)· (91)

·




−

∑
y

∑
x

q(x) · p(y|x) ·
(∑

x′
q(x′) ·

(
Q(y|x′)
Q(y|x)

)λ

· eγ(x′)

eγ(x)

)ρ

· ln




∑

x′
q(x′) ·Qλ(y|x′) · eγ(x′)

Qλ(y|x) · eγ(x)








,

where the last equality results from (83).

The maximal rate RH is calculated by substituting ρ = 0 in (91), yielding:

RH = sup
γ(x)

max
λ≥0

∑
y

∑
x

q(x) · p(y|x) · ln




Qλ(y|x) · eγ(x)

∑

x′
q(x′) ·Qλ(y|x′) · eγ(x′)


 , (92)

This in fact equals what is known as Csiszár-Körner-Hui lower bound on the mismatched capacity,

since it yields the dual representation in the terminology of [18]. It is rather straightforwardly

verified that the error exponent E(R) in (90) is positive for R < RH . The input distribution q(x)

can now be chosen to maximize RH , in the usual sense [18], [23]. In the case of continuous input and

output alphabets, the relevant sums should be replaced by integrals and it should be verified that

the optimized γ(x) and q(x) yield finite (though arbitrary) ε and σ in (85) and (87) respectively.

It can be also verified that at ρ = 1

R = sup
λ≥0

E0(q, γ = 0 , ρ = 1, λ) , (93)

yields the generalized cutoff rate [19], which cannot be further improved by optimizing over the real

function γ(x). In terms of ensembles, it is worth emphasizing that the upper bound (82) resulted by

restricting our attention to ensembles of codewords satisfying (69). This restriction is necessary, as

if a purely random ensemble is attempted, then it was concluded in [18] that the results associated

with γ(x) = 0 cannot be surpassed. The maximal rate then corresponds to the generalized mutual

information (GMI) [23].

In [25], the Gallager 1965 bounding technique was applied to derive upper bounds for i.i.d. random

and fixed composition codes, operating over memoryless channels with finite input alphabets and

arbitrary output alphabets, and whose decoding metric is matched to the channel. The metric which

is at the beginning general, was then optimized to yield an equivalent metric to ML decoding, and

yet the results in [25] reproduced the error exponent for fixed composition codes [6]. Here we deal

with a mismatched metric and the code ensemble is restricted by introducing a generalized energy

constraint (69), which is subject to optimization.
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5.3. Ensembles of structured codes

We apply here the generalization of the DS2 bound for the mismatched decoding regime (66) to

ensembles of structured codes. We assume that the transition probabilities of the channel pN (y|x)

and the mismatched metric QN (y|x) are binary-input, symmetric-output and memoryless.

The optimization of the normalized Duman and Salehi tilting measure ψm
N (y) in (67) is restricted

here to the case where ψ0
N (y) can be expressed in the product form: ψ0

N (y) =
N∏

i=1

ψ(yi). In that

case, the partitioning of the code (or ensemble of codes) to constant Hamming weight subcodes

yields (37), where:

Pe|0(d) ≤ (Sd)ρ ·
(∑

y

g1(y) · ψ(y)1−
1
ρ

)(N−d)ρ

·
(∑

y

g2(y) · ψ(y)1−
1
ρ

)dρ

, (94)

and

g1(y) = p(y|0)
1
ρ , g2(y) = p(y|0)

1
ρ ·

(
Q(y|1)
Q(y|0)

)λ

. (95)

For continuous output channels, the sums in (94) should be replaced by integrals. With the aid of

the calculus of variations, the optimal normalized Duman and Salehi tilting measure ψ, in terms

of minimizing the upper bound (94)-(95), admits the form:

ψ(y) =

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ , where λ ≥ 0 , 0 ≤ ρ ≤ 1 . (96)

As demonstrated in Appendix B, the parameter α is optimally determined by a numerical solution

of the equation:

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ−1

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ = 1− δ , (97)

where δ ≡ d
N is the normalized Hamming weight of the N -length codewords possessing a Hamming

weight d. The existence and uniqueness of a solution α in (97) is proved in Appendix B.

From the discussion above, the upper bound for the mismatched decoding regime in (37), (94)-(97)

involves numerical optimizations over the two parameters λ ≥ 0, 0 ≤ ρ ≤ 1, for at most the N + 1
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constant Hamming weight subcodes of the considered ensemble of codes. The necessary information

on the ensemble of codes comprises the average distance spectrum (or even a tight upper bound on

the ensemble distance spectrum), and a refined information on the algebraic structure of the codes

is not required.

6. Some Applications and Examples

In Section 5, a large class of efficient recent bounds (or their Chernoff versions) was demonstrated to

be a special case of the generalized DS2 bound. Implications and applications of these observations

are pointed out here, including the fully interleaved fading channel, resorting to either matched or

mismatched decoding. The proposed approach can be also generalized to geometrically uniform

non-binary codes, finite state channels, bit interleaved coded modulation systems, and it can be

also used for the derivation of upper bounds on the conditional decoding error probability.

6.1. AWGN channels

We apply here some variants of the Gallager bounds and other reported bounds to the ensemble

of un-punctured turbo codes of rate 1
3 with a uniform interleaver of length 1000 and two recursive

systematic convolutional (RSC) component codes whose generators are (1, 21
37) in octal form (see

Fig. 1). The considered ensemble of codes is also terminated to the all-zero state at the end of

each frame by additional four bits (having thus an overall of 3012 coded bits). The following upper

bounds on the bit error probability are depicted in Fig. 2: The original tangential sphere bound of

Poltyrev ([24],[30]) (differing from the loosened Chernoff version bound derived in [7]), Engdahl and

Zigangirov bound [13] (the non-Chernoff version in Section 4.6 here), Duman and Salehi bounds

[11, 12] (Sections 2.3 and 4.2 here), Divsalar bound [7] (Section 4.5 here), Viterbi and Viterbi bounds

[38, 39] (Sections 4.3 and 4.4 here), and finally the ubiquitous union bound. It is demonstrated

in Fig. 2, that the difference between the two versions of the Duman and Salehi bounds for the

binary-input AWGN channel is very small (about 0.01 dB) and that also the Duman and Salehi

(first version) bound coincides with Divsalar bound. The first observation is consistent with [12]

and the second observation verifies numerically the fact that Divsalar bound is indeed a closed form

of Duman and Salehi (first version) bound [11], as was first indicated in [7] (the negligible difference

between the two bounds depicted in Fig. 2 is attributed to the numerical optimizations associated

with the calculation of the first version of the Duman and Salehi bound (41)). The tangential

sphere bound [24] and Engdahl and Zigangirov bound [13] were derived without invoking the

Chernoff bounding technique, explaining therefore their advantage over Duman and Salehi bounds

and some other related bounds for block codes of moderate block-length, as the latter bounds rely
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on the Chernoff bounding technique (see Fig. 2). However, as indicated in [7] (and section 4.7), the

loosening of the tangential sphere bound which turns it into a particular case of the DS2 bound,

does not carry any implications on its associated error exponent for the asymptotically infinite

block length.

6.2. Fully interleaved fading channels

We apply here various variants of the generalized DS2 bound to the fully interleaved Rayleigh fading

channel with perfect channel state information (see Section 4.3). These bounds are evaluated for

the ensemble of rate 1
3 uniformly interleaved turbo codes depicted in Fig. 1. The optimization of the

generalized DS2 bound (combined with the tight version of the union bound) is demonstrated as the

tightest reported bound (see also [34],[26]). It also approximately replicates here the performance of

these turbo codes when iteratively decoded with 10 iterations of the Log-MAP iterative decoding

algorithm (see Fig. 3). These bounds are also evaluated for the ensemble of rate-1
4 uniformly

interleaved RA codes [9], with a block length of N = 4096 (see Figs. 4,5). In [34], [26] these

bounds were applied to some ensembles of efficient codes (turbo [5], Gallager-LDPC [17] and RA

codes [9]). For moderate values of energy per bit to spectral noise density
(

Eb
N0

)
, the optimized

DS2 upper bound (under ML decoding) falls below the computer simulation results for the sum-

product iterative decoding algorithm (see Fig. 5), demonstrating the mild sub-optimality of the

latter decoding algorithm.

6.3. Thresholds of codes

Let C be an ensemble of binary, linear (or geometrically uniform) block codes of block-length N

and rate R. The threshold is defined as the minimal value of Eb
N0

ensuring a block decoding error

probability that decays to zero for asymptotically infinite block length. Obviously, the threshold

depends on three parameters: The channel model, the applied decoding algorithm and the con-

sidered code (or ensemble of codes). The thresholds associated with some decoding algorithms

were recently studied: an analytical upper bound on the thresholds of ML decoded block codes

operating over the binary-input AWGN channel was derived by Divsalar [7]. Upper bounds on the

thresholds of RA [9] and Gallager-LDPC codes [17] under “typical pairs” decoding algorithm, were

derived by McEliece et. al. [1] for the binary symmetric channel (BSC) and for the binary-input

AWGN channel. Exact thresholds for the BSC under a specific iterative decoding algorithm were

derived by Bazzi et. al. [3]. Based on the optimized DS2 bound, an upper bound on the thresholds

which are associated with ML decoding were numerically calculated for the fully interleaved fading

channels with perfect channel state information (see [26], section 3.3). As predicted, these thresh-
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olds meet the ultimate Shannon capacity limit for the ensemble of fully random block codes of rate

R. Thresholds for the ensembles of RA and (j, k) Gallager-LDPC codes are depicted in Table 1.

These thresholds refer to the fully interleaved Rayleigh fading channel with perfect channel state

information and a maximum ratio combining (MRC) space diversity of order four. As expected,

due to the simple structure of RA codes, the calculated thresholds for the ensemble of RA codes

are worse than the corresponding thresholds for the ensembles of Gallager-LDPC codes. In general,

the calculation of the upper bounds on these thresholds depends on the asymptotic exponent of

the distance spectrum of the considered codes (or ensembles). Recently, some techniques for the

calculation of the asymptotic exponents of the distance spectra of turbo codes and irregular LDPC

codes where derived in [43] and [44], respectively. These new techniques can be applied to the

calculation of upper bounds on the Eb
No

-thresholds for turbo and LDPC codes under optimal ML

decoding.

6.4. Mismatched decoding

We apply here the generalized DS2 bound introduced in section 5.3, to study the robustness of a

mismatched decoder that is based on ML decoding with respect to the faulty channel measurements.

We examine here a BPSK modulated signal, transmitted through a fully interleaved Rayleigh fading

channel. For simplicity, we apply our bounds to the case of a perfect phase estimation of the i.i.d.

fading samples (in essence reducing the problem to a real channel). We also assume that the

estimated and real magnitudes of the Rayleigh fading samples satisfy a joint distribution of two

correlated bivariate Rayleigh variables with an average power of unity. We note that if the phase

estimation is not perfect (as opposed to what we have assumed here, that the error occurs only

in the amplitude estimation), assuming that the actual fading coefficient (a) and its estimate (â)

are correlated Gaussian circularly symmetric random variables, the implication of the correlation

decoder manifest itself in just some enhanced additive independent Gaussian noise. This is in fact

the best (matched) decoder given the perfect side information at hand. This is since:

y = ax + n = âx + (a− â)x + n.

In the Gaussian regime the estimated error (a− â) is Gaussian distributed and independent of the

estimator â, even when conditioned on x (as neither the mean nor the variance of (a − â)x does

not depend on x for the binary case, as ||x||2 = Es [42]). The perfectly known phase treated here

is a different case, since the results are not captured in terms of scaling the additive noise.

Based on the notations in section 5, the binary-input and symmetric-output channel is memoryless,
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and we therefore obtain:

Q(y, â|0) = Q(−y, â|1) =
1√
2π

· exp


−1

2
·
(

y + â

√
2REb

N0

)2

 · 2â · exp(−â2) ,

p(y, â|0) = p(−y, â|1) =
∫ +∞

0

1√
2π

· exp


−1

2
·
(

y + a

√
2REb

N0

)2

 · pa,â(a, â) da ,

−∞ < y < +∞ , â ≥ 0 ,

(98)

where a, â are jointly Rayleigh distributed:

pa,â(r1, r2) =
4r1r2

1− ρ∗
· I0

(
2
√

ρ∗ r1r2

1− ρ∗

)
· exp

(
−r2

1 + r2
2

1− ρ∗

)
, r1, r2 ≥ 0 , (99)

E(a2) = E(â2) = 1, and the parameter ρ∗ designates the correlation coefficient between the pairs

of squared Rayleigh random variables a2, â2:

ρ∗ =
cov (a2, â2)√

V ar(a2) · V ar(â2)
. (100)

The integral expressed in (98),(99) can be transformed to another integral which is easily calculated

with the aid of the Gaussian numerical integration formula (see Appendix C).

By partitioning the considered linear and binary block code C of length N and rate R to constant

Hamming weight subcodes, the tight version of the union bound on the ML decoding error prob-

ability, corresponding to the subcode of Hamming weight d (0 ≤ d ≤ N), is given in this case by

the expression:

Sd · E




Q




√
2REb

N0

d∑

i=1

ai âi

√√√√
d∑

i=1

â2
i







, (101)

where Sd designates the number of codewords of Hamming weight d, the Q-function is introduced

in (53) and the notation E stands for the statistical expectation with respect to the i.i.d. Rayleigh

fading samples {ai} and their Rayleigh distributed estimations {âi}. The expressions in (101)

(where 0 ≤ d ≤ N) are calculated via the Monte-Carlo method, by generating the correlated

bivariate Rayleigh random variables with a certain correlation coefficient ρ∗ (expressed in (100)),

based on the algorithm proposed in [37]. The upper bound on the bit error probability based on

the generalized DS2 bound in (94)-(97) is compared in Fig. 6 to the improved upper bound that

combines the DS2 bound with the tight version of the union bound for every constant Hamming

weight subcode. The comparison between these two bounds refers to the ensemble of uniformly
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interleaved turbo codes depicted in Fig. 1 where Eb
N0

= 3 dB. It is reflected from Fig. 6 that the

latter bound yields a considerably tighter error floor (the error floor in Figs. 6,7 is observed for

a sufficiently high correlation coefficient ρ∗, and it reflects the robustness of the system to faulty

measurements of the fading samples). The error floor exhibited by the improved upper bound in

Fig. 6 also predicts reliably the error floor of the turbo codes associated with the suboptimal and

efficient Log-MAP iterative decoding algorithm (based on computer simulations with 10 iterations).

The upper bounds on the bit error probability that are based on the combination of the generalized

DS2 bound in (94)-(97) and the tight version of the union bound (101) are depicted in Fig. 7 for

several fixed values of Eb
N0

. These curves are plotted as a function of the correlation coefficient ρ∗

between the squares of the i.i.d. jointly Rayleigh fading samples and their estimates. The bounds

in Fig. 7 refer to the ensemble of unpunctured rate 1
3 turbo codes depicted in Fig. 1. Since for a

fully interleaved Rayleigh fading channel with perfect side information on the fading samples, the

channel cutoff rate corresponds to Eb
N0

= 3.23 dB, then according to the upper bounds depicted

in Fig. 7, the ensemble performance of these turbo codes (associated with the hypothetical ML

decoding) is sufficiently robust in case of mismatched decoding, even in a portion of the rate region

exceeding the channel cutoff rate.

The proposed upper bounds depicted in Figs. 6 and 7 were efficiently implemented in Matlab soft-

ware, indicating their applicability in terms of complexity and the practical running time involved

in their calculations.

7. Summary and Conclusions

In this paper, we discuss numerous efficient bounds on the decoding error probability of specific

codes and ensembles under maximum-likelihood (ML) decoding, and we demonstrate the underly-

ing connections that exist between them. In addressing the Gallager bounding techniques and their

variations, we focus here on the Duman and Salehi variation, which originates from the classical

1965 Gallager bound. The considered upper bounds on the block and bit error probabilities under

ML decoding rely on the distance spectrum and the input-output weight distributions of the codes,

respectively, which are in general calculable. By generalizing the second version of the Duman

and Salehi (DS2) bound which was originally derived for the binary-input AWGN channel [12], we

demonstrate its remarkable generality and show that it provides the natural bridge between the

1961 and 1965 Gallager bounds (see Section 3). It is applicable for both random and specific codes,

as well as for either bit or block error analysis. Some observations and interconnections between

the Gallager and Duman and Salehi bounds are presented in Section 3, which partially rely on

insightful observations made by Divsalar [7]. In particular, it is demonstrated in Section 3 that the
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1965 Gallager random coding bound can be re-derived from the DS2 bound. The geometric inter-

pretations of these Gallager-type bounds are introduced in Section 3, reflecting the non-uniqueness

of their associated probability tilting measures. In Section 4, many reported upper bounds on the

ML decoding error probability (or their Chernoff versions) are shown to be special cases of the DS2

bound. This is done by choosing an appropriate probability tilting measure and calculating the

resulting bound with the specific chosen measure. This framework also facilitates to generalize the

Shulman and Feder bound [36] (see Appendix A).

The proposed approach can be generalized to geometrically uniform non-binary codes, finite state

channels, bit interleaved coded modulation systems, and it can be also used for the derivation of

upper bounds on the conditional decoding error probability (as to account for a possible partitioning

of the original code to subcodes). The DS2 bound is generalized in Section 5 to the mismatched

decoding regime, where the decoder performs ML decoding with respect to a mismatched metric.

The generalized bound is applicable to the analysis of the error performance of deterministic codes

and ensembles. We address in particular the random coding version, which matches the Gallager

1965 random coding setting, and reproduces in Section 5 some known results (see [18], [19], [23]),

hinging on an alternative approach which appropriately limits the considered ensemble of codes.

Implications and applications of these observations are pointed out in Section 6, which include the

fully interleaved fading channel with either matched or mismatched decoding.

The generalization of the DS2 upper bound for the analysis of the bit error probability yields the

replacement of the distance spectrum {Sd}N
d=1 (which appears in the upper bound on the block

error probability) by the sequence {S′d}N
d=1 where: S′d =

NR∑

w=1

{( w

NR

)
Aw,d

}
, and Aw,d designates

the number of codewords in a systematic block code with an information Hamming weight w and

a total Hamming weight d (where 0 ≤ w ≤ NR and 0 ≤ d ≤ N). The derivation of the generalized

DS2 bound on the bit error probability is detailed in [26], and it yields a considerable improvement

in the tightness of the bound, as compared to [11, 12]. The computational complexity which is

involved in calculating the DS2 bound is moderate.

The interconnections between many reported upper bounds are depicted in Fig. 8, where it is

reflected that the DS2 bound yields many reported upper bounds as special cases.

The tangential sphere bound [24] happens often to be the tightest reported upper bound for block

codes which are transmitted over the binary-input AWGN channel and ML decoded (see Fig. 2 and

[30, 31, 32, 41]). However, in the random coding setting, it fails to reproduce the random coding

error exponent (see [24]), while the DS2 bound does. In fact, also Shulman and Feder bound which

is a special case of the latter bound (see section 4.1) achieves capacity for the ensemble of fully
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random block codes. This substantiates the claim that there is no uniformly best bound, providing

the incentive for the generalization of Shulman and Feder bound (see Appendix A). However, we

note that the loosened version of the tangential sphere bound [7] (which involves the Chernoff

inequality) maintains the asymptotic (i.e, for infinite block length) exponential tightness of the

tangential sphere bound of Poltyrev [24], and this loosened version is a special case of the DS2

bound (see Section 4.2.6).
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Appendix A: A generalization of Shulman and Feder Bound

In this appendix a generalized version of Shulman and Feder bound is derived, based on the DS2

bound.

Let C be the ensemble of random binary block codes of length N and rate R = ln(M)
N nats per

channel use, where the codewords are independently selected and uniformly distributed:

qN (x) =
N∏

i=1

q(xi) = 2−N . (A.1)

We assume here that an arbitrary codeword x is transmitted over a binary-input output-symmetric

channel. The upper bound (11) on the conditional decoding error probability is independent of the

transmitted codeword (under the assumption (A.1)), which can then be on one hand averaged with

respect to the pure binomial distribution (giving the 1965 Gallager random coding bound) and it is

also valid if x is chosen arbitrarily, say the all zero codeword. For this specific choice, the Gallager

bound on the conditional decoding error probability yields

Pe|0 ≤ (M − 1)ρ ·
∑

y

pN (y|0) ·

∑

x′
2−N

(
pN (y|x′)
pN (y|0)

)λ



ρ

, λ ≥ 0 , 0 ≤ ρ ≤ 1 . (A.2)

The inner summation in (A.2) can be alternatively rewritten as a double summation, where its outer

summation is over the Hamming weights of the N -length binary vectors and its inner summation

is over the binary vectors of the same Hamming weight, giving:

∑

x′
2−N ·

(
pN (y|x′)
pN (y|0)

)λ

=
N∑

l=0

2−N

(N
l )∑

j=1

(
pN (y|εl,j)
pN (y|0)

)λ

(A.3)

where εl,j stands for the j-th permutation of an N -length binary vector of a Hamming weight l

(where l = 0, 1 , . . . , N, j = 1, 2 , . . . ,
(
N
l

)
). The substitution of (A.3) into (A.2) gives:

Pe|0 ≤ (M − 1)ρ ·
∑

y

pN (y|0) ·




N∑

l=0

2−N ·
(

N

l

)
· 1(

N
l

) ·
(N

l )∑

j=1

(
pN (y|εl,j)
pN (y|0)

)λ



ρ

. (A.4)

Let bl = 2−N · (N
l

)
(l = 0, 1 , . . . , N) and we designate by El the statistical expectation over the

(
N
l

)
binary N -length vectors of Hamming weight l. Equation (A.4) then transforms to

Pe|0 ≤ (M − 1)ρ ·
∑

y

pN (y|0)1−λρ ·
(

N∑

l=0

bl · El

(
pN (y|εl)λ

))ρ

, λ ≥ 0 , 0 ≤ ρ ≤ 1 . (A.5)
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Upon substitution of λ = 1
1+ρ , invoking the assumption of a memoryless binary-input and symmetric-

output channel, the right hand side of equation (A.5) yields the 1965 Gallager random coding bound,

i.e:

(M − 1)ρ · e−N ·E
(

R,q= 1
2

)
, (A.6)

where E0(ρ, q) is introduced in (3).

The formulation (A.5) of the 1965 Gallager random coding bound allows for the derivation of a

generalized version of the Shulman and Feder bound [36] as a particular case of the generalized

DS2 bound. To that end, let C be a fixed binary linear block code, where its distance spectrum is

designated by {Sl}N
l=0. We consider here the ensemble of codes including the codebook of the original

block code and also all its possible position permutations. Since all the codes in this ensemble feature

the same ML decoding error probability, then the conditional decoding error probability (where

without any loss of generality, the all-zero vector is assumed to be the transmitted codeword) does

not depend on the codebook selected from this ensemble. Based on (8), we obtain the upper bound:

Pe|0 ≤

∑

y

G0
N (y) · pN (y|0)




1−ρ

· E





 ∑

m′ 6=0

∑
y

pN (y|0) ·G0
N (y)1−

1
ρ ·

(
pN (y|xm′

)
pN (y|0)

)λ



ρ
 , (A.7)

0 ≤ ρ ≤ 1 , λ ≥ 0 ,

where E designates the statistical expectation over all the codebooks of the considered ensemble

of codes, and G0
N (y) is assumed to be independent of the selected codebook in the ensemble (as it

will be later verified).

By invoking the Jensen inequality, we further loosen the upper bound (A.7) and obtain:

Pe|0 ≤

∑

y

G0
N (y) · pN (y|0)




1−ρ

·

·

∑

y

pN (y|0) ·G0
N (y)1−

1
ρ ·

∑

m′ 6=0

E




(
pN (y|xm′

)
pN (y|0)

)λ






ρ

, 0 ≤ ρ ≤ 1
λ ≥ 0 .

(A.8)

Since the statistical expectation in (A.8) is taken over all the codebooks of the considered ensemble,

it therefore only depends on the Hamming weight of the binary N -length vector xm′
. Thus, the
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upper bound (A.8) can be expressed in terms of the ensemble distance spectrum:

Pe|0 ≤

∑

y

G0
N (y) · pN (y|0)




1−ρ

·

∑

y

pN (y|0) ·G0
N (y)1−

1
ρ ·

N∑

l=0

Sl · El




(
pN (y|εl)
pN (y|0)

)λ






ρ

, (A.9)

0 ≤ ρ ≤ 1 , λ ≥ 0 ,

where the Hamming weight of the N -length binary vector εl is l(l = 0, 1 , . . . , N). By selecting the

(non-negative) function G0
N (y) in (A.9) as:

G0
N (y) =




N∑

l=0

Sl · El




(
pN (y|εl)
pN (y|0)

)λ






ρ

, (A.10)

the following upper bound results:

Pe|0 ≤
∑

y

pN (y|0) ·



N∑

l=0

Sl · El




(
pN (y|εl)
pN (y|0)

)λ






ρ

, (A.11)

λ ≥ 0 , 0 ≤ ρ ≤ 1 .

Let vl = Sl
M−1 (l = 0, 1 . . . N), where M −1 is the number of non-zero codewords differing from the

transmitted codeword, be a probability measure, and set bl to be the binomial measure in (A.4).

Hölder’s inequality for an arbitrary non-negative sequence {Ql}N
l=0 yields:

N∑

l=0

vl ·Ql =
N∑

l=0

bl ·
(

vl

bl

)
·Ql (A.12)

≤
(

N∑

l=0

bl ·QP
l

) 1
P

·
(

N∑

l=0

bl ·
(

vl

bl

)Q
) 1

Q

,
1
P

+
1
Q

= 1 , P, Q ≥ 1 .
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When invoked in (A.11), Hölder’s inequality gives:

Pe|0 ≤ (M − 1)ρ ·
∑

y

pN (y|0) ·



N∑

l=0

vl · El




(
pN (y|εl)
pN (y|0)

)λ






ρ

≤ (M − 1)ρ ·
(

N∑

l=0

bl ·
(

vl

bl

)Q
) ρ

Q

·
∑

y

pN (y|0) ·




N∑

l=0

bl ·

El




(
pN (y|εl)
pN (y|0)

)λ






P



ρ
P

= (M − 1)ρ

(
N∑

l=0

bl

(
vl

bl

)Q
) ρ

Q

·
∑

y

pN (y|0)1−λρ ·
(

N∑

l=0

bl ·
(
El

((
pN (y|εl)

)λ))P
) ρ

P

.(A.13)

Invoking again the Jensen inequality
(
E(β)

)P
≤ E(βP ) for P ≥ 1, establishes the upper bound:

Pe|0 ≤ (M − 1)ρ ·
∑

y

pN (y|0)1−λρ ·
(

N∑

l=0

bl · El

(
pN (y|εl)

)λP
) ρ

P

·
(

N∑

l=0

bl ·
(

vl

bl

)Q
) ρ

Q

. (A.14)

Suppose that the binary-input symmetric-output channel is memoryless:

pN (y|x) =
N∏

i=1

p(yi|xi) ,

p(y|0) = p(−y|1) .

(A.15)

By introducing in (A.14) the new parameters λ′, ρ′ which satisfy the equalities:

λ′ = λP , ρ′ =
ρ

P
, and λ′ =

1
1 + ρ′

(
λ′ ≥ 0 , 0 ≤ ρ′ ≤ 1

P

)
, (A.16)

the bound in (A.14) in view of (A.6) yields:

Pe|0 ≤ (M − 1)ρ′P · e
−N ·E0

(
ρ′, q= 1

2

)
·
( N∑

l=0

bl ·
(vl

bl

)Q)Pρ′
Q

≤ eNRPρ′ · e−N ·E0

(
ρ′, q= 1

2

)
· e

ρ′P
Q
·ln

(∑N
l=0 bl·

(
vl
bl

)Q)

= e
−N ·E

(
ρ′, PR+ 1

N
·P
Q
·ln

(∑N
l=0 bl·

(
vl
bl

)Q)
, q= 1

2

)

, 0 ≤ ρ′ ≤ 1
P

, (A.17)

where E(ρ,R, q) is introduced in Eq. (4).
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The upper bound (A.17) is a generalization of the Shulman and Feder bound [36], where the latter

follows by letting P = 1, Q →∞, and noticing that:

lim
Q→∞

1
N
· 1
Q
· ln

(
N∑

l=0

bl ·
(

vl

bl

)Q
)

=
1
N
· max
0≤l≤N

(
vl

bl

)
. (A.18)

The generalized Shulman and Feder bound is a particular case of the DS2 bound for the class

of memoryless binary-input and output-symmetric channels. The generalized bound (A.17) is

expected to improve the tightness of Shulman and Feder bound for codes whose distance spectrum

deviates from the binomial distribution especially at low Hamming weights (e.g., turbo and LDPC

codes). For a fully random block code whose distance spectrum is the binomial distribution, P = 1

is optimal in (A.17) and the Shulman and Feder bound matches the 1965 Gallager random coding

bound. Considering the term in the error exponent of (A.17):

1
N
· P

Q
· ln

(
N∑

l=0

bl ·
(

vl

bl

)Q
)

a=

P − 1
N

· ln
(

N∑

l=0

vl ·
(

vl

bl

) 1
P−1

)
b≥

P − 1
N

·
N∑

l=0

vl · ln
((

vl

bl

) 1
P−1

)
=

1
N
·

N∑

l=0

vl · ln
(

vl

bl

)
=

1
N
·D(v||b) ,

(A.19)

where D(v||b) stands for the divergence between the two probability measures v and b. Equality

(a) in (A.19) follows by the relations: P
Q = P − 1, Q = 1 + 1

P−1 , while inequality (b) in (A.19) is

due to the Jensen inequality: E
(
ln(β)

)
≤ ln

(
E(β)

)
). The divergence in the right hand side of

inequality (A.19) constitutes a lower bound on the rate loss with respect to pure random codes

(with a binomial distance spectrum), and hence it provides some quantitative support to Battail’s

proposition [2] for the design of weakly random-like turbo codes.

Appendix B: On the Derivation of the Bound for the Mismatched

Decoding Metric

Based on the variation of calculus technique, we derive the normalized Duman and Salehi tilting

measure that minimize the upper bound (94)-(95). Repeating the steps in [26] for the mismatched
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decoding regime and setting α = k2
k1

(where the constants k1, k2 are introduced in Appendix A in

[26]), we then obtain the optimal tilting measure (96) in terms of minimizing the bound (94)-(95).

Similarly to the calculations in Appendix A in [26], the parameter α in (96) satisfies the implicit

equation:

α =
δ

1− δ
·

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ−1

∑
y

p(y|0) ·
(

Q(y|1)
Q(y|0)

)λ

·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ−1 . (B.1)

Equation (B.1) can be alternatively expressed as:

1− δ

δ
=

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ−1

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ

−
∑

y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ−1

=
1

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ

∑
y

p(y|0) ·
(

1 + α ·
(

Q(y|1)
Q(y|0)

)λ
)ρ−1 − 1 .

(B.2)

Equation (B.2) immediately yields (97). We now prove the existence and uniqueness of a non-

negative solution α for (97): To that end, we define the function:

t ≡ 1 + α ·
(

Q(y|1)
Q(y|0)

)λ

, (λ ≥ 0) (B.3)

and the optimization equation (97) then transforms to the form:

Ey(tρ−1)
Ey(tρ)

= 1− δ , (0 ≤ ρ ≤ 1) , (B.4)

where Ey denotes the statistical expectation with respect to y, which is governed by the probability

density function p(y|0). Based on the alternative representation (B.4) of (97), we prove the existence

and uniqueness of a solution to the implicit equation (B.1).

Existence: For α = 0, t in (B.3) equals 1 and therefore also the left hand side of (B.4) equals

1. If α À 1, then based on (B.3): t ≈ α ·
(

Q(y|1)
Q(y|0)

)λ
, and therefore the asymptotic behavior of the
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left hand side in (B.4) is proportional to 1
α (that obviously tends to zero for α → +∞. As the left

hand side in (B.4) is a continuous function of the parameter α, then it admits every value between

0 and 1 for non-negative values of α. Since the normalized Hamming distance δ lies in the interval

[0, 1], then the right hand side of (B.4) lies in the same interval. Therefore, for every such value of

δ, there exists a non-negative value of α satisfying (B.4).

Uniqueness: Since the function t in (B.3) is increasing in the parameter α (for non-negative

values of α) and also 0 ≤ ρ ≤ 1, then the numerator and denominator of the left hand side in (B.4)

are decreasing and increasing functions of α respectively (where α ≥ 0). Being also positive for

non-negative values of α, the quotient in the left hand side of (B.4) is a decreasing function of α.

The uniqueness of the solution α in equation (B.4) follows immediately.

Appendix C: A Simplification of the Integral in (98),(99)

The integral in (98),(99) can be rewritten in the form:

p(y, â|0) =
∫ ∞

0

1√
2π

· exp
[
−(y + ac)2

2

]
· 4a â α I0(Da) exp

[
−α(a2 + â2)

]
da , (C.1)

where:

c =
√

2REb

N0
, α =

1
1− ρ

, D =
2
√

ρ â

1− ρ
.

By a straightforward algebra, we get:

p(y, â|0) = 4α â exp
[
−

(
α â2 +

y2

2

)]
·
∫ ∞

0

a√
2π

· exp
[
−1

2
(β2a2 + 2acy)

]
· I0(Da) da , (C.2)

where β2 = C2 + 2α.

Substituting in (C.2) the integral representation of the modified Bessel function of the zero order:

I0(x) =
1
2π

∫ 2π

0
e−x cos θ dθ , (C.3)

and interchanging the order of integration yields:

p(y, â|0) = 4α â exp
[
−

(
α â2 +

y2

2

)]
· 1
2π

∫ 2π

0

∫ ∞

0

a√
2π
·exp

[
−1

2
(β2a2 + 2acy)

]
·exp(−Da cos θ) da dθ .

(C.4)
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The internal integral in (C.4) can be expressed in a closed form:

∫ ∞

0

a√
2π
·exp

[
−1

2
(β2a2 + 2acy)

]
·exp(−Da cos θ) da =

1√
2π β2

− γ

β3
exp

(
γ2

2β2

)
Q

(
γ

β

)
, (C.5)

where γ
4
= γ(θ) = cy + D cos θ, and Q is introduced in (53).

By substituting (C.5) into (C.4), we obtain:

p(y, â|0) =
(

2α â

β2

)
· exp

[
−

(
α â2 +

y2

2

)]
·
[√

2
π
− 1

π

∫ 2π

0
δ(θ) exp

(
δ2(θ)

2

)
·Q

(
δ(θ)

)
dθ

]
,

(C.6)

where δ(θ) = γ(θ)
β .

Equality (C.6) can be alternatively rewritten as:

p(y, â|0) =

(
2
√

2α â

β2

)
exp

[
−

(
α â2 +

y2

2

)]
·
(

1√
π
− 1

π

∫ π

0
φ(θ) erfcx

(
φ(θ)

)
dθ

)
, (C.7)

where:

erfcx (x) = ex2
erfc (x) = 2 ex2

Q(
√

2x) −∞ < x < +∞ , (C.8)

and

φ(θ) =
δ(θ)√

2
0 ≤ θ < 2π . (C.9)

The integral in the right hand side of (C.7) is numerically calculable by the Gaussian numerical

integration formula.
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Figure Captions

Figure 1: Block diagram of an ensemble of uniformly interleaved turbo codes of rate-1
3 and in-

terleaver length 1000. The generator of the two identical component codes (16–states,

recursive systematic convolutional (RSC) codes) is
[
1, 1+D4

1+D+D2+D3+D4

]
. A termination

to the all-zero state is assumed at the end of each block.

Figure 2: A comparison between upper bounds on the bit error probability with ML decoding.

The bounds refer to the ensemble of turbo codes in Fig. 1, operating over a binary-input

AWGN channel.

1. Tangential sphere bound ([24], [30]).

2. Engdahl and Zigangirov bound [13].

3. DS2 bound [12].

4. Divsalar bound [7].

5. Duman and Salehi (first version) bound [11].

6. Viterbi & Viterbi (second version) bound [38].

7. Union bound in Q-form.

The bounds 2–6 are combined with the union bound in its Q-form for every constant

Hamming-weight subcode of the considered ensemble of codes.

Figure 3: A comparison between upper bounds on the bit error probability with ML decoding.

The bounds refer to the ensemble of turbo codes in Fig. 1, operating over a fully

interleaved Rayleigh fading channel with perfect channel state information.

1. The generalized DS2 bound [26] combined with the union bound in its tight form.

2. The generalization of Engdahl and Zigangirov bound [26].

3. The union bound in its tight form.

These upper bounds are also compared to computer simulation results of the Log-MAP

iterative decoding algorithm with up to 10 iterations.

Figure 4: Block diagram of the ensemble of rate-1
4 and uniformly interleaved RA codes. The

1024 information bits are repeated q = 4 times, then the 4096 symbols are uniformly

interleaved and differentially encoded.

Figure 5: Comparison between upper bounds on the bit error probability with ML decoding.

The bounds refer to the RA codes in Fig. 4, operating over a fully interleaved Rayleigh

fading channel with perfect channel state information.

1. The generalized DS2 bound [26].



2. Divsalar and Biglieri bound [8].

3. The generalization of Engdahl and Zigangirov bound [26].

4. The generalization of Viterbi and Viterbi bound [34].

5. The tight form of the union bound.

The upper bounds 1–4 are combined with the tight version of the union bound for every

constant Hamming-weight subcode of the considered ensemble of codes. The bounds are

also compared with computer simulation results of the sum-product iterative decoding

algorithm with 20 iterations.

Figure 6: A comparison between two upper bounds on the bit error probability. The bounds refer

to the ensemble of turbo codes depicted in Fig. 1, operating over a fully interleaved

Rayleigh fading channel with mismatched decoding. The generalized DS2 bound is

compared with the improved bounding technique which combines the DS2 bound with

the tight form of the union bound (for every constant Hamming weight subcode).

The bounds are demonstrated for Eb
N0

= 3 dB, and are depicted as a function of the

correlation coefficient (in the range 1
2 to 1) between the squares of the i.i.d. jointly

Rayleigh fading samples and their estimates.

Figure 7: A comparison between upper bounds on the bit error probability for the ensemble of

turbo codes depicted in Fig. 1. The codes operate over a fully interleaved Rayleigh

fading channel with mismatched decoding. The bounds are based on combining the

generalized DS2 bound with the tight form of the union bound, and it is applied to every

constant Hamming weight subcode. The bounds are plotted for Eb
N0

= 2.50, 2.75, 3.00

and 3.25 dB, as a function of the correlation coefficient (in the range 1
2 to 1) between

the squares of the i.i.d. jointly Rayleigh fading samples and their estimates.

Figure 8: An interconnections diagram among the various upper bounds.



Rate Eb
N0

thresholds for the ensembles of The Shannon

RA codes (j, k) Gallager-LDPC codes capacity limit

1
2 - (4,8) : 0.76 dB, 0.58 dB

(5,10) : 0.69 dB
1
3 1.02 dB (4,6) : -0.11 dB, -0.25 dB

(8,12) : -0.21 dB
1
4 0.12 dB (3,4) : -0.29 dB, -0.62 dB

(6,8) : -0.58 dB
1
5 -0.30 dB (4,5) : -0.73 dB -0.82 dB

Table 1: Upper bounds on the Eb
No

–thresholds for ensembles of codes operating over a fully in-
terleaved Rayleigh fading channel with space diversity (based on the maximum ratio combining
principle) of order four, and perfect channel state information at the receiver.
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Gallager 1965
bound

The generalized version
of the Duman & Salehi (DS2) bound

(practical for calculation)

Random coding
bound

Bounds for
mismatched

decoding
(Sections V, VI)

The generalized
version for fully

interleaved fading
channels [26, 27]

up to a
factor

between
1 and 2

Divsalar
bound

[7]

Duman & Salehi
bound (first version)

[11]

The Gallager - Fano
1961 bound [14,17]

A generalized version of
the Shulman & Feder
bound (Section IV.A)

The bound in
[34] for fully

interleaved fading
channels

Viterbi & Viterbi
bound (first version)

[39]

Viterbi & Viterbi
bound (second

version) [38]

The Shulman & Feder
bound [36]

The Divsalar
& Biglieri
bound [8]

Generalized
Viterbi & Viterbi

bound [34]
Union bound


