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Abstract—This paper considers derivation of f -divergence
inequalities via the approach of functional domination. Bounds on
an f -divergence based on one or several other f -divergences are
introduced, dealing with pairs of probability measures defined
on arbitrary alphabets. In addition, a variety of bounds are
shown to hold under boundedness assumptions on the relative
information.1

Index Terms – f -divergence, relative entropy, relative
information, reverse Pinsker inequalities, reverse Samson’s
inequality, total variation distance, χ2 divergence.

I. BASIC DEFINITIONS

We assume throughout that the probability measures P and
Q are defined on a common measurable space (A,F ), and
P � Q denotes that P is absolutely continuous with respect
to Q.

Definition 1: If P � Q, the relative information provided
by a ∈ A according to (P,Q) is given by2

ıP‖Q(a) , log
dP
dQ

(a). (1)

Introduced by Ali-Silvey [1] and Csiszár ([4]), a useful
generalization of the relative entropy, which retains some of
its major properties (and, in particular, the data processing
inequality), is the class of f -divergences. A general definition
of f -divergence is given in [14, p. 4398], specialized next to
the case where P � Q.

Definition 2: Let f : (0,∞)→ R be a convex function, and
suppose that P � Q. The f -divergence from P to Q is given
by

Df (P‖Q) =

∫
f

(
dP
dQ

)
dQ = E

[
f(Z)

]
(2)

with

Z = exp
(
ıP‖Q(Y )

)
, Y ∼ Q. (3)

In (2), we take the continuous extension3

f(0) = lim
t↓0

f(t) ∈ (−∞,+∞]. (4)

1This work has been supported by the Israeli Science Foundation (ISF)
under Grant 12/12, by the US National Science Foundation under Grant CCF-
1016625, and in part by the Center for Science of Information, an NSF Science
and Technology Center under Grant CCF-0939370.

2 dP
dQ denotes the Radon-Nikodym derivative (or density) of P with respect

to Q. Logarithms have an arbitrary common base, and the exponent indicates
the inverse function of the logarithm with that base.

3The convexity of f : (0,∞) → R implies its continuity on (0,∞).

If p and q denote, respectively, the densities of P and Q
with respect to a σ-finite measure µ (i.e., p = dP

dµ , q = dQ
dµ ),

then we can write (2) as

Df (P‖Q) =

∫
{q>0}

q f

(
p

q

)
dµ. (5)

Remark 1: Different functions may lead to the same f -
divergence for all (P,Q): if for an arbitrary b ∈ R, we have

fb(t) = f0(t) + b (t− 1), t ≥ 0 (6)

then

Df0(P‖Q) = Dfb(P‖Q). (7)

Relative entropy is Dr(P‖Q) where r is given by

r(t) = t log t+ (1− t) log e, (8)

and the total variation distance |P − Q| and χ2 divergence
χ2(P‖Q) are f -divergences with f(t) = (t− 1)2 and f(t) =
|t− 1|, respectively.

The following key property of f -divergences follows from
Jensen’s inequality.

Proposition 1: If f : (0,∞) → R is convex and f(1) = 0,
P � Q, then

Df (P‖Q) ≥ 0. (9)

If, furthermore, f is strictly convex at t = 1, then equality in
(9) holds if and only if P = Q.

The reader is referred to [19] for a survey on general
properties of f -divergences, and also to the textbook by Liese
and Vajda [13].

The full paper version of this work, which includes several
other approaches for the derivation of f -divergence inequali-
ties, is available in [17].

II. FUNCTIONAL DOMINATION

Let f and g be convex functions on (0,∞) with f(1) =
g(1) = 0, and let P and Q be probability measures defined
on a measurable space (A,F ). If, for α > 0, f(t) ≤ αg(t)
for all t ∈ (0,∞) then, it follows from Definition 2 that

Df (P‖Q) ≤ αDg(P‖Q). (10)

This simple observation leads to a proof of several inequalities
with the aid of Remark 1.



A. Basic Tool

We start this section by proving a general result, which
will be helpful in proving various tight bounds among f -
divergences.

Theorem 1: Let P � Q, and assume
• f is convex on (0,∞) with f(1) = 0;
• g is convex on (0,∞) with g(1) = 0;
• g(t) > 0 for all t ∈ (0, 1) ∪ (1,∞).

Denote the function κ : (0, 1) ∪ (1,∞)→ R

κ(t) =
f(t)

g(t)
, t ∈ (0, 1) ∪ (1,∞) (11)

and

κ̄ = sup
t∈(0,1)∪(1,∞)

κ(t). (12)

Then,
a)

Df (P‖Q) ≤ κ̄Dg(P‖Q). (13)

b) If, in addition, f ′(1) = g′(1) = 0, then

sup
P 6=Q

Df (P‖Q)

Dg(P‖Q)
= κ̄. (14)

Proof: See [17, Theorem 1].
Remark 2: Beyond the restrictions in Theorem 1a), the

only operative restriction imposed by Theorem 1b) is the
differentiability of the functions f and g at t = 1. Indeed, we
can invoke Remark 1 and add f ′(1) (1 − t) to f(t), without
changing Df (and likewise with g) and thereby satisfying the
condition in Theorem 1b); the stationary point at 1 must be a
minimum of both f and g because of the assumed convexity,
which implies their non-negativity on (0,∞).

Remark 3: It is useful to generalize Theorem 1b) by drop-
ping the assumption on the existence of the derivatives at 1.
As it is explained in [17], it is enough to require that the
left derivatives of f and g at 1 be equal to 0. Analogously,
if κ̄ = sup0<t<1 κ(t), it is enough to require that the right
derivatives of f and g at 1 be equal to 0.

B. Relationships Among D(P‖Q), χ2(P‖Q) and |P −Q|
Theorem 2:

a) If P � Q and c1, c2 ≥ 0, then

D(P‖Q) ≤
(
c1 |P −Q|+ c2 χ

2(P‖Q)
)

log e (15)

holds if (c1, c2) = (0, 1) and (c1, c2) =
(
1
4 ,

1
2

)
. Further-

more, if c1 = 0 then c2 = 1 is optimal, and if c2 = 1
2 then

c1 = 1
4 is optimal.

b) If P �� Q and P 6= Q, then

D(P‖Q) +D(Q‖P )

χ2(P‖Q) + χ2(Q‖P )
≤ 1

2 log e (16)

and the constant in the right side of (16) is the best possible.
Proof: See [17, Theorem 2].

Remark 4: Inequality (15) strengthens the bound in [9,
(2.8)],

D(P‖Q) ≤ 1
2

(
|P −Q|+ χ2(P‖Q)

)
log e. (17)

Note that the short outline of the suggested proof in [9, p. 710]
leads not (17) but to the weaker upper bound |P − Q| +
1
2 χ

2(P‖Q) nats.

C. An Alternative Proof of Samson’s Inequality

For the purpose of this sub-section, we introduce Marton’s
divergence [15]:

d22(P,Q) = minE
[
P2[X 6= Y |Y ]

]
(18)

where the minimum is over all probability measures PXY
with respective marginals PX = P and PY = Q. From [15,
pp. 558–559]

d22(P,Q) = Ds(P‖Q) (19)

with

s(t) = (t− 1)2 1{t < 1}. (20)

Note that Marton’s divergence satisfies the triangle inequality
[15, Lemma 3.1], and d2(P,Q) = 0 implies P = Q; however,
due to its asymmetry, it is not a distance measure.

An analog of Pinsker’s inequality, which comes in handy
for the proof of Marton’s conditional transportation inequality
[3, Lemma 8.4], is the following bound due to Samson [16,
Lemma 2]:

Theorem 3: If P � Q, then

d22(P,Q) + d22(Q,P ) ≤ 2
log e D(P‖Q). (21)

In [17, Section 3.D], we provide an alternative proof of
Theorem 3, in view of Theorem 1b), with the following
advantages:
a) This proof yields the optimality of the constant in (21), i.e.,

we prove that

sup
P 6=Q

d22(P,Q) + d22(Q,P )

D(P‖Q)
= 2

log e (22)

where the supremum is over all probability measures P,Q
such that P 6= Q and P �� Q.

b) A simple adaptation of this proof results in a reverse
inequality to (21), which holds under the boundedness
assumption of the relative information (see Section III-D).

D. Ratio of f -Divergence to Total Variation Distance

Let f : (0,∞) → R be a convex function with f(1) = 0,
and let f? : (0,∞)→ R be given by

f?(t) = t f
(
1
t

)
(23)

for all t > 0. Note that f? is also convex, f?(1) = 0, and
Df (P‖Q) = Df?(Q‖P ) if P �� Q. By definition, we take

f?(0) = lim
t↓0

f?(t) = lim
u→∞

f(u)

u
. (24)



Vajda [18, Theorem 2] showed that the range of an f -
divergence is given by

0 ≤ Df (P‖Q) ≤ f(0) + f?(0) (25)

where every value in this range is attainable by a suitable pair
of probability measures P � Q. Recalling Remark 1, note
that fb(0) + f?b (0) = f(0) + f?(0) with fb(·) defined in (6).
Basu et al. [2, Lemma 11.1] strengthened (25), showing that

Df (P‖Q) ≤ 1
2 (f(0) + f?(0)) |P −Q|. (26)

If f(0) and f?(0) are finite, (26) yields a counterpart to a
result by Csiszár (see [6, Theorem 3.1]) which implies that if
f : (0,∞)→ R is a strictly convex function, then there exists
a real-valued function ψf such that limx↓0 ψf (x) = 0, and

|P −Q| ≤ ψf
(
Df (P‖Q)

)
. (27)

Next, we demonstrate that the constant in (26) cannot be
improved.

Theorem 4: If f : (0,∞) → R is convex with f(1) = 0,
then

sup
P 6=Q

Df (P‖Q)

|P −Q|
= 1

2 (f(0) + f?(0)) (28)

where the supremum is over all probability measures P,Q
such that P � Q and P 6= Q.

Proof: See [17, Theorem 5].
Remark 5: Csiszár [5, Theorem 2] showed that if f(0) and

f?(0) are finite and P � Q, then there exists a constant
Cf > 0 which depends only on f such that Df (P‖Q) ≤
Cf
√
|P −Q|. Note that, if |P −Q| < 1, then this inequality

is superseded by (26) where the constant is not only explicit
but is the best possible according to Theorem 4.

A direct application of Theorem 4 yields
Corollary 1:

sup
P 6=Q

d22(P,Q)

|P −Q|
=

1

2
, (29)

sup
P 6=Q

d22(P,Q) + d22(Q,P )

|P −Q|
= 1 (30)

where the supremum in (29) is over all P � Q with P 6= Q,
and the supremum in (30) is over all P �� Q with P 6= Q.

Proof: See [17, Corollary 1].
Remark 6: The results in (29) and (30) form counterparts

of (22).

III. BOUNDED RELATIVE INFORMATION

In this section we show that it is possible to find bounds
among f -divergences without requiring a strong condition of
functional domination (see Section II) as long as the relative
information is upper and/or lower bounded almost surely.

A. Definition of β1 and β2.

The following notation is used throughout the rest of the
paper. Given a pair of probability measures (P,Q) on the same
measurable space, denote β1, β2 ∈ [0, 1] by

β1 = exp
(
−D∞(P‖Q)

)
, (31)

β2 = exp
(
−D∞(Q‖P )

)
(32)

with the convention that if D∞(P‖Q) = ∞, then β1 = 0,
and if D∞(Q‖P ) = ∞, then β2 = 0. Note that if β1 > 0,
then P � Q, while β2 > 0 implies Q � P . Furthermore, if
P �� Q, then with Y ∼ Q,

β1 = ess inf
dQ
dP

(Y ) =

(
ess sup

dP
dQ

(Y )

)−1
, (33)

β2 = ess inf
dP
dQ

(Y ) =

(
ess sup

dQ
dP

(Y )

)−1
. (34)

The following examples illustrate important cases in which β1
and β2 are positive.

Example 1: (Gaussian distributions.) Let P and Q be
Gaussian probability measures with equal means, and vari-
ances σ2

0 and σ2
1 respectively. Then,

β1 =
σ0
σ1

1{σ0 ≤ σ1}, (35)

β2 =
σ1
σ0

1{σ1 ≤ σ0}. (36)

Example 2: (Shifted Laplace distributions.) Let P and Q be
the probability measures whose probability density functions
are, respectively, given by fλ(· − a0) and fλ(· − a1) with

fλ(x) = λ
2 exp(−λ|x|), x ∈ R (37)

where λ > 0. In this case, (37) gives

dP
dQ

(x) = exp
(
λ(|x− a1| − |x− a0|)

)
, x ∈ R (38)

which yields

β1 = β2 = exp
(
−λ |a1 − a0|

)
∈ (0, 1]. (39)

B. Basic Tool

Since β1 = 1⇔ β2 = 1⇔ P = Q, it is advisable to avoid
trivialities by excluding that case.

Theorem 5: Let f and g satisfy the assumptions in Theo-
rem 1, and assume that (β1, β2) ∈ [0, 1)2. Then,

Df (P‖Q) ≤ κ? Dg(P‖Q) (40)

where

κ? = sup
β∈(β2,1)∪(1,β−1

1 )

κ(β) (41)

and κ(·) is defined in (11).
Proof: See [17, Theorem 5].

Note that if β1 = β2 = 0, then Theorem 5 does not improve
upon Theorem 1a).



Remark 7: In the application of Theorem 5, it is often
convenient to make use of the freedom afforded by Remark 1
and choose the corresponding offsets such that:
• the positivity property of g required by Theorem 5 is

satisfied;
• the lowest κ? is obtained.
Remark 8: Similarly to the proof of Theorem 1b), under the

conditions therein, one can verify that the constants in The-
orem 5 are the best possible among all probability measures
P,Q with given (β1, β2) ∈ [0, 1)2.

Remark 9: Note that if we swap the assumptions on f and
g in Theorem 5, the same result translates into

inf
β∈(β2,1)∪(1,β−1

1 )
κ(β) ·Dg(P‖Q) ≤ Df (P‖Q). (42)

Furthermore, provided both f and g are positive (except at
t = 1) and κ is monotonically increasing, Theorem 5 and (42)
result in

κ(β2)Dg(P‖Q) ≤ Df (P‖Q) (43)

≤ κ(β−11 )Dg(P‖Q). (44)

In this case, if β1 > 0, sometimes it is convenient to replace
β1 > 0 with β′1 ∈ (0, β1) at the expense of loosening the
bound. A similar observation applies to β2.

Example 3: If f(t) = (t− 1)2 and g(t) = |t− 1|, we get

χ2(P‖Q) ≤ max{β−11 − 1, 1− β2} |P −Q|. (45)

C. Bounds on D(P‖Q)
D(Q‖P )

The remaining part of this section is devoted to various
applications of Theorem 5. From this point, we make use of
the definition of r : (0,∞)→ [0,∞) in (8).

An illustrative application of Theorem 5 gives upper and
lower bounds on the ratio of relative entropies.

Theorem 6: Let P �� Q, P 6= Q, and (β1, β2) ∈ (0, 1)2.
Let κ : (0, 1) ∪ (1,∞)→ (0,∞) be defined as

κ(t) =
t log t+ (1− t) log e

(t− 1) log e− log t
. (46)

Then,

κ(β2) ≤ D(P‖Q)

D(Q‖P )
≤ κ(β−11 ). (47)

Proof: See [17, Theorem 6].

D. Reverse Samson’s Inequality

The next result gives a counterpart to Samson’s inequality
(21).

Theorem 7: Let (β1, β2) ∈ (0, 1)2. Then,

inf
d22(P,Q) + d22(Q,P )

D(P‖Q)
= min

{
κ(β−11 ), κ(β2)

}
(48)

where the infimum is over all P � Q with given (β1, β2),
and where κ : (0, 1) ∪ (1,∞)→

(
0, 2

log e

)
is given by

κ(t) =
(t− 1)2

r(t) max{1, t}
, t ∈ (0, 1) ∪ (1,∞). (49)

Proof: See [17, Theorem 7].

E. Local Behavior of f -Divergences

Another application of Theorem 5 shows that the local
behavior of f -divergences differs by only a constant, provided
that the first distribution approaches the reference measure in
a certain strong sense.

Theorem 8: Suppose that {Pn}, a sequence of probability
measures defined on a measurable space (A,F ), converges
to Q (another probability measure on the same space) in the
sense that, for Y ∼ Q,

lim
n→∞

ess sup
dPn
dQ

(Y ) = 1 (50)

where it is assumed that Pn � Q for all sufficiently large n.
If f and g are convex on (0,∞) and they are positive except
at t = 1 (where they are 0), then

lim
n→∞

Df (Pn‖Q) = lim
n→∞

Dg(Pn‖Q) = 0, (51)

and

min{κ(1−), κ(1+)} ≤ lim
n→∞

Df (Pn‖Q)

Dg(Pn‖Q)
≤ max{κ(1−), κ(1+)}

(52)

where we have indicated the left and right limits of the function
κ(·), defined in (11), at 1 by κ(1−) and κ(1+), respectively.

Proof: See [17, Theorem 9].
Corollary 2: Let {Pn � Q} converge to Q in the sense of

(50). Then, D(Pn‖Q) and D(Q‖Pn) vanish as n→∞ with

lim
n→∞

D(Pn‖Q)

D(Q‖Pn)
= 1. (53)

Corollary 3: Let {Pn � Q} converge to Q in the sense of
(50). Then, χ2(Pn‖Q) and D(Pn‖Q) vanish as n→∞ with

lim
n→∞

D(Pn‖Q)

χ2(Pn‖Q)
= 1

2 log e. (54)

Note that (54) is known in the finite alphabet case [7, Theo-
rem 4.1]).

F. Strengthened Jensen’s inequality

Bounding away from zero a certain density between two
probability measures enables the following strengthened ver-
sion of Jensen’s inequality, which generalizes a result in [11,
Theorem 1].

Lemma 1: Let f : R → R be a convex function,
P1 � P0 be probability measures defined on a measurable
space (A,F ), and fix an arbitrary random transformation
PZ|X : A → R. Denote4 P0 → PZ|X → PZ0

, and P1 →
PZ|X → PZ1

. Then,

β
(
E [f(E[Z0|X0])]− f(E[Z0])

)
≤ E[f(E[Z1|X1])]− f(E[Z1]) (55)

4We follow the notation in [20] where P0 → PZ|X → PZ0
means that

the marginal probability measures of the joint distribution P0PZ|X are P0

and PZ0
.



where X0 ∼ P0, X1 ∼ P1, and

β , ess inf
dP1

dP0
(X0). (56)

Proof: See [17, Lemma 1].
Remark 10: Letting Z = X , and choosing P0 so that β = 0

(e.g., P1 is a restriction of P0 to an event of P0-probability
less than 1), (55) becomes Jensen’s inequality f(E[X1]) ≤
E[f(X1)].

Lemma 1 finds the following application to the derivation
of f -divergence inequalities.

Theorem 9: Let f : (0,∞)→ R be a convex function with
f(1) = 0. Fix P � Q on the same space with (β1, β2) ∈
[0, 1)2 and let X ∼ P . Then,

β2Df (P‖Q) ≤ E
[
f
(
exp(ıP‖Q(X))

)]
− f

(
1 + χ2(P‖Q)

)
≤ β−11 Df (P‖Q). (57)

Specializing Theorem 9 to the convex function on (0,∞)
where f(t) = − log t sharpens the inequality

D(P‖Q) ≤ log
(
1 + χ2(P‖Q)

)
(58)

≤ χ2(P‖Q) log e. (59)

under the assumption of bounded relative information.
Theorem 10: Fix P �� Q such that (β1, β2) ∈ (0, 1)2.

Then,

β2D(Q‖P ) ≤ log
(
1 + χ2(P‖Q)

)
−D(P‖Q) (60)

≤ β−11 D(Q‖P ). (61)

IV. REVERSE PINSKER INEQUALITIES

It is not possible to lower bound |P −Q| solely in terms of
D(P‖Q) since for an arbitrary small ε > 0 and an arbitrary
large λ > 0, we can construct examples with |P −Q| < ε and
λ < D(P‖Q) < ∞. As in Section III, the following result
involves the bounds on the relative information.

Theorem 11: If β1 ∈ (0, 1) and β2 ∈ [0, 1), then,

D(P‖Q) ≤ 1
2

(
ϕ(β−11 )− ϕ(β2)

)
|P −Q| (62)

where ϕ : [0,∞)→ [0,∞) is given by

ϕ(t) =


0 t = 0
t log t
t−1 t ∈ (0, 1) ∪ (1,∞)

log e t = 1.

(63)

Proof: See [17, Theorem 23].
Remark 11: Note that for Theorem 11 to give a nontrivial

result, it is necessary that the relative information be upper
bounded, namely β1 > 0. However, we still get a nontrivial
bound if β2 = 0.

In the following, we assume that P and Q are probability
measures defined on a common finite set A, and Q is strictly
positive on A with |A| ≥ 2.

Theorem 12: Let Qmin = mina∈AQ(a), then

D(P‖Q) ≤ log

(
1 +
|P −Q|2

2Qmin

)
. (64)

Furthermore, if Q� P and β2 is defined as in (32), then the
following tightened bound holds:

D(P‖Q) ≤ log

(
1 +
|P −Q|2

2Qmin

)
− 1

2β2|P −Q|
2 log e.

(65)

Proof: See [17, Theorem 25].
Remark 12: The result in (64) improves the inequality by

Csiszár and Talata [8, p. 1012]:

D(P‖Q) ≤
(

log e

Qmin

)
· |P −Q|2. (66)

For further reverse Pinsker Inequalities and some of their
implications, see [17, Section 6].
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