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Measures

Total Variation (TV) Distance

Let P,Q be probability measures defined on the measurable space (A,F ).

|P −Q| = 2 sup
F∈F

|P (F) −Q(F)| = |P −Q|1.
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Measures

Total Variation (TV) Distance

Let P,Q be probability measures defined on the measurable space (A,F ).

|P −Q| = 2 sup
F∈F

|P (F) −Q(F)| = |P −Q|1.

The Rényi Divergence of order α

Let

P ≪ Q.

Y ∼ Q.

α ∈ (0, 1) ∪ (1,∞).

Dα(P‖Q) =
1

α− 1
logE

[

(

dP

dQ

)α

(Y )
]

.

If D(P‖Q) < ∞ ⇒ D(P‖Q) = limα→1− Dα(P‖Q).
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A Problem

Exact Characterization of the Joint Range of the Relative Entropies

Question

Let

ε ∈ (0, 2) be fixed.

P1, P2 be arbitrary PDs s.t. |P1 − P2| ≥ ε.

Q is an arbitrary PD s.t. Q ≪ P1, P2.

1 What is the achievable region of
(

D(Q‖P1), D(Q‖P2)
)

where none

of these three distributions is fixed ?
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Exact Characterization of the Joint Range of the Relative Entropies

Question

Let

ε ∈ (0, 2) be fixed.

P1, P2 be arbitrary PDs s.t. |P1 − P2| ≥ ε.

Q is an arbitrary PD s.t. Q ≪ P1, P2.

1 What is the achievable region of
(

D(Q‖P1), D(Q‖P2)
)

where none

of these three distributions is fixed ?

2 Given an arbitrary point in this region, specify PDs P1, P2, Q that

achieve this point.
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A Problem

Possible Context

Methods of Types:

Pn
1

(

T (Q)
) .
= e−nD(Q‖P1), Pn

2

(

T (Q)
) .
= e−nD(Q‖P2)

⇒ Exponential decay rates for probabilities of rare events.
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A Problem

Possible Context

Methods of Types:

Pn
1

(

T (Q)
) .
= e−nD(Q‖P1), Pn

2

(

T (Q)
) .
= e−nD(Q‖P2)

⇒ Exponential decay rates for probabilities of rare events.

Approach for Solving the Problem

Minimizing the Rényi divergence subject to a minimal TV distance.

Using the solution for answering the question.

I. Sason (Technion) ISIT 2015, Hong Kong June 14–19, 2015. 4 / 15



Minimization of the Rényi Divergence

Minimization of the Rényi Divergence s.t. Minimal TV Distance

For α > 0, let

gα(ε) = inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ∀ ε ∈ [0, 2).
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Minimization of the Rényi Divergence s.t. Minimal TV Distance

For α > 0, let

gα(ε) = inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ∀ ε ∈ [0, 2).

Proposition: There is no loss of generality by restricting the minimization
of gα(ε), for ε ∈ (0, 2), to pairs of 2-element PDs.
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Minimization of the Rényi Divergence

Minimization of the Rényi Divergence s.t. Minimal TV Distance

For α > 0, let

gα(ε) = inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ∀ ε ∈ [0, 2).

Proposition: There is no loss of generality by restricting the minimization
of gα(ε), for ε ∈ (0, 2), to pairs of 2-element PDs. Hence,

gα(ε) = min
p,q∈[0,1] : |p−q|≥ ε

2

dα(p‖q)

where

dα(p‖q) ,
log
(

pαq1−α + (1− p)α(1− q)1−α
)

α− 1
.

The minimizing probability distributions: P1 = (p, 1− p), P2 = (q, 1− q).
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Joint Range of the Relative Entropies

An identity for the Rényi divergence

For α ∈ (0, 1) ∪ (1,∞) \ {1}

Dα(P1‖P2) = D(Q‖P2) +
α

1− α
·D(Q‖P1) +

1

α− 1
·D(Q‖Qα)

where Qα is given by

Qα(x) ,
Pα
1 (x)P

1−α
2 (x)

∑

u P
α
1 (u)P

1−α
2 (u)

, ∀x ∈ Supp(P1).
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Joint Range of the Relative Entropies

An identity for the Rényi divergence

For α ∈ (0, 1) ∪ (1,∞) \ {1}

Dα(P1‖P2) = D(Q‖P2) +
α

1− α
·D(Q‖P1) +

1

α− 1
·D(Q‖Qα)

where Qα is given by

Qα(x) ,
Pα
1 (x)P

1−α
2 (x)

∑

u P
α
1 (u)P

1−α
2 (u)

, ∀x ∈ Supp(P1).

This comes as a direct calculation, following a result by Shayevitz
(ISIT ’11) where for α > 1

Dα(P1‖P2) = max
Q≪P1

{

D(Q‖P2) +
α

α− 1
·D(Q‖P1)

}

and the max is replaced by min for α ∈ (0, 1).
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Joint Range of the Relative Entropies

An Exact Characterization of the Region

The boundary is determined by letting α increase continuously in (0,1),
and drawing the straight lines in the plane of

(

D(Q‖P1),D(Q‖P2)
)

:

D(Q‖P2) +
α

1− α
·D(Q‖P1) = gα(ε), ∀α ∈ (0, 1).

Every point on the boundary is a tangent point to one of the straight lines.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)
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Figure: The achievable region of (D(Q‖P1), D(Q‖P2)) where |P1 − P2| ≥ 1 is
the upper envelope of the straight lines.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)

The triple of 2-element PDs P1, P2 and Q that achieves an arbitrary point
on the boundary of this region is determined as follows:

Find the slope s of the tangent line (s < 0), and determine α ∈ (0, 1)
such that − α

1−α
= s ⇒ α = − s

1−s
.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)

The triple of 2-element PDs P1, P2 and Q that achieves an arbitrary point
on the boundary of this region is determined as follows:

Find the slope s of the tangent line (s < 0), and determine α ∈ (0, 1)
such that − α

1−α
= s ⇒ α = − s

1−s
.

Determine the 2-element PDs P1 = (p, 1− p), P2 = (q, 1− q) such
that dα(p‖q) = gα(ε).
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)

The triple of 2-element PDs P1, P2 and Q that achieves an arbitrary point
on the boundary of this region is determined as follows:

Find the slope s of the tangent line (s < 0), and determine α ∈ (0, 1)
such that − α

1−α
= s ⇒ α = − s

1−s
.

Determine the 2-element PDs P1 = (p, 1− p), P2 = (q, 1− q) such
that dα(p‖q) = gα(ε).

Calculate the 2-element PD Q = Qα (as above) for the calculated α,
p and q.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)
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The straight line intersects the boundaries 
at points whose coordinates are equal to
the minimum Chernoff information for a fixed
total variation distance (ε):  −1/2 log(1−ε2/4)
= 0.144, 0.337, 0.830, 1.959 nats.

Figure: The boundary of the achievable region of (D(Q‖P1), D(Q‖P2)) where
the TV distance |P1 − P2| is at least ε = 1.00, 1.40, 1.80, 1.98.
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Joint Range of the Relative Entropies

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.
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Joint Range of the Relative Entropies

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.

Let S0 = 0 and, for l ∈ {1, . . . , N}, let Sl be the number of non-zero
codewords of Hamming weight l.

Assume that the transmission of the code takes place over a
memoryless, binary-input and output-symmetric channel.

Assume that the code is maximum-likelihood (ML) decoded.
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New Performance Bound

Theorem: A New Upper Bound (Cont.)

The block error probability satisfies

Pe = Pe|0 ≤ exp

(

−N sup
r≥1

max
0≤ρ≤ 1

r

[

E0

(

ρ, q =
(1

2
,
1

2

)

)

−ρ

(

rR+
Ds(PN‖QN )

N

)])

where

s , s(r) = r
r−1 for r ≥ 1 (with the convention that s = ∞ for r = 1),

QN is the binomial distribution with parameter 1
2 and N i.i.d. trials,

PN is the PMF defined by PN (l) = Sl

M−1 for l ∈ {0, . . . , N},

Ds(·‖·) is the Rényi divergence of order s,

E0(ρ, q) is the Gallager random coding error exponent.
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New Performance Bound

Special Case: The Shulman-Feder Bound

Loosening the bound by taking r = 1 ⇒ s = ∞ gives

Pe ≤ exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

Sl

e−N(log 2−R)
(

N
l

)

))

which coincides with the Shulman-Feder bound.
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New Performance Bound

Novelty of the Bound & Proof

The proof of this theorem has an overlap with a bound by Shamai
and Sason (2002).

The bound is also valid for code ensembles, while referring to the
average distance spectrum.

The novelty is the use of the Rényi divergence of order s ≥ 1, instead
of the Kullback-Leibler divergence as a lower bound.

This reveals a need for an optimization of the error exponent:
If r ≥ 1 is increased, s = r

r−1 ≥ 1 is decreased, and Ds(PN‖QN ) is
decreased (unless it is 0; note that PN , QN do not depend on r, s).
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New Performance Bound

Novelty of the Bound & Proof

The proof of this theorem has an overlap with a bound by Shamai
and Sason (2002).

The bound is also valid for code ensembles, while referring to the
average distance spectrum.

The novelty is the use of the Rényi divergence of order s ≥ 1, instead
of the Kullback-Leibler divergence as a lower bound.

This reveals a need for an optimization of the error exponent:
If r ≥ 1 is increased, s = r

r−1 ≥ 1 is decreased, and Ds(PN‖QN ) is
decreased (unless it is 0; note that PN , QN do not depend on r, s).

Numerical Results

Numerical results for the binary-input AWGN channel support that the new
bound provides an improvement over the Shulman-Feder bound. For high
rate codes, there is an improvement over the tangential-sphere bound.
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New Performance Bound

Full Paper Version

http://arxiv.org/abs/1501.03616.
Submitted to the IEEE Trans. on Information Theory, February 2015.
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