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Outline

v

Forward & reverse projections of Rényi divergence on
generalized convex sets.

Forward projections - large deviations theory, maximum
entropy principle.

Reverse projections - maximum likelihood estimation, robust
statistics.

Orthogonality of a-linear and a-exponential families for the
Rényi divergence.
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Rényi Divergence

» M := M(A) - the set of all probability measures on A.

» For P,Q € M and o € (0,1) U (1,00), the Rényi divergence
from P to Q is

Da(PQ) = — log (Z P(a)%?(aﬂ-a) .

For aw = 1, by continuous extension

Di(P||Q) = D(P||Q).

> Du(PQ) > 0 and DL(PQ) =0 iff P = Q.
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Information Projections for the Rényi Divergence

> Let P C M and Q € M. Any P* € P satisfying

Igg%Da(PHQ) = Do(P*||Q)

is called forward D,,-projection of ) on P.
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Information Projections for the Rényi Divergence

> Let P C M and Q € M. Any P* € P satisfying

gleigpa(PuQ) = Do(P*||Q)

is called forward D,,-projection of ) on P.

> Let Q C M and P € M. Any Q* € Q satisfying

min Da(P[Q) = Da(PQ7)

is called reverse D.-projection of P on Q.
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Forward Projection - Motivation

» Sanov’s theorem:

» Suppose that X7, X5,... arei.id. and X; ~ Q. Then, if
m > E[g(X1)], for large n

Pe(= Zg ) = m) = exp{-nD(P*|Q)},

where
P* = arg min D(P||Q)

L ={PeM: ZP a) >m}.
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Forward Projection - Motivation

» Sanov’s theorem:

» Suppose that X7, X5,... arei.id. and X; ~ Q. Then, if
m > E[g(X1)], for large n

Pe(= Zg ) = m) = exp{-nD(P*|Q)},

where
P* = arg min D(P||Q)

L ={PeM: ZP a) >m}.

» Conditional limit theorem:
» Suppose that X7, X5,... arei.i.d. and X7 ~ Q. Then

Jim P{Xl = a‘ %zn:g(Xz) > m} = P*(a).
i=1
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Tsallis" Maximum Entropy Problem
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Tsallis" Maximum Entropy Problem

1 (03
arg 1&%)( Sa(P) = o (1 - za:P(a) ) (1)
LA
subject to TS Plae =U'\Y, (2)

» The functional S, (P) in (1) is called Tsallis entropy
» The constraint in (2) corresponds to an a-convex set

» If Q = U is uniform,

D, (P||U) =log |A| + log(1 — (= 1)Sa(P)).

a—1

Thus maximization of S, (P) is equivalent to minimization of
Da(PIIU).
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a-Convex Sets

Definition ((«, \)-mixture)
Let Py, P1 € M. The (o, A)-mixture of (P, P;) is the probability
measure Sp 1 defined by

|—

So1(a) = % (1= NPo@)* +AP(a)] " Vae A

where Z is a normalizing constant.



a-Convex Sets

Definition ((«, \)-mixture)
Let Py, P1 € M. The (o, A)-mixture of (P, P;) is the probability
measure Sp 1 defined by

1 a
So(a) == [(1 ~ N Py(a)® + m(a)a] Va € A,
where Z is a normalizing constant.

Definition (a-convex set)

P C M is said to be an a-convex set if, for every Py, P, € P and
A € (0,1), the (o, A)-mixture Sp; € P.
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Result of van Erven and Harremoés (2014)

Theorem
If P* is the forward D-projection of () on an «-convex set P,
then the following Pythagorean inequality holds:

Da(P|Q) 2 Du(P||P*) + Da(P*|Q) VP € P.
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Result of van Erven and Harremoés (2014)

Theorem
If P* is the forward D.-projection of () on an a-convex set P,
then the following Pythagorean inequality holds:

Da(P|Q) 2 Du(P||P*) + Da(P*|Q) VP € P.

Note that the existence of the forward projection P* is not
assured in this theorem.
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A Sufficient Condition for Existence

Theorem

Let o € (0,00), Q@ € M, P C M be a-convex & closed under total
variation distance. If there exists P € P such that D, (P||Q) < oo,
then there exists a forward D,-projection of () on P.
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A Sufficient Condition for Existence
Theorem

Let o € (0,00), Q@ € M, P C M be a-convex & closed under total
variation distance. If there exists P € P such that D, (P||Q) < oo,
then there exists a forward D,-projection of () on P.

Proof outline:

» « > 1: Similar to Csiszar 1975, but relies on a new Apollonius
theorem for the Hellinger divergences:

(1= XN (AW Po]|Q) — Ha(Fo||S0,1))
+ AN (P1]|Q) — H(P1]1S0,1)) = H4(S0,]1Q),

where

Ha(P|Q) :

(ZP °-1).
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A Sufficient Condition for Existence

Theorem

Let o € (0,00), Q@ € M, P C M be a-convex & closed under total
variation distance. If there exists P € P such that D, (P||Q) < oo,
then there exists a forward D,-projection of () on P.

Proof outline:

» « > 1: Similar to Csiszar 1975, but relies on a new Apollonius
theorem for the Hellinger divergences:

(1— N (A0 (Po|| Q) — #4(Fol|So,1))
+ AN (P1]|Q) — H(P1]1S0,1)) = H4(S0,]1Q),

where
Ha(PQ) - (ZP o).

» « < 1: Exploits Banach-Aloaglu theorem from functional
analysis (for asserting compactness of a set).
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Forward projection on a-linear Family

We focus on a-linear family:

- {PeM: 3" P(a)fi(a) =0, 1:1/@}
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Forward projection on a-linear Family

We focus on a-linear family:
L = {P e M: Y P(a)*fi(a) =0, i= 1k:}
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If A is finite and o > 1, then Supp(P*) = Supp(%,,) and the
Pythagorean equality holds.
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Forward projection on a-linear Family

We focus on a-linear family:
L = {P e M: Y P(a)*fi(a) =0, i= 1k:}

Theorem
If A is finite and o > 1, then Supp(P*) = Supp(%,,) and the
Pythagorean equality holds.

Do(P||Q) = Da(P[|P*) + Da(P*[|Q) VP € Z,.

Theorem
If P* is the forward D,-projection on £, and if
Supp(P*) = Supp(£,,), then

_1
11—«

k
P =2 Q@  + -0 3o h)|
=1

for some 0* = (05, ...,0;) € R¥, and a normalizing constant Z.
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a-Exponential Family

» Can write
k
PH(a) = 27" ea(na(Q@) + Y 0:fi(@)).
i=1

where e, and In,, are, respectively, the a-exponential and
a-logarithmic functions:

e exp(x) 1 if =1,
=\ (mae {1+ (1=, 0)) ™ e 0,10 (1,00),

()  fa=1,
Ing (z) = {xlal if € (0,1)U(1,00).

11—«
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a-Exponential Family

» Can write
k
PH(a) = 27" ea(na(Q@) + Y 0:fi(@)).
i=1

where e, and In,, are, respectively, the a-exponential and
a-logarithmic functions:

e exp(x) 1 if =1,
=\ (mae {1+ (1=, 0)) ™ e 0,10 (1,00),

I (z) In(z) ifa=1,
No(x) := .
01 if e (0,1) U (1, 00).

» a-exponential family extends the usual exponential family:

&, = {P € M: P(a) = Z(6)~} ea(lna(Q(a)) + g@ifi(a)) }
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Convergence of an lterative Process

Theorem

Let a € (1,00). Suppose that ,,2”051), . ,zoﬁm) are a-linear
families, and let

Let Py = Q, and let P,, be the forward D-projection of P,_1 on

.chi") with i,, = nmod (m) forn =1,2,.... Then, P, — P*.

» Similar to Csiszar 1975.
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REVERSE D,-PROJECTION
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Maximum Likelihood Estimation

> Assume X1,..., X, i.i.d. samples drawn according to some
member of E = {P : 6 € O}.

16/18



Maximum Likelihood Estimation

> Assume X1,..., X, i.i.d. samples drawn according to some
member of E = {P : 6 € O}.

> Let P be the empirical measure of X1, ..., X,.

16/18



Maximum Likelihood Estimation

> Assume X1,..., X, i.i.d. samples drawn according to some
member of E = {P : 6 € O}.

> Let P be the empirical measure of X1, ..., X,.

[Ty Po(Xi)  _ 1 (pp(a)yﬁ(a)
T, P(X) s\ Pla)

= exp{nzp log( (a))}
acA (a)

= exp{-nD(P|Py)}.
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Maximum Likelihood Estimation

> Assume X1,..., X, i.i.d. samples drawn according to some
member of E = {P : 6 € O}.

> Let P be the empirical measure of X1, ..., X,.

[T Po(Xs) 1 ( pp(a)>nﬁ<a>
[T, P(X3) aca \ Pla)

= exp{nzp log( (a))}
acA (a)

= exp{-nD(P|Py)}.

» Thus MLE is a reverse projection
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Maximum Likelihood Estimation

> Assume X1,..., X, i.i.d. samples drawn according to some
member of E = {P : 6 € O}.

> Let P be the empirical measure of X1, ..., X,.

[T Po(Xs) 1 ( pp(a)>nﬁ<a>
[T, P(X3) aca \ Pla)

= exp{nZP log< (a))}
acA (a)

= exp{-nD(P|Py)}.

» Thus MLE is a reverse projection

» Reverse projection of Rényi divergence on a-convex sets
corresponds to a robust version of MLE when some fraction
of samples are outliers (Pardo 2006, Basu et al. 2011).
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Robust estimation on a-exponential family and the duality

Theorem

Let X1,...,X,, beiid samples drawn according to a distribution
from &,, an a-exponential family, and let P be its empirical
probability measure.
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Robust estimation on a-exponential family and the duality
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Robust estimation on a-exponential family and the duality

Theorem

Let X1,...,X,, beiid samples drawn according to a distribution
from &,, an a-exponential family, and let P be its empirical
probability measure. Let P* be the forward D-projection of ) on
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Robust estimation on a-exponential family and the duality

Theorem

Let X1,...,X,, beiid samples drawn according to a distribution
from &,, an a-exponential family, and let P be its empirical
probability measure. Let P* be the forward D-projection of ) on

Lo ={PeM:Y P)Ofila)-n" Qa) ] =0,i=1,...,k},

(1) ZaAP(a)O‘fi(a) '
> Pla)*Q(a)t=—

» a-linear and a-exponential families are orthogonal: /f
Supp(P*) = Supp(%,), then £, N &, = {P*}, and

Do(P||Py) = Do(P||P*) + Do(P*|Py) VP € Ly VP € &,

> Thus, arg min Do (P||Py) = P* = arg min Dy(P|Q).
€ €Ly
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Summary

v

Sufficient condition for the existence of forward projection on
a-convex sets

» Pythagorean equality on a-linear family for o > 1

» Convergence of iterated projection on an intersection of
a-linear families

» Form of forward projection on a-linear family
» Orthogonality of a-linear and a-exponential families

» Full version: http://arxiv.org/abs/1512.02515.
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