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Introduction

Hypothesis Testing

@ Bayesian M-ary hypothesis testing:
X is a random variable taking values on X with |X| = M;
a prior distribution Px on X;
M hypotheses for the V-valued data { Py |x—n,, m € X'}.
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Introduction

Hypothesis Testing

@ Bayesian M-ary hypothesis testing:

X is a random variable taking values on X with |X| = M;
a prior distribution Px on X;
M hypotheses for the V-valued data { Py |x—n,, m € X'}.

@ cx|y: the minimum probability of error of X given YV’
achieved by the maximum-a-posteriori (MAP) decision rule.
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Interplay x|y <— information measures
@ Bounds on ey involving information measures exist in the literature.
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Introduction

Interplay x|y <— information measures

@ Bounds on ey involving information measures exist in the literature.
@ Useful for

the analysis of M-ary hypothesis testing
proofs of coding theorems.

@ In this talk, we introduce:

upper and lower bounds on €x |y in terms of the Arimoto-Rényi

conditional entropy H,(X|Y') of any order .
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Preliminaries

The Rényi Entropy

Definition
Let Px be a probability distribution on a discrete set X'. The Rényi
entropy of order av € (0,1) U (1, 00) of X is defined as

L 10g Y Pg()

11—«
zeX

Ha(X) =

By its continuous extension, Hy(X) = H(X).
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I ..
The Binary Rényi Divergence

Definition

For @ € (0,1) U (1,00), the binary Rényi divergence of order « is given by

da(pllg) = — log(p"¢' ™+ (1-p)°(1-0)'°). (@
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The Binary Rényi Divergence

Definition

For @ € (0,1) U (1,00), the binary Rényi divergence of order « is given by

da(plla) = — log(pPd'+ (1-p)*(1-0)').  (2)

a—1

1—p
o (3)

lim do (pllg) = d(plla) = plog§ +(1—p)log

v
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Preliminaries

Rényi Conditional Entropy 7
o If we mimic the definition of H(X|Y) and define conditional Rényi

entropy as

> Py(y) Ho(X[Y =),

yey
we find that, for « # 1, the conditional version may be larger than
Hy(X) !
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Preliminaries

Rényi Conditional Entropy ?

o If we mimic the definition of H(X|Y) and define conditional Rényi
entropy as
> Py(y) Ho(X[Y =),
yey
we find that, for « # 1, the conditional version may be larger than
Ho(X) !
@ To remedy this situation, Arimoto introduced a notion of conditional
Rényi entropy, H,(X|Y) (named Arimoto-Rényi conditional entropy),
which is upper bounded by H,(X).
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let Pxy be defined on X x ), where X is a discrete random variable.
o If a€(0,1)U(1,00), then

1

Ho(X]Y) = 125 log E ( > P§|y(€6|Y)> : (4)

reX
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let Pxy be defined on X x ), where X is a discrete random variable.
o If € (0,1)U(1,00), then

1
a

~— logE (ZP%Y(:CIY)) (4)

TeEX

Ho(X[Y) =

~log ) Py(y) exp (1 L HL(X]Y = y)) . (5)

yey

where (5) applies if Y is a discrete random variable.
o Continuous extension at a = 0, 1, 00 with H(X|Y) = H(X|Y).
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Fano's Inequality
Let X take values in |X| = M, then

H(X|Y) < h(ex)y) + x|y log(M — 1)

o & = E DA
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Fano meets Rényi

Fano's Inequality
Let X take values in |X| = M, then

H(X|Y) < h(ex)y) + x|y log(M — 1) (6)
=log M — d(€X|y”1 — %)
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|. Sason & S. Verdi ISIT 2017, Aachen, Germany



Fano meets Rényi

Fano's Inequality
Let X take values in |X| = M, then

H(X|Y) < h(ex)y) +exy log(M — 1) (6)
=log M — d(exylI1 — 57) (7)

e (7) is not nearly as popular as (6);

@ (7) turns out to be the version that admits an elegant (although not
immediate) generalization to the Arimoto-Rényi conditional entropy.
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Fano meets Rényi

Generalization of Fano's Inequality

@ It is easy to get Fano's inequality by averaging H(X|Y = y) with

respect to the observation y: H(X|Y) =3_ .y, Py(y) H(X[Y =y).

|. Sason & S. Verdu ISIT 2017, Aachen, Germany June 25-30, 2017 9 /20



Fano meets Rényi

Generalization of Fano's Inequality
@ It is easy to get Fano's inequality by averaging H(X|Y = y) with
respect to the observation y: H(X|Y) =3_ .y, Py(y) H(X[Y =y).
@ This simple route is not viable in the case of H,(X|Y) since it is not
an average of Rényi entropies of conditional distributions:

Ho(X|Y) £> Py(y) Hu(X|Y =y), a#l. (8)
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respect to the observation y: H(X|Y) =3_ .y, Py(y) H(X]Y =y).
@ This simple route is not viable in the case of H,(X|Y) since it is not
an average of Rényi entropies of conditional distributions:

Ho(X|Y) £> Py(y) Hu(X|Y =y), a#l. (8)
yey

@ The standard proof of Fano's inequality, also fails for H,(X|Y") of
order v # 1 since it does not satisfy the chain rule.
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Fano meets Rényi

Generalization of Fano's Inequality

It is easy to get Fano's inequality by averaging H(X|Y = y) with
respect to the observation y: H(X|Y) =3_ .y, Py(y) H(X]Y =y).
This simple route is not viable in the case of H,(X|Y) since it is not
an average of Rényi entropies of conditional distributions:

Ho(X|Y) £> Py(y) Hu(X|Y =y), a#l. (8)
yey

The standard proof of Fano's inequality, also fails for H,(X|Y) of
order v # 1 since it does not satisfy the chain rule.

o Before we generalize Fano's inequality by linking € x|y with Hq(X[Y)
for o € [0, 00), note that for & = oo, the following equality holds:

exjy = 1 — exp(—Hoo(X|Y)). (9)

v
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Fano meets Rényi

Generalization of Fano's Inequality (cont.)

Lemma
Let a € (0,1) U (1,00) and (3,7) € (0,00)2. Then,
fapor() = (Y1 = ) + fu®)=, we0,1] (10)

is

o strictly convex for a € (1,00);

e strictly concave for a € (0,1).

1

« a) o a—2
Ji g () = (o= DBy (4(1 = w)* + Bu) ™ (u(l - w)) (1)
which is strictly negative if a € (0, 1), and strictly positive if a € (1, 00).
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Fano meets Rényi

Generalization of Fano's Inequality (cont.)

Theorem

Let Pxy be a probability measure defined on X x ) with |X| = M < oc.
For all & € (0, 00),

Ho(X[Y) <log M — da(expylIl — £)- (12)

Equality holds in (12) if and only if, for all y,

|, z # L*(y)
PX|Y(x’y) - { i\/l—lfx‘y, = E*(y) (13)

where L*: Y — X is a deterministic MAP decision rule.
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Generalization of Fano's Inequality (cont.)
If X,Y are vectors of dimension n, then ex;y — 0 = LH(X|Y) — 0.
However, the picture with H,(X|Y") is more nuanced !
=] 5 = £ DA




Fano meets Rényi

Generalization of Fano's Inequality (cont.)

If X,Y are vectors of dimension n, then exy — 0 = LH(X|Y)—o0.

However, the picture with H,(X|Y") is more nuanced !

Theorem

Assume
o {X,} is a sequence of random variables;

e X, takes values on X,, such that |X,,| < M™ for M > 2 and all n;

o {Y,} is a sequence of random variables, for which ex. |y, — 0.

a) Ifa € (1,00], then Hy(X,|Y,,) — 0;
b) Ifa =1, then L H(X,|Y,) — 0;

c) Ifa€]0,1), then %Ha(Xn\Yn) is upper bounded by log M ;
nevertheless, it does not necessarily tend to 0.
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Lower Bound on H,(X|Y)

Theorem

If a € (0,1)U(1,00), then

o
— 10g galexpy) < Ha(X[Y), (14)

with the piecewise linear function
1 1 144 1
galt) = (k:(k: +1)F — ka(k+ 1)>t FEa (k- 1)(k+1)%  (15)

on the interval t € [1 — §,1— =47) fork € {1,2,...}.

@ Not restricted to finite M.
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Fano meets Rényi

Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass pmax- Then,
for a € (0,1) U (1, 00),

Ho(X) > sa(ex) (16)

where ex = 1 — pmax IS the minimum error probability of guessing X, and
Sa: [0,1) — [0,00) is given by

sa(T) = 1ia log([ﬁj (1—a2)* + (1—(1-@ hixDa)

Equality holds in (16) if and only if Px has L;J masses equal to pmax-

Pmax

v

The proof relies on the Schur-concavity of H,(-).
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Proof Outline (cont.)

For every y € ), the lemma yields H, (X |Y =y) > sa(exy (¥))- J

o & = E DA
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Fano meets Rényi

Proof Outline (cont.)
For every y € ), the lemma yields H,(X |Y = y) > s, (€X|y( ).
For o € (0,1), let fo: [0,1) — [1,00) be defined as

fa(z) = exp (152 sa(2))

@ g, is the piecewise linear function which coincides with f, at all
points 1 — % for k € N;

@ g, is the lower convex envelope of fu;
Ho(X|Y) > 122 10gE [fa(exy (Y))] (Lemma; f, increasing)

= 10gE [ga(exv (Y))] (9a < fa)

125 1og ga(ex|y) (Jensen)

v

v
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Fano meets Rényi

Proof Outline (cont.)
For every y € ), the lemma yields Ho (X |Y = y) > sa(ex )y (y))-
For a € (0,1), let fo:[0,1) — [1,00) be defined as

fa(z) = exp (1?70‘ sa(:c))

@ g, is the piecewise linear function which coincides with f, at all
points 1 — % for k € N;

@ g, is the lower convex envelope of fu;
Ho(X|Y) > 122 10gE [fo(exy (Y))] (Lemma; f, increasing)
125 108E [ga(ex1y (V)] (9a < fo)

125 log ga(ex|y) (Jensen)

v

v

For a € (1,00), —gq is the lower convex envelope of —f,, and f, is
monotonically decreasing. Proof is similar.
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HQ(X‘Y) < EX|Y

bits
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Asymptotic Tightness
Both upper and lower bounds on x|y are asymptotically tight as @ — oo.
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Fano meets Rényi

Asymptotic Tightness
Both upper and lower bounds on x|y are asymptotically tight as @ — oo.

v

Special cases
As o — 1, we get existing bounds as special cases:
@ Fano's inequality,
@ Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on x|y are asymptotically tight as @ — oo.

v

Special cases
As o — 1, we get existing bounds as special cases:
@ Fano's inequality,
@ Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

Upper bound on exy

The most useful domain of applicability of the counterpart to the
generalization of Fano's inequality is e x|y € [0, %] in which case the lower
bound specializes to (k = 1)

o

- 10g<1 + (25 — 2)5X|Y) < Ho(X|Y). (17)

v
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List Decoding

List Decoding

@ Decision rule outputs a list of choices.

@ The extension of Fano's inequality to list decoding, expressed in terms
of the conditional Shannon entropy, was initiated by Ahlswede, Gacs

and Korner ('66).
@ Useful for proving converse results.
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Generalization of Fano's Inequality for List Decoding (cont.)

Theorem (Fixed List Size)

Let Pxy be a probability measure defined on X x ) where |X| = M.
Consider a decision rule® L:) — (j.f) and denote the decoding error
probability by P =P[X ¢ L(Y)]. Then, for all a € (0,1) U (1, 0),

Ho(X[Y) <log M — do(Pz]I1 ~ 37) (18)

with equality in (18) if and only if

hr, z ¢ L(y)
Pyiy(zly) = 4 M1 19
x|y (z|y) { I_Lpﬁv € L(y). (19)

a(f) stands for the set of all subsets of X' with cardinality L, with L < |X|.
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Conclusions

Further Results

@ Explicit lower bounds on ex|y as a function of H,(X[Y') for an
arbitrary « (also, for a < 0).

@ Lower bounds on the list decoding error probability for fixed list size
as a function of H,(X|Y") for an arbitrary « (also, for a < 0).

@ New bounds on ex|y in terms of the Chernoff information and Rényi
divergence.

o Application of H,(X|Y)-ex|y bounds: Analyzing the exponential
decay of the Arimoto-Rényi conditional entropy of the message given
the channel output for DMCs and random coding ensembles.
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