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Abstract—We explore known integral representations of the
logarithmic and power functions, and demonstrate their use-
fulness for information-theoretic analyses. We obtain compact,
easily–computable exact formulas for several source and channel
coding problems that involve expectations and higher moments
of the logarithm of a positive random variable and the moment
of order ρ > 0 of a non-negative random variable (or the sum of
i.i.d. positive random variables). These integral representations
are used in a variety of applications, including the calculation
of the degradation in mutual information between the channel
input and output as a result of jamming, universal lossless data
compression, Shannon and Rényi entropy evaluations, and the
ergodic capacity evaluation of the single-input, multiple–output
(SIMO) Gaussian channel with random parameters (known to
both transmitter and receiver). The integral representation of the
logarithmic function and its variants are anticipated to serve as
a rigorous alternative to the popular (but non–rigorous) replica
method (at least in some situations).

I. INTRODUCTION

In analytic derivations pertaining to many problem areas
in information theory, one frequently encounters the need to
calculate expectations and higher moments of expressions that
involve the logarithm of a positive–valued random variable,
or more generally, the logarithm of the sum of several i.i.d.
positive random variables. The common practice, in such
situations, is either to resort to upper and lower bounds
on the desired expression (e.g., using Jensen’s inequality or
any other well–known inequalities), or to apply the Taylor
series expansion of the logarithmic function. A more modern
approach is to use the replica method, which is a popular (but
non–rigorous) tool that has been borrowed from the field of
statistical physics with considerable success.

The purpose of this work is to point out to an alternative ap-
proach and to demonstrate its usefulness in some frequently–
encountered situations. In particular, we consider the following
integral representation of the logarithmic function (see [3,
p. 363, Identity (3.434.2)]),

lnx =

∫ ∞
0

e−u − e−ux

u
du, x > 0. (1)

The immediate use of this representation is in situations where
the argument of the logarithmic function is a positive–valued
random variable, X , and we wish to calculate the expectation,
E{lnX}. By commuting the expectation operator with the

integration over u (assuming that this commutation is valid),
the calculation of E{lnX} is replaced by the (often easier)
calculation of the moment–generating function (MGF) of X ,
as

E{lnX} =

∫ ∞
0

[
e−u − E

{
e−uX

}] du

u
. (2)

Moreover, if X1, . . . , Xn are positive i.i.d. random variables,
then

E

{
ln

n∑
i=1

Xi

}
=

∫ ∞
0

(
e−u −

[
E{e−uX1}

]n) du

u
. (3)

This simple idea is not quite new. It has been used in the
physics literature, see, e.g., [2, Eq. (2.4) and onward], [7,
Exercise 7.6, p. 140] and [9, Eq. (12) and onward]. With
the exception of [8], we are not aware of any work in the
information theory literature where it has been used. The
purpose of this paper is to demonstrate additional information-
theoretic applications, as the need to evaluate logarithmic
expectations is not rare at all in many problem areas of
information theory. Moreover, the integral representation (1)
is useful also for evaluating higher moments of lnX , most
notably, the second moment or variance, in order to assess the
statistical fluctuations around the mean.

We demonstrate the usefulness of this approach in several
application areas. In some of these examples, we also demon-
strate the calculation of variances associated with the relevant
random variables of interest.

We also consider the utility of the related identity (see [3,
p. 363, Identity (3.434.1)]),

xρ = 1 +
ρ

Γ(1− ρ)

∫ ∞
0

e−u − e−ux

uρ+1
du, x ≥ 0, (4)

for ρ ∈ (0, 1), where

Γ(x) :=

∫ ∞
0

tx−1e−t dt, x > 0 (5)

denotes Euler’s Gamma function. Identity (4) is used for
calculating the ρ-th moment of a non-negative random variable
(or the ρ-th moment of the sum of such random variables). In
[6], we also generalize (4) (in a non-trivial way) to all values
ρ > 0, which then enable to obtain expressions for the moment



of order ρ which are not restricted to ρ ∈ (0, 1). We note that
(1) follows from (4) by the identity

lim
ρ→0

xρ − 1

ρ
= lnx, x > 0. (6)

It should be pointed out that most of our results remain in
the form of a single– or double– definite integral of certain
functions that depend on the parameters of the problem in
question. Strictly speaking, such a definite integral may not
be considered a closed–form expression, but nevertheless:
a) In most of our examples, the new expression is more

compact, elegant, and insightful than the original quantity.
b) The resulting definite integrals can actually be considered

a closed–form expression “for every practical purpose”
since definite integrals in one or two dimensions can be
calculated instantly using mathematical software tools.

c) At least in three of our examples, we show how to pass
from an n–dimensional integral (with an arbitrarily large
n) to one or two–dimensional integrals. This passage is in
the spirit of the transition from a multi–letter expression to
a single–letter expression.

In Sections II–IV, we provide some applications to Shannon
and Rényi entropy calculations, and to source and channel
coding problems, respectively. This conference paper presents
in part our work in [5] and [6].

II. APPLICATIONS TO SHANNON AND RÉNYI ENTROPIES

This section is focused on the calculation of the differential
Shannon and Rényi entropies for generalized multivariate
Cauchy densities.

Let (X1, . . . , Xn) be a random vector whose probability
density function is of the form

f(x) =
Cn

[1 +
∑n
i=1 g(xi)]

q , ∀x = (x1, . . . , xn) ∈ Rn, (7)

for a certain non–negative function g and positive constant q
such that ∫

Rn

1

[1 +
∑n
i=1 g(xi)]

q dx <∞. (8)

We refer to this kind of density as generalized multivariate
Cauchy because the multivariate Cauchy density is obtained
as a special case where g(x) = x2 and q = 1

2 (n + 1). Using
the Laplace transform relation,

1

sq
=

1

Γ(q)

∫ ∞
0

tq−1e−st dt, ∀ q > 0, Re(s) > 0, (9)

f can be represented as a mixture of product measures:

f(x) =
Cn

Γ(q)

∫ ∞
0

tq−1e−t exp

{
−t

n∑
i=1

g(xi)

}
dt. (10)

Defining

Z(t) :=

∫ ∞
−∞

e−tg(x) dx, ∀ t > 0, (11)

it can be verified from (10) that

Cn =
Γ(q)∫ ∞

0

tq−1e−tZn(t) dt

. (12)

From (7), the calculation of the differential entropy of f is
associated with evaluating E

{
ln
[
1+
∑n
i=1 g(Xi)

]}
. Using (1),

E

{
ln

[
1 +

n∑
i=1

g(Xi)

]}

=

∫ ∞
0

e−u

u

(
1− E

{
exp

[
−u

n∑
i=1

g(Xi)

]})
du. (13)

From (10) and by interchanging the integration,

E

{
exp

[
−u

n∑
i=1

g(Xi)

]}

=
Cn

Γ(q)

∫ ∞
0

tq−1e−t
∫
Rn

exp

{
−(t+ u)

n∑
i=1

g(xi)

}
dxdt

=
Cn

Γ(q)

∫ ∞
0

tq−1e−tZn(t+ u) dt. (14)

In view of (10), (13) and (14), the differential entropy of
(X1, . . . , Xn) can be verified to be given by

h(X1, . . . , Xn)

= q E

{
ln

[
1 +

n∑
i=1

g(Xi)

]}
− lnCn

=
qCn
Γ(q)

∫ ∞
0

∫ ∞
0

tq−1e−(t+u)

u

[
Zn(t)− Zn(t+ u)

]
dtdu

− lnCn. (15)

For g(x) = |x|θ, with a fixed θ > 0, we obtain from (11)
that

Z(t) =
2 Γ(1/θ)

θ t1/θ
. (16)

In particular, for θ = 2 and q = 1
2 (n + 1), we get the

multivariate Cauchy density from (7). In this case, it follows
from (16) that Z(t) =

√
π
t for t > 0, and from (12)

Cn =
Γ
(
n+1
2

)
π(n+1)/2

. (17)

Combining (15), (16) and (17) gives

h(X1, . . . , Xn)

=
n+ 1

2π(n+1)/2

∫ ∞
0

∫ ∞
0

e−(t+u)

u
√
t

[
1−

(
t

t+ u

)n/2]
dtdu

+
(n+ 1) lnπ

2
− ln Γ

(
n+ 1

2

)
. (18)

Fig. 1 displays the normalized differential entropy,
1
n h(X1, . . . , Xn), for 1 ≤ n ≤ 100.

We believe that the interesting point, conveyed in this appli-
cation example, is that (15) provides a kind of a “single–letter
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Fig. 1. The normalized differential entropy, 1
n
h(X1, . . . , Xn) (see (18)),

for a multivariate Cauchy density, f(x) = Cn/[1+
∑n

i=1 x
2
i ]

(n+1)/2, with
Cn in (17).

expression”; the n–dimensional integral, associated with the
original expression of the differential entropy h(X1, . . . , Xn),
is replaced by the two–dimensional integral in (15), indepen-
dently of n. For α > 1, it relies on the Laplace transform
relation in (9), which after some calculations give

Hα(X1, . . . , Xn)

=
1

1− α
logE

{
fα−1(X)

}
=

α

α− 1
log

∫ ∞
0

tq−1e−tZn(t) dt

− 1

α− 1
log

∫ ∞
0

∫ ∞
0

tq(α−1)−1uq−1e−(t+u)

· Zn(t+ u) dudt

+
1

α− 1
log Γ

(
q(α− 1)

)
− log Γ(q), (19)

with Z(·) as given in (11). For α ∈ (0, 1), we express the dif-
ferential Rényi entropy of order α as a double-integral whose
derivation relies on a non-trivial extension of Identity (4) for
all ρ > 0. In particular, it can be obtained from (4) that, for
all α ∈

(
1− 1

q , 1
)
,

Hα(X1, . . . , Xn)

= log

(
1 +

q(1− α)

Γ
(
q(1− α)

) ∫ ∞
0

∫ ∞
0

e−(t+u)

uq(α−1)+1

·
(

1− Cn
Γ(q)

· tq−1Zn(t+ u)

)
dtdu

)
. (20)

As a final note, we mention that a lower bound on the
differential Shannon entropy of a different form of extended
multivariate Cauchy distributions (cf. [4, Eq. (42)]) was de-
rived in [4, Theorem 6]. The latter result relies on obtaining
lower bounds on the differential entropy of random vectors
whose densities are symmetric log-concave or γ-concave (i.e.,
densities f for which fγ is concave for some γ < 0).

III. APPLICATIONS TO SOURCE CODING

We refer here to universal source coding for binary
arbitrarily-varying sources. Consider a source coding setting,
where there are n binary DMS’s, and let xi ∈ [0, 1] denote the
Bernoulli parameter of source no. i ∈ {1, . . . , n}. Assume that
a hidden memoryless switch selects uniformly at random one
of these sources, and the data is then emitted by the selected
source. Since it is unknown a-priori which source is selected
at each instant, a universal lossless source encoder (e.g., a
Shannon or Huffman code) is designed to match a binary
DMS whose Bernoulli parameter is given by 1

n

∑n
i=1 xi.

Neglecting integer length constraints, the average redundancy
in the compression rate (measured in nats per symbol), due to
the unknown realization of the hidden switch, is about

Rn = hb

(
1
n

n∑
i=1

xi

)
− 1

n

n∑
i=1

hb(xi), (21)

where hb : [0, 1] → [0, ln 2] is the binary entropy function
(defined to the base e), and the redundancy is given in nats per
source symbol. Now, let us assume that the Bernoulli parame-
ters of the n sources are i.i.d. random variables, X1, . . . , Xn,
all having the same density as that of some generic random
variable X , whose support is the interval [0, 1]. We wish to
evaluate the expected value of the above defined redundancy,
under the assumption that the realizations of X1, . . . , Xn are
known. We are then facing the need to evaluate

Rn = E
{
hb

(
1
n

n∑
i=1

Xi

)}
− E{hb(X)}. (22)

We now express the first and second terms on the right–hand
side of (22) as a function of the MGF of X .

In view of (1), the binary entropy function hb admits the
integral representation

hb(x) =

∫ ∞
0

[
xe−ux + (1− x)e−u(1−x) − e−u

] du

u
, (23)

for all x ∈ [0, 1], which implies that E{hb(X)} can be ex-
pressed as functionals of the MGF of X , MX(ν) = E{eνX},
and its derivative, for ν < 0. For all u ∈ R,

E
{
Xe−uX

}
= M ′X(−u), (24)

and

E
{

(1−X)e−u(1−X)
}

= e−u
[
MX(u)−M ′X(u)

]
. (25)

From (23)–(25), we readily obtain

E{hb(X)} (26)

=

∫ ∞
0

1

u

{
M ′X(−u) +

[
MX(u)−M ′X(u)− 1

]
e−u

}
du.

Define Yn := 1
n

n∑
i=1

Xi. Then,

MYn(u) = Mn
X

(
u
n

)
, ∀u ∈ R, (27)



which yields, in view of (26), (27) and the change of integra-
tion variable, t = u

n , the following:

E
{
hb

(
1
n

n∑
i=1

Xi

)}

=

∫ ∞
0

1

t

{
Mn−1
X (−t)M ′X(−t) + e−nt

·
[
Mn
X(t)−Mn−1

X (t)M ′X(t)− 1
]}

dt. (28)

Here too, we pass from an n-dimensional integral to a one-
dimensional integral. In general, similar calculations can be
carried out for higher integer moments, thus passing from
n-dimensional integration for a moment of order s to an s-
dimensional integral, independently of n.

For example, if X1, . . . , Xn are i.i.d. and uniformly dis-
tributed on [0,1], then (28) gives that E

{
hb

(
1
n

∑n
i=1Xi

)}
is

equal to 1
2 , 0.602, 0.634, 0.650, 0.659 nats for n = 1, . . . , 5,

respectively, with the limit hb
(
1
2

)
= ln 2 ≈ 0.693 as we let

n→∞ (this is expected by the law of large numbers).

IV. APPLICATIONS TO CHANNEL CODING

A. Mutual Information Calculations for Communication
Channels with Jamming

Consider a channel with input X = (X1, . . . , Xn) ∈ Xn
and output Y = (Y1, . . . , Yn) ∈ Yn, having the transition
probability law

pn(y|x) =
1

n

n∑
i=1

{∏
j 6=i

q(yj |xj) p(yi|xi)

}
, (29)

for all (x, y) ∈ Xn × Yn. This channel model refers to the
case of a memoryless, stationary channel with a transition
probability law qn(y|x) =

∏n
i=1 q(yi|xi), where one of its

symbols is jammed uniformly at random, and the transition
law of the randomly jammed symbol xi is given by p(yi|xi)
instead of q(yi|xi).

We wish to evaluate the mutual information I(X;Y ), due
to jamming as above, and see by how much it decreases as
compared to the mutual information between the input and out-
put vectors of the memoryless, stationary channel qn (without
the jamming). Let the input distribution be memoryless and
stationary with pX(x) =

∏n
i=1 pX(xi) for all x ∈ Xn.

The mutual information (in nats) is given by

I(X;Y ) = h(Y )− h(Y |X)

=

∫
Xn×Yn

pX,Y (x, y) ln pn(y|x) dxdy

−
∫
Yn

pY (y) ln pY (y) dy. (30)

For simplicity of notation, we omit the domains of integration

when they are clear from the context. We have,∫
pX,Y (x, y) ln pn(y|x) dxdy

=

∫
pX,Y (x, y) ln

pn(y|x)

qn(y|x)
dxdy

+

∫
pX,Y (x, y) ln qn(y|x) dxdy. (31)

By using the logarithmic representation in (1), and based on
the following equality (see (29)):

pn(y|x)

qn(y|x)
=

1

n

n∑
i=1

p(yi|xi)
q(yi|xi)

, (32)

it follows after some calculations (which involve changing the
order of integration) that∫

pX,Y (x, y) ln
pn(y|x)

qn(y|x)
dxdy

=

∫ ∞
0

1

u

[
e−u − fn−1

(u
n

)
g
(u
n

)]
du, (33)

where, for u ≥ 0,

f(u) :=

∫
pX(x) q(y|x) exp

(
−u p(y|x)

q(y|x)

)
dx dy, (34)

g(u) :=

∫
pX(x) p(y|x) exp

(
−u p(y|x)

q(y|x)

)
dx dy. (35)

Moreover, due to the product form of qn, it can be verified
that ∫

pX,Y (x, y) ln qn(y|x) dx dy

=

∫
pX(x) p(y|x) ln q(y|x) dxdy

+ (n− 1)

∫
pX(x) q(y|x) ln q(y|x) dxdy. (36)

Combining (31)–(36) expresses the conditional (differential)
entropy h(Y |X) as a double integral over X × Y , indepen-
dently of n (rather than an integration over Xn × Yn).

We next need to calculate the differential entropy of Y at
the output of the channel whose transition probability law is
given by pn in (29), assuming the product input distribution
as above. It can be verified that, for all y ∈ Yn,

pY (y) =

n∏
j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
, (37)

where, for all y ∈ Y ,

v(y) :=

∫
q(y|x) pX(x) dx, (38)

w(y) :=

∫
p(y|x) pX(x) dx. (39)

By the integral representation of the logarithmic function
in (1), the following identity holds for an arbitrary positive
random variable Z:

E{Z lnZ} =

∫ ∞
0

1

u

[
M ′Z(0) e−u −M ′Z(−u)

]
du (40)



where MZ(u) := E{euZ} denotes the MGF of Z. By setting
Z := 1

n

∑n
i=1

w(Ri)
v(Ri)

where {Ri}ni=1 are i.i.d. random variables
with the density v, some calculations finally give that

h(Y ) =

∫ ∞
0

1

u

[
tn−1

(u
n

)
s
(u
n

)
− e−u

]
du (41)

−
∫
w(y) ln v(y) dy − (n− 1)

∫
v(y) ln v(y) dy,

where v and w are given in (38) and (39), respectively, and

s(u) :=

∫
w(y) exp

(
−u w(y)

v(y)

)
dy, u ≥ 0, (42)

t(u) :=

∫
v(y) exp

(
−u w(y)

v(y)

)
dy, u ≥ 0. (43)

Fig. 2 refers to the special case where transmission takes
place over a binary symmetric channel (BSC) with crossover
probability q = 10−3, and pn is the transition probability
law of such a channel where the randomly selected bit in
a transmitted block of n = 128 bits which is jammed has a
new crossover probability p ∈ (q, 12 ]. The mutual information
for the jamming-free BSC with a symmetric and memoryless
binary-input distribution is equal to

I(X;Y ) = n
(
ln 2− hb(q)

)
= 87.71 nats,

where hb(·) denotes the binary entropy function (to the base e),
and the value of the mutual information is decreased by
2.88 nats as a result of the random single-bit jamming with a
crossover probability of p = 1

2 (see Fig. 2).
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Fig. 2. The degradation in the mutual information I(X;Y ) for blocks of
n = 128 bits. The jamming-free channel qn acts like a binary symmetric
channel with crossover probability q = 10−3, and pn is the channel transition
law in (29). The random bit which is jammed according to pn has crossover
probability p ∈

(
q, 1

2

]
. The binary-input distribution is memoryless and

symmetric. The degradation in I(X;Y ) (in units of nats) is plotted as a
function of the parameter p.

The restriction to a single bit which is jammed is for
simplicity.

B. Ergodic Capacity of Fading SIMO Channels

Consider the SIMO channel with L receive antennas and
assume that the channel transfer coefficients, h1, . . . , hL, are

independent, zero–mean, circularly symmetric complex Gaus-
sian random variables with variances σ2

1 , . . . , σ
2
L. The ergodic

capacity (in nats per channel use) of the channel is given by

C = E

{
ln

(
1 + ρ

L∑
`=1

|h`|2
)}

= E

{
ln

(
1 + ρ

L∑
`=1

(
f2` + g2`

))}
, (44)

where f` := Re{h`}, g` := Im{h`}, and ρ := P
N0

is the
signal–to–noise ratio (SNR) (see, e.g., [1] and [10]).

Paper [1] is devoted, among other things, to the exact
evaluation of (44) by finding the density of the random
variable defined by

∑L
`=1(f2` + g2` ), and then taking the

expectation w.r.t. that density. Here, we show that the integral
representation in (1) suggests a more direct approach to the
evaluation of (44). It should also be pointed out that this
approach is more flexible than the one in [1], as the latter
strongly depends on the assumption that {hi} are Gaussian and
statistically independent. The integral representation approach
also allows other distributions of the channel transfer gains, as
well as possible correlations between the coefficients and/or
the channel inputs. Moreover, we are also able to calculate
the variance of ln

(
1 + ρ

∑L
`=1 |h`|2

)
, as a measure of the

fluctuations around the mean, which is obviously related to
the outage. Specifically, let X := ρ

∑L
`=1(f2` + g2` ). Then,

MX(−u) = E
{

exp(−uX)
}

=

L∏
`=1

1

1 + uρσ2
`

, u > 0. (45)

From (1), (44) and (45), the ergodic capacity (in nats per
channel use) is given by

C =

∫ ∞
0

e−x/ρ

x

(
1−

L∏
`=1

1

1 + σ2
`x

)
dx. (46)

A similar approach appears in [8, Eq. (12)]. As for the
variance, [5, Proposition 2] (relying on (1)) and (45) yield

Var

{
ln

(
1 + ρ

L∑
`=1

[f2` + g2` ]

)}

=

∫ ∞
0

∫ ∞
0

e−(x+y)/ρ

xy

{
L∏
`=1

1

1 + σ2
` (x+ y)

−
L∏
`=1

1

(1 + σ2
`x)(1 + σ2

` y)

}
dx dy. (47)

Consider the example of L = 2, σ2
1 = 1

2 and σ2
2 = 1. From

(46), the ergodic capacity of the SIMO channel is given by

C = 2e1/ρE1

(
1

ρ

)
− e2/ρE1

(
2

ρ

)
, (48)

where E1(·) is the (modified) exponential integral function:

E1(x) :=

∫ ∞
x

e−s

s
ds, ∀x > 0. (49)
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[7] M. Mézard and A. Montanari, Information, Physics, and Computation,
Oxford University Press, New-York, USA, 2009.
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