Exact Expressions in Source and Channel Coding Problems Using Integral Representations

Speaker: Igal Sason

Joint Work with Neri Merhav

EE Department, Technion - Israel Institute of Technology

2020 IEEE International Symposium on Information Theory

ISIT 2020

Online Virtual Conference June 21-26, 2020

Motivation

In information-theoretic analyses, one frequently needs to calculate:

- Expectations or, more generally, ρ -th moments, for some $\rho > 0$;
- Logarithmic expectations

of sums of i.i.d. positive random variables.

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 2 / 18

Motivation

In information-theoretic analyses, one frequently needs to calculate:

- Expectations or, more generally, ρ -th moments, for some $\rho > 0$;
- Logarithmic expectations

of sums of i.i.d. positive random variables.

Commonly Used Approaches

- Resorting to bounds (e.g., Jensen's inequality).
- A modern approach for logarithmic expectations is to use the replica method, which is a popular (but non-rigorous) tool, borrowed from statistical physics with considerable success.

2 / 18

Motivation

In information-theoretic analyses, one frequently needs to calculate:

- Expectations or, more generally, ρ -th moments, for some $\rho > 0$;
- Logarithmic expectations

of sums of i.i.d. positive random variables.

Commonly Used Approaches

- Resorting to bounds (e.g., Jensen's inequality).
- A modern approach for logarithmic expectations is to use the replica method, which is a popular (but non-rigorous) tool, borrowed from statistical physics with considerable success.

Purpose of this Work

Pointing out an alternative approach, by using integral representations, and demonstrating its usefulness in information-theoretic analyses.

$$\ln z = \int_0^\infty \frac{e^{-u} - e^{-uz}}{u} du, \quad \text{Re}(z) \ge 0.$$

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 3/18

$$\ln z = \int_0^\infty \frac{e^{-u} - e^{-uz}}{u} du, \quad \operatorname{Re}(z) \ge 0.$$

Proof

$$\ln z = (z - 1) \int_0^1 \frac{\mathrm{d}v}{1 + v(z - 1)}$$

$$= (z - 1) \int_0^1 \int_0^\infty e^{-u[1 + v(z - 1)]} \, \mathrm{d}u \, \mathrm{d}v$$

$$= (z - 1) \int_0^\infty e^{-u} \int_0^1 e^{-uv(z - 1)} \, \mathrm{d}v \, \mathrm{d}u$$

$$= \int_0^\infty \frac{e^{-u}}{u} \left[1 - e^{-u(z - 1)} \right] \, \mathrm{d}u$$

$$= \int_0^\infty \frac{e^{-u} - e^{-uz}}{u} \, \mathrm{d}u.$$

$$\ln z = \int_0^\infty \frac{e^{-u} - e^{-uz}}{u} du, \quad \operatorname{Re}(z) \ge 0.$$

Logarithmic Expectation

$$\mathbb{E}\{\ln X\} = \int_0^\infty \left[e^{-u} - M_X(-u)\right] \frac{\mathrm{d}u}{u},$$

where $M_X(u) := \mathbb{E}\{e^{uX}\}$ is the moment-generating function (MGF).

4□▶ 4□▶ 4□▶ 4□▶ □ 900

$$\ln z = \int_0^\infty \frac{e^{-u} - e^{-uz}}{u} du, \quad \operatorname{Re}(z) \ge 0.$$

Logarithmic Expectation

$$\mathbb{E}\{\ln X\} = \int_0^\infty \left[e^{-u} - M_X(-u)\right] \frac{\mathrm{d}u}{u},$$

where $M_X(u) := \mathbb{E}\{e^{uX}\}$ is the moment-generating function (MGF).

Logarithmic Expectation of a sum of i.i.d. random variables

Let X_1, \ldots, X_n be i.i.d. random variables, then

$$\mathbb{E}\{\ln(X_1 + \ldots + X_n)\} = \int_0^\infty \left[e^{-u} - M_{X_1}^n(-u)\right] \frac{\mathrm{d}u}{u}.$$

Example 1: Logarithms of Factorials

$$\ln(n!) = \sum_{k=1}^{n} \ln k$$

$$= \sum_{k=1}^{n} \int_{0}^{\infty} (e^{-u} - e^{-uk}) \frac{du}{u}$$

$$= \int_{0}^{\infty} e^{-u} \left(n - \frac{1 - e^{-un}}{1 - e^{-u}} \right) \frac{du}{u}.$$

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 4 / 18

Example 1: Logarithms of Factorials

$$\ln(n!) = \sum_{k=1}^{n} \ln k$$

$$= \sum_{k=1}^{n} \int_{0}^{\infty} (e^{-u} - e^{-uk}) \frac{du}{u}$$

$$= \int_{0}^{\infty} e^{-u} \left(n - \frac{1 - e^{-un}}{1 - e^{-u}} \right) \frac{du}{u}.$$

Example 2: Entropy of Poisson Random Variable $N \sim \text{Poisson}(\lambda)$

$$\begin{split} H(N) &= \lambda - \mathbb{E}\{N\} \, \ln \lambda + \mathbb{E}\{\ln N!\} \\ &= \lambda \, \ln \frac{e}{\lambda} + \int_0^\infty e^{-u} \left(\lambda - \frac{1 - e^{-\lambda(1 - e^{-u})}}{1 - e^{-u}}\right) \, \frac{\mathrm{d}u}{u}. \end{split}$$

4 / 18

 ρ -th moment for all $\rho \in (0,1)$

$$\mathbb{E}\{X^{\rho}\} = 1 + \frac{\rho}{\Gamma(1-\rho)} \int_0^{\infty} \frac{e^{-u} - M_X(-u)}{u^{1+\rho}} du,$$

where $\Gamma(\cdot)$ denotes Euler's Gamma function:

$$\Gamma(u) := \int_0^\infty t^{u-1} e^{-t} dt, \quad u > 0.$$

4□ > 4□ > 4 = > 4 = > = 90

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 5 / 18

 ρ -th moment for all $\rho \in (0,1)$

$$\mathbb{E}\{X^{\rho}\} = 1 + \frac{\rho}{\Gamma(1-\rho)} \int_0^{\infty} \frac{e^{-u} - M_X(-u)}{u^{1+\rho}} du,$$

where $\Gamma(\cdot)$ denotes Euler's Gamma function:

$$\Gamma(u) := \int_0^\infty t^{u-1} e^{-t} dt, \quad u > 0.$$

ρ -th moment of the sum of i.i.d. RVs for all $\rho \in (0,1)$

If $\{X_i\}_{i=1}^n$ are i.i.d. nonnegative real-valued random variables, then

$$\mathbb{E}\left\{ \left(\sum_{i=1}^{n} X_i \right)^{\rho} \right\} = 1 + \frac{\rho}{\Gamma(1-\rho)} \int_0^{\infty} \frac{e^{-u} - M_{X_1}^n(-u)}{u^{1+\rho}} \, \mathrm{d}u.$$

 √□ → √□ → √□ → √□ → √□ → √□ → √□ → √□
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №

 №
 №
 №
 №
 №

 №
 №

 №

Passage to Logarithmic Expectations

Since

$$\ln x = \lim_{\rho \to 0} \frac{x^{\rho} - 1}{\rho}, \quad x > 0,$$

then, swapping limit and expectation (based on the Monotone Convergence Theorem) gives

$$\mathbb{E}\{\ln X\} = \lim_{\rho \to 0^+} \frac{\mathbb{E}\{X^{\rho}\} - 1}{\rho}$$
$$= \int_0^\infty \frac{e^{-u} - M_X(-u)}{u} \, \mathrm{d}u.$$

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 6 / 18

Extension to Fractional ρ -th moments with $\rho > 0$

$$\mathbb{E}\{X^{\rho}\} = \frac{1}{1+\rho} \sum_{\ell=0}^{\lfloor \rho \rfloor} \frac{\alpha_{\ell}}{B(\ell+1, \rho+1-\ell)} + \frac{\rho \sin(\pi \rho) \Gamma(\rho)}{\pi} \int_{0}^{\infty} \left(\sum_{j=0}^{\lfloor \rho \rfloor} \left\{ \frac{(-1)^{j} \alpha_{j}}{j!} u^{j} \right\} e^{-u} - M_{X}(-u) \right) \frac{\mathrm{d}u}{u^{\rho+1}},$$

where for all $j \in \{0, 1, \dots, \}$

$$\alpha_j := \mathbb{E}\{(X-1)^j\} = \frac{1}{j+1} \sum_{\ell=0}^j \frac{(-1)^{j-\ell} M_X^{(\ell)}(0)}{B(\ell+1, j-\ell+1)},$$

and $B(\cdot, \cdot)$ denotes the Beta function:

$$B(u,v) := \int_0^1 t^{u-1} (1-t)^{v-1} dt, \quad u,v > 0.$$

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 7 / 18

Moments of Estimation Errors

Let X_1,\ldots,X_n be i.i.d. random variables with an unknown expectation θ to be estimated, and consider the simple estimator,

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Moments of Estimation Errors

Let X_1, \ldots, X_n be i.i.d. random variables with an unknown expectation θ to be estimated, and consider the simple estimator,

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Let

$$D_n := \left(\widehat{\theta}_n - \theta\right)^2$$

and

$$\rho' := \frac{\rho}{2}.$$

Then,

$$\mathbb{E}\{|\widehat{\theta}_n - \theta|^{\rho}\} = \mathbb{E}\{D_n^{\rho'}\}.$$

8 / 18

Moments of Estimation Errors (Cont.)

By our formula, if $\rho>0$ is a non–integral multiple of 2, then

$$\mathbb{E}\{|\widehat{\theta}_{n} - \theta|^{\rho}\} = \frac{2}{2+\rho} \sum_{\ell=0}^{\lfloor \rho/2 \rfloor} \frac{\alpha_{\ell}}{B(\ell+1, \rho/2+1-\ell)} + \frac{\rho \sin(\frac{\pi\rho}{2}) \Gamma(\frac{\rho}{2})}{2\pi} \int_{0}^{\infty} \left(\sum_{j=0}^{\lfloor \rho/2 \rfloor} \left\{ \frac{(-1)^{j} \alpha_{j}}{j!} u^{j} \right\} e^{-u} - M_{D_{n}}(-u) \right) \frac{\mathrm{d}u}{u^{\rho/2+1}},$$

where

$$\alpha_{j} = \frac{1}{j+1} \sum_{\ell=0}^{j} \frac{(-1)^{j-\ell} M_{D_{n}}^{(\ell)}(0)}{B(\ell+1, j-\ell+1)}, \quad j \in \{0, 1, \ldots\},$$

$$M_{D_{n}}(-u) = \frac{1}{2\sqrt{\pi u}} \int_{-\infty}^{\infty} e^{-j\omega\theta} \phi_{X_{1}}^{n} \left(\frac{\omega}{n}\right) e^{-\omega^{2}/(4u)} d\omega, \quad \forall u > 0,$$

9/18

and $\phi_{X_1}(\omega) := \mathbb{E}\{e^{j\omega X_1}\}\ (\omega \in \mathbb{R})$ is the characteristic function of X_1 .

Moments of Estimation Errors: Example

Consider the case where $\{X_i\}_{i=1}^n$ are i.i.d. Bernoulli random variables with

$$\mathbb{P}{X_1 = 1} = \theta, \quad \mathbb{P}{X_1 = 0} = 1 - \theta$$

where the characteristic function is given by

$$\phi_X(u) := \mathbb{E}\left\{e^{juX}\right\} = 1 + \theta\left(e^{ju} - 1\right), \quad u \in \mathbb{R}.$$

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 10 / 18

Moments of Estimation Errors: Example

Consider the case where $\{X_i\}_{i=1}^n$ are i.i.d. Bernoulli random variables with

$$\mathbb{P}{X_1 = 1} = \theta, \quad \mathbb{P}{X_1 = 0} = 1 - \theta$$

where the characteristic function is given by

$$\phi_X(u) := \mathbb{E}\left\{e^{juX}\right\} = 1 + \theta(e^{ju} - 1), \quad u \in \mathbb{R}.$$

An Upper Bound via a Concentration Inequality

$$\mathbb{E}\{|\widehat{\theta}_n - \theta|^{\rho}\} \le K(\rho, \theta) \cdot n^{-\rho/2},$$

which holds for all $n \in \mathbb{N}$, $\rho > 0$ and $\theta \in [0, 1]$, with

$$K(\rho, \theta) := \rho \Gamma\left(\frac{\rho}{2}\right) \left(2\theta \left(1 - \theta\right)\right)^{\rho/2}.$$

Figure: $\mathbb{E}\left|\widehat{\theta}_n - \theta\right|$ versus its upper bound as functions of θ with n = 1000.

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 11 / 18

Figure: $\mathbb{E} \big| \widehat{\theta}_n - \theta \big|$ versus its upper bound as functions of n with $\theta = \frac{1}{4}$.

N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 12 / 18

Channel Model

Consider a channel with

- input $\underline{X} = (X_1, \dots, X_n) \in \mathcal{X}^n$ and output $\underline{Y} = (Y_1, \dots, Y_n) \in \mathcal{Y}^n$;
- transition probability law:

$$p_{Y^n|X^n}(\underline{y}|\underline{x}) = \frac{1}{n} \sum_{i=1}^n \left\{ \prod_{j \neq i} q_{Y|X}(y_j|x_j) \, r_{Y|X}(y_i|x_i) \right\}, \ (\underline{x}, \underline{y}) \in \mathcal{X}^n \times \mathcal{Y}^n.$$

This channel model refers to a DMC with a transition probability law

$$q_{Y^n|X^n}(\underline{y}|\underline{x}) = \prod_{i=1}^n q_{Y|X}(y_i|x_i),$$

where one of the transmitted symbols is jammed at a uniformly distributed random time, i, and the transition distribution of the jammed symbol is given by $r_{Y|X}(y_i|x_i)$ instead of $q_{Y|X}(y_i|x_i)$.

Calculation of Mutual Information

We evaluate how the jamming affects the mutual information $I(X^n;Y^n)$. For all $y\in\mathcal{Y}$, let

$$v(y) := \int_{\mathcal{X}} q_{Y|X}(y|x) \, p_X(x) \, \mathrm{d}x,$$
$$w(y) := \int_{\mathcal{X}} r_{Y|X}(y|x) \, p_X(x) \, \mathrm{d}x,$$

and let

$$s(u) := \int_{\mathcal{Y}} w(y) \, \exp\left(-\frac{u \, w(y)}{v(y)}\right) \, \mathrm{d}y, \quad u \ge 0,$$
$$t(u) := \int_{\mathcal{Y}} v(y) \, \exp\left(-\frac{u \, w(y)}{v(y)}\right) \, \mathrm{d}y, \quad u \ge 0.$$

Calculation of Mutual Information

The integral representation of the logarithmic expectation give

$$\begin{split} &I_p(X^n;Y^n)\\ &= \int_0^\infty \frac{1}{u} \Big[t^{n-1} \Big(\frac{u}{n} \Big) \, s\Big(\frac{u}{n} \Big) - f^{n-1} \Big(\frac{u}{n} \Big) \, g\Big(\frac{u}{n} \Big) \Big] \, \mathrm{d}u \\ &+ \int p_X(x) \, r_{Y|X}(y|x) \, \ln q_{Y|X}(y|x) \, \mathrm{d}x \, \mathrm{d}y - \int w(y) \, \ln v(y) \, \mathrm{d}y \\ &+ (n-1) \Big[\int p_X(x) \, q_{Y|X}(y|x) \, \ln q_{Y|X}(y|x) \, \mathrm{d}x \, \mathrm{d}y - \int v(y) \ln v(y) \, \mathrm{d}y \Big]. \end{split}$$

4□ > 4□ > 4 = > 4 = > = 90

Calculation of Mutual Information: Example

Let

- $q_{Y|X}$ be a BSC with crossover probability $\delta \in (0, \frac{1}{2})$;
- ullet $r_{Y|X}$ be a BSC with a larger crossover probability, $arepsilon \in (\delta, rac{1}{2}];$
- the input bits be i.i.d. and equiprobable.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Calculation of Mutual Information: Example

Let

- $q_{Y|X}$ be a BSC with crossover probability $\delta \in (0, \frac{1}{2})$;
- ullet $r_{Y|X}$ be a BSC with a larger crossover probability, $arepsilon \in (\delta, rac{1}{2}];$
- the input bits be i.i.d. and equiprobable.

$$I_{p}(X^{n}; Y^{n})$$

$$= n \ln 2 - d(\varepsilon \| \delta) - h_{b}(\varepsilon) - (n - 1)h_{b}(\delta)$$

$$+ \int_{0}^{\infty} \left\{ e^{-u} - \left[(1 - \delta) \exp\left(-\frac{(1 - \varepsilon)u}{(1 - \delta)n} \right) + \delta \exp\left(-\frac{\varepsilon u}{\delta n} \right) \right]^{n - 1} \cdot \left[(1 - \varepsilon) \exp\left(-\frac{(1 - \varepsilon)u}{(1 - \delta)n} \right) + \varepsilon \exp\left(-\frac{\varepsilon u}{\delta n} \right) \right] \right\} \frac{du}{u},$$

where $h_{\rm b}(\cdot)$ and $d(\cdot||\cdot)$ denote the binary entropy and binary relative entropy, respectively.

Figure: The degradation in mutual information for n=128. The jammer–free channel q is a BSC with crossover probability $\delta=10^{-3}$, and r is a BSC with crossover probability $\varepsilon\in\left(\delta,\frac{1}{2}\right]$.

Summary

- We explore integral representations of the logarithmic and power functions.
- We demonstrate their usefulness for information-theoretic analyses.
- We obtain compact, easily-computable exact formulas for several source and channel coding problems.

Journal Papers

- N. Merhav and I. Sason, "An integral representation of the logarithmic function with applications in information theory," *Entropy*, vol. 22, no. 1, paper 51, pp. 1–22, January 2020.
- —, "Some useful integral representations for information—theoretic analyses," *Entropy*, vol. 22, no. 6, paper 707, June 2020.

4D > 4A > 4B > 4B > B 900