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Motivation
In information-theoretic analyses, one frequently needs to calculate:
@ Expectations or, more generally, p-th moments, for some p > 0;
o Logarithmic expectations

of sums of i.i.d. positive random variables.
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Motivation
In information-theoretic analyses, one frequently needs to calculate:
@ Expectations or, more generally, p-th moments, for some p > 0;

o Logarithmic expectations
of sums of i.i.d. positive random variables.

Commonly Used Approaches

@ Resorting to bounds (e.g., Jensen's inequality).

@ A modern approach for logarithmic expectations is to use the replica
method, which is a popular (but non-rigorous) tool, borrowed from
statistical physics with considerable success.

.
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@ Expectations or, more generally, p-th moments, for some p > 0;
@ Logarithmic expectations

of sums of i.i.d. positive random variables.

Commonly Used Approaches

@ Resorting to bounds (e.g., Jensen's inequality).

@ A modern approach for logarithmic expectations is to use the replica
method, which is a popular (but non-rigorous) tool, borrowed from
statistical physics with considerable success.

Purpose of this Work

Pointing out an alternative approach, by using integral representations,
and demonstrating its usefulness in information-theoretic analyses.
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BN
Useful Integral Representation for the Logarithm

00 LU __ ,—Uuz
Inz = / €~ du, Re(z)>0.
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Useful Integral Representation for the Logarithm
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Useful Integral Representation for the Logarithm

In z :/ . du, Re(z) >0.
0 u

Logarithmic Expectation

E{ln X} = /000 [e™ — Mx(—u)] dzu’

where My (u) := E{e"~} is the moment-generating function (MGF).
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Useful Integral Representation for the Logarithm

In z :/ . du, Re(z) >0.
0 u

Logarithmic Expectation

E{ln X} = /000 [e™ — Mx(—u)] dzu’

where My (u) := E{e"~} is the moment-generating function (MGF).

Logarithmic Expectation of a sum of i.i.d. random variables

Let X1,..., X, bei.i.d. random variables, then

E{ln(X1+...+Xn)}=/OOO e — MP (—u)] %“.
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Example 1: Logarithms of Factorials

In(n!) = Zn: Ink
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Example 1: Logarithms of Factorials
In(n!) = Zlnk
k=1
@ ()
_ Z/ (e—u - e—uk) d_u
k=10 v

:/ooe_u n_l_e—un d_u
0 l—e® ) u’

Example 2: Entropy of Poisson Random Variable N ~ Poisson(\)

H(N)=X—E{N} In X+ E{ln N}
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p-th moment for all p € (0,1)

— Mx(—u)

du,

B0 =14+ [

where T'(+) denotes Euler's Gamma function:

I(u) :=/ tv et dt,
0

ulte

u > 0.
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p-th moment for all p € (0,1)

p et = Mx(-u)
E{X"l =1 d
o) =1y [

where T'(+) denotes Euler's Gamma function:

o
I'(u) :=/ t“le7tdt, u>0.
0

p-th moment of the sum of i.i.d. RVs for all p € (0, 1)

If {X;}}', are i.i.d. nonnegative real-valued random variables, then

n P 00 e—U _ Mnl(—u)
: { (; Xi) } = r(1p_ B /0 N du,
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Passage to Logarithmic Expectations
Since
zf —1

Inz = lim , x>0,
p—0 P

then, swapping limit and expectation (based on the Monotone
Convergence Theorem) gives

E{XP} -1
E{ln X} = lim E{XPy -1
p—0F P
R _
=/ e Mx (—u) du.
0 u
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Extension to Fractional p-th moments with p > 0
1 Lo] @
E{X*} =
X =1 ;B(Hl,pﬂ—z)
: L] ;
p sin(mp)T'(p) [ (1) a5 51 —u du
Ml A D b ek B S bzt
7=0
where for all j € {0,1,...,}
J —0 370
(=1)7~" M’ (0)
i=E (X —
oy =10 1§B€+1]—£+1)
and B(-,-) denotes the Beta function:
1
B(u,v) := / 1 — ) tdt,  w,v > 0.
0
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Moments of Estimation Errors

Let X1,..., X, bei.i.d. random variables with an unknown expectation ¢
to be estimated, and consider the simple estimator,
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Let X1,..., X, bei.i.d. random variables with an unknown expectation ¢
to be estimated, and consider the simple estimator,

Moments of Estimation Errors

Let

and

Then,

E{[f. - 0"} = E{DL}.
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Moments of Estimation Errors (Cont.)

By our formula, if p > 0 is a non—integral multiple of 2, then

R , g L2 &
EH%_ﬂ‘}:2+1;Z%zxﬂ+LM2+1—o

- le/2] -
psin(ZA)T(5) [ (1Y a; ) . du
+$/0 2T Wy Moo )

=0
where ©
o Z (1)~ M) ()
YT IF1&BEL - (1)

—jwl n w —w U
MDn(—u)zm/ e ! 6¢X1<E>e /49 qy, Yu >0,

and ¢x, (w) := E{e?*X1} (w € R) is the characteristic function of Xj.

jE{()?]‘""}’
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Moments of Estimation Errors: Example

Consider the case where {X;}" ; are i.i.d. Bernoulli random variables with
P{X;=1} =60, P{X;=0}=1-19

where the characteristic function is given by

ox(u) =E{e/*} =1+6(e/ 1), ueR.
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Moments of Estimation Errors: Example

Consider the case where {X;}” ; are i.i.d. Bernoulli random variables with
P{X;=1}=0, P{X;=0}=1-90
where the characteristic function is given by

ox(u) := E{ej“X} = Q(ej“ -1), ueR

An Upper Bound via a Concentration Inequality
E{|0, — 0"} < K(p,0) -n~?,
which holds for all n € N, p > 0 and 6 € [0, 1], with

K(p,0) :=p r(’é) (20 (1 — 0))">.
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Moments of Estimation Errors: Plots
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Figure: E |9n — 9} versus its upper bound as functions of # with n = 1000.
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Moments of Estimation Errors: Plots
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Figure: ]E|§n — 9| versus its upper bound as functions of n with 6 = 3
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Channel Model

Consider a channel with
e input X = (Xy,...,X,) € X" and output Y = (Y1,...,Y,) € Y™

@ transition probability law:

1 n
pYn|Xn(g|£) = Z{H QY|X(yj|$j)7“Y|X(?/i|$i)}a (z,y) € X" x Y™
i=1 \j#i

This channel model refers to a DMC with a transition probability law
ayn|xn(ylz) = HQY|X yilzi),

where one of the transmitted symbols is jammed at a uniformly distributed
random time, 4, and the transition distribution of the jammed symbol is

given by 7y x (yi|z;) instead of gy |x (vilz:).

v
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Application to Channel Coding

Calculation of Mutual Information

We evaluate how the jamming affects the mutual information I(X";Y™).

For all y € )V, let
o(y) = /X ayix (]z) px (2) da,
w(y) = /X ryx (@) px (@) d,

and let

N. Merhav & |. Sason ISIT 2020

June 21-26, 2020

14/18



Application to Channel Coding

Calculation of Mutual Information

The integral representation of the logarithmic expectation give
I(X™Y")
& U U U U
=), Wl Q)G - (G e(R)] e
/0 u[ n) °\n / n)I\n “

4 / px (@) ry1x (Ule) In gy (ylz) dasdy — / w(y) Ino(y) dy

F(n—1) [ [ px(@)avixtole) mavxie) dedy — [ o) noty) dy] .

V.
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Application to Channel Coding

Calculation of Mutual Information: Example
Let

® qy|x be a BSC with crossover probability ¢ € (0, %)

o 7y|x be a BSC with a larger crossover probability, € € (4, 30;
@ the input bits be i.i.d. and equiprobable.
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Calculation of Mutual Information: Example
Let

@ qy|x be a BSC with crossover probability ¢ € (0, %)

o 7y|x be a BSC with a larger crossover probability, € € (4, 30;
@ the input bits be i.i.d. and equiprobable.

L(X™Y™)
— nln2 — d(]|8) — hu(e) — (n — 1)hy(6)

e [p-om(-G=5) voem (-5
[a-oen(-a=) v}

where hy,(+) and d(-]|-) denote the binary entropy and binary relative
entropy, respectively.

Or,

0)

)
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Mutual Information: Plot
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Figure: The degradation in mutual information for n = 128. The jammer—free
channel ¢ is a BSC with crossover probability § = 1073, and 7 is a BSC with
crossover probability & € (4, 1].

v

N. Merhav & |. Sason ISIT 2020 June 21-26, 2020 17 /18




Summary

@ We explore integral representations of the logarithmic and power
functions.
@ We demonstrate their usefulness for information-theoretic analyses.

@ We obtain compact, easily-computable exact formulas for several
source and channel coding problems.
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