
Refined Bounds on the Empirical Distribution of
Good Channel Codes via Concentration Inequalities

Maxim Raginsky
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA.

E-mail: maxim@illinois.edu

Igal Sason
Department of Electrical Engineering

Technion-Israel Institute of Technology
Haifa 32000, Israel.

E-mail: sason@ee.technion.ac.il

Abstract—We derive sharpened inequalities on the empirical
output distribution of good channel codes with deterministic
encoders and with non-vanishing maximal probability of decod-
ing error. These inequalities refine recent bounds of Polyanskiy
and Verdú by identifying closed-form expressions for certain
asymptotic terms, which facilitates their calculation for finite
blocklengths. The analysis relies on concentration-of-measure
inequalities, specifically on McDiarmid’s method of bounded
differences and its close ties to transportation inequalities for
weighted Hamming metrics. An operational implication of the
new bounds is addressed.

I. INTRODUCTION

The importance of sharp concentration-of-measure inequali-
ties for characterizing fundamental limits of coding schemes in
information theory is evident from the recent flurry of activity
on finite-blocklength analysis of source and channel codes (cf.,
e.g., [6], [9], [10], [12]). Theory and applications of concen-
tration of measure in information theory, communications and
coding have been recently surveyed in [11].

A recent application of concentration-of-measure inequal-
ities to information theory has to do with characterizing
stochastic behavior of output sequences of good channel codes.
For capacity-achieving sequences of codes with asymptotically
vanishing probability of error, Shamai and Verdú proved the
following remarkable statement [14, Theorem 2]: given a
DMC T : X → Y , any capacity-achieving sequence of
channel codes with asymptotically vanishing probability of
error (maximal or average) has the property that

lim
n→∞

1
n
D(PY n‖P ∗Y n) = 0 (1)

where, for each n, PY n denotes the output distribution on
Yn induced by the code (assuming that the messages are
equiprobable), while P ∗Y n is the product of n copies of the
single-letter capacity-achieving output distribution (see below
for a more detailed exposition). In fact, the convergence in (1)
holds not just for DMC’s, but for arbitrary channels satisfying
the condition C = limn→∞

1
n supPXn∈P(Xn) I(Xn;Y n). In

a recent preprint [10], Polyanskiy and Verdú extended the
results of [14] for codes with nonvanishing probability of
error, provided the maximal probability of error criterion and
deterministic encoders are used.

In this paper, we present some refinements of the results
from [10] in the context of the material covered in [11].
To keep things simple, we will only focus on channels with
finite input and output alphabets. Thus, let X and Y be
finite sets, and consider a DMC T : X → Y with capacity
C = maxPX∈P(X ) I(X;Y ) (all information quantities in
this paper are measured in nats). Let P ∗X ∈ P(X ) be any
capacity-achieving input distribution (there may be several). It
can be shown [15] that the corresponding output distribution
P ∗Y ∈ P(Y) is unique, and that for any n ∈ N, the product
distribution P ∗Y n ≡ (P ∗Y )⊗n has the key property

D(PY n|Xn=xn‖P ∗Y n) ≤ nC, ∀xn ∈ Xn (2)

where PY n|Xn=xn denotes the product distribution Tn(·|xn).
A key consequence of (2) is that, for any input distribution
PXn , the corresponding output distribution PY n satisfies

D(PY n‖P ∗Y n) ≤ nC − I(Xn;Y n).

Given n,M ∈ N, an (n,M)-code is a pair C = (fn, gn) con-
sisting of an encoder fn : {1, . . . ,M} → Xn and a decoder
gn : Yn → {1, . . . ,M}. Given 0 < ε ≤ 1, C is an (n,M, ε)-
code if max1≤i≤M P

(
gn(Y n) 6= i

∣∣Xn = fn(i)
)
≤ ε.

Consider any (n,M)-code C = (fn, gn) for T , and let J
be a random variable uniformly distributed on {1, . . . ,M}.
We can think of any 1 ≤ i ≤ M as one of M equiprobable
messages to be transmitted over T . Let P (C)

Xn denote the distri-
bution of Xn = fn(J), and let P (C)

Y n denote the corresponding
output distribution. The central result of [10] is that the output
distribution P (C)

Y n of any (n,M, ε)-code satisfies

D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − lnM + o(n); (3)

moreover, the o(n) term was refined in [10, Theorem 5] to
O(
√
n) for any DMC, except those that have zeroes in their

transition matrix. In one the following results, we present a
sharpened bound with a modified proof, in which we specify
an explicit form for the term that scales like O(

√
n). For the

case where there are zeroes in the transition matrix of the
DMC, an upper bound on the relative entropy is derived with
an explicit closed-form expression for the o(n) term in (3),
which scales like O

(√
n (lnn)3/2

)
; this forms a sharpened

version of [10, Theorem 6].



II. PRELIMINARIES

A. Concentration inequalities

Let U be a random variable taking values in some space
U , and fix a function f : U → R with E[f(U)] = 0. We are
interested in tight upper bounds on the deviation probabilities
P(f(U) ≥ r) for r ≥ 0. We will need the following facts
(we refer the reader to [11] for details): (1) If f is such that
ln E [exp(tf(U))] ≤ κt2/2,∀t ≥ 0 with some κ > 0, then

P (f(U) ≥ r) ≤ exp
(
−r2/2κ

)
, ∀ r ≥ 0. (4)

(2) Suppose the space U is equipped with a metric d. The L1

Wasserstein distance between µ, ν ∈ P(U) is defined as

W1(µ, ν) , inf
U∼µ,V∼ν

E[d(U, V )].

We say that µ satisfies an L1 transportation cost inequality
with constant c > 0, or a T1(c) inequality for short, if

W1(µ, ν) ≤
√

2cD(ν‖µ), ∀ν ∈ P(U) (5)

The Lipschitz constant of f : U → R is defined by

‖f‖Lip , sup
u 6=v

|f(u)− f(v)|
d(u, v)

.

A key result due to Bobkov and Götze ([4], see also [11,
Theorem 36]) says that µ satisfies T1(c) if and only if the
bound ln E [exp (tf(U))] ≤ ct2/2 holds for all t ≥ 0 and for
all f : U → R with E[f(U)] = 0 and ‖f‖Lip ≤ 1. In that case,
the bound (4) holds for any f : U → R with κ = c‖f‖2Lip.

We are interested in the case when U is a product space Zn
with the weighted Hamming metric

d(zn, z′n) =
n∑
i=1

ci1{zi 6=z′i}, (6)

for some fixed c1, . . . , cn > 0. A function f : Zn → R has
‖f‖Lip ≤ 1 if and only if it has bounded differences, i.e.,

|f(zi−1
1 , zi, z

n
i+1)− f(zi−1

1 , z′i, z
n
i+1)| ≤ ci (7)

for all i ∈ {1, . . . , n}, zn ∈ Zn, z′i ∈ Z . Let U =
(Z1, . . . , Zn) be a tuple of independent Z-valued random
variables. Then, the conditions of the Bobkov–Götze theorem
are met with c = (1/4)

∑n
i=1 c

2
i [11, Theorem 28]. Therefore,

for any function f that satisfies (7) we have the inequality

P (f(Zn)− E[f(Zn)] ≥ r) ≤ e
− 2r2∑n

i=1 c2
i , ∀ r ≥ 0 (8)

originally obtained by McDiarmid [7], [8] using martingales.
The well-known “blowing up lemma” (see, e.g., [5,

Lemma 1.5.4] or [11, Section 3.6.1]) can be derived from
(8) as follows. Let c1 = . . . = cn = 1. Fix an arbitrary set
A ⊂ Zn and consider the function

f(zn) = d(zn, A) , min
z′n∈A

d(zn, z′n).

Then ‖f‖Lip ≤ 1. Applying (8) to f and r = E[f(Zn)],

PZn(A) = P (d(Zn, A) ≤ 0) ≤ exp

[
−2 (E[d(Zn, A)])2

n

]
,

which gives E[d(Zn, A)] ≤
√

n
2 ln 1

PZn (A) . This and (8) give

PZn([A]r) ≥ 1− exp

− 2
n

(
r −

√
n

2
ln

1
PZn(A)

)2
 (9)

for all r ≥
√

n
2 ln 1

PZn (A) , where [A]r , {zn : d(zn, A) ≤ r}
denotes the r-blowup of A.

B. Augustin’s strong converse

Just as in [10], the proof of (3) with the O(
√
n) term

uses the following strong converse for channel codes due to
Augustin [3] (see also [10, Theorem 1] and [2, Section 2]):

Theorem 1 (Augustin): Let S : U → V be a DMC, and
let PV |U be the transition probability induced by S. For any
M ∈ N and ε ∈ (0, 1], let f : {1, . . . ,M} → U and g : V →
{1, . . . ,M} be two mappings, such that

max
1≤i≤M

P
(
g(V ) 6= i

∣∣U = f(i)
)
≤ ε.

Let QV ∈ P(V) be an auxiliary output distribution, and fix
an arbitrary mapping γ : U → R. Then

M ≤
exp
{
E[γ(U)]

}
inf
u∈U

PV |U=u

(
ln

dPV |U=u

dQV
< γ(u)

)
− ε

, (10)

provided the denominator is strictly positive. The expectation
in the numerator is taken w.r.t. the distribution of U = f(J)
with J ∼ Uniform{1, . . . ,M}.

III. REFINED BOUNDS ON THE EMPIRICAL OUTPUT
DISTRIBUTION

In this section, we first establish the bound (3) for the case
when the DMC T is such that

C1 , max
x,x′∈X

D(PY |X=x‖PY |X=x′) <∞. (11)

Note that C1 < ∞ if and only if the transition matrix of T
does not have any zeroes. Consequently,

c(T ) , 2 max
x,x′∈X

max
y,y′∈Y

∣∣∣∣ln PY |X(y|x)
PY |X(y′|x′)

∣∣∣∣ <∞. (12)

We establish the following sharpened version of the bound in
[10, Theorem 5]:

Theorem 2: Let T : X → Y be a DMC with C > 0 satisfy-
ing (11). Then, any (n,M, ε)-code C for T with 0 < ε < 1/2
satisfies

D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − lnM + ln

1
ε

+ c(T )

√
n

2
ln

1
1− 2ε

.

(13)

Remark 1: As shown in [10], the restriction to codes with
deterministic encoders and to the maximal probability of error
criterion is necessary for both this theorem and the next one.

Proof: Fix an input sequence xn ∈ Xn and consider the
function hxn : Yn → R defined by

hxn(yn) , ln
dPY n|Xn=xn

dP (C)
Y n

(yn).



Then E[hxn(Y n)|Xn = xn] = D(PY n|Xn=xn‖P (C)
Y n ). For any

i ∈ {1, . . . , n} and yn ∈ Yn, let yi ∈ Yn−1 denote the (n−1)-
tuple obtained by deleting the ith coordinate from yn. Then,
for any i ∈ {1, . . . , n}, yn ∈ Yn and y′i ∈ Y , we have∣∣∣hxn(yi−1

1 , yi, y
n
i+1)− hxn(yi−1

1 , y′i, y
n
i+1)

∣∣∣
≤
∣∣∣lnPY n|Xn=xn(yi−1, y, yni+1)− lnPY n|Xn=xn(yi−1, y′, yni+1)

∣∣∣
+
∣∣∣lnP (C)

Y n (yi−1, y, yni+1)− lnP
(C)
Y n (yi−1, y′, yni+1)

∣∣∣
≤
∣∣∣∣ln PYi|Xi=xi

(y)

PYi|Xi=xi
(y′)

∣∣∣∣+
∣∣∣∣∣∣ln

P
(C)
Yi|Y

i(y|yi)

P
(C)
Yi|Y

i(y′|yi)

∣∣∣∣∣∣
≤ 2 max

x,x′∈X
max
y,y′∈Y

∣∣∣∣ln PY |X(y|x)
PY |X(y′|x′)

∣∣∣∣ (14)

= c(T ) <∞ (15)

where the inequality in (14) is proved in [11, Appendix 3.D].
Hence, for each xn ∈ Xn, the function hxn : Yn → R satisfies
the bounded differences condition (7) with c1, . . . , cn = c(T ).
Then, from (8), it follows that for any r ≥ 0,

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP (C)
Y n

(Y n)

≥ D(PY n|Xn=xn‖P (C)
Y n ) + r

)
≤ e−

2r2

nc2(T ) (16)

(In fact, the above derivation goes through for any possible
output distribution PY n , not necessarily one induced by a
code.) This is where we have departed from the original proof
by Polyanskiy and Verdú [10]: we have used McDiarmid’s
inequality (8) to control the deviation probability for the
“conditional” information density hxn directly, whereas they
bounded the variance of hxn and then derived a bound on the
deviation probability using Chebyshev’s inequality. The sharp
concentration inequality (16) allows us to explicitly identify
the constant multiplying

√
n in (13).

We are now in a position to apply Theorem 1. To that end,
we let U = Xn, V = Yn, and consider the DMC S = Tn

with an (n,M, ε)-code (f, g) = (fn, gn). Furthermore, let

ζn = ζn(ε) , c(T )

√
n

2
ln

1
1− 2ε

(17)

and take γ(xn) = D(PY n|Xn=xn‖P (C)
Y n )+ζn. Using (10) with

the auxiliary distribution QV = P
(C)
Y n , we get

M ≤
exp
{
E[γ(Xn)]

}
inf

xn∈Xn
PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP (C)
Y n

< γ(xn)

)
− ε

(18)
where E[γ(Xn)] = D

(
PY n|Xn‖P (C)

Y n |P (C)
Xn

)
+ ζn. The con-

centration inequality in (16) with ζn in (17) therefore gives

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP (C)
Y n

≥ γ(xn)

)
≤ 1− 2ε, ∀xn.

From this and (18) it follows that

M ≤ 1
ε

exp
(
D
(
PY n|Xn‖P (C)

Y n |P (C)
Xn

)
+ ζn

)
.

Taking logarithms on both sides of the last inequality, rear-
ranging terms, and using (17), we get

D(PY n|Xn‖P (C)
Y n |P (C)

Xn ) ≥ lnM + ln ε− ζn

= lnM + ln ε− c(T )

√
n

2
ln

1
1− 2ε

. (19)

We are now ready to derive (13):

D
(
P

(C)
Y n

∥∥P ∗Y n

)
= D

(
PY n|Xn

∥∥P ∗Y n

∣∣P (C)
Xn

)
−D

(
PY n|Xn

∥∥P (C)
Y n

∣∣P (C)
Xn

)
(20)

≤ nC − lnM + ln
1
ε

+ c(T )

√
n

2
ln

1
1− 2ε

(21)

where (20) uses the chain rule for divergence, while (21) uses
(2) and (19). This completes the proof of Theorem 2.

For an arbitrary DMC T with nonzero capacity and zeroes
in its transition matrix, we have the following result which
forms a sharpened version of the bound in [10, Theorem 6]:

Theorem 3: Let T : X → Y be a DMC with C > 0. Then,
for any 0 < ε < 1, any (n,M, ε)-code C for T satisfies

D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − lnM

+
√

2n (lnn)3/2
(

1 +

√
1

lnn
ln
(

1
1− ε

)) (
1 +

ln |Y|
lnn

)
+ 3 lnn+ ln

(
2|X ||Y|2

)
. (22)

Proof: Given an (n,M, ε)-code C = (fn, gn), let
c1, . . . , cM ∈ Xn be its codewords, and let D̃1, . . . , D̃M ⊂ Yn
be the corresponding decoding regions:

D̃i = g−1
n (i) ≡ {yn ∈ Yn : gn(yn) = i} , i = 1, . . . ,M.

If we choose

δn = δn(ε) =
1
n

⌈
n

(√
lnn
2n

+

√
1
2n

ln
1

1− ε

)⌉
(23)

(note that nδn is an integer), then by (9) the “blown-up”
decoding regions Di ,

[
D̃i

]
nδn

satisfy

PY n|Xn=ci
(Dc

i ) ≤ 1/n , ∀ i ∈ {1, . . . ,M}. (24)

We now complete the proof by a random coding argument
along the lines of [1]. For

N ,

⌈
M

n
(
n
nδn

)
|Y|nδn

⌉
, (25)

let U1, . . . , UN be independent random variables, each uni-
formly distributed on the set {1, . . . ,M}. For each realiza-
tion V = UN , let PXn(V ) ∈ P(Xn) denote the induced
distribution of Xn(V ) = fn(cJ), where J is uniformly



distributed on the set {U1, . . . , UN}, and let PY n(V ) denote
the corresponding output distribution of Y n(V ):

PY n(V ) =
1
N

N∑
i=1

PY n|Xn=cUi
. (26)

It is easy to show that E
[
PY n(V )

]
= P

(C)
Y n , the output

distribution of the original code C, where the expectation
is w.r.t. the distribution of V = UN . Now, for V = UN

and for every yn ∈ Yn, let NV (yn) denote the list of
all those indices in {U1, . . . , UN} such that yn ∈ DUj ,
so NV (yn) ,

{
j : yn ∈ DUj

}
. Consider the list decoder

Y n 7→ NV (Y n), and let ε(V ) denote its conditional decoding
error probability: ε(V ) , P (J 6∈ NV (Y n)|V ). Then, for each
realization of V ,

D
(
PY n(V )

∥∥P ∗Y n

)
= D

(
PY n(V )|Xn(V )

∥∥P ∗Y n

∣∣PXn(V )

)
− I(Xn(V );Y n(V )) (27)

≤ nC − I(Xn(V );Y n(V )) (28)
≤ nC − I(J ;Y n(V )) (29)
≤ nC − lnN + (1− ε(V )) E[ln |NV (Y n)|]

+ nε(V ) ln |X |+ ln 2 (30)

where:
• (27) is by the chain rule for divergence;
• (28) is by (2);
• (29) is by the data processing inequality and the fact that
J → Xn(V )→ Y n(V ) is a Markov chain; and

• (30) is by Fano’s inequality for list decoding (see
[11, Appendix 3.C]), and also since (i) N ≤ |X |n,
(ii) J is uniformly distributed on {U1, . . . , UN}, so
H(J |U1, . . . , UN ) = lnN and H(J) ≥ lnN .

(Note that all the quantities indexed by V in the above chain
of estimates are actually random variables, since they depend
on the realization V = UN .) Now, from (25), it follows that

lnN ≥ lnM − lnn− ln
(
n

nδn

)
− nδn ln |Y|

≥ lnM − lnn− nδn (lnn+ ln |Y|) (31)

where the last inequality uses the simple inequality1
(
n
k

)
≤ nk

for k ≤ n with k , nδn. Moreover, each yn ∈ Yn can belong
to at most

(
n
nδn

)
|Y|nδn blown-up decoding sets, so

ln |NV (Y n = yn)| ≤ nδn (lnn+ ln |Y|) , ∀ yn ∈ Yn. (32)

Substituting (31) and (32) into (30), we get

D
(
PY n(V )

∥∥P ∗Y n

)
≤ nC − lnM + lnn

+2nδn (lnn+ ln |Y|) + nε(V ) ln |X |+ ln 2. (33)

Using the fact that E
[
PY n(V )

]
= P

(C)
Y n , convexity of the

relative entropy, and (33), we get

D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − lnM + lnn+ 2nδn (lnn+ ln |Y|)

+nE [ε(V )] ln |X |+ ln 2. (34)

1Note that the gain in using instead the inequality
( n
nδn

)
≤ exp

(
nh(δn)

)
is marginal, and it does not have any advantage asymptotically for large n.

To finish the proof and get (22), we use the fact that

E [ε(V )] ≤ max
1≤i≤M

PY n|Xn=ci
(Dc

i ) ≤
1
n
,

which follows from (24), as well as the substitution of (23) in
(34). This completes the proof of Theorem 3.

We are now ready to examine some consequences of The-
orems 2 and 3. To start with, consider a sequence {Cn}∞n=1,
where each Cn = (fn, gn) is an (n,Mn, ε)-code for a DMC
T : X → Y with C > 0. We say that {Cn}∞n=1 is capacity-
achieving if limn→∞

1
n lnMn = C. Then, from Theorems 2

and 3, it follows that any such sequence satisfies (1) with
PY n = P

(Cn)
Y n for all n. This is discussed in detail in [10].

Another remarkable fact that follows from the above theo-
rems is that a broad class of functions evaluated on the output
of a good code concentrate sharply around their expectations
with respect to the capacity-achieving output distribution.
Specifically, we have the following version of [10, Proposi-
tion 10] (again, we have streamlined the statement and the
proof to relate them to the material in Section II-A):

Theorem 4: Let T : X → Y be a DMC with C > 0 and
C1 < ∞. Let d : Yn × Yn → R+ be a metric, and suppose
that there exists a constant c > 0, such that the conditional
probability distributions PY n|Xn=xn , xn ∈ Xn, as well as
P ∗Y n satisfy the T1(c) inequality on the metric space (Yn, d).
Then, for any ε ∈ (0, 1/2), any (n,M, ε)-code C for T , and
any function f : Yn → R we have

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ r

)
≤ 4
ε

exp

(
nC − lnM + a

√
n− r2

8c‖f‖2Lip

)
, ∀ r ≥ 0 (35)

where E[f(Y ∗n)] designates the expected value of f(Y n)
w.r.t. the capacity-achieving output distribution P ∗Y n , ‖f‖Lip

is the Lipschitz constant of f w.r.t. the metric d, and

a , c(T )

√
1
2

ln
1

1− 2ε
. (36)

Remark 2: Our sharpening of the bound in [10, Proposi-
tion 10] gives an explicit constant in front of

√
n in the bound

(35).
Proof: For any f , define

µ∗f , E[f(Y ∗n)], φ(xn) , E[f(Y n)|Xn = xn], ∀xn ∈ Xn.

Since each PY n|Xn=xn satisfies T1(c), by the Bobkov–Götze
theorem (see Section II-A) we have

P
(
|f(Y n)− φ(xn)| ≥ r

∣∣∣Xn = xn
)
≤ 2e

− r2

2c‖f‖2Lip , (37)

for all r ≥ 0. Now, given C, consider a subcode C′ with
codewords xn ∈ Xn satisfying φ(xn) ≥ µ∗f + r for r ≥ 0.
The number of codewords M ′ of C′ satisfies

M ′ = MP
(C)
Xn

(
φ(Xn) ≥ µ∗f + r

)
. (38)



Let Q = P
(C′)
Y n be the output distribution induced by C′. Then

µ∗f + r ≤ 1

M ′

∑
xn∈ codewords(C′)

φ(xn) (39)

= EQ[f(Y n)] (40)

≤ E[f(Y ∗n)] + ‖f‖Lip

√
2cD(QY n‖P ∗Y n) (41)

≤ µ∗f + ‖f‖Lip

√
2c

(
nC − lnM ′ + a

√
n+ ln

1

ε

)
, (42)

where:
• (39) and (40) are by definition of C′ and φ;
• (41) follows from the fact that P ∗Y n satisfies T1(c) and

from the Kantorovich–Rubinstein theorem (see, e.g., [16,
Theorem 1.14] or [11, Section 3.4.3]); and

• (42) holds with a = a(T, ε) > 0 in (36) due to Theorem 2
(see (13)) and because C′ is an (n,M ′, ε)-code for T .

From this and (38), and then using the same line of reasoning
with −f instead of f , it follows that

P
(C)
Xn

( ∣∣φ(Xn)− µ∗f
∣∣ ≥ r)

≤ 2e
nC−lnM+a

√
n+ln 1

ε−
r2

2c‖f‖2Lip . (43)

Finally, it follows that for every r ≥ 0,
P

(C)
Y n

( ∣∣f(Y n)− µ∗f
∣∣ ≥ r) ≤ P (C)

Xn,Y n

(
|f(Y n)− φ(Xn)| ≥ r/2

)
+ P

(C)
Xn

( ∣∣φ(Xn)− µ∗f
∣∣ ≥ r/2)

≤ 2e
− r2

8c‖f‖2Lip + 2e
nC−lnM+a

√
n+ln 1

ε
− r2

8c‖f‖2Lip (44)

≤ 4e
nC−lnM+a

√
n+ln 1

ε
− r2

8c‖f‖2Lip , (45)

where (44) is by (37) and (43), while (45) follows from the
fact that nC − lnM + a

√
n + ln 1

ε ≥ D(P (C)
Y n ‖P ∗Y n) ≥ 0 by

Theorem 2, and from (36). This proves (35).
As an illustration, equip Yn with the metric d(yn, vn) =∑n
i=1 1{yi 6=vi}, i.e., the weighted Hamming metric (6) with

c1, . . . , cn = 1. Then, any function f : Yn → R of the form
f(yn) = 1

n

∑n
i=1 fi(yi), y

n ∈ Yn, where f1, . . . , fn : Y → R
are Lipschitz functions on Y , will satisfy ‖f‖Lip ≤ L

n

where L , max1≤i≤n ‖fi‖Lip. Any probability distribution
P on Y satisfies the T1(1/4) inequality w.r.t. the Hamming
metric (this is simply Pinsker’s inequality); by tensorization of
transportation-cost inequalities (see, e.g., [11, Proposition 11]),
any product probability measure on Yn satisfies T1(n/4) w.r.t.
the above metric. Consequently, for any (n,M, ε)-code for T
and any function f of the above form, Theorem 4 gives

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ r

)
≤ 4

ε
e
nC−lnM+a

√
n− nr2

2L2 (46)

for every r ≥ 0. As pointed out in [10], concentration
inequalities like (35), or its more specialized version (46),
can be very useful for characterizing the performance of good
channel codes without having to explicitly construct such
codes: all one needs to do is to find the capacity-achieving
output distribution P ∗Y and evaluate E[f(Y ∗n)] for any f of
interest. Then, Theorem 4 guarantees that f(Y n) concentrates
tightly around E[f(Y ∗n)], which is relatively easy to compute
since P ∗Y n is a product measure.

IV. DISCUSSION

The new bounds presented in Theorems 2 and 3 quantify
the trade-offs between the minimal blocklength required for
achieving a certain gap (in rate) to capacity with a fixed block
error probability, and normalized divergence between the out-
put distribution induced by the code and the (unique) capacity-
achieving output distribution of the channel. Moreover, these
bounds sharpen the asymptotic O(·) terms in the results of
Polyanskiy and Verdú [10] for all finite blocklengths n.

The results of this paper are similar in spirit to a lower
bound on the rate loss with respect to fully random block codes
(whose average distance spectrum is binomially distributed)
in terms of the normalized divergence between the distance
spectrum of a code and the binomial distribution. Specifically,
a combination of [13, Eqs. (A17) and (A19)] provides a lower
bound on the rate loss with respect to fully random block codes
in terms of the normalized divergence between the distance
spectrum of the code and the binomial distribution; the latter
result refers to the empirical input distribution of good codes.
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