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Abstract—We present polar coding schemes for the 2-user
discrete memoryless broadcast channel (DM-BC) which achieve
Marton’s region with both common and private messages. This
is the best achievable rate region up to date, and it is tight for
all classes of 2-user DM-BCs whose capacity regions are known.
Due to space limitations, this paper describes polar codes for
the superposition strategy. The scheme for the achievability of
Marton’s region is presented in the longer version [1], and it is
based on a combination of superposition coding and binning. We
follow the lead of the recent work by Goela, Abbe, and Gastpar,
who introduce polar codes emulating these two information-
theoretic techniques. In order to align the polar indices, for both
schemes, their solution involves some degradedness constraints
that are assumed to hold between the auxiliary random variables
and the channel outputs. To remove these constraints, we consider
the transmission of k blocks, and employ chaining constructions
that guarantee the proper alignment of polarized indices. The
techniques described in this work are quite general, and they
can be adopted in many other multi-terminal scenarios whenever
there is the need for the aligning of polar indices.

I. INTRODUCTION

Polar coding, introduced by Arıkan in [2], allows one
to achieve the capacity of binary-input memoryless output-
symmetric channels (BMSCs) with encoding and decoding
complexity Θ(n log n) and a block error probability decaying
like O(2−n

β

), where n is the block length of the code and
β ∈ (0, 1/2), see [3]. The original point-to-point scheme
has been extended, amongst others, to lossless and lossy
source coding and to several multi-user scenarios (see [1] and
references therein).

Goela, Abbe, and Gastpar recently introduced polar coding
schemes for the m-user deterministic broadcast channel and
for the noisy discrete memoryless broadcast channel (DM-BC)
[4]. For the second scenario, they considered two fundamental
transmission strategies: superposition coding, in the version
proposed by Bergmans [5], and binning [6]. In order to
guarantee a proper alignment of the polar indices, in both
the superposition and binning schemes, their solution involves
some degradedness constraints that are assumed to hold be-
tween the auxiliary random variables and the channel outputs.

Due to space limitations, this paper is only focused on the
construction of polar codes to achieve the whole superposition
region. A more detailed presentation and a polar scheme to
achieve Marton’s region with both common and private mes-
sages is provided in the longer version [1]. The crucial point
consists in removing the degradedness conditions on auxiliary

random variables and channel outputs1. The ideas which make
it possible to lift the constraints come from recent progress
in constructing universal polar codes, which are capable of
achieving the compound capacity of the whole class of BMSCs
[8], [9]. The proposed schemes possess the standard properties
of polar codes with respect to encoding and decoding, which
can be performed with complexity Θ(n log n), as well as
with respect to the scaling of the block error probability as
a function of the block length, which decays like O(2−n

β

) for
any β ∈ (0, 1/2).

The remainder of the paper is organized as follows: Sec-
tion II reviews the rate region achievable by superposition
coding from the information-theoretic perspective as well
as via the polar construction proposed in [4], call it the
AGG construction. In Section III, we review two “polar prim-
itives” that are the basis of the AGG construction and of our
extension. In Section IV, we describe our polar coding scheme
that achieves the whole superposition region. We conclude with
some final thoughts in Section V.

II. BERGMANS’S SUPERPOSITION REGION

Let us start by recalling the rate region achievable by
Bergmans’s superposition scheme [10].

Theorem 1 (Superposition Region): Consider the trans-
mission over a 2-user DM-BC pY1,Y2 |X , where X denotes
the input to the channel, and Y1, Y2 denote the outputs at the
first and second receiver, respectively. Let V be an auxiliary
random variable. Then, for any joint distribution pV,X s.t.
V −X − (Y1, Y2) forms a Markov chain, a rate pair (R1, R2)
is achievable if

R1 < I(X;Y1 |V ),

R2 < I(V ;Y2),

R1 +R2 < I(X;Y1).

(1)

Note that the above only describes “half” of the region
actually achievable by superposition coding. We get the second
“half” by swapping the roles of the two users, i.e., by swapping
the indices 1 and 2. The actual achievable region is the convex
hull of the closure of the union of these two subsets.

Let us compare (1) with the region achievable by the
AGG construction [4]. We write p � q to denote that the
channel q is degraded with respect to the channel p.

1Note that, in general, such kind of extra conditions make the achievable
rate region strictly smaller, see [7].
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Theorem 2 (AGG Superposition Region): Consider the
transmission setting defined in Theorem 1, where the channel
input alphabet is supposed to be binary. Assume further
that pY1 |V (y1 | v) � pY2 |V (y2 | v). Then, for any rate pair
(R1, R2) s.t.

R1 < I(X;Y1 |V ), R2 < I(V ;Y2), (2)

there exists a sequence of polar codes with increasing block
length n that achieves this rate pair with encoding and decod-
ing complexity Θ(n log n) and with a block error probability
that decays like O(2−n

β

) for β ∈ (0, 1/2).

As before, the region (2) describes “half” of the re-
gion actually achievable with polar codes by superposi-
tion coding. However, to achieve both “halves” of the re-
gion, we need that pY1 |V (y1 | v) � pY2 |V (y2 | v) and
pY2 |V (y2 | v) � pY1 |V (y1 | v), which is equivalent to
pY1 |V (y1 | v) = pY2 |V (y2 | v). Note that the AGG super-
position scheme is optimal for the class of stochastically-
degraded broadcast channels. In addition, the alignment of
indices which motivates the degradedness assumption also
occurs for less noisy and, under suitable conditions, for more
capable broadcast channels [11].

In order to simplify the description of our novel polar
coding scheme, we reduce the achievability of the rate region
(1) to the achievability of certain specific rate pairs. The
following proposition is proved in [1].

Proposition 1 (Equivalent Superposition Region): To ob-
tain the whole region (1), it suffices to describe a coding
scheme that achieves the following rate pairs. First,

(R1, R2) = (I(X;Y1 |V ),min
i
I(V ;Yi)). (3)

Second, if I(V ;Y1) < I(V ;Y2) < I(X;Y1), we need to
achieve the rate pair

(R1, R2) = (I(X;Y1)− I(V ;Y2), I(V ;Y2)). (4)

III. POLAR CODING PRIMITIVES

First, we discuss the problem of lossless compression, with
and without side information, considering the point of view of
Arıkan in [12]. Then, we deal with the transmission over a
general binary-input discrete memoryless channel, where the
capacity achieving input distribution might not be the uniform
one which is imposed by linear codes. Polar codes offer a
direct and elegant solution to this problem [13].

Notation: In what follows, we assume that n is a power
of 2, say n = 2m for m ∈ N, and we define Gn to be the

polar matrix given by Gn =

[
1 0
1 1

]⊗m
, where ⊗ denotes

the Kronecker product of matrices. The set {1, · · · , n} is
abbreviated as [n] and, given a set A ⊆ [n], we denote by Ac

its complement. We use Xi:j as a shorthand for (Xi, · · · , Xj).

A. Lossless Compression

Consider a binary random variable X ∼ pX . Then, given
the random vector X1:n = (X1, · · · , Xn) consisting of n i.i.d.
copies of X , the aim is to compress X1:n in a lossless fashion
into a binary codeword of size roughly nH(X), which is the
entropy of X1:n.

Let U1:n = (U1, · · · , Un) be defined as U1:n = X1:nGn.
Then, U1:n is a random vector whose components are polar-
ized in the sense that either U i is approximately uniform and
independent of U1:i−1, or U i is approximately a deterministic
function of U1:i−1. Formally, for β ∈ (0, 1/2), let δn = 2−n

β

and set

HX = {i ∈ [n] : Z(U i |U1:i−1) ≥ 1− δn},
LX = {i ∈ [n] : Z(U i |U1:i−1) ≤ δn},

(5)

where Z denotes the Bhattacharyya parameter. Recall that,
given (T, V ) ∼ pT,V , where T is binary and V takes values
in an arbitrary discrete alphabet V , we define

Z(T |V ) = 2
∑
v∈V

PV (v)
√
PT |V (0 | v)PT |V (1 | v).

Hence, for i ∈ HX , the bit U i is approximately uniformly
distributed and independent of the past U1:i−1; also, for i ∈
LX , the bit U i is approximately a deterministic function of
U1:i−1. Furthermore,

lim
n→∞

1

n
|HX | = H(X), lim

n→∞

1

n
|LX | = 1−H(X). (6)

Given the vector x1:n that we want to compress, the
encoder computes u1:n = x1:nGn and outputs the values of
u1:n in the positions Lc

X , i.e., it outputs {ui}i∈LcX . Then, the
decoder can reconstruct ui for i ∈ LX , according to the rule

ûi = arg max
u∈{0,1}

PUi |U1:i−1(u |u1:i−1). (7)

Indeed, for i ∈ LX the distribution PUi |U1:i−1(u |u1:i−1) is
highly biased towards the correct value ui. The probabilities in
(7) can be computed recursively with complexity Θ(n log n)

and the block error probability is O(2−n
β

).

Consider now the case with side information and let
(X,Y ) ∼ pX,Y be a pair of random variables, where we
think of X as the source to be compressed and of Y as a
side information about X . Given the vector (X1:n, Y 1:n) of n
independent samples from the distribution pX,Y , the problem is
to compress X1:n into a codeword of size roughly nH(X |Y ),
where the side information Y 1:n is available at the decoder.

Let U1:n = X1:nGn and consider the sets HX |Y and
LX |Y , defined by

HX |Y = {i ∈ [n] : Z(U i |U1:i−1, Y 1:n) ≥ 1− δn},
LX |Y = {i ∈ [n] : Z(U i |U1:i−1, Y 1:n) ≤ δn},

(8)

which, respectively, represent the positions s.t. U i is approx-
imately uniform and independent of (U1:i−1, Y 1:n) and the
positions s.t. U i is approximately a deterministic function of
(U1:i−1, Y 1:n). Then,

lim
n→∞

1

n
|HX|Y |=H(X|Y ), lim

n→∞

1

n
|LX|Y |=1−H(X|Y ).

(9)

Given a realization of X1:n, namely x1:n, the encoder
constructs u1:n = x1:nGn and outputs {ui}i∈Lc

X |Y
as the

compressed version of x1:n. The decoder, using the side
information y1:n and a decoding rule similar to (7) is able
to reconstruct x1:n with vanishing block error probability.
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Figure 1. Graphical representation for the sets associated to the (asymmetric)
channel coding problem. The two images on top represent how the set [n]
(the whole square) is partitioned by the source X (top left), and by the source
X together with the output Y assumed as a side information (top right).
Since HX |Y ⊆ HX , [n] can be partitioned into three subsets (bottom
image): the information indices I; the frozen indices Fr filled with binary
bits chosen uniformly at random; the frozen indices Fd chosen according to
a deterministic rule.

B. Transmission over Binary-Input DMCs

Let W be a discrete memoryless channel with input X and
output Y . Fix a distribution pX over X . The aim is to transmit
over W with a rate close to I(X;Y ).

Let U1:n = X1:nGn, where X1:n is a vector of n i.i.d.
components drawn according to pX . Consider the sets HX

and LX defined in (5). Now, assume that the channel output
Y 1:n is given, and interpret this as side information on X1:n.
Consider the sets HX |Y and LX |Y , as defined in (8). It is
clear that

HX |Y ⊆ HX , LX ⊆ LX |Y . (10)

To construct a polar code for the channel W we proceed now
as follows. We place the information in the positions indexed
by I = HX∩LX |Y . Indeed, if i ∈ I, then U i is approximately
random given U1:i−1, since i ∈ HX . This implies that U i is
suitable to contain information. Further, U i is approximately a
deterministic function if we are given U1:i−1 and Y 1:n, since
i ∈ LX |Y . This implies that it is also decodable in a successive
manner given the channel output. By using (6), (9), and (10),
it follows that

lim
n→∞

1

n
|I| = H(X)−H(X |Y ) = I(X;Y ). (11)

Hence, our requirement on the transmission rate is met.
The remaining positions are frozen. More precisely, they are
divided into two subsets, namely Fr = HX ∩ Lc

X |Y and
Fd = Hc

X . For i ∈ Fr, U i is independent of U1:i−1, but
cannot be reliably decoded using Y 1:n. We fill these positions
with bits chosen uniformly at random, and this randomness
is assumed to be shared between the transmitter and the
receiver (i.e., the encoder and the decoder know the values
associated to these positions). For i ∈ Fd, U i is approximately
a deterministic function of U1:i−1, and its value can be chosen
according to arg maxu∈{0,1} PUi |U1:i−1(u |u1:i−1). The situ-
ation is schematically represented in Figure 1.

IV. POLAR CODES FOR SUPERPOSITION REGION

The theorem below provides our main result about the
achievability of the superposition region with polar codes.

Theorem 3 (Polar Superposition Region): Consider the
transmission setting defined in Theorem 1, where the channel
input alphabet is supposed to be binary. Then, for any rate
pair (R1, R2) satisfying the constraints in (1), there exists
a sequence of polar codes with increasing block length n
which achieves this rate pair with encoding and decoding
complexity Θ(n log n) and a block error probability decaying
like O(2−n

β

) for any β ∈ (0, 1/2).

Let (V,X) ∼ pV,X = pV pX |V . We will show how to
transmit over the 2-user DM-BC pY1,Y2 |X(y1, y2 |x) achieving
the rate pair (3) when I(V ;Y1) < I(V ;Y2) < I(X;Y1). Then,
a slight modification of this scheme allows us to achieve, in
addition, the rate pair (4). Therefore, by Proposition 1, we can
achieve the whole region (1) and Theorem 3 is proved.

Set U1:n
2 = V 1:nGn. As in the case of the transmission

over an asymmetric channel with V in place of X and Yi
(i ∈ {1, 2}) in place of Y , define the sets HV , LV , HV |Yi ,
and LV |Yi , which satisfy

lim
n→∞

1

n
|HV | = H(V ), lim

n→∞

1

n
|LV | = 1−H(V ),

lim
n→∞

1

n
|HV |Yi |=H(V |Yi), lim

n→∞

1

n
|LV |Yi |=1−H(V |Yi).

Set U1:n
1 = X1:nGn. By thinking of V as side information and

by considering the transmission of X over the (asymmetric)
channel with output Y1, define also the sets HX |V , LX |V ,
HX |V,Y1

, and LX |V,Y1
, which satisfy

lim
n→∞

1

n
|HX|V |=H(X|V ), lim

n→∞

1

n
|LX|V |=1−H(X|V ),

lim
n→∞

1

n
|HX|V,Y1

|=H(X|V, Y1),

lim
n→∞

1

n
|LX|V,Y1

|=1−H(X|V, Y1).

First, consider only the point-to-point communication problem
between the transmitter and the second receiver. As discussed
in Section III-B, for this scenario the correct choice is to
place the information in those positions of U1:n

2 that are
indexed by the set I(2) = HV ∩ LV |Y2

. If, in addition, we
restrict ourselves to positions in I(2) which are also contained
in I(1)v = HV ∩ LV |Y1

, then also the first receiver will
be able to decode this message. Indeed, recall that in the
superposition coding scheme the first user needs to decode the
message intended for the second user, before decoding his own
message. Consequently, the first user knows the vector U1:n

2 ,
and, hence, also the vector V 1:n. Now, consider the point-
to-point communication problem between the transmitter and
the first receiver, given the side information V 1:n (as we just
discussed, this vector is known to the first receiver). Then, the
information has to be placed in those positions of U1:n

1 that
are indexed by I(1) = HX |V ∩LX |V,Y1

. The cardinalities of
these information sets are given by

lim
n→∞

1

n
|I(2)| = I(V ;Y2), lim

n→∞

1

n
|I(1)v | = I(V ;Y1),

lim
n→∞

1

n
|I(1)| = I(X;Y1 |V ).
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Let us now get back to the broadcasting scenario and see
how we can use the previous observations to construct a polar
coding scheme. Remember that X1:n is transmitted, the second
user only decodes “his” message, but the first user decodes
both messages.

We start by reviewing the AGG scheme [4]. This scheme
achieves the rate pair (R1, R2) = (I(X;Y1 |V ), I(V ;Y2)),
assuming that pY1 |V � pY2 |V . Note that if pY2 |V is degraded
with respect to pY1 |V , then LV |Y2

⊆ LV |Y1
, which implies

that I(2) ⊆ I(1)v . As a consequence, we can in fact use the
point-to-point solutions outlined above, i.e., the second user
can place his information in I(2) and decode, and the first
user will also be able to decode this message. Furthermore,
once the message intended for the second user is known by
the first user, the latter can decode his own information which
is placed in the positions in I(1).

Let us now see how to eliminate the restriction imposed
by the degradedness condition pY1 |V � pY2 |V . Recall that we
want to achieve the rate pair (3) when I(V ;Y1) < I(V ;Y2) <
I(X;Y1). The information set for the first user is exactly the
same as before, namely the positions of U1:n

1 indexed by I(1).
The only difficulty lies in designing a scheme in which both
receivers can decode the message intended for the second user.

First of all, one can use all the positions in I(1)v ∩ I(2),
since the information in these positions is decodable by both
users. Let us define D(2) = I(2) \ I(1)v . If pY1|V � pY2|V , as
before, then D(2) = ∅, i.e., all the positions decodable by the
second user are also decodable by the first user. However, in
the general case, i.e., if we no longer assume that pY1|V �
pY2|V , then D(2) is non-empty and those positions cannot be
decoded by the first user. Note that there is a similar set, but
with the roles of the two users exchanged, call it D(1), namely,
D(1) = I(1)v \I(2). The set D(1) contains the positions of U1:n

2
which are decodable by the first user, but not by the second
user. Observe further that |D(1)| ≤ |D(2)| for sufficiently large
n, since

1

n
(|D(2)| − |D(1)|) =

1

n
(|I(2)| − |I(1)v |)

= I(V ;Y2)− I(V ;Y1) + o(1) ≥ 0.
(12)

Assume at first that the sizes of the two sets are equal.
The general case will require only a small modification. The
idea is to consider the “chaining” construction introduced in
[8] to define universal polar codes. Recall that we are only
interested in the message intended for the second user, but
that both receivers must be able to decode such a message. Our
scheme consists in transmitting k polar blocks and in repeating
(“chaining”) some information. More precisely, in block 1 fill
D(1) with information, but set the bits indexed by D(2) to a
fixed known sequence. In block j (j ∈ {2, · · · , k − 1}), fill
D(1) again with information, and repeat the bits which were
contained in the set D(1) of block j − 1 into the positions
indexed by D(2) of block j. In the final block k, put a known
sequence in the positions indexed by D(1), and repeat in the
positions D(2) the bits which were contained in the set D(1)

of block k − 1. The remaining bits are frozen and, as in
Section III-B, they are divided into the two subsets F (2)

d = Hc
V

and F (2)
r = HV ∩ Lc

V |Y2
⊂ HV . In the first case, U i

2 is

(a) First user

(b) Second user

Figure 2. As concerns the first user, the set [n] is partitioned into three
subsets: the information indices I(1), and the frozen indices F(1)

r and F(1)
d .

As concerns the second user, I(1)v ∩ I(2) contains the indices which are
decodable by both users; D(1) = I(1)v \ I(2) contains the indices decodable
by the first user, but not by the second; D(2) = I(2) \ I(1)v contains the
indices decodable by the second user, but not by the first.

approximately a deterministic function of U1:i−1
2 , while in

the second case U i
2 is approximately independent of U1:i−1

2 .
Note that we lose some rate, since at the boundary we put
a known sequence into some bits which were supposed to
contain information. However, this rate loss decays like 1/k
so, by choosing k large, we achieve a rate as close as desired
to the intended one.

In the above construction both users can decode all blocks,
but the first receiver has to decode “forward”, starting with
block 1 and ending with block k, whereas the second receiver
decodes “backwards”, starting with block k and ending with
block 1. Let us discuss this procedure in some more detail.
Look at the first user and start with block 1. By construction,
information is only contained in the positions indexed by D(1)

as well as I(1)v ∩I(2), while the positions indexed by D(2) are
set to known values. Hence, the first user can decode this block.
For block j (j ∈ {2, · · · , k − 1}) the situation is similar: the
first user decodes the positions indexed by D(1) and I(1)v ∩I(2),
while the positions in D(2) contain repeated information, which
has been already decoded in the previous block. An analogous
analysis applies to block k, in which the positions indexed
by D(1) are also fixed to a known sequence. The second user
proceeds exactly in the same fashion, but it goes backwards.
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Figure 3. Graphical representation of the repetition construction for the
superposition coding scheme with k = 3: the set D(1) is repeated into the
set R(2) of the following block; the set B(2) is repeated into the set B(1) of
the previous block (belonging to a different user).

To get to the general scenario, we need to discuss what
happens when |D(1)| < |D(2)|. In this case, we do not have
sufficiently many positions in D(1) to repeat all the information
contained in D(2). To get around this problem, pick sufficiently
many extra positions out of the vector U1:n

1 indexed by I(1),
and repeat the extra information there. In order to specify this
scheme, let us introduce some notation for the various sets.
Recall that we “chain” the positions in D(1) with an equal
amount of positions in D(2). It does not matter what subset
of D(2) we pick, but call the chosen subset R(2). Now, we
still have some positions left in D(2), call them B(2). More
precisely, B(2) = D(2) \ R(2). By (12), it follows that

1

n
|B(2)| = I(V ;Y2)− I(V ;Y1) + o(1) ≥ 0.

Let B(1) be a subset of I(1) s.t. |B(1)| = |B(2)|. Again, it
does not matter what subset we pick. The existence of such
a set B(1) is ensured by the fact that I(X;Y1) > I(V ;Y2).
As explained above, we place in B(1) the value of those extra
bits from D(2) which will help the first user to decode the
message of the second user in the next block. Operationally,
we repeat the information contained in the positions indexed by
B(2) into the positions indexed by B(1) of the previous block.
Of course, by doing this, the first user pays a rate penalty
of I(V ;Y2) − I(V ;Y1) compared to his original rate given
by 1

n |I
(1)| = I(X;Y1|V ) + o(1). Hence, R1 approaches the

required rate I(X;Y1)− I(V ;Y2), as k goes large.

To summarize, the first user puts information bits at posi-
tions I(1) \ B(1), repeats in B(1) the information bits in B(2)
for the next block, and freezes the rest. In the last block, the
information set is the whole I(1). The frozen positions are
divided into the usual two subsets F (1)

r = HX |V ∩ Lc
X |V,Y1

and F (1)
d = Hc

X |V , which contain positions s.t. U i
1 is or is not,

respectively, approximately independent of (U1:i−1
1 , V 1:n).

The situation is schematically represented in Figures 2 and 3.

If we let 1
n |B

(2)| go from I(V ;Y2) − I(V ;Y1) + o(1)
to o(1), by applying the same scheme, one obtains the line
going from the rate pair (I(X;Y1) − I(V ;Y2), I(V ;Y2))
to (I(X;Y1 |V ), I(V ;Y1)) without time-sharing. Finally, to
obtain the pair (I(X;Y1 |V ), I(V ;Y2)) when I(V ;Y2) ≤
I(V ;Y1), it suffices to set B(2) = ∅ and switch the roles of
I(2) and I(1)v in the discussion concerning the second user.

V. CONCLUSIONS

Extending the work in [4], we have shown how to construct
polar codes for the 2-user DM-BC that achieve the whole
rate region defined by Bergmans’s superposition strategy. The
description of the polar scheme for Marton’s region with both
common and private messages is provided in the extended
version [1]. The current exposition is limited to the case of
binary auxiliary random variables and binary inputs. However,
there is no fundamental difficulty in extending the work to the
q-ary case [14]. We conclude by remarking that the chaining
constructions used to align the polarized indices do not rely on
the specific structure of the broadcast channel. Indeed, similar
techniques have been applied, independently of this work, to
interference networks [15] and, in general, we believe that they
can be adapted to the design of polar coding schemes for a
variety of multi-user scenarios.
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