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Abstract

We study a serially interleaved concatenated code construction, where the outer code is a
standard convolutional code, and the inner code is a recursive convolutional code of rate 1.
Focus is put on the ubiquitous inner differential encoder (used in particular to resolve phase
ambiguities), double differential encoder (used to resolve both phase and frequency ambiguities),
and another rate 1 recursive convolutional code of memory 2. We substantiate analytically the
rather surprising result, that the error probabilities corresponding to a maximum likelihood
(ML) coherently detected antipodal modulation over the AWGN channel, for this construction
are advantageous as compared to the stand-alone outer convolutional code. This is in-spite of the
fact that the inner code is of rate 1. The analysis is based on the tangential sphere upper bound
of a ML decoder, incorporating the ensemble weight distribution (WD) of the concatenated
code, where the ensemble is generated by all random and uniform interleavers. This surprising
result is attributed to the WD thinning observed for the concatenated scheme which shapes the
WD of the outer convolutional code to resemble more closely the binomial distribution (typical
of a fully random code of the same length and rate). This gain is maintained regardless of a
rather dramatic decrease, as demonstrated here, in the minimum distance of the concatenated
scheme as compared to the minimum distance of the outer stand-alone convolutional code.
The advantage of the examined serially concatenated code given in terms of bit and/or block
error probability decoded by a practical suboptimal decoder, over optimally decoded standard
convolutional code is demonstrated by simulations, and some insights into the performance of
the iterative decoding algorithm are also discussed. Though we have investigated only specific
constructions of constituent inner (rate 1) and outer codes, we trust, hinging on the rational
of the arguments here, that these results extend to many other constituent convolutional outer
codes and rate 1 inner recursive convolutional codes. Union bounds on the performance of
serial and hybrid concatenated codes were addressed in [8], where differential encoding was also
examined, and shown efficient.

Keywords: differential encoding, distance spectrum, error bounds, iterative decoding,
serial concatenation.
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I. Introduction

Differential encoding (DE) is widely used to enable non-coherent detection when carrier phase

acquisition and tracking are impossible, unreliable or prohibitively complex due to excessive phase

noise. This situation is commonly encountered where noise and errors of local oscillators are

significant and where short messages are transmitted such as typical in packet communication and

in frequency hopping systems. DE usually impairs the performance of the system, especially when

combined with error correcting codes. Various methods were developed to mitigate this impairment

to some degree in [6],[16],[26], and references therein. Interleaving is often used to combat burst

noise and fading.

A transmitter of a system utilizing these widely used concepts is depicted in the upper part

of Fig. 1. It comprises an error correcting convolutional code, interleaver, inner encoder such as

the DE and BPSK modulator. Some recent reports [1],[12],[13],[15],[17],[21],[22], recognized this

structure as an interleaved serial concatenation of two codes considering the DE as an inner code,

and applied appropriate iterative decoding method developed for the detection of interleaved serially

concatenated codes, see [3],[4] and references therein. Some of those works have put in evidence

not only mitigation of the impairment caused by DE and non-coherent detection but reported

performance exceeding somewhat that of a convolutionally encoded and coherently decoded system.

In this work we examine the capabilities of a serially interleaved concatenation of a convolutional

code and DE in a coherent setting. We develop an ensemble upper bound of Block Error Rate

(BLOER) using a novel bounding method [27] and demonstrate the superiority of the concatenated

scheme over the standard convolutional code when both are maximum likelihood decoded. The

ensemble bound comprises averaging over the random uniform interleaver. A less tight union

bound for a very similar code was presented in [8]. We show by simulations that the iterative

decoding technique, while clearly suboptimal, still outperforms significantly in terms of Bit Error

Rate (BER) and BLOER the standard convolutionally coded and optimally (in terms of BER or

BLOER) decoded system.

II. System Description

The system under consideration is depicted in Fig. 1.

A. Transmitter and channel: A sequence b of Nb uniformly and independently distributed

information bits bi ∈ (0, 1) is encoded by an outer non-recursive convolutional Error Correction

Code (ECC) resulting in sequence c of Nc coded bits ci. We use rate = 0.5, 16 states code
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with generators (23,35) (octal) and memory m = 4 (see Fig. 2e). The code is terminated by

appending m = 4 zero-bits to the sequence b. The coded bits ci are interleaved by a bit-wise

interleaver generated randomly and uniformly [3] for each sequence of Nc coded bits which produces

a permuted sequence of bits cj . We use the same symbols with modified indices for interleaved and

non-interleaved signals. This type of random interleaving is a probabilistic structure that takes into

consideration all the possible interleaving permutations, with all interleaving configurations equally

weighted. The interleaved sequence is encoded by a rate = 1 inner encoder which produces the

sequence d of bits dj . The most practical inner code is the standard DE which can be represented

as a recursive convolutional code of rate = 1 with generators 3 (octal) for feedback and 2 for the

output sequence generation, see Fig. 2a. We examine also two similar codes but with generators (7,

4) and (5, 1) denoted respectively D3 and DDE, see Fig. 2. The double differential encoder (DDE)

known also as the second order phase-difference modulator is robust to frequency offsets when used

in conjunction with an appropriate noncoherent detector [20]. All the inner codes are terminated

to the zero state by a one or two additional bits for the DE and D3/DDE codes respectively. A

system with no inner code, i.e. using dj = cj (the outer stand-alone convolutional code) was also

examined for reference. The bits dj are mapped to BPSK symbols sj , sj = 2dj−1 and transmitted

over a coherent AWGN channel, the outputs of which (sampled at the output of a matched filter)

are:

rj = sj + nj , (1)

where nj is the in-phase component of AWGN noise the variance of which is Var(nj) = σ2. Since

the overall coding rate Rc is 0.5 we have Eb/No = 1
Rc
· Es/No = 1/σ2, where Es/No = 1

2σ2 is the

channel symbol energy over the noise spectral density ratio.

In our analysis and simulations we used the following sequence lengths: Nc = 1000, Nb =

Nc

2 − m = 496, Nd, the number of bits dj , is 1001 and 1002 for the DE and D3/DDE codes

respectively.

B. Optimal receivers: The optimal receiver, minimizing the probability of bit error, computes

for each bit bi the a posteriori probability

p(bi = 1|r) =
∑

b,bi=1

p[r|s(b)]
/

∑

b

p[r|s(b)] (2)

where r is the sequence of Nd channel outputs rj . The memoryless channel model yields:

p[r|s(b)] =
Nd
∏

i=1

1√
2π σ

exp
[

− (sj − rj)
2 /2σ2

]

(3)

A different maximum likelihood optimal receiver which minimizes the BLOER, chooses b to max-

imize p[r|s(b)] in (3).
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The optimal receivers for the concatenated codes are prohibitively complex due to the large

number of the possible sequences b and of the corresponding codewords s for which eq. (3) needs

to be evaluated, giving thus motivation for suboptimal reduced complexity efficient decoders.

C. A practical receiver: A high performance suboptimal practical receiver for two serially

concatenated convolutional codes separated by an interleaver was presented in [3]. It utilizes the

iterative decoding procedure introduced in [5] for turbo codes. We resort to the iterative receiver

of [3], changing only the code generators and the code-rate, see Fig. 1, operating as follows:

The channel outputs are fed into the inner decoder which produces soft metrics λj as the

Aposteriory Probabilities (AP) of the coded bits cj based on the structure of the inner code and on

the side information P̂ (cj) on the same bits provided by the outer decoder on previous iterations.

The outer decoder uses the deinterleaved sequence of λi to produce information bit estimates b̂i

and the soft outputs P̂ (ci), which are the AP of the bits ci based on the sequence λi and on the

structure of the outer code, to be used by the inner decoder on the next iteration. Both the inner

and the outer decoders are Soft Input Soft Output (SISO) decoders, see [3], [4] for more details.

III. Analysis

In this section, we state the underlying assumptions on which our bounds are based, introduce

notations and basic relations from [3],[18][24],[27],[28],[30], which apply to serially concatenated

codes.

A. Assumptions: We assume here ML decoding and that the results for large values of interleaver

length (Nc À m) are insensitive to a termination method of the inner code.

B. Weight distribution: The number of codewords of a serially concatenated code cs that are

encoded by information bits of weight w and having a total Hamming weight of h is designated by

Acs
w,h.

For a serially concatenated code cs with a uniform interleaving situated between the outer

and inner codes (cout and cin respectively) and operating on Nc bits, the following equation holds

([3],[30]) under the termination assumptions mentioned above:

Acs
w,h =

Nc
∑

`=0

Acout

w,` A
cin
`,h

(

Nc

`

) 0 ≤ w ≤ Nc

2
−m, 0 ≤ h ≤ Nc , (4)

where m is the memory length of the outer code (m = 4 in the considered case) and Nc/2 −m is

the length of the information sequence in our case (since the outer code is of rate 1/2). Clearly,
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by linearity, a zero input results in a zero output and therefore Acs
0,0 = 1. As indicated, the block

length of the serial concatenation cs is Nc bits + termination (the same as the interleaver length,

since the inner codes are assumed to have a unity rate). If we look at the set of codewords produced

by the outer encoder cout as a block code of length Nc and designating its weight distribution by
{

Scout

`

}Nc

`=0, then the following equation holds:

Scout

` =

Nc
2
−m
∑

w=0

Acout

w,` 0 ≤ ` ≤ Nc . (5)

The Hamming weight of the termination bits is ignored and the number of all the codewords with

an overall Hamming weight of ` are counted. By linearity, the summation over w begins with w = 1

for any non-zero value of ` and also Scout
o = 1. Also, a similar relation as in equation (5) holds for

the weight distribution of the code cs:

Scsh =

Nc
2
−m
∑

w=0

Acs
w,h 0 ≤ h ≤ Nc . (6)

By combining equations (4),(5),(6), the following equation is derived for the weight distribution

of the serially concatenated code cs:

Scsh =
Nc
∑

`=0

Scout

` Acin
`,h

(

Nc

`

) 0 ≤ h ≤ Nc (7)

Equation (7) was used for the calculation of the weight distribution of the two options of serially

concatenated codes (with the aid of the calculations presented in appendices I,II,III). For evaluating

equation (7), it is required first to calculate the output-weight distribution of the outer code and

also the input-output weight distribution of the inner code. Then the weight distribution of the

code (treated as a block code of length Nd) is used to calculate the tangential sphere upper bound

on the block error probability with ML decoding.

In our setting the ratio of the BER to BLOER designated by RE = BER/BLOER is rather high

(see section IV-B and Fig. 5) for low and moderate Eb/No, implying that an erroneous block inflicts

many bit errors and therefore the upper bound on BLOER serves as a reasonable upper bound

on BER. A tighter bound on BER can be developed as in [27], but this requires the input-output

weight distribution of the considered outer code which make this evaluation rather hard in our

case. For the BLOER, only the output weight distribution of the outer code is needed and that

is calculated (see Appendix I) by using equation (7) yields with the tangential sphere bounding

technique [27] an upper bound on the BLOER of the considered, serially concatenated scheme.

C. Union bound: The most familiar upper bound that is based on the weight distribution of the

code is the union bound ([10],[24],[28]). However, for long and complex codes this bound usually
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diverges in the rate region above the cutoff rate, and therefore yields useless results for efficient

code configurations like the serial or parallel concatenated turbo schemes [28].

D. Tangential sphere bound: The tangential sphere bound applied in the analysis here, is

an improved weight distribution based upper bound on the ML decoding block error probability

([24],[27]). The mathematical derivation of this bound is omitted here, see the references mentioned

for details. For a variety of block codes, this upper bound is tighter than some other known upper

bounds, especially for moderate and low values of
(

Eb

No

)

, see [10].

E. Double differential encoder (DDE): In this subsection we shall present a certain equiva-

lence of the DDE to DE in our concatenated uniformly interleaved system using BPSK modulation

and coherent detection.

For DDE the following relation holds [20]:

π · cn = ((φn − φn−1)− (φn−1 − φn−2)) mod (2π)

= (φn − 2φn−1 + φn−2) mod (2π) ,

when c and φ are the input bit and the corresponding phase of the BPSK modulated signal respec-

tively. Since the phase φ may be 0 or π for a BPSK modulated signal, then the term ‘2φn−1’ has

no influence, ((2φn−1 mod (2π) ≡ 0), and therefore

π · cn = (φn + φn−2) mod (2π) .

For a BPSK signal, it is equivalent to the relation cn = dn⊕ dn−2. To reduce the sensitivity of

a receiver to a shift in the carrier frequency, the demodulator should take into account rn−1 and

not only rn, rn−2 [20], however, this problem does not rise in coherent communication. Therefore,

for a BPSK modulated signal, the DDE is equivalent to the encoder of the code D31 (see Fig. 2d)

described by dn = cn⊕ dn−2 .

We denote by co, ce,do,de, the sequences comprising the odd and even indexed bits ci and di

respectively. Then it is clear from the last equation that do and de are the standard differentially

encoded co and ce respectively. To demonstrate exact equivalence, we initialize the encoder used

to encode ce to the last state of the encoder used to encode co. This data dependent initialization,

equivalent to a similar initialization of the DDE encoder, is insignificant for large block lengths and

enables encoding the whole sequence [co, ce] into the sequence [do,de] by a single path through a

DE. A simple permutation of [do,de] yields d, the DDE output. Thus the DE and DDE encoders

are equivalent except for the mapping c → [co, ce] which is absorbed by the uniform interleaver

and the mapping [do,de]→ d, which is a weight conserving permutation. Therefore the two codes

have identical weight distribution under the data dependent initialization.
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To demonstrate that the performance of the DE and DDE coded systems are similar also when

decoded iteratively, we will show the performance is identical with the data dependent initialization

of the DDE described above. It is easy to construct a trellis based optimal MAP decoder for the

DDE inner code by the standard method, however we shall examine other equivalent form as follows:

a. The received sequence r is divided into two subsequences of odd and even indexed symbols

and a new received sequence is formed by appending the even indexed subsequence to the odd

one. This invertible operation preserves all the information available in the received signal.

b. The resulting received sequence is the sequence [do,de] of interleaved bits dn described above,

at the channel output, therefore it may be optimally detected by a DE trellis based decoder.

Since the inner decoder, which is now identical to that of DE, operates on data obtained

identically as in the DE case (i.e. ECC encoding, uniform interleaving and DE) and the outer

encoder and decoder are identical too, the DE and the DDE systems will achieve the same

performance with the initialization described above.

We conclude thus that all results, bounds and simulations, for DE and DDE are equivalent and

therefore only results for DE are presented.

IV. Results

A. Upper bounds: We report here the results of the upper bounds on the block error probabil-

ities for two serially concatenated codes and compare them to the upper bound on the block error

probability of the outer stand-alone convolutional codes. For the examined options, the concate-

nated codes are of rate 1
2 and a block consists Nc = 1000 coded bits. The weight distribution of

all the considered concatenated codes are calculated (appendices I,II,III) and then the tangential

sphere bound is applied to provide upper bounds on the ML block error probability. The weight

distribution of the considered concatenated codes are also compared to the weight distribution of

a random block code (with the same code length and rate) which is binomially distributed.

The reduction of the minimal distance of the serially concatenated codes due to the existence

of the random interleaver (of length Nc) and the corresponding inner code for each option is

demonstrated in Fig. 3. For the outer stand-alone code and a block of Nc = 1000 bits, dmin = 6

and for the two serially concatenated codes: dmin = 3 (where the inner code is DE) and dmin = 2

(where the inner code is D3). This decrease in the minimum distance is evident as there exist

interleavers which group the 6 ‘ones’ at the output of the convolutional code into three pairs of

ones, yielding at the DE output the minimum distance of 3. However, in spite of the fact that the

minimal distances of the two serial concatenated codes are smaller than the minimal distance of the
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outer stand-alone code (of the same block length), the multiplicity (number of codewords with the

same Hamming weight) of the near neighbors is decreased considerably and even more pronounced,

each of the multiplicities associated with Hamming weights between dmin and Nc

2 (half of the code

length) are decreased, as a consequence of the random interleaver and the serial concatenation with

an inner recursive convolutional code. This phenomena named ‘spectral thinning’ was reported also

in [23] as a weight distribution interpretation for the outstanding ML performance of turbo codes

at moderate to low values of Eb/No. The irrelevance of the minimum distance for good low Eb/No

performance was advocated by Battail [2], and references therein, and this feature is confirmed also

in our case.

The second effect of the interleaved serially concatenated codes is the increase of dmax of the

corresponding block codes. For the case of the outer stand-alone code, dmax = 813 (for a block of

length Nc = 1000 bits). However, when the outer code is randomly interleaved and then is serially

concatenated with the differential encoder, dmax is increased to the value of Nc− 1 = 999 (because

the initial state of the encoder is ‘0’ and therefore the first output is also zero). When the outer

code is randomly interleaved and then is serially concatenated with the inner code D3, dmax is

increased from 813 to 965. Therefore, the random interleaver combined with any of the recursive

rate 1 convolutional codes as an inner code, decreases dmin and increases dmax of the outer code

and also causes the phenomena mentioned above.

These observations based on the weight distribution of the examined codes provide the insight

for the reason that sufficiently large random interleaver combined with a serial concatenation of

a recursive rate 1 inner code improves the overall performance of the coded system even in co-

herent detection and ML decoding (and this is in spite of the rather dramatic decrease of dmin).

The improvement is attributed to the closer resemblance of the weight distribution of the serially

concatenated code to the binomial distribution [2], as described in Fig. 3. After introducing the

weight distribution of the examined codes in Fig. 3, the corresponding upper bounds on the block

error probability are presented in Fig. 4. As can be observed from the solid lines of Fig. 4, the

improvement of the upper bounds on the block error probability of the serially concatenated codes

(as compared to the outer stand-alone code) is rather dramatic. For a block error probability of

10−2, the gain of Eb/No achieved by the interleaved serially concatenated code with DE as an inner

code is 3.8dB, and if the inner code is replaced by D3 (Fig. 2b), there is another slight improvement

with ML decoding.

The effect of the decrease in dmin as a consequence of the random interleaver and the serial

concatenation can also be verified from the slopes of the curves in Fig. 4 for Eb

No
> 3dB. Curves 1,2,3

correspond to the cases of dmin = 2, 3, 6 respectively, and it is verified that the larger the value of

dmin is, the steeper the curves are for sufficiently high values of Eb

No
(Eb

No
> 3dB is the relevant range
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of Eb

No
values, see Fig. 4). Therefore, for sufficiently high values of Eb

No
, the outer stand-alone code

(Fig. 2c) is superior. It is depicted in Fig. 4 that the upper bounds on the block error probabilities

of all the three examined codes are approximately the same for Eb

No
= 10.3dB (these upper bounds

are approximately also the corresponding exact block error probabilities for such values of Eb

No
, since

the union bound is asymptotically tight for large values of Eb

No
).

However, the solid curves of Fig. 4 (ML decoding) present the effect of the random interleaving

and the serial concatenation on the weight distribution of the code in the rate region that is of

practical interest and on the other hand show the effect of the minimal distance on the performance

of the coded systems for sufficiently high values of Eb/No considerably below the cutoff rate. It is

demonstrated that the concatenated systems are advantageous over a broad region of Eb

No
. That

tangential sphere bounds yield significant results also at rates exceeding the cutoff rate [27].

B. Simulation results: The system comprising the transmitter described in section II-A and

the iterative decoder of section II-C performing 10 iterations was simulated while generating an

independent random interleaver for each simulated block. The performance in terms of BER and

BLOER (i.e. the probability of at least one error in a decoded block of 496 information bits bi) was

estimated (see Fig. 5). We examined the system with the two inner codes DE and D3 described in

section II-A and compared them to the standard convolutionally coded system without inner code,

comprising the convolutional code only, and decoded by an optimal BER minimizing receiver, see

section II-B, which is equivalent to omitting the inner code and performing only one iteration at

the receiver described in section II-C.

The most remarkable result is the good performance of the differential interleaved coded system

which needs 0.8dB less Eb/No to achieve BER of 10−3 than the outer convolutional code alone

demonstrating thus the superiority of the concatenated scheme predicted by the upper bounds

above. This is caused by the good WD of the code, as discussed above, and by the high performance

of the iterative receiver which approaches in this case, within 1dB, the upper bound on BLOER

above. Also worth noting is the high ratio RE of bit error rate over the block error rate which is

easily shown to be equal to the average of BER in the erroneous blocks. For the iteratively decoded

systems RE is in the range of 0.18 to 0.25 with DE and 0.25 to 0.4 with D3 for BER above 10−3

as noticed before in some iteratively decoded systems at low Eb/No [14] in contrast to much lower

values with no inner code (about 10−2 for low BER which is determined for very low BER solely

by the number of errors of the minimum distance error event and block length). High RE yields

a low BLOER for a given BER which is a substantial advantage in some communication systems.

Indeed the BLOER performance of the system with DE is better at BLOER = 10−2 by 2dB than

that of the coherent standard convolutional coded system.
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To compare meaningfully the simulation results to the above bounds, we examine the Eb/No

required to achieve BLOER = 10−2, see Fig. 4. Without an inner code, 4.3dB are needed for the

simulated system versus 5dB predicted by the tangential sphere based upper bound. This is a good

fit, since the simulated system performs an optimal detection minimizing BER which approximates

closely a BLOER minimizing detector (such as an MLSE Viterbi decoder). The simulated system

with DE inner code requires Eb/No = 2.25dB for BLOER = 10−2, while the upper bounds predicts

that Eb/No = 1.1dB is possible. This indicates the suboptimality of the iterative decoder which

performs worse by at least 1.15dB than a global MLSE decoder. This suboptimality is even more

pronounced with the D3 inner code where the simulated system requires 3.25dB, a 2.25dB more

than the 1dB upper bound on block error rate.

The discrepancy in the simulated performance of the DE and D3 codes as compared to the

bounds (see Figs. 4,5) is attributed to the inherent limitations of the suboptimal iterative decoding.

In appendix IV, we provide some intuition to this phenomenon based on assessing the associated

average mutual information. The iterative decoder is more complex than a non-iterative standard

decoder with the same convolutional code. Thus from a practical point of view the performance of

the iterative system with 16 states outer code should be compared to a non-concatenated and non-

iterative one based on a more complex error correcting code. Indeed the iterative system described

here outperforms, at BER below 10−3, the industry standard 128 states rate = 0.5 convolutional

code over a coherent channel, see for example [21].

V. Summary and Conclusions

A family of serially concatenated codes comprising of outer convolutional code, a random and

uniform interleaver and a rate 1 recursive convolutional inner code (such as differential encoding)

is investigated for use over a coherent AWGN channel. This study is motivated by the excellent

performance of those codes, iterative decoded over a noncoherent channel. Here we invoke the

improved tangential sphere bounding technique [27], which is not subjected to the harsh threshold

effect of the union bound for relatively low signal to noise ratio values. Further we examine a longer

interleaver and an outer code of prolonged memory, as compared to [8] and achieve therefore, a

considerable improvement in the performance bounds. The superiority of the serially concatenated

codes over the stand alone outer convolutional code as demonstrated by the bounds is a rather

surprising result, since the inner code is of rate 1 and is known to degrade performance in conjunc-

tion with conventional decoders [6] where no interleaving is introduced. We attribute the improved

performance which is demonstrated here by analytical bounds to the distance spectral thinning

effect, which counter balances (for low and moderate Eb

No
) the minimum Hamming weight is usually
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degraded by the inner differential encoder.

We consider the performance of the sub-optimal (practical) iterative decoding by simulations,

and show that also this method enjoys the advantage of this special simple concatenation. By

providing examples where the simulated block error rate of iterative decoding exceeds the upper

bound on the ML decoder, we demonstrate the mild suboptimality of the iterative decoding as

compared to the optimal ML decoding. By comparing the performance with different rate 1 inner

codes we have argued that in this setting the average mutual information (AMI) between the

received sequence of symbols and an inner code input bit at the first iteration is a significant

criterion in determining the performance of the iterative algorithm, while the average sequence-

wise AMI determines to ultimate capacity.

Appendix I: The calculation of the weight enumerator of the outer code

Our paper assumes an outer code that is a rate 1
2 convolutional code of memory length m = 4 and

generators that are represented as (23, 35) in octal form (it was taken from the list of table 8-2-1,

[29]). The structure of the encoder is shown in Fig. 2e.

The state equations of this encoder are easily derived:



















































c1,n = bn⊕σ3,n⊕σ4,n

c2,n = bn⊕σ1,n⊕σ2,n⊕σ4,n

σ2,n = σ1,n−1

σ3,n = σ2,n−1

σ4,n = σ3,n−1

Following the derivation technique used for the calculation of the output weight enumerator of a

convolutional code [12], the xy-incidence matrix corresponding to the state diagram of the encoder

in Fig. 6 is the following:
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A(x, y) =





































































































0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 0 0 0 0 0 0 0 xy 0 0 0 0 0 0 0

0001 y2 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0

0010 0 y 0 0 0 0 0 0 0 xy 0 0 0 0 0 0

0011 0 y 0 0 0 0 0 0 0 xy 0 0 0 0 0 0

0100 0 0 y 0 0 0 0 0 0 0 xy 0 0 0 0 0

0101 0 0 y 0 0 0 0 0 0 0 xy 0 0 0 0 0

0110 0 0 0 y2 0 0 0 0 0 0 0 x 0 0 0 0

0111 0 0 0 1 0 0 0 0 0 0 0 xy2 0 0 0 0

1000 0 0 0 0 y 0 0 0 0 0 0 0 xy 0 0 0

1001 0 0 0 0 y 0 0 0 0 0 0 0 xy 0 0 0

1010 0 0 0 0 0 y2 0 0 0 0 0 0 0 x 0 0

1011 0 0 0 0 0 1 0 0 0 0 0 0 0 xy2 0 0

1100 0 0 0 0 0 0 1 0 0 0 0 0 0 0 xy2 0

1101 0 0 0 0 0 0 y2 0 0 0 0 0 0 0 x 0

1110 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 xy

1111 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 xy





































































































and the matrix A(y) that corresponds to the output weight only follows by substituting x = 1 in

the matrix A(x, y) above.

Based on the technique presented in [18], its output weight distribution is given by

W (y, z) = zm
{

(I − zA(y))−1 A(y)m
}

(0,0)

where in our case m = 4 is the memory length of the convolutional encoder, I is the identity matrix

of order 16 (2m, the number of possible states of the shift register) and

{

T

}

(0,0)
represents the term

in the first row and first column of the matrix T . It is assumed in this derivation that m bits are

added for the termination of the input sequence (for returning the shift register to the zero state).

For the case of an interleaver of length N in the serially concatenated code, since the rate of the

code is 1
2 , we are interested in the output weight distribution that corresponds to an information

sequence of length N
2 − m bits and then a termination of additional m bits. The corresponding

output weight distribution is written as WN/2(y).

As in [18], by computing the characteristic polynomial det (I − z A(y)), a recursive equation for

the output weight distribution is found:

Wk(y) = (y + 1)Wk−1(y) + (y3 − y)Wk−2(y) + (y6 − y7)Wk−5(y) +
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+(y13 − y10 − 2y9 + y7 + y6 + y5 − y3)Wk−8(y) +

+(−y13 + y12 + 2y9 − 2y8 − y5 + y4)Wk−10(y) +

+(−y19 + y16 + 3y15 − 2y12 − 3y11 + 3y8 + y7 − y4)Wk−12(y), k ≤ 13 .

since the memory length is m = 4:

W1(y) = W2(y) = W3(y) = W4(y) = 1

and also by the equation in [18] Wk(y) =
{

A(y)k
}

(0,0)
k = 1, 2, 3 . . . The additional required initial

functions needed for the recursion are then calculated:

W5(y) = y6 + 1

W6(y) = y7 + 2y6 + 1

W7(y) = y9 + y8 + 2y7 + 3y6 + 1

W8(y) = y10 + 4y9 + 2y8 + 3y7 + 5y6 + 1

W9(y) = y12 + 2y11 + 5y10 + 8y9 + 3y8 + 5y7 + 7y6 + 1

W10(y) = y16 + y13 + 6y12 + 8y11 + 11y10 + 14y9 + 6y8 + 7y7 + 9y6 + 1

W11(y) = y17 + 2y16 + y15 + 2y14 + 10y13 + 20y12 + 17y11 +

21y10 + 24y9 + 9y8 + 9y7 + 11y6 + 1

W12(y) = y19 + 2y18 + 4y16 + 12y15 + 18y14 + 34y13 + 44y12 +

30y11 + 37y10 + 36y9 + 12y8 + 12y7 + 13y6 + 1

Note that the sum of the coefficients of the output weight distribution Wk(y) is 2k−m (k ≥ m),

because the weight of the last m symbols at the input of the encoder is not taken into account

(used only for termination to the zero state).

The initial functions and the recursive equation derived above are used for the calculation of

WN/2(y). In the examined case, we are interested in the case of an interleaver length N = 1000 bits,

and therefore this recursive equation was used N
2 − 12 = 488 times.

Appendix II: The calculation of the input-output weight distribution of the dif-

ferential encoder

The differential encoder is a recursive convolutional code of rate 1 and a memory length of m = 1.

The state equations of a differential encoder are:










dn = σ1,n−1

σ1,n = cn⊕σ1,n−1

.

Its state diagram is presented in Fig. 2a.

The input-output weight distribution of a differential encoder is presented in [9].
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Appendix III: The calculation of the input-output weight distribution of the

codes DDE and D3

The alternative inner code that is discussed in our paper is a recursive convolutional code of rate 1

and a memory length of m = 2, DDE and D3.

The encoders of these codes are shown in Fig. 2b. As explained, the WD of the DDE code is

exactly the same as that of the DE. The state equations of the D3 code are the following:

σ1,n = cn⊕σ1,n−1⊕σ2,n−1

σ2,n = σ1,n−1

dn = σ2,n−1 ,

and its state diagram is presented in Fig. 2b (the powers of x and y there are the Hamming weight

of the input and output respectively). As before, following the derivation technique for the input-

output weight distribution or a convolutional code [18], the xy-incidence matrix derived from the

state diagram in Fig. 2b is

A(x, y) =



















00 01 10 11

00 1 0 x 0

01 xy 0 y 0

10 0 x 0 1

11 0 y 0 xy



















and also A(y)
4
= A(1, y).

Based on [18], the input-output weight distribution is

W (x, y, z) = zm
{

(I − z A(x, y))−1 A (y)m
}

(0,0)
,

where T(0,0) denotes the term of the first column and first row of the matrix T and m = 2 is the

memory length of the inner code in this case.

The denominator of W (x, y, z) is the characteristic polynomial

det(I − z A(x, y)) = 1− z(1 + xy)− z3(y2 − xy)(1− x2) + z4(1− x2)2y2

and therefore the recursive equation for the input-output weight distribution Wk(x, y) is:

Wk(x, y) = (1 + xy)Wk−1(x, y) + (y2 − xy)(1− x2)Wk−3(x, y)− y2(1− x2)2Wk−4(x, y) .

It follows that,

W (x, y, z) =
∞
∑

k=2

Wk(x, y)z
k when Wk(x, y) =

[

A(x, y)k−2A(y)2
]

(0,0)
,
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which by a direct computation of Wk(x, y), is used to calculate the initial weight distributions

needed for implementing the recursive equation:

W2(x, y) = 1 (as expected since Wk(x, y) = 1 for values of k such that k ≤ m)

W3(x, y) = 1 + xy

W4(x, y) = 1 + xy + x2y + xy2

W5(x, y) = 1 + xy + x2y + 2xy2 + x3y + x2y2 + x2y3 .

Since a serially concatenated code is considered with an interleaver length of N bits and 2 additional

cycles are needed for termination [25], the computation of the input-output weight distribution

WNc+2(x, y) is required (therefore, the recursive equation derived above is used Nc − 2 times).

Appendix IV: Average Mutual Information (AMI)

The performance of the system with the D3 inner code, and to a lesser degree the system with a DE

inner code are limited by the capability of the iterative decoding algorithm which is suboptimal.

The capability of the iterative algorithm to achieve near optimal performance in various systems is

an open research subject, see for example [31],[19]. To gain a partial and incremental understanding

of the issues governing the behavior of the iterative decoder in our serially concatenated system, we

examined the flow of information to the outer code at the first iteration. In particular we computed

the Average Mutual Information (AMI) between the Inner Decoder (ID) input r and a one (any)

bit ci coded by the outer encoder while considering the bits ci as independent and ignoring the

outer code as does the ID. Since at the first iteration r is the ID’s only input and the ID is an

optimal MAP decoder, this AMI is an indication of the ID information content. An AMI too low

relatively to the outer code rate at first iteration, may prevent the convergence of the iterative

algorithm to a near optimal solution. We use

AMI = I(cj ; r) = E

[

log
p(r|cj)
p(r)

]

,

(where E denotes statistical expectation) which is easy to estimate by the Monte Carlo method,

since only 2 or 3 symbols rj are statistically dependent on cj for the DE and D3 codes respectively

due to the uniform, independent and identical distribution (u.i.i.d.) of cj , (see the assertion in

Appendix V). The resulting AMI are presented versus Es/No in Fig. 6. The AMI curve of the

D3 code is inferior by 1.15dB at AMI = 0.5 to that of the DE code as compared to a similar

difference of 1 and 1.05dB in the BLOER and BER performance of those codes listed above. Also

the Eb/No required to achieve BER of 10−2 occurs when RA
4
= AMI/code rate is 0.8 to 0.9 for

both codes. A similar value of RA for the component codes occurs at BER = 10−2 for R = 0.5

parallel concatenated turbo codes [5]. We do not claim to have provided a sound theoretical basis
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of the dependence of iterative algorithm convergence on RA of the component codes and counter

examples can be traced in [22]. There the performance of a similar interleaved iteratively decoded

system, which used turbo code instead of the convolutional code here and operated in a noncoherent

setting, improved significantly when ‘RDE’ code replaced DE in spite of identical input and output

alphabets, rates and AMI at first iteration of both RDE and DE. (RDE was chosen to exploit

more effectively the side information on further iterations and we do not expect it to perform well

when concatenated with a convolutional code). Furthermore AMI, even at first iteration, is hard

to evaluate analytically for serially concatenated codes with complex inner codes, and therefore

bounds [29] and Monte Carlo methods are employed.

Appendix V:

Definition: Binary linear rate 1 code with constraint length k and length N is a mapping of any

sequence b(b1 . . . bN ) of bits bi to a sequence s = (s1 . . . sN ) of bits si

si = bi⊕ f
(

si−1
i−k+1

)

(V.1)

where f is a mapping to (1,0), skj = (sj . . . sk) and si|i≤0= 0 is an initial state known to the

receiver and the transmitter.

Property 1: from (V.1):

bi = si⊕ f
(

si−1
i−k+1

)

(V.2)

Thus the code is uniquely decodable and the mapping b→ s is one to one.

Assertion: When a sequence of N uniformly independently and identically distributed (u.i.i.d.)

bits bi is encoded by binary linear rate 1 code to a sequence of si and transmitted over a memoryless

channel the output of which is r = (r1 . . . rN ) then:

I(bi; r) = I
(

bi; r
i
i−k+1

)

(V.3)

Proof: Define:

s− = si−k1 , r− = ri−k1

s+ = sNi+1 , r+ = rNi+1

s∗ = sii−k+1 , r∗ = rii−k+1

then:

I(bi; r) = I(bi; r−, r∗, r+) ≤ I(bi; r−, r∗, r+, s−, s+) = I(bi; r∗, s−, s+)
4
= I1 (V.4)

by standard decomposition:

I1 = I(bi; r∗|s−, s+) + I(bi; s−, s+)
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Now,

I(bi; s−, s+) = I(bi; s−) + I(s+; bi|s−)

The first summand is zero since nothing about bi is revealed by s− alone and so is the second

summand since when s− and bi are known each bit sj of s+ is xored in eq. (V.1) with a new u.i.i.d.

bj yielding a u.i.i.d. s+ independent of bi and s−. Thus:

I1 = I(bi; r∗|s−, s+) (V.5)

Now,

p1
4
= p(bi, r∗|s+, s−) =

∑

s∗

p(bi, r∗|s∗, s+, s−)p(s∗|s+, s−)

bi is uniquely determined from s∗ by eq. (V.2) and p(r∗) is determined by s∗ and the memoryless

channel, thus s+, s− may be deleted from the first probability term. Also s∗ is u.i.i.d. regardless of

s+, s− due to the xor by bj in eq. (V.1), thus s+, s− may be deleted for the second term, yielding,

p1 =
∑

s∗

p(bi, r∗|s∗)p(s∗) = p(bi, r∗)

Thus from (V.5):

I1 = I(bi; r∗) .

Combining this with (V.4) and using the obvious relation

I(bi; r) ≥ I(bi; r∗)

yields the assertion (V.3).
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Figure Captions

Fig. 1: System block diagram.

Fig. 2: Encoders and state diagrams: (a) Inner differential encoding (DE). (b) Inner D3 en-

coding. (c) Double differential encoder (DDE). (d) D31 encoder equivalent to DDE.

(e) Outer convolutional encoder, g = 23, 35 octal (encoder only).

Fig. 3: The weight distribution of the interleaved serially concatenated codes compared to that

of the outer convolutional code alone.

Fig. 4: Upper bounds on the ML decoded block error probabilities of the schemes in figure 1.

The bounds are compared to simulated iterative decoding.

1. A serially concatenated code with an outer non-recursive convolutional code (23, 35) in octal

form and the D3 inner code. A random interleaver of length N = 1000 bits between the two

component codes is assumed. The points marked by ‘+’ are simulation results of iterative

decoding (10 iterations).

2. A serially concatenated code with the same outer code and interleaver and a differential

encoder (DE) inner code. The points marked by ‘*’ are simulation results of iterative decoding

(10 iterations).

3. The non-cursive convolutional code of rate 1
2 and generators g = (23, 35) in octal form. The

points marked by ‘o’ are simulations based on MAP decoding (Bahl algorithm).

Fig. 5: Performance of simulated interleaved systems with an outer rate = 0.5 non-recursive

convolutional code with generators g1 = 23, g2 = 35 (octal) over a coherent AWGN

channel. Interleaver length is 1000 bits. Solid lines: Bit error rate; dashed lines: block

error rate; o: no inner code; *: differential inner code; +: D3 inner code.

Fig. 6: Average Mutual Information I(r; ci) for different inner codes for coherent BPSK oper-

ating on the AWGN channel: DE — *; D3 — +; uncoded — o.

21



Inner
DecoderDeinterleaver 

Interleaver

Correcting
Decoder

b
i

P(c  ) P(c  )
ji

λλ
j

soft
decision

i
Error

Error
Correcting

Code
Interleaver

Inner
Encoder
rate = 1

BPSK
Modulator

AWGN
Coherent
Channel

b c d s
i i i i

r
j

c
j

Figure 1

22



+ D D

+

+
n 1,n n

dσ
n 1,n 2,n n

c dσ σ
D

x  y0  1

1

x  y0 0

x  y1  0

x  y

11

xy

x  y

xy

x  yx  y

xy

0  0

0 0

00

0110

00

1  1

c

D+ D D++
c d c

d n

n

D

 

xy0

0

y0x

b
n

c

4,n3,n2,n1,n
σ σσ σ

++

D D D D

1n

+ + +

2n
c

Figure 2

23



0 100 200 300 400 500 600 700 800 900 1000
-200

-150

-100

-50

0

50

100

150

Hamming weight of the codewords

Lo
g1

0 
of

 th
e 

w
ei

gh
t d

is
tr

ib
ut

io
n

o  : the weight distribution of the serially concatenated
 code with the DE as an inner code.

x  : the weight distribution of the serially concatenated
      code with the inner code D3
+  : the weight distribution of the convolutional code alone

__: the normalized weight distribution of the binomial
      distribution

Figure 3.

24



0 2 4 6 8 10 12
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Eb/No [dB]

up
pe

r 
bo

un
d 

on
 th

e 
B

LO
C

K
 e

rr
or

 p
ro

ba
bi

lit
y

1 2 3

curve 1, + :  inner code - D3

curve 2, *  :  inner code - DE

curve 3, o :  the outer code alone of rate 1/2 and generators (23, 35)

Figure 4.

25



1.5 2 2.5 3 3.5 4 4.5

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB

P
ro

ba
bi

lit
y 

of
 b

it 
an

d 
of

 b
lo

ck
 e

rr
or

Figure 5.

26



−3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Es/N0 in dB

A
ve

ra
g

e
 M

u
tu

a
l I

n
fo

rm
a

tio
n

 in
 b

its
/s

ym
b

o
l

Figure 6.

27


