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Abstract

The ensemble performance of parallel and serial concatenated turbo codes is considered, where the ensemble
is generated by a uniform choice of the interleaver and of the component codes taken from the set of time varying
recursive systematic convolutional codes. Following the derivation of the input-output weight enumeration functions
of the ensembles of random parallel and serial concatenated turbo codes,the tangential sphere upper bound is
employed to provide improved upper bounds on the block and bit error probabilities of these ensembles of codes for
the binary-input additive white Gaussian noise channel, based on coherent detection of equi-energy antipodal signals
and maximum likelihood decoding . The influence of the interleaver length and the memory length of the component
codes are investigated. The improved bounding technique proposed here is compared to the conventional union
bound and to a recent alternative bounding technique by Duman and Salehi which incorporates modified Gallager
bounds. The advantage of the derived bounds is demonstrated for a variety of parallel and serial concatenated
coding schemes with either fixed or random recursive systematic convolutional component codes, and it is especially
pronounced in the region exceeding the cutoff rate, where the performance of turbo codes is most appealing. These
upper bounds are also compared to simulation results of the iterative decoding algorithm.

Keywords: turbo codes, distance spectrum, ML decoding, iterative decoding, uniform interleaver,
AWGN channel.
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I. Introduction

The discovery of turbo codes in 1993 [7] is one of the exciting recent developments in coding

theory. The codes have demonstrated near Shannon limit performance on a Gaussian channel with

relatively simple component codes and large interleavers. Intensive literature on this subject has

appeared since the introduction of these codes, as is evidenced by [1]–[38] and references therein.

In addition to simulations, theoretical upper bounds on the bit error probability of turbo codes

have been developed. Since it has not yet been tractable to obtain analytic bounds for a particular

interleaver and particular component codes, the bounds have been developed as averages over

certain ensembles, featuring random coding properties. However, since mostly these bounds are

based on a union bounding technique, they give useless results for energy per bit to spectral noise

density
(

Eb
N0

)
ratios below the value corresponding to the cutoff rate (R0) of the channel, a region

which is of particular interest for the turbo codes operation.

An upper bound on the bit error probability of a parallel concatenated coding scheme averaged

over the interleavers of a given length was proposed in [2]. A probabilistic interleaver called the

‘uniform interleaver’ was introduced in [2], taking into consideration all the possible interleaving

permutations, including the option of a non interleaved code as a particular case, where all inter-

leaving permutations are uniformly weighted. That permits an easy derivation of the input-output

weight enumeration function (IOWEF) of the parallel concatenated code relying on the IOWEF

of its component codes. A similar union upper bound to the bit error probability of a serially

concatenated coding scheme averaged over the interleavers of a given length was reported in [4].

Union bounds for serially concatenated codes with ML decoding for the binary-input additive

white Gaussian noise (AWGN) channel were studied in [38] and compared to the performance of

iterative soft output decoding algorithms. The component codes were explicitly chosen fixed while

the interleaver was random and uniform. A set of recursion relations were developed, based on

the chosen component codes, to facilitate the numerical computation of the union bound. These

union bounds indicate that the interleaver gain, for long enough interleavers, was achieved above

the value of Eb
N0

that corresponds to the cutoff rate.

Indeed, the ensemble of codes considered in [38] was generated by all the interleaving per-

mutations rather than all codes as is usually done in random coding applications, but the union

bound is still the weak link as was demonstrated in [38] by computer simulations, using iterative

MAP soft-output decoding. These simulations demonstrated an interleaver gain even for Eb
N0

values

corresponding to code rates above the cutoff rate but below the channel capacity.
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The IOWEF of the ensembles of random parallel and serial concatenated turbo codes were

derived in [35],[31] respectively. The ensemble of random codes is generated by a uniform choice of

the interleaver from the set of interleavers of length N , and also a uniform choice of the component

codes from the set of time varying recursive systematic convolutional (RSC) codes with a fixed

memory length m. These derivations reduce the performance behavior of random turbo codes to

a two parameter family, with the parameters: the interleaving length N and the memory length of

the component codes m (the memory length of the RSC codes is assumed here to be the same).

Following the derivations of the IOWEF of these ensembles of codes, the union bound was employed

to provide upper bounds on their bit error probabilities for an AWGN channel and ML decoding

[31],[35].

We focus in [31] on serially concatenated turbo codes with rate 1
2 time-varying RSC codes as

component codes and examine also parallel concatenated turbo codes with three component codes

[14], which gives rise of an overall code of rate 1
4 (a similar overall rate as for a serially concatenated

code with two rate 1
2 component codes).

An upper bound on the block and bit error probabilities of turbo codes with ML decoding is

derived [17], using a modified version of Gallager’s bound rather than the standard union bound.

This result is a generalization of the transfer function bounds providing a tighter upper bound

as compared to the union bound. The upper bound on the bit error probability derived in [17]

requires the partition of the code to constant weight subcodes, such that each one of them includes

codewords that have also the same information weight. Then, the improved upper bound in [17]

is applied on each subcode and finally, the union bound is applied to get an upper bound on the

bit error probability of the overall code. Indeed, the double constraints used to partition the code

to subcodes, weaken the upper bound on the bit error probability in [17], as the union bound is

applied on so many subcodes. The bound in [17] happens then to be useful for some range below

the channel cutoff rate and it does not diverge at the cutoff rate like the union bound. Typically,

the upper bound on the block error probability is a tight bound for Eb
N0

values 0.5–0.7 dB below

the Eb
N0

value that corresponds to cutoff rate, and diverges at Eb
N0

values 0.8–1.0 dB below that

value. The gain with respect to the union bound achieved by the upper bound on the bit error

probability is even lessened. These bounds on the bit and block error probabilities of turbo codes

are not covering thus the full range of their usefulness. The upper bound is derived for turbo codes

with fixed component codes and a random uniform interleaver. A generalization of these upper

bounds for some other error-correction codes as for example: binary linear block codes, systematic

convolutional codes (not necessarily recursive) and serially concatenated codes are also available.

In [37], an upper bound on the block error probability for an arbitrary binary-input symmetric

channel is presented. This upper bound, based on Gallager’s 1963 technique, is examined for the
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binary-input AWGN channel and some parallel concatenated turbo codes. However, the upper

bound in [17] is slightly better. An extended bounding technique based on Gallager’s 1963 bound

is reported in [34], where also comparisons to the bounds here for selected convolutional and

block turbo codes are presented. The basic idea of the ensemble performance (averaged over

the interleaver and in some cases also over the component codes) upper bounds on the bit error

probability here [32] is based on applying a modified version of the tangential sphere bound [30],

without any need to partition the code to subcodes, and hence there is no need to employ a union

bound over subcodes as in [17].

The improved bounding technique described here has been utilized in [28] to analyze the serially

interleaved concatenated codes, where the outer code is a standard convolutional code and the inner

code is a recursive convolutional code of rate 1. Focus is put on the ubiquitous inner differential

encoder (used in particular to resolve phase ambiguities), and it was analytically demonstrated that

the error probabilities corresponding to a coherent detection of BPSK modulation over the AWGN

channel, for this construction is advantageous as compared to the stand-alone convolutional code.

This in spite of the fact that the inner code is of rate 1. Our bounding technique has also been used

in a recent extensive investigation of block and turbo-block codes [33], demonstrating impressive

tightness of the bounds.

A comparison between the bounding techniques here and in [17], demonstrates that our bound-

ing technique is advantageous and it extends further the region of Eb
N0

for which the bounds are

useful. This is also the general conclusion when compared to Gallager bounds in the form inves-

tigated in [34], though particular examples of high-rate turbo-block codes were found for which

the bounds in [34] yield marginally improved tightness. These upper bounds that refer to ML

decoding are compared here with computer simulations of iterative soft-output decoding, based on

the LOG-MAP decoding algorithm.

II. Preliminaries

In this section, we state the underlying assumptions on which our bounds are based, introduce

notations and basic relations from [2, 4, 12, 13, 17, 30, 31, 32, 35, 38] which apply to parallel and

serial concatenated turbo codes, and state further relations and comments useful to our analysis

and conclusions.
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A. Assumptions:

In our analysis we consider the case where the information bits are encoded by serial or parallel

concatenated turbo codes and BPSK modulated. The equi-energy signals are transmitted through

an AWGN channel, the received signals are coherently detected and then ML decoding is performed.

The component codes of the turbo encoder are assumed to be time-varying RSC codes with

the same memory length m (see Fig. 1) or fixed RSC codes. A uniform interleaving of length N

is incorporated in both structures (see Figs. 2a-c). A termination with m additional cycles of the

shift register is assumed [13], though the results for large values of interleaver length (N À m), are

insensitive to the specific termination method.

B. Notations and relations:

B.1 The distance spectra of parallel and serial concatenated codes:

A serial concatenated turbo code cs with components cout and cin as outer and inner codes respec-

tively, is the first concatenation structure being considered here (see Fig. 2b). The rate R of code cs

in units of bit/symbol, is the product of the rates of its component codes. The uniform interleaver

situated between the component codes is operating on bits (and not on symbols) and has a length

of N and the common memory length of the component codes is m.

The number of codewords of the code cs that are encoded by information bits of Hamming

weight w and have also a total Hamming weight of h is designated by Acs
w,h. Here, for serially

concatenated codes, the number of information bits is the product of the interleaver length N and

the rate of the outer code R(out), since N is also the length of a codeword of the outer code cout.

As the component codes are assumed here to be systematic, then also the serial concatenated

code cs is a systematic code, and therefore Acs
w,h = 0 if w > h. Similar definitions related to

the component codes are derived for Acout
w,` and Acin

`,h. As before, since the component codes are

systematic, that implies that for w > ` or ` > h: Acout
w,` = 0 or Acin

`,h = 0 respectively.

These notations are consistent with those used in papers [4],[31],[38] that deal with serial con-

catenated codes. However, unlike papers [2],[35] that address parallel concatenated turbo codes,

the parameter h of Acs
w,h is the Hamming weight of the entire codeword of cs, not only of its parity

bits.

For a serially concatenated code cs with a uniform interleaver of length N , the following equation
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holds [4]:

Acs
w,h =

N∑

`=0

Acout
w,` Acin

`,h(
N
`

) . (1)

Clearly, by linearity, a zero input results in a zero output and therefore,

Acs
0,0 = 1 . (2)

The following notations were adopted from [31],[35] for the derivation of the distance spectrum for

the considered random ensemble of serially concatenated codes:

Let T be the random variable describing the number of cycles a time varying recursive shift

register of memory length m is active, i.e. is in a non-zero state as a result of a random binary

input sequence whose first bit is ‘1’ Let pk be the probability that the random variable T equals k,

pk = Prob {T = k}. Clearly, pk = 0 for k < m, since the memory length of the shift register is m.

Moreover, as long as the shift register is in a non-zero state, {s1(n) , n ≥ 1} (see Fig. 1) will be a

sequence of i.i.d. random variables, uniformly distributed on GF(2), and independent of the input

process x [35].

As shown in [35], pk satisfies the equation:

pk = 2−k
m∑

j=1

dj ρk
j − δ(k) , (3)

where δ(k) equals 1 for k = 0 and 0 otherwise, where 1
ρj

is the jth zero of 1 −
m∑

i=1

zi (all zeros of

1−
m∑

i=1

zi have multiplicity 1), and where the coefficients dj are determined by the equation:

m∑

j=1

dj

1− ρj z
=

1−
m−1∑

i=1

zi

1−
m∑

i=1

zi

. (4)

An alternative method for the computation of the probabilities {pk} is derived in [31], which is

advantageous over the method above only for low values of k, i.e., k ≤ (m+1)2. We adhere therefore

to equations (3),(4) for the determination of the probabilities {pk}. Since we are interested in the

output of the shift register within a finite interval, pk,` is defined as in [31],[35]:

pk,` =





pk if k < `

1−
`−1∑

j=0

pj if k = `

0 if k > `

. (5)
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For a given binary linear systematic block code C of dimension L, let Ac(W,Z) =
L∑

w=0

Ac
w(Z) Ww

be its input-output weight enumeration function IOWEF, where Ac
w(Z) =

∑

`

Ac
w,` Z` designates

the conditional IOWEF assuming information weight w.

Based on the analysis in [31] for serial concatenation with component codes that are time-varying

RCS codes of rates 1
2 and memory length m, (where N

2 bits are encoded by the outer encoder, which

in turn generates N bits that are permuted by a random interleaver and are encoded by the inner

encoder which generates 2N bits), the following equation holds:

Acs
1,1 =

Acout
1,1 Acin

1,1

N
=

1
4N




N
2
−1∑

i1=0

N
2
−1−i1∑

k1=0

2−k1 pk1, N
2
−1−i1







N−1∑

i2=0

N−1−i2∑

k2=0

2−k2 pk2, N−1−i2


 . (6)

For a linear systematic block code C of dimension L, Sw is defined in [35],[31] as the set of binary

L-tuples of Hamming weight w.

The dimension of the component codes of a parallel concatenation is equal to the interleaver

length. On the other hand, related to the outer code of a serially concatenated code, S
(out)
w is

defined as the set of binary NR(out)-tuples of Hamming weight w (R(out) = 1
2 in our analysis, but

the technique can be generalized). The set S
(in)
w , for the inner code of the serial concatenation, is

defined similar to Sw for parallel concatenation in [35]; the sets S
(in)
w and Sw in [35] are the same,

since the input to the inner code is of length N as is the input length of parallel concatenation).

Following the explanation and notations in [31],[35], for x ∈ Sw, let i1, i2 . . . iw

(0 ≤ i1 < i2 < · · · < iw ≤ L− 1) be the positions of the non-zero inputs. After the first non-zero

input enters the shift register at time i1, the register stays active for a time T . If there exists an

index j, 1 < j ≤ w, such that i1 + T < ij , then the non-zero input at time ij will activate the

shift register again. As before, the shift register will stay active for a time T which is independent

of the first activity time. The time span that the output is active is relevant (being the time span

in which either the input is non-zero or the shift register is active) over the observation span of L

(the length of binary tuples in Sw).

Let Ew be the random variable describing this time span, averaged over a uniform choice over

Sw, and let Prob {Ew = k} = qw
k . In a similar manner, based on the definitions of S

(in)
w and

S
(out)
w for the component codes of a serial concatenated code, the random variables E

(in)
` and E

(out)
w

and the corresponding probabilities q`
k2

(cin) and qw
k1

(cout) are defined (where 1 ≤ k2 ≤ N and

1 ≤ k1 ≤ N
2 , related to the inner and outer codes of the serial concatenated code cs, respectively).
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The probabilities
{
q`
k2

(cin)
}N

`=1
and

{
qw
k1

(cout)
}N

2

w=1
related to the inner and outer codes respectively,

were calculated by computer simulations with the aid of the statistical algorithm proposed in [35].

Based on the analysis of [31], for random serially concatenated codes, the following relations

hold:

For integer values of h, such that 2 ≤ h ≤ 3N

2
+ 1:

Acs
1,h =

min

(
N
2

+1,h

)
∑

`=1

Acout
1,` Acin

`,h(
N
`

)

=
1
N




N
2
−1∑

i1=0

N
2
−1−i1∑

k1=0

pk1, N
2
−1−i1

2−(k1+1)







max(0,N−h+1)∑

i2=0

N−1−i2∑

k2=h−2

pk2, N−1−i2 2−(k2+1)
(

k2 + 1
h− 1

)


+

min

(
N
2

+1,h

)
∑

`=2








N
2
−`+1∑

i1=0

N
2
−1−i1∑

k1=`−2

pk1, N
2
−1−i1

2−(k1+1)
(

k1 + 1
`− 1

)



N∑

k2=max(`,h−`)

2−k2 q`
k2

(cin)
(

k2
h− `

)




(7)

where for integer values of h exceeding N + 1, only the second term affects Acs
1,h (the first term is

zero if h > N + 1) and for integer values of h exceeding 3N
2 + 1: Acs

1,h = 0. Now

Acs
w,h =

(
N
2

w

) min

(
N
2

+w,h

)
∑

`=max (w,h−N)





N
2∑

k1=max(w,`−w)

qw
k1

(cout) 2−k1

(
k1

`− w

)
·

N∑

k2=max(`,h−`)

q`
k2

(cin) 2−k2

(
k2

h− `

)




,

(8)

for integer values of w, h such that 2 ≤ w ≤ N
2 and w ≤ h ≤ 3N

2 + w.

Finally, the IOWEF for the random ensemble of serially concatenated turbo codes takes the

following form:

Acs(W,Z) =
∑

w,h

Acs
w,h Ww Zh = 1 + Acs

1,1 WZ + W

3N
2

+1∑

h=2

Acs
1,h Zh +

N
2∑

w=2

3N
2

+w∑

h=w

Acs
w,h Ww Zh (9)

where the coefficients of the first, second, third and fourth terms above are based on equations

(2),(6),(7),(9) respectively.

The conditional IOWEF for the random ensemble of the parallel concatenated convolutional

codes cp using K component codes and K − 1 uniform interleavers of length N (see Figs. 2a,c as
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examples for K = 2, 3 respectively) is related to the conditional IOWEF of its component codes by

Acp
w (Z) =

(
Ac

w(Z)
)K

(
N
w

)K−1
. (10)

Here it is assumed that the Hamming weight of the information bits is w.

Based on the analysis in [35] for random ensemble of the parallel concatenated turbo codes, the

following relations hold for the conditional IOWEF of the component codes (assumed here to be

time-varying RSC codes):

Ac
0(Z) = 1

Ac
1(Z) =

N−1∑

i=0

N−1−i∑

k=0

pk, N−1−i 2−(k+1)
k+1∑

j=0

(
j

k + 1)
Zj

Ac
w(Z) =

(
w

N ) N∑

k=0

qw
k 2−k

k∑

j=0

(
j

k)
Zj w = 2, 3 . . . N .

(11)

Under our assumptions, the IOWEF for the random ensemble of parallel concatenated turbo codes

(with K component codes and K − 1 uniform interleavers of length N) is the following:

Acp(W,Z) =
N∑

w=0

Ww Acp
w (Z)

= 1 +
N∑

w=1

Ww
[
Ac

w(Z)
]K

(N
w

)K−1
.

(12)

For the cases examined here of parallel and serial concatenated turbo codes with fixed compo-

nent codes and random interleavers, we calculated the IOWEF of the component codes by the

method described in [27]. Then, the IOWEF of the serial or parallel concatenated turbo codes were

evaluated based on the IOWEF of its components by Eqs. (1) or (10) respectively, as we assume

throughout a uniform interleaving.

B.2 Craig’s formula used for the union bound on the bit error probability:

By definition, Q(x) =
1√
2π

∫ ∞

x
e−

t2

2 dt is the probability that a random Gaussian variable with

zero mean and unit variance exceeds the value x. For the exponential form of the union bound,

9



the following inequality Q(x) ≤ 1
2 e−

x2

2 for x ≥ 0, is customary applied. A tighter upper bound on

the bit error probability is derived by using the identity in [9]:

Q(x) =
1
π

∫ π
2

0
e−

x2

2 sin2 θ dθ , x ≥ 0 . (13)

With the aid of equation (13), this yields the following upper bound on the bit error probability of

a binary linear block code C,

Pb ≤ 1
πN

∫ π
2

0
W

∂Ac(W,Z)
∂W

∣∣∣∣
W=Z=e

− REb
N0 sin2 θ

dθ , (14)

replacing the upper bound:

Pb ≤ W

2N

∂Ac(W,Z)
∂W

∣∣∣∣
W=Z=e

−REb
N0

,

which obviously is looser. Finally, the integration over θ in the upper bound (14) is performed

numerically. The applicability of equation (13) is demonstrated in [6],[15].

B.3 The tangential sphere bound

The tangential sphere bound which is the essential ingredient of our bounding technique, is an

upper bound on the message error probability, introduced in [20],[30] and shortly reviewed here.

Suppose that the signals transmitted through an AWGN channel for each message (represented

by a codeword of a linear block code C), are of the same energy E. The energy of each signal is

E = nEs, when n is the block code length and Es is the energy transmitted per symbol.

It can be shown that the tangential sphere bound is always tighter than the tangential bound

[6] and the union bound, especially for low and moderate values of Eb
N0

[20]. The properties of the

tangential-sphere bound (and also the upper bounds in [6],[21]) follow by the central inequality,

Prob (A) ≤ Prob (z ∈ B, A) + Prob (z 6∈ B) . (15)

In the case of the tangential sphere bound, A is an event that represents a message decoding error,

B is an n-dimensional cone with a half angle θ and radius r =
√

nEs tan θ, and z is the noise vector

added to the transmitted signal.

The tangential sphere bound on the block error probability Pe is based only on the distance
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spectrum {Sk} of the binary linear block code C and it reads:

Pe ≤
∫ +∞

−∞
dz1√
2π σ

e−
z2
1

2σ2





1− γ

(
n− 1

2
,

r2
z1

2σ2

)

+
∑

k:
δk
2

<αk

Sk

[
Q

(
βk(z1)

σ

)
−Q

(
rz1

σ

)]
γ

(
n− 2

2
,

r2
z1
− β2

k(z1)
2σ2

)





.

(16)

The following parameters are used in (16):





σ2 =
N0

2
with N0 standing for the one-sided spectral density

of the additive white Gaussian noise

rz1 =
(

1− z1√
nEs

)
r

βk(z1) =
rz1√

1− δ2
k

4nEs

· δk

2r

αk = r

√
1− δ2

k

4nEs
,

(17)

δk is defined to be the Euclidean distance between two signals that their corresponding codewords

differ in k symbols (k ≤ n). Thus, for the case of antipodal signals δk = 2
√

kEs.

Also,

γ (a, x) =
1

Γ(a)

∫ x

0
ta−1 e−t dt , for positive values of a, x (18)

designates the normalized incomplete gamma function.

A geometric interpretation of the tangential sphere bound is presented in Fig. 2 of [20].

The upper bound (16) is valid for all positive values of r and thus the optimal radius r (in the

sense of achieving the tightest upper bound) is determined by setting the derivative of the right

side of the bound (16) to zero, yielding the following optimization equation:





∑

k :
δk
2

<αk

Sk

∫ θk

0
sinn−3 φdφ =

√
π Γ

(
n−2

2

)

Γ
(

n−1
2

)

θk = cos−1




δk

2r

1√
1− δ2

k

4nEs




.

(19)
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It is evident that this upper bound does not exceed 1, (let θ → 0 implying Pe
4
= Prob (A) ≤ 1), in

contrast to the union bound, especially for moderate and low values of Eb/N0. The validity of the

tangential sphere bound for our work here is further discussed in Appendix A.

III. Analysis: A Derivation of An Improved Upper Bound on the

Bit Error Probability of a Linear Binary Block Code

In this section we will derive an improved upper bound on the bit error probability of a linear binary

block code C. It is applied in section IV as an analytic tool to get an upper bound on the bit error

probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum.

In Appendix C, we show that there is no need to partition the overall code, as done in [17],[37] to

find efficient upper bounds on bit and block error probabilities, and as expected partition degrades

the tightness of the upper bound.

Based on the derivation of the tangential sphere bound, let z1 be the radial component noise,

then

Prob
(
Ek(z1) , z ∈ Cn(θ)

)
(20)

=
∫ rz1

βk(z1)

1√
2π σ

e−
z2
2

2σ2 γ

(
n− 2

2
,

r2
z1
− z2

2

2σ2

)
dz2

where z is an n-dimensional Gaussian noise vector added by the AWGN channel to the transmitted

signal, where zi ∼ N
(
0, N0

2

)
for i = 1, 2 . . . n, Cn(θ) is an n-dimensional cone of half angle θ

and Ek(z1) is the error event of a wrong ML decoding between a pair of two equi-energy signals,

represented by two arbitrary codewords whose Hamming distance is k. Both parameters rz1 and

βk(z1) are determined by Eq. (17) (see Fig. 2 of [20]).

Let Sk be the number of codewords of Hamming weight k (k = 0, 1, 2, . . . n) in a binary linear

block code C and let Aw,k be the number of codewords of Hamming weight k encoded by information

bits of Hamming weight w. Then clearly
nR∑

w=0

Aw,k = Sk, for k = 0, 1, 2, . . . n.

By the union bound, the bit error probability of the subcode that includes the all-zero codeword

and the Sk codewords of Hamming weight k, given that the all-zero codeword is transmitted, the

radial component noise z1, and also z ∈ Cn(θ) is upper bounded by

nR∑

w=1

{(
w

nR

)
Aw,k · Prob

(
Ek(z1) , z ∈ Cn(θ)

)}
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=
∫ rz1

βk(z1)

1√
2π σ

e−
z2
2

2σ2 ·
nR∑

w=1

(
w

nR

)
Aw,k · γ

(
n− 2

2
,

r2
z1
− z2

2

2σ2

)
dz2 (21)

=
nR∑

w=1

(
w

nR

)
Aw,k ·

∫ rz1

βk(z1)

1√
2π σ

e−
z2
2

2σ2 · γ
(

n− 2
2

,
r2
z1
− z2

2

2σ2

)
dz2 .

Denote,

S′k
4
=

nR∑

w=1

(
w

nR

)
Aw,k k = 1, 2, . . . n . (22)

Then we get the following conditional upper bound on the bit error probability of the considered

subcode:

Prob
(
eb,k(z1) , z ∈ Cn(θ)

)
≤ S′k

∫ rz1

βk(z1)

1√
2π σ

e−
z2
2

2σ2 γ

(
n− 2

2
,

r2
z1
− z2

2

2σ2

)
dz2 , (23)

where eb,k(z1) is an event that represents an error in one of the information bits of the decoded

codeword (ML decoding is performed), given the all-zero codeword was transmitted, each one of

the other codewords has a Hamming weight k and the radial component of the noise vector is z1.

By the union bound, we get (similarly to the concept of the analysis in [20]):

Prob
(
eb(z1) , z ∈ Cn(θ)

)
≤

∑

k: βk(z1)<rz1

Prob
(
eb,k(z1) , z ∈ Cn(θ)

)
, (24)

where eb(z1) is an event that represents an error in one of the information bits of the decoded

codeword (that relates now to the overall block code C). Since the code C is linear, the assumption

that the all-zero codeword was transmitted is immaterial (in contrast to the event eb,k(z1) that

corresponds to a subcode that includes the all-zero codeword and also the Sk codewords of Hamming

weight k in the code C). If the radial component z1 of the noise is given, then based on properties

of the Chi-squared distribution, it is demonstrated in [20] that the conditional probability that the

noise vector z causes the detected signal to lie outside the half cone Cn(θ), is of the form:

Prob
(
z 6∈ Cn(θ)|z1

)
= 1− γ

(
n− 1

2
,

r2
z1

2σ2

)
, (25)

where the corresponding notations are presented in Eq. (17). Applying now the union bound on

the bit error probability of the ML decoded overall code C (conditioned on z1) is upper bounded

by

Pb(z1) = Prob
(
eb(z1)

)

≤ Prob
(
eb(z1) , z ∈ Cn(θ)

)
+ Prob

(
z 6∈ Cn(θ)

)

13



≤
∑

k: βk(z1)<rz1

{
Prob

(
eb,k(z1) , z ∈ Cn(θ)

)}
+ Prob

(
z 6∈ Cn(θ)

)

=
∑

k:
δk
2

<αk

{
Prob

(
eb,k(z1) , z ∈ Cn(θ)

)}
+ Prob

(
z 6∈ Cn(θ)

)

≤
∑

k:
δk
2

<αk

{
S′k

∫ rz1

βk(z1)

1√
2π σ

e−
z2
2

2σ2 γ

(
n− 2

2
,

r2
z1
− z2

2

2σ2

)
dz2

}
+ 1− γ

(
n− 1

2
,

r2
z1

2σ2

)
.

The upper bound on the bit error probability is derived by calculating the statistical expectation

of Pb(z1) with respect to the random variable z1, where z1 ∼ N(0, σ2) and σ2 = N0
2 . This yields

the following upper bounds on the bit error probability:

Pb =
∫ +∞

−∞
Pb(z1) · 1√

2π σ
e−

z2
1

2σ2 dz1 (26)

≤
∫ +∞

−∞
dz1√
2π σ

e−
z2
1

2σ2





∑

k:
δk
2

<αk

{
S′k

∫ rz1

βk(z1)

1√
2π σ

e−
z2
2

2σ2 γ

(
n− 2

2
,

r2
z1
− z2

2

2σ2

)
dz2

}

+1− γ

(
n− 1

2
,

r2
z1

2σ2

)





.

This upper bound features the same structure as the upper bound on the block error probability

(16), but for the distance spectrum of the code, which is replaced by S′k. Therefore, the opti-

mization equation of the upper bound on the bit error probability is the same as the optimization

equation of the upper bound on the block error probability (19), except for Sk, which is replaced

by S′k. The conclusion of appendix C as to the validity of the bounds applies also here. Since

S′k =
nR∑

w=1

(
w

nR

)
Aw,k ≤

nR∑

w=0

Aw,k = Sk, then for every value of k, we get S′k ≤ Sk. This implies

that the upper bound on the bit error probability does not exceed the upper bound on the block

error probability. The conditions for the existence and uniqueness of a solution to the optimization

Eq. (19) of the upper bound on the block error probability and of the optimization equation that

correspond to the upper bound on bit error probability are discussed in Appendix B. It is proved

there, that Eq. (19) has always a unique solution and also that the optimization equation, corre-

sponding to the upper bound on the bit error proability, has always a unique solution unless the

number of codewords is less than 8. Therefore, for the considered turbo codes, as they are inter-

preted as block codes consisting of many codewords (the number of which increases exponentially

with the interleaver length N), the optimization equations of our two upper bounds (on the block

and bit error probabilities) have always unique solutions.
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IV. Results and Discussion

The outstanding ensemble performance of either parallel and serial concatenated turbo codes with

large interleavers is attributed to the distance spectrum thinning observed for the concatenated

schemes which shape the distance spectrum of the concatenated turbo codes to resemble more

closely the binomial distance spectrum (see Figs. 3,4), [28],[29], where the later is advocated as

a measure for good capacity approaching codes [1]. Fig. 5 demonstrates a comparison between

the normalized distance spectrum of parallel concatenated turbo codes (two time-varying RSC

component codes of rate 1
2 and memory length m = 5 and a uniform interleaver of length N =

200, 400) and the normalized binomial distribution, which is typical of a fully random binary block

code of the same length n = 3N and rate R = 1
3 . The match of the two curves is quite good

for Hamming distances larger than twice the Gilbert-Varshamov (GV) bound, i.e. for normalized

distances
(

d
n

)
that are larger than 2h−1(1 − R) = 0.348 @ R = 1

3 bit/symbol, when h(x) =

−x log2 x− (1− x) log2(1− x) denotes the binary entropy function and h−1 denotes its inverse.

Fig. 6 demonstrates a comparison between the normalized average distance spectrum of serially

concatenated codes (with inner and outer codes which are random time-varying RSC codes of

rate 1
2 and memory length m = 5 and a uniform interleaver of length N = 200, 400 bits) and

the normalized binomial distribution of a fully random block code of the same length n = 2N

and rate R = 1
4 . Similar to the normalized average distance spectrum of the ensemble of random

parallel concatenated turbo codes, the match of the two curves is quite good for Hamming distances

larger than twice the GV bound, i.e. for normalized distances that are larger than 2h−1(1−R) =

0.429 @ R = 1
4 bit/symbol. For example, in Fig. 5a the block length is n = 3N = 600 bits and

for Hamming distances larger than 0.348 · 600 = 208.8, indeed, there is a good match between the

two curves. In Fig. 6a the block length is n = 2N = 400 bits (for the same length of the random

interleaver, N = 200) and also here, for Hamming distances larger than 0.429 · 400 = 171.6, there

is a good match between the curves.

It is demonstrated (see Figs. 5,6) that there is a good match between the normalized average

distance spectrum of either random parallel and serial concatenated codes and the normalized

binomial distribution of a fully random block code of the same length and rate, for Hamming

distances that are adequately large. Yet, the normalized average distance spectrum of the random

parallel or serial concatenated codes becomes significantly larger than the corresponding normalized

binomial distribution especially for low Hamming weights (see Figs. 5,6), and this relative increase

may explain an inherent degradation in performance as compared to optimal or even fully random

codes [1],[26].
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By comparing the ensemble performance of parallel and serial concatenated turbo codes for the

AWGN channel with ML decoding and coherent detection of the BPSK modulated signals, it was

demonstrated by our bounding technique that the longer the random and uniform interleaver is,

the more advantageous the improved upper bound becomes as compared to the union bound. This

is demonstrated in Figs. 7–13 and 17–19 for parallel and serial concatenated turbo codes.

Fig. 7 demonstrates a comparison between the union bound (in its standard Q-form) and the

improved upper bounds derived in section III on the bit and block error probabilities of random

serially concatenated turbo codes (see Fig. 2b). The ensemble is generated by a uniform choice

over all possible interleavers of length N (N = 50, 100, 200, 400) and over the component codes

taken from the set of time varying recursive systematic convolutional codes with memory length of

m = 5. We focus on rate 1
2 component codes here, so the overall code rate is R = 1

4 .

The value of Eb
N0

that corresponds to the cutoff rate for an AWGN channel with bipolar inputs

is related to the code rate R by

Eb

N0
= − ln(21−R − 1)

R
= 1.85 dB @ R =

1
4

bit/symbol , (27)

while the value of Eb
N0

that corresponds to the channel capacity is

Eb

N0
= −0.79 dB @ R =

1
4

bit/symbol . (28)

As expected for long codes, the standard union bound yields meaningful results only in the rate

region below the cutoff rate, excluding the rate region where the performance of turbo codes is

most appealing.

Fig. 7a presents a comparison between upper bounds on the block error probability for this

considered ensemble with a uniform interleaver of length N = 100, 200, 400. No partitioning of the

code to subcodes (as done in [17],[37]) is employed here. For an upper bound on the block error

probability of 10−2, the gain of Eb
N0

achieved by the tangential sphere bound as compared to the

union bound (in Q-form) is 0.10, 0.50, 0.95 dB for N = 100, 200, 400 respectively. For example,

the tangential sphere upper bound on the block error probability for a random interleaver of length

N = 400 equals 10−2 for Eb
N0

= 1.10 dB while the union bound yields 2.05 dB (a gain of 0.95 dB).

Fig. 7b presents a comparison between upper bounds on the bit error probability for the same

ensemble of random serially concatenated codes. The improved upper bound is based on the

tangential sphere bound and the analysis in section III and it is compared to the union bound. For

an upper bound on the bit error probability of 10−3, the gain of Eb
N0

is 0.05, 0.30, 0.70, 1.05 dB for

a uniform interleaver of length N = 50, 100, 200, 400 respectively.
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Figs. 8 and 9 demonstrate a comparison between the union bound (in Q-form) and the improved

upper bounds derived in section III on the block and the bit error probabilities of random parallel

concatenated turbo codes with K = 2 and 3 component codes (see Figs. 2a,c) respectively. Again,

the ensemble is generated by a uniform interleaver of length N (N = 50, 100, 200, 400) and the

component codes taken from the set of time varying recursive systematic convolutional codes with

memory length of m = 5 and rate 1
2 . The overall code rate of the turbo codes considered in Figs. 8

and 9 is therefore R = 1
3 and R = 1

4 respectively. The improved upper bounds on the block and

bit error probabilities refer to Figs. 8a, 9a and Figs. 8b, 9b respectively.

For the random codes in Figs. 8 and 9, the values of Eb
N0

that correspond to the channel cutoff

rate of a binary-input AWGN channel are 2.03 dB and 1.85 dB respectively and the channel capacity

corresponds to Eb
N0

= −0.50 dB and −0.79 dB respectively. As expected, the union bound is useful

only at rates below the channel cutoff rate.

Fig. 8a depicts a comparison between upper bounds on the block error probability. The improved

upper bound is based on the tangential sphere bound and is compared to the union bound (in Q-

form). For an upper bound on the block error probability of 0.1, the gain of Eb
N0

is 0.3, 0.4, 0.65 dB

for N = 50, 100, 400 respectively. For example, if N = 400, the improved upper bound on the block

error probability is 0.1 for Eb
N0

= 1.55 dB (0.3 dB below the Eb
N0

value that corresponds to the cutoff

rate), instead of Eb
N0

= 2.2 dB (based on the union bound in Q-form).

Fig. 8b presents a comparison between upper bounds on the bit error probability that are

based on the tangential sphere bound and the analysis in section III. These improved bounds are

compared to the union bound in Q-form. For an upper bound on the bit error probability of

10−3, the gain of Eb
N0

is 0, 0.15, 0.45 and 0.95 dB for an interleaver length of N = 50, 100, 200, 400

respectively. For example, if N = 400, the improved upper bound on the bit error probability is

10−3 for Eb
N0

= 1.3 dB, that is 0.55 dB below the Eb
N0

value that corresponds to the cutoff rate for a

binary-input AWGN channel (instead of 2.3 dB, based on the union bound in Q-form).

Fig. 9a presents a comparison between upper bounds on the block error probability of random

parallel concatenated turbo codes with K = 3 component codes (see Fig. 2c). Again, a compo-

nent code is assumed to be a random time-varying RSC code of memory length m = 5 and rate
1
2 . The two uniform interleavers of length N are i.i.d (independent and identically distributed).

The increased number of component codes and interleavers of the turbo encoder, improves their

performance [14] and this effect is demonstrated also by the improved upper bounds on the block

and the bit error probabilities. The upper bounding technique is based on the tangential sphere

bound with no partitioning of the turbo code and it is compared to the union bound (in Q-form).
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For an upper bound on the block error probability of 10−2, the improvement in Eb
N0

(as compared

to the union bounds) is 0.2, 0.6 and 0.9 dB for uniform interleavers of length N = 50, 100, 200 re-

spectively. For example, the improved upper bound on the block error probability for the ensemble

of codes and interleavers mentioned above (where N = 200), ensures ML decoding of blocks (of

200 binary information bits) transmitted through an AWGN channel with associated probability

of at least 99%, provided the SNR per bit
(

Eb
N0

)
equals 1.2 dB (0.65 dB below the Eb

N0
value that

corresponds to the channel cutoff rate) instead of 2.1 dB (based on the union bound in Q-form),

as is demonstrated by Fig. 9a.

Fig. 9b depicts a comparison between upper bounds on the bit error probability of the same

ensemble of random multiple-turbo codes, where the improved upper bounds are based on the

tangential sphere bound and our analysis. For an upper bound on the bit error probability of 10−3,

the gain of Eb
N0

is 0.3, 0.65, 1.1 and 1.4 dB for random and uniform interleavers of length N =

50, 100, 200, 400 respectively. For example, the improved upper bound on the bit error probability

is 10−3 for the case of N = 400 at Eb
N0

= 0.65 dB instead of 2.05 dB (based on the union bound in

Q-form).

Parallel to results presented in [31],[35], it is also verified here that increasing the memory

length of the random time-varying RSC component codes m above log2 N affects negligibly the

ensemble performance of either parallel and serial concatenated codes, while increasing the decoding

complexity of the codes (see Figs. 10–12). This result is proved analytically in [31], by showing first

that the average activity time of a time-varying recursive shift register (i.e. the average number

of cycles that the shift register is not in the zero state) with a memory length of m is 2m+1 − 2.

Choosing m = blog2 Nc, yields an average activity time that is approximately twice the interleaver

length N . Therefore with high probability the shift register does not return to the zero state after

being activated by the first ‘1’ at its input. Thus, based the distance spectra of these ensembles

of random turbo codes it is demonstrated that increasing the memory length m of the component

codes above blog2 Nc is not effective, since it improves negligibly the ensemble performance of the

concatenated turbo codes, while increasing considerably the decoding complexity of the codes.

Fig. 13 depicts a comparison between the improved upper bounds on the bit error probability

of the ensembles of random serial and parallel concatenated turbo codes. The component codes of

the two random concatenated codes are time-varying RSC codes of memory length m = 4, 5, 7 and

rate 1
2 (the component codes have the same memory length m). The serially concatenated codes

are generated by a uniform interleaver of length N1 = 200 time-varying RSC component codes of

length m. On the other hand, the parallel concatenated turbo codes are generated by two uniform

interleavers, which are independently chosen of length N2 = 100 and K = 3 component codes (see
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Fig. 2c). This comparison between serial and parallel concatenated turbo codes is done under equal

rate and interleaving delay. This comparison yields that the improved upper bound on the bit error

probability of the serial concatenated codes are advantageous for low and moderate values of Eb
N0

(at rates below the channel cutoff rate). This conclusion is consistent with that reported in [31] on

the grounds of the union bound (that usually diverges for rates below the cutoff rate in contrast to

our improved upper bound, and therefore this conclusion based on the improved upper bounds is

more reliable).

Our bounding technique is compared to a recent alternative bounding technique proposed by

Duman and Salehi [17], where a modified version of Gallager bound replaces the standard union

bound (see Figs. 16–17). The technique of [17] is used for specific component codes and a uniform

interleaving. Though the Gallager bound as in [18] where applied to random codes achieves the

channel capacity, there are a number of places in the derivation of the upper bound in [17], where it

is loosened as compared to the actual value of the error probability. The weakening of the Gallager

bound is more dominant in the derivation of the upper bound on the bit error probability than of

the upper bound on the block error probability [17], since in the first case the code is partitioned

to subcodes ci,d which include all the code words with the same information weight i and total

Hamming weight d including also the all zero codeword. On the other hand, the upper bounds on

the bit error probability presented here [32], are applied on the whole code and therefore based

on Appendix C that an upper bound is advantageous over a similar upper bound that apply an

arbitrary partitioning of the code to subcodes. The main difference between the two bounding

techniques is a result of the fact that for the tangential sphere bound all the signals must only

have the same energy (geometrically, all the codewords lie on the same sphere). Since all the

codewords are of the same length and also the energy per bit is constant, all the signals possess the

same energy, however the technique in [17], even for the derivation of the block error probability

implies that the subcodes cd, must have a constant Hamming weight d, for all their non zero

codewords. This additional constraint results in a partition with an increased number of subcodes

as compared with our bounds here, which when combined with the union bound applied on the

subcodes yields a looser bound. In addition, the tangential sphere bound applied here once for

the overall code, was demonstrated to be a tighter upper bound in most cases for block codes as

compared to a variety of other upper bounds [6]–[20], giving thus another advantage to the bounding

technique proposed here. The tightness of the upper bound for ML decoding can be assessed by

comparing the simulation results of the soft-output iterative decoding algorithm with the upper

bound here. It is considered to be tight as long as it is close enough to the simulation results based

on the iterative decoding, pre-assuming that the iterative decoding technique performs close to

ML decoding for moderate values of Eb/N0. The upper bound on the block error probability for a

parallel concatenated code with two fixed RSC component codes G1(D) = G2(D) =
[
1, 1+D2

1+D+D2

]
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and a uniform interleaver of length N = 500, 1000 (see Fig. 14) seems to be tight for Eb
N0

≥ 1 dB

(see Fig. 16,17). For rate 1
3 transmission, the channel cutoff rate corresponds to Eb

N0
= 2.03 dB and

the channel capacity with binary inputs corresponds to Eb
N0

= −0.50 dB. Therefore, the new upper

bound on the block error probability seems to be reasonably tight for Eb
N0

values 1.0 dB below the Eb
N0

value that corresponds to the cutoff rate but 1.5 dB above the value that corresponds to the channel

capacity. The upper bound on the block error probability by Duman and Salehi [17] is useful only

for Eb
N0

≥ 1.5 dB, corresponding to Eb
N0

values of 0.5 dB below the Eb
N0

which represents the cutoff

rate and diverges 0.8–1.0 dB below that value. This comparison demonstrates the extension of the

region of Eb
N0

for which our bounds are useful by about 0.5 dB over those of [17] in the examined

case. Fig. 16b refers to an interleaver length of N = 1000, and the tangential sphere bound is a

reasonably tight upper bound in this case for Eb
N0
≥ 0.9 dB.

For the turbo code in Fig. 14, the upper bounds on the bit error probability here are tight for
Eb
N0
≥ 1.3 or 1.2 dB for N = 500, 1000 respectively (see Figs. 17a,b). The Duman and Salehi upper

bound on the bit error probability in [17] is tight only for Eb
N0

≥ 1.8 dB (see Fig. 17a) where both

upper bounds refer to the turbo code mentioned above of rate R = 1
3 and a uniform interleaver

of length N = 500 (see Fig. 14). Thus, the range of Eb
N0

for which the bounds on the bit error

probability are useful is extended in this case by 0.5 dB by the new upper bound derived here. As

is observed from the comparisons of the upper bounds on the bit and the block error probabilities

in [17],[32] for the considered turbo code, the upper bound on the block error probability (either

in [17] and [32]) is useful in a wider range of Eb
N0

values than the corresponding upper bound on

the bit error probability. In certain cases, it is demonstrated in Figs. 8a and 10 that the upper

bounds on the block and on the bit error probabilities of the maximum likelihood decoding fall

below simulated performance of iterative decoding. This demonstrates the mild sub-optimality of

the iterative decoding for moderate and low Eb
N0

regions.

For the multiple-turbo code in Fig. 18, a comparison between upper bounds on the bit error

probability is depicted in Fig. 19a (a random turbo code with fixed RSC component codes and a

uniform interleaver of length N = 192) and simulation results based on the soft-output iterative

decoding algorithm [14]. The fixed component codes are the same RSC codes and their generators

are G1(D) = G2(D) = G3(D) =
[
1, 1+D2

1+D+D2

]
. An interleaver of length 192 bits corresponds to

20 ms frames at a bit rate of 9.6 Kbps, modelling typical speech coding systems and therefore

of interest (see [21],[11, 29, 37] and references therein). The degradation in the performance of

the iterative decoding as compared to maximum likelihood decoding seems to increase with the

increased number of component codes as demonstrated by comparing the bounds in Figs. 17a and
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19a (with K = 2, 3 component codes respectively). For example, the improved upper bound on

the bit error probability based on our analysis is 10−3 or 10−4 for Eb
N0

= 0.7 or 1.0 dB respectively

(instead of 1.3 and 1.6 dB respectively based on the computer simulations of the soft-output iterative

LOG-MAP decoding algorithm with 20 iterations in [14]) (see Fig. 18,19a). In addition, for an upper

bound on the bit error probability of 10−3 or 10−4, the gain of Eb
N0

achieved by the improved upper

bound (as compared to the union bound) is 1.15 or 0.95 dB respectively. The case of N = 800

for the multiple turbo code presented in Fig. 18 is considered and impressive upper bound on the

block and bit error probabilities are demonstrated in Fig. 19b (a bit error probability of 10−4 is

achieved for Eb
N0

= 0.3 dB, while the channel capacity of a binary-input AWGN channel corresponds

to Eb
N0

= −0.8 dB.

In Fig. 20, a rate-
(

1
3

)
turbo code is presented with two RSC component codes whose generators

in octal form are 21 and 37 forward and backward respectively. The interleaver is uniform and its

length is N = 1000. A termination of m = 4 bits is performed after each frame for returning it to

the all-zero state. A comparison between upper bounds on the bit error probability of ML decoding

and simulation results of the LOG-MAP iterative decoding algorithm demonstrates a good match

between the improved upper bound based on the tangential sphere bound and the simulation results

of the iterative decoding (see Fig. 21). Therefore, as is demonstrated in several examples here, the

improved bounding technique for ML decoding which is based on the tangential sphere bound

also approximates the performance of iteratively decoded turbo codes with an efficient iterative

decoding algorithm.

V. Summary and Conclusions

Unlike random binary block codes that have a binomial distance spectrum and are known to

achieve capacity, based on the exponential deviation of the distance spectrum of turbo codes from

the binomial distribution at low Hamming weights, it is not obvious that there exists any decoding

method (including the optimal ML decoding), which achieves the theoretical Shannon capacity

for turbo codes. We derive here upper bounds on the ensemble performance of parallel and serial

concatenated turbo codes for the AWGN channel and ML decoding (given in terms of bit and block

error probabilities). The ensemble is generated here by a uniform choice of the interleaver of length

N and of component codes taken from the set of time varying RSC codes of memory length m. In

addition, we investigate also the ensemble performance, where the ensemble of codes is generated

by a uniform interleaver of length N and the component codes are fixed RSC codes.

We devise a general upper bounding technique on the bit and block error probabilities, based
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on the tangential sphere upper bound [20],[30] without any partitioning of the code to subcodes.

The bounding technique is applied on parallel and serial concatenated turbo codes with rate 1
2

component codes and is also examined for parallel concatenated turbo codes with three component

codes of rate 1
2 (yielding an overall code of rate 1

4 , i.e., the same overall rate as of serial concatenated

codes with two rate 1
2 component codes).

In parallel to results reported in [31],[35], the performance behavior of randomly concatenated

and interleaved codes is reduced to a three parameter family: the interleaver length N , the memory

length m of the component codes (all the component codes are assumed to have the same memory

length) and the number K of component codes employed in a parallel concatenation (for serial

concatenation two (K = 2) component codes are assumed: the inner and outer codes).

It is also verified here that increasing the memory length of the component codes m above

log2 N affects negligibly the ensemble performance of either parallel or serial concatenated codes,

while evidently increasing the decoding complexity of the codes.

The technique for calculating the IOWEF of fixed convolutional codes [27], is used to apply

our improved bounding technique on fixed component codes. Comparing the results with a recent

alternative bounding technique [17] by Duman and Salehi, which incorporates a modified Gallager

bound, demonstrates a significant advantage of our bounding technique. For example, with an

interleaver length of N = 500, the upper bound on the block error probability is a reasonably tight

bound for Eb
N0

values, approximately 1 dB below the value of Eb
N0

corresponding to the cutoff rate,

extending thus the region of Eb
N0

for which the upper bounds derived in [17] are useful by about

0.6 dB.

In certain cases it was demonstrated that the upper bounds on the block and the bit error

probabilities of the ML decoding fall below simulated performance of soft-output iterative decoding

algorithms. This demonstrates the mild sub-optimality of the iterative decoding for moderate and

low values of Eb
N0

. Moreover, the degradation of the iterative decoding as compared to ML decoding

seems to increase with the increased number of the component codes.

A comparison between serial and parallel concatenated turbo codes is done under equal rate

and interleaving delay. This comparison shows that the improved upper bounds on the bit error

probability of the serially concatenated codes are advantageous for low and moderate values of Eb
N0

(i.e. at rates below the cutoff rate). This conclusion is consistent with that reported in [31] on the

grounds of the union bound (that usually diverges for long codes at rates above the cutoff rate),

but the conclusion here is more reliable as the improved upper bounds are useful for an extended

range of Eb
N0

.

The bounding technique derived here was used to substantiate theoretically the surprisingly
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good performance demonstrated in [28] for serially interleaved concatenated codes, where the outer

code is a standard non-recursive convolutional code, the inner code is a recursive convolutional

code of rate 1 (a differential encoder in particular) and the ensemble is generated by all random

and uniform interleavers of length N = 1000.

Based on our bounds, we conjecture that the performance of turbo codes with short RSC

component codes and relatively large interleavers is dominated by the lower part of the distance

spectrum, which exhibits marked deviation when compared to the binomial distribution of random

codes. The higher distances, say above twice the Gilbert-Varshamov distance resemble well the

binomial distribution. It should be emphasized though that it is not the minimum distance which

governs performance [1], but rather a whole region of low-weight distances. That is in contrast to

ensembles of random codes, where typical weights (associated with typical sequences [10]) dominate.

As is demonstrated in several examples here, the improved bounding technique for ML decoding

which is based on the tangential sphere bound, also approximates the performance of iteratively

decoded turbo codes with the LOG-MAP based iterative decoding algorithm.
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Appendix A: A discussion on the validity of the tangential sphere

upper bound

In [20], the tangential sphere bound is derived where only the upper half cone is taken into account

(see Fig. 2 in [20]), not accounting for the impact of the lower half cone. The purpose of this

appendix is to justify the use here of the relevant version of the tangential sphere bound, and to

demonstrate by some examples that the second half cone has an absolutely marginal impact on the

upper bound.

As can be realized from Eq. (17), if z1 >
√

nEs, then rz1 < 0 and βk(z1) < 0. Therefore, the

tangential sphere bound (16) should read,

Pe ≤
∫ +∞

−∞
dz1√
2π σ

e−
z2
1

2σ2

[
1− γ

(
n− 1

2
,

r2
z1

2σ2

)
+ A(z1)

]
, (A.1)

where

A(z1) =





∑

k:
δk
2

<αk

Sk

[
Q

(
βk(z1)

σ

)
−Q

(
rz1

σ

)]
· γ

(
n− 2

2
,

r2
z1
− β2

k(z1)
2σ2

)
if z1 ≤

√
nEs

n∑

k=1

Sk

[
Q

(
βk(z1)

σ

)
−Q

(
rz1

σ

)]
· γ

(
n− 2

2
,

r2
z1
− β2

k(z1)
2σ2

)
if z1 >

√
nEs .

(A.2)

The reason is that if z1 ≤
√

nEs, the inequality βk(z1) < rz1 holds only for values of k, such that
δk
2 < αk. On the other hand, if z1 >

√
nEs, the range of integration of the component noise z2 is

βk(z1) ≤ z2 ≤ −rz1 (see [20]). All values of k satisfy in this case the inequality: βk(z1) < 0 < −rz1

and therefore the summation is over k = 1, 2 , . . . , n in this case.

From the derivation of the tangential sphere bound, the optimization of the radius r of the

cone (the upper half cone for the case that z1 ≥
√

nEs or the lower half cone for the case that

z1 ≤
√

nEs), results in an upper bound that does not exceed unity. Therefore, for any value of z1,

we get after optimization:

A(z1) + 1− γ

(
n− 1

2
,

r2
z1

2σ2

)
≤ 1 . (A.3)

Since z1 ∼ N(0, σ2) where σ2 = N0
2 , then the probability that z1 exceeds

√
nEs is Q

(√
nEs
σ

)
=

Q
(√

2nR · Eb
N0

)
, where n is the length of the block code and R is its rate.

For the case of a parallel concatenated turbo code, the relation N = nR holds, where N is the
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interleaver length. Therefore, if for example: Eb
N0

= 0 dB and N = 500, then we find that:

Prob (z1 ≥
√

nEs) = Q

(√
2N

Eb

N0

)
= Q(

√
1000) ≈ 8 · 10−220 ¿ 1 . (A.4)

This probability is by all means negligible, so the lower half cone (that corresponds to the case that

z1 >
√

nEs) has an absolutely marginal influence on the block error probability.

Even for short and moderate block codes, the probability that corresponds to the lower half

cone is negligible. As an example, examine (24,12) Golay code, whose block length is n = 24 and

its rate is R = 1
2 . For Eb

N0
=0.19 dB (that corresponds to the capacity of a binary input AWGN

channel for a code rate of 1
2

bit
symbol), it follows that

Prob (z1 ≥
√

nEs) = Q

(√
2nR · Eb

N0

)
= 2.8 · 10−7 . (A.5)

The tangential sphere (upper) bound on the block error probability for the Golay code at Eb
N0

=

0.19 dB is 0.285. Therefore, even in this case (of a short block code), the probability Prob (z1 ≥
√

nEs) is absolutely negligible as compared to the upper bound on the block error probability. We

conclude therefore that for all practical purposes in our work, the term connected with the lower

half cone of the tangential sphere bound is negligible, when compared to the upper bound on the

block error probability. This observation justifies the use of the tangential sphere bound, as is

presented in Eq. (16).

Appendix B: A proof of the existence and uniqueness of a solution

to the optimization equation of the tangential sphere bound and

an algorithm to solve this equation

It will be proved here that there always exists a unique solution to the optimization Eq. (19) of the

tangential sphere bound. This statement holds for every distance spectrum of a linear block code

C and Euclidean distances between any pair of the signals. This result is also independent of the

block length n, the rate R and the signal energy Es.

To this end, define a function:

g(r) =
∑

k:
δk
2

<αk

Sk

∫ θk

0
sinn−3 φ dφ , (B.1)

where θk, δk and αk are determined by Eqs. (17) and (19) and {Sk}n
k=0 is the distance spectrum of

the code C. If the value of r is increased (r > 0), then by Eq. (17) the angles θk (k = 1, 2 , . . . , n)
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also increase (0 ≤ θk ≤ π
2 ), and therefore for every value of k, such that δk

2 < αk, the value of the

integral
∫ θk

0
sinn−3 φ dφ is increased. Moreover, αk grows linearly with r (for all values of k), and

therefore the number of values of k that satisfy the inequality δk
2 < αk is increased by 1 while r is

increased as to satisfy the equation, δk
2 = αk (for some value of 0 ≤ k ≤ n). Therefore, g(r) is an

increasing function of r (r > 0).

If r → 0+, for no k (k = 0, 1, 2 , . . . , n), δk
2 < αk (since αk = 0 and δk is non-negative),

which yields that lim
r→0+

g(r) = 0. For r → +∞, then for every value 1 ≤ k ≤ n, the inequality

δk
2 < αk holds (since αk → +∞ but δk is finite and is independent of r). From the relation

θk = cos−1




δk

2r

1√
1− δ2

k

4nEs




in Eq. (17), we get lim
r→∞ θk =

π

2
(0 ≤ k ≤ n). If r → ∞ the

summation in the function g(r) is over all values of k between 0 and n, yielding

lim
r→∞ g(r) =

n∑

k=0

Sk

∫ π
2

0
sinn−3 φ dφ = 2nR

∫ π
2

0
sinn−3 φ dφ . (B.2)

By Eq. 3.621.1 in [19],

∫ π
2

0
sinµ−1 x dx = 2µ−2 B

(
µ

2
,

µ

2

)
=

2µ−2
[
Γ

(µ
2

)]2
Γ(µ)

=
√

π

2
Γ

(µ
2

)

Γ
(

µ+1
2

) for µ ≥ 1 , (B.3)

where the last equality in (B.2) results in Γ(2x) = 22x−1√
π
· Γ(x) Γ

(
x + 1

2

)
for x > 0.

Therefore, if n = 3, 4, 5 · · · ,

lim
r→∞ g(r) = 2nR−1 ·



√

π Γ
(

n−2
2

)

Γ
(

n−1
2

)

 . (B.4)

Since for a block code C of length n, R ≥ 1
n , then

lim
r→∞ g(r) ≥

√
π Γ

(
n−2

2

)

Γ
(

n−1
2

) .

Since g(r) is an increasing function of r ∈ (0,∞) and also

lim
r→0+

g(r) = 0 , lim
r→∞ g(r) ≥

√
π Γ

(
n−2

2

)

Γ
(

n−1
2

) , (B.5)
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then, to complete the proof that a solution of Eq. (19) exists and is unique, it is sufficient to show

that the function g(r) is continuous on the interval r ∈ (0,∞). This implies that g(r) achieves any

value between lim
r→0+

g(r) and lim
r→∞ g(r) and hence Eq. (19) should have a unique solution.

The function g(r) is continuous on the interval r ∈ (0,∞), because each of the involved integrals
∫ θk

0
sinn−3 φ dφ is a continuous function of r (as θk is a continuous function of r, if δk

2 < αk).

Moreover, when r assumes a value, such that for some k : δk
2 = αk (1 ≤ k ≤ n), the term

Sk

∫ θk

0
sinn−3 φ dφ that is added to the summation in the function g(r) is zero:

δk

2
= αk =⇒ θk = cos−1

(
δk

2αk

)
= 0 ⇒ Sk

∫ θk

0
sinn−3 φ dφ = 0 . (B.6)

The additional term in the summation cannot cause any discontinuity in the function g(r). Thus

the function g(r) is continuous on the interval (0,∞), which implies, as said before, the uniqueness

of the solution of Eq. (19).

The continuous function g(r) is increasing in the interval r ∈ (0,∞), facilitating to solve Eq. (19)

by the following algorithm:

Step 1: Calculate

rk =
δk

2
1√

1− δ2
k

4nEs

for k = 1, 2 , . . . , n .

* If we assume that δ1 < δ2 < · · · < δn (meaning that, the more symbols the two codewords differ,

the larger the distance between the corresponding signals is), then r1 < r2 < · · · < rn.

Step 2: Calculate

g(rj) =
j−1∑

k=0

Sk

∫ θk

0
sinn−3 φ dφ for j = 1, 2 , . . . , n .

Step 3: If

√
π Γ

(
n−2

2

)

Γ
(

n−1
2

) < g(r1), then the solution of (19) falls into the interval (0, r1). If for

some 1 ≤ j ≤ n − 1: g(rj) <

√
π Γ

(
n−2

2

)

Γ
(

n−1
2

) < g(rj+1), then the solution of Eq. (19) is in the interval

(rj , rj+1). Otherwise, the solution of Eq. (19) is in the interval (rn,∞).

Step 4: Use the bisection method in the interval from step 3, to find a sufficiently accurate solution

of Eq. (19).
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For the upper bound on the bit error probability, the relevant optimization equation is the same

as Eq. (19), replacing the distance spectrum (Sk) by (S′k). It follows that

lim
r→∞ g(r) =

n∑

k=1

S′k ·
√

π

2

Γ
(

n−2
2

)

Γ
(

n−1
2

) and lim
r→0+

g(r) = 0 . (B.7)

By our discussion, referred to the block error probability, we demand the following inequality:

lim
r→∞ g(r) ≥

√
π

2

Γ
(

n−2
2

)

Γ
(

n−1
2

) , (B.8)

which is satisfied, if and only if,
n∑

k=1

S′k ≥ 2. Since S′k =
nR∑

w=1

(
w

nR

)
Aw,k

(k = 1, 2 , . . . , n), it follows

n∑

k=1

S′k =
n∑

k=1

nR∑

w=1

(
w

nR

)
Aw,k

≥
n∑

k=1

(
w

nR

) nR∑

w=1

Aw,k

=
1

nR

n∑

k=1

Sk

=
2nR − 1

nR
.

(Since the binary block code is linear, it includes the all-zero codeword, so
n∑

k=1

Sk = 2nR − 1).

Therefore, it is sufficient for a unique solution of the optimization equation in the bit-error probabil-

ity case that the 2nR−1
nR ≥ 2 holds (otherwise, a solution may not exist). Noticing that f(x) = 2x−1

x

is an increasing function in the interval (0,∞), it follows that the inequality above is equivalent to

R ≥ 2.660
n . Since R = k

n is the code rate, then the existence and uniqueness of a solution to the

optimization equation is guaranteed for k ≥ 3, which holds in all interesting cases for adequately

long codes.
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Appendix C: Some observations on the application of the tangential

sphere bound

We prove that it is advantageous to apply the tangential sphere bound (as an upper bound on the

block error probability or the bit error probability) on the whole code. Any partition of the code

to subcodes for which the tangential sphere bound is used individually and finally all these upper

bounds are added (based on the union bound concept) yields a looser result.

To this end, assume without loss of generality that the binary linear block code C is partitioned

to arbitrary two subcodes, C1 and C2, such that C = C1
⋃

C2 and C1
⋂

C2 is the all-zero codeword.

Then we compare the upper bound on the block (bit) error probability of the code C with the

sum of the upper bounds on the block (bit) error probabilities of the subcodes C1 and C2. Let

{S(1)
k }n

k=0 and {S(2)
k }n

k=0 be the distance spectrum of each of the subcodes C1 and C2 respectively

and let {Sk}n
k=0 be the distance spectrum of the code C. In case the upper bound on the bit error

probability is considered (instead of the upper bound on the block error probability), we replace

Sk by S′k. Let P u
e (C1), P u

e (C2) and P u
e (C) be the conditional upper bounds of the subcodes C1,

C2 and C respectively, given the all-zero codeword is transmitted. Based on our notations, we get

by the tangential sphere bound applied separately on each of the subcodes C1 and C2:

P u
e (C1) =

∑

k:
δk
2

<αk,1

{
S

(1)
k · Ez1

[
Prob

(
Ek(z1), z ∈ Cn(θ1)

)]}
+ Prob

(
z 6∈ Cn(θ1)

)

P u
e (C2) =

∑

k:
δk
2

<αk,2

{
S

(2)
k · Ez1

[
Prob

(
Ek(z1), z ∈ Cn(θ2)

)]}
+ Prob

(
z 6∈ Cn(θ2)

)

where Cn(θ) is an n-dimensional cone of half angle θ and the angles θ1, θ2 are derived for each

one of the subcodes C1 and C2 respectively by the optimization Eq. (19) of the tangential sphere

bound. The vector z and the error event Ek(z1) were defined in B.3 of section II. Ez1(·) denotes

the statistical expectation over the Gaussian random variable z1 and also αk1 , αk2 are determined

via Eq. (17) following the values of the radius r1 and r2 respectively. Therefore, the sum of the

upper bounds that corresponds to the subcodes C1 and C2 is

P u
e (C1) + P u

e (C2)

=
∑

k:
δk
2

<αk,1

{
S

(1)
k · Ez1

[
Prob

(
ek(z1), z ∈ Cn(θ1)

)]}
+ Prob

(
z 6∈ Cn(θ1)

)

+
∑

k:
δk
2

<αk,2

{
S

(2)
k · Ez1

[
Prob

(
ek(z1), z ∈ Cn(θ2)

)]}
+ Prob

(
z 6∈ Cn(θ2)

)
.
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Using the relation r =
√

nEs tan θ (see Fig. 1 in [20]), we see that if the value of θ is decreased, then

αk = r

√
1− δ2

k
4nEs

is also decreased for each value of k (k = 1, 2 , . . . , n). Since δk (the Euclidean

distance between two signals that correspond to a pair of codewords of Hamming distance k) is

independent of the angle θ, then the set of integers k, such that δk
2 < αk is not increased. Let θ3 be

the minimal value between θ1 and θ2, i.e. θ3 = min(θ1, θ2). Therefore, by Eq. (17) where αk,j =

√
nEs tan θj

√
1− δ2

k
4nEs

(k = 1, 2 , . . . , n and j = 1, 2, 3), it follows that αk,3 ≤ min(αk,1, αk,2) for

k = 1, 2 , . . . , n. The following inequality (where αk,3 replaces αk,1 and αk,2) then results,

P u
e (c1) + P u

e (c2)

≥
∑

k:
δk
2

<αk,3

{
S

(1)
k · Ez1

[
Prob

(
ek(z1), z ∈ Cn(θ3)

)]}
+ Prob

(
z 6∈ Cn(θ1)

)

+
∑

k:
δk
2

<αk,3

{
S

(2)
k · Ez1

[
Prob

(
ek(z1), z ∈ Cn(θ3)

)]}
+ Prob

(
z 6∈ Cn(θ2)

)
.

αk,3 is the value of αk that corresponds to the half angle θ3 of the n-dimensional cone Cn(θ3). Since

C = C1
⋃

C2 and C1
⋂

C2 includes only the all-zero codeword, then evidently,

Sk = S
(1)
k + S

(2)
k k = 1, 2 , . . . , n

S′k = S′(1)
k + S′(2)

k k = 1, 2 , . . . , n .

By the union bound, since Cn(θ3) = Cn(θ1)
⋂

Cn(θ2) (as θ3 was determined as the minimal angle

between θ1 and θ2) it follows,

Prob
(
z 6∈ Cn(θ1)

)
+ Prob

(
z 6∈ Cn(θ2)

)
≥ Prob

(
z 6∈ Cn(θ3)

)
.

Hence the final inequality

P u
e (C1) + P u

e (C2)

≥
∑

k:
δk
2

<αk,3

{
Sk · Ez1

[
Prob

(
ek(z1), z ∈ Cn(θ3)

)]}
+ Prob

(
z 6∈ Cn(θ3)

)

≥ min
θ





∑

k:
δk
2

<αk

{
Sk · Ez1

[
Prob

(
ek(z1), z ∈ Cn(θ)

)]}
+ Prob

(
z 6∈ Cn(θ)

)




= P u
e (C) ,

which then yields that code partitioning cannot be beneficial when used in conjunction with the

tangential sphere bounding techniques.
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Figure Captions

Figure 1: a time-varying recursive shift register of length m.

The state equations of the shift register at time n:

s1(n + 1) =
m∑

k=1

sk(n) ck(n) + x(n)

sk(n + 1) = sk−1(n) k = 2, 3, . . . , m

y(n) = sm(n)

where ck(n) (k = 1, 2 , . . . , m) are i.i.d random symmetric binary taking on the values

‘0’ or ‘1’ with equal probability for every moment of time n.

Figure 2: Parallel and serial concatenated turbo codes.

a. Parallel concatenation of two components of rate 1
2 time-varying RSC codes ([35]),

giving an overall code rate of 1
3 (without puncturing).

b. Serial concatenation of rate 1
2 time-varying RSC codes and overall rate 1

4 [31].

c. Parallel concatenation of three components of rate 1
2 time-varying RSC codes, giving

an overall rate of 1
4 (without puncturing).

Figure 3: The normalized average distance spectrum of random parallel concatenated turbo code

with two component codes of rate 1
2 and of memory length m = 5 (see Fig. 2a). The

overall rate is R = 1
3 and the length of the random interleaver is N = 50, 100, 200, 400 bits.

Figure 4: The normalized average distance spectrum of random serially concatenated code with

inner and outer codes that are time varying recursive systematic convolution codes of

rate 1
2 and of memory length m = 5 (see Fig. 2b). The overall rate is R = 1

4 and a

random interleaver between the component codes is of length N = 50, 100, 200, 400 bits.

Figure 5: a. A comparison between the normalized average distance spectrum of the ensemble

of a random parallel concatenated code (memory length of its components: m = 5,

overall rate: R = 1
3 and a random interleaver of length N = 200, see Fig. 2a) and the

normalized binomial distribution of a fully random block code of the same code length

n = 600 bits and of the same rate.

b. A comparison between the normalized average distance spectrum of the ensemble

of a random parallel concatenated code (memory length of its components: m = 5,

overall rate: R = 1
3 and a random interleaver of length N = 400, see Fig. 2a) and the

normalized binomial distribution of a fully random block code of the same code length

n = 1200 bits and of the same rate.

Figure 6: a. A comparison between the normalized average distance spectrum of the ensemble

of random serially concatenated code (memory length of its components: m = 5,



overall rate: R = 1
4 and a random interleaver of length N = 200, see Fig. 2b) and the

normalized binomial distribution of a fully random block code of the same code length

n = 400 bits and of the same rate.

b. A comparison between the normalized average distance spectrum of the ensemble

of random serially concatenated code (memory length of its components: m = 5,

overall rate: R = 1
4 and a random interleaver of length N = 400, see Fig. 2b) and the

normalized binomial distribution of a fully random block code of the same code length

n = 800 bits and of the same rate.

Figure 7: A comparison between upper bounds on the ensemble performance of serially concate-

nated random codes (see Fig. 2b) in a binary-input AWGN channel with ML decoding.

The memory length of the two component codes is m = 5, the overall rate is R = 1
4

and the uniform interleaver is of length N = 50, 100, 200, 400 bits.

a. Upper bounds on the block error probability. The improved bounds are based on

the tangential sphere bound and are compared to the union bounds.

b. Upper bounds on the bit error probability. The improved bounds are based on the

tangential sphere bound and are compared to the union bound.

Figure 8: A comparison between upper bounds on the ensemble performance of parallel concate-

nated random (turbo) codes (see Fig. 2a) in a binary-input AWGN channel with ML

decoding. The memory length of the two component codes is m = 5, the overall rate

is R = 1
3 and the interleaver is of length N = 50, 100, 200, 400 bits.

a. Upper bounds on the block error probability. The improved bounds are based on

the tangential sphere bound and are compared to the union bound.

b. Upper bounds on the bit error probability. The improved bounds are based on the

tangential sphere bound. Corresponding union bounds are also shown.

Figure 9: A comparison between upper bounds on the ensemble performance of parallel concate-

nated random (turbo) codes with K = 3 component codes (see Fig. 2c) in a binary-input

AWGN channel with ML decoding. The memory length of the three component codes

is m = 5, the overall rate is R = 1
4 and the two random interleavers are of length

N = 50, 100, 200 bits.

a. Upper bounds on the block error probability. The improved bounds are based on

the tangential sphere bound and are compared to the union bound (in Q-form).

b. Upper bounds on the bit error probability. The improved bounds are based on the

tangential sphere bound and are compared to the union bound (in Q-form).

Figure 10: Upper bounds on the bit error probability of serially concatenated random codes with

two component codes of rate 1
2 (overall rate 1

4) and a random uniform interleaver

of length N = 200, as a function of m = 3, 4, 5, 6, 7, 8 - the memory length of its



components (see Fig. 2b).

a. Upper bounds based on the union bound (Q-form).

b. Upper bounds based on the tangential sphere bound.

Figure 11: Upper bounds on the bit error probability of parallel concatenated random turbo codes

with two component codes of rate 1
2 (overall rate 1

3) and two random uniform inter-

leavers of length N = 100, as a function of m = 3, 4, 5, 6, 7 - the memory length of its

components (see Fig. 2a).

a. Upper bounds based on the union bound (Q-form).

b. Upper bounds based on the tangential sphere bound.

Figure 12: Upper bounds on the bit error probability of parallel concatenated random turbo codes

with three component codes of rate 1
2 (overall rate 1

4) and two random uniform inter-

leavers of length N = 100, as a function of m = 3, 4, 5, 6, 7 - the memory length of its

components (see Fig. 2c).

a. Upper bounds based on the union bound (Q-form).

b. Upper bounds based on the tangential sphere bound.

Figure 13: A comparison between the improved upper bounds on the bit error probabilities of

serially concatenated random codes with inner and outer codes of rate 1
2 (an overall

rate of 1
4) and a random uniform interleaver of length N = 200 and of parallel concate-

nated random (turbo) codes with three component codes of rate 1
2 (the same overall

rate R = 1
4) and two random uniform interleavers of length N = 100 (the same inter-

leaving delay), as a function of m = 4, 5, 7 - the memory length of its components (see

Figs. 2b,c).

Figure 14: A parallel concatenated turbo code with generators are G1(D) = G2(D) =
[
1, 1+D2

1+D+D2

]

(RSC codes of memory length m = 2 and N is the length of the uniform interleaver.

The rate of the overall code is R = 1
4 .

Figure 15: The distance spectrum of the parallel concatenated turbo code in Fig. 14:

G1(D) = G2(D) =

[
1,

1 + D2

1 + D + D2

]
, R = 1

3 (see Fig. 14).

(a) N = 500.

(b) N = 1000.

Figure 16: A comparison of upper bounds on the block error probability of parallel concatenated

codes in a binary-input AWGN channel with ML decoding and simulation results of the

iterative decoding. The fixed two component codes are RSC codes of rate 1
2 and their

generators are the same, G1(D) = G2(D) =
[
1, 1+D2

1+D+D2

]
. The random interleaver is of



length N and the overall rate of the turbo code is 1
3 (see Fig. 14). The upper bounds

for ML decoding are based on the tangential sphere bound, Duman and Salehi bound

[17] and the union bound (in Q-form). The simulation results of the iterative decoding

are based on the LOG-MAP decoding algorithm with 3,5,7 and 10 iterations.

a. N = 500.

b. N = 1000.

Figure 17: A comparison of upper bounds on the bit error probability of parallel concatenated

(turbo) codes in a binary-input AWGN channel with ML decoding versus simulation

results of iterative decoding. The fixed two component codes are RSC codes of rate
1
2 (an overall rate of 1

3) and a memory length of m = 2. The generators of the two

component codes are the same, G1(D) = G2(D) =
[
1, 1+D2

1+D+D2

]
and the random inter-

leaver is of length N (see Fig. 14). The simulation results of the iterative decoding are

based on the LOG-MAP decoding algorithm with 3,5,7 and 10 iterations. The upper

bounds on the bit error probability are based on the tangential sphere bound, Duman

and Salehi bound [17] and the union bound (in Q-form).

a. N = 500.

b. N = 1000.

Figure 18: A parallel concatenated multiple turbo code, whose generators are G1(D) = G2(D) =

G3(D) =
[
1, 1+D2

1+D+D2

]
(RSC codes of memory length m = 2) and N is the length of

the two uniform interleavers (independently chosen). The overall rate of the code is

R = 1
4 .

Figure 19: A comparison of upper bounds on the block and bit error probabilities of multiple turbo

codes in a Gaussian channel with ML decoding with simulation results of iterative de-

coding. The fixed three component codes are RSC codes of rate 1
2 (an overall rate of

1
4) and a memory length of m = 2. The generators of the three component codes are

the same, G1(D) = G2(D) = G3(D) =
[
1, 1+D2

1+D+D2

]
and the two random interleavers

have length N (see Fig. 18).

a. N = 192. The simulation results of the iterative decoding are based on [14] (with

20 iterations for each value of Eb
N0

). The performance of the iterative decoding is com-

pared to the union bound (in Q-form) and to the tangential sphere bound.

b. N = 800. Improved upper bounds on the block and bit error probabilities and the

corresponding union bounds in Q-form.



Figure 20: A rate 1
3 parallel concatenated turbo code with two RSC component codes whose gen-

erators are in octal form 21 and 37 forward and backward respectively
(
G1(D) =

G2(D) =
[
1, 1+D4

1+D+D2+D3+D4

])
with a uniform interleaver of length N = 1000. A

termination of m = 4 bits is used at the end of each block.

Figure 21: A comparison of upper bounds on the bit error probability of ML decoding and sim-

ulation results of the LOG-MAP iterative decoding algorithm (10 iterations are per-

formed). The compared upper bounds of ML decoding are:

1 – union bound in Q-form (tight version).

2 – Duman and Salehi bound [17].

3 – the improved bound based on the tangential sphere bound.

Simulation results of the LOG-MAP iterative decoding after 1,3,5,7 and 10 iterations

are also presented.
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