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Abstract

Some communication scenarios can be modelled as standard coded transmission over
a set of parallel communication channels. These include transmission over block fad-
ing channels, rate-compatible puncturing of turbo-like codes, multi-carrier signaling
and others. This thesis is focused on the performance analysis of binary linear block
codes (or ensembles) whose transmission takes place over independent and memory-
less parallel channels. New upper bounds on the maximum-likelihood (ML) decoding
error probability are derived. These bounds include the generalization of the second
version of the Duman and Salehi (DS2) bound to the case of parallel channels and
a generalization of the classic 1961 Gallager bound to parallel channels. Optimized
tilting measures for the new bound are derived. The connection between the gen-
eralized DS2 and the 1961 Gallager bounds, which was previously addressed for a
single channel, is explored in the case of an arbitrary number of independent parallel
channels. The generalization of the DS2 bound for parallel channels enables to re-
derive specific bounds which were previously derived as special cases of the Gallager
bound. The new bounds are applied to various ensembles of turbo-like codes, focusing
especially on repeat-accumulate codes and their recent variations which possess low
encoding and decoding complexity and exhibit remarkable performance under itera-
tive decoding. In the asymptotic case where we let the block length tend to infinity,
the new bounds are used to obtain improved inner bounds on the attainable channel
regions under ML decoding. The tightness of the new bounds for independent parallel
channels is exemplified for structured ensembles of turbo-like codes. The improved
bounds with their optimized tilting measures show, irrespectively of the block length
of the codes, an improvement over the union bound and other previously reported
bounds for independent parallel channels; this improvement is especially pronounced

for moderate to large block lengths.
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Chapter 1
Introduction

Some modern communication systems are required to operate over multiple com-
munication channels at once or over a single channel which varies with time. This
situation can be modelled as having a set of independent parallel channels, where the
transmitted codeword is partitioned into disjoint sets, and the symbols within each
set are transmitted over one of these channels. Some examples in which this scenario
may be used include block-fading channels (for performance bounds of coded com-
munication systems over block-fading channels, see, e.g., [19, 43]), rate-compatible
puncturing of turbo-like codes (see, e.g., [20, 39]), incremental redundancy retrans-
mission schemes, cooperative coding, multi-carrier signaling (for performance bounds
of coded orthogonal-frequency division multiplexing (OFDM) systems, see e.g., [44]),

and other applications.

Tight analytical bounds serve as a potent tool for assessing the performance of
modern error-correction schemes, both for the case of finite block length and in the
asymptotic case where the block length tends to infinity. In the setting of a single
communication channel and by letting the block length tend to infinity, these bounds
are applied in order to obtain a noise threshold which indicates the minimum chan-
nel conditions necessary for reliable communication. When generalizing the bounds
to the scenario of independent parallel channels, this threshold is transformed into
a multi-dimensional barrier within the space of the joint parallel-channel transition
probabilities, dividing the space into channel regions where reliable communication is

available and where it is not. One of the most widespread upper bounds for a single



channel is the union bound, which is easily applied to the analysis of many communi-
cation systems. Its main drawback is that for codes of large enough block lengths, it
is useless for rates exceeding the channel cutoff rate. Modern communication systems
are required to operate well beyond this rate. Therefore, tighter upper bounds are
required in order to assess the performance of such systems. When considering upper
bounds for a single channel or independent parallel channels, it is desirable to have
the bound expressible in terms of basic features of the code, such as the distance
spectrum. Sometimes the distance spectrum cannot be evaluated for a specific code,
but rather, an ensemble average can be obtained. Consequently, another desirable
feature of any upper bound is to be applicable to ensembles of codes as well as to

particular codes.

Tight upper bounds on the ML decoding error probability which can be applied to
specific codes as well as structured ensembles of codes and which depend on the dis-
tance spectrum of the code (or ensemble) date back to Gallager [17]. Other examples
of tight upper bounds include the generalized second version of the Duman-Salehi
bound (often termed as the DS2 bound) [15, 40|, the tangential sphere bound [33],
the Shulman and Feder bound [41], and others. In this respect, it was shown by
Sason and Shamai [40] that many reported upper bounds are special cases of the DS2
bound, including the 1961 Gallager bound [17]. For a comprehensive monograph on

performance bounds of linear codes under ML decoding, the reader is referred to [37].

In his thesis [16], Ebert considered the problem of communicating over parallel
discrete-time channels, disturbed by arbitrary and independent additive Gaussian
noises, where a total power constraint is imposed upon the channel inputs. He found
explicit upper and lower bounds on the ML decoding error probability, which decrease
exponentially with block length. The exponents of the upper and lower bounds co-
incide for zero rate and for rates between the critical rate (R ) and capacity. The
results were also shown to be applicable to colored Gaussian noise channels with an
average power constraint on the channel. However, this work refers only to random

codes and does not apply to specific codes or structured ensembles of codes.

The main difficulty which arises in the analysis of specific codes transmitted over
parallel channels stems from the inherent asymmetry of the parallel-channel setting,
which poses a difficulty for the analysis, as different symbols of the codeword suffer

varying degrees of degradation through the different parallel channels. This difficulty



was circumvented in [26] by introducing a random mapper, i.e., a device which ran-
domly and independently assigns symbols to the different channels according to a
certain a-priori probability distribution. As a result of this randomization, Liu et al.
[26] derived upper bounds on the ML decoding error probability which solely depend
on the weight enumerator of the overall code, instead of a specific split weight enumer-
ator which follows from the partitioning of a codeword into several subsets of bits and
the individual transmission of these subsets over different channels. The analysis in
[26] modifies the 1961 Gallager bound from [17, Chapter 3] and adapts this bounding
technique for communication over parallel channels. However, the results presented
in [26] rely on special cases of the 1961 Gallager bound for parallel channels and not
on the optimized version of this bound. These special cases include a generalization
of the union-Bhattacharyya bound, the Shulman-Feder bound [41], simplified sphere
bound [13], and a combination of the two former bounds. Our motivation is two-fold:
First, the 1961 Gallager bound for parallel channels can be improved by choosing
optimized parameters and tilting measures. Second, the DS2 bound ([14, 37, 40]) can

be generalized to parallel channels.

Using the approach of the random mapper by Liu et al. [26], we derive a parallel-
channel generalization of the DS2 bound [14, 37, 40] via two separate bounding tech-
niques which yield two different bounds. The comparison between these bounds yields
that for random codes, one of the bounds is tighter than the other and achieves the
channel capacity, while for a general ensemble, neither of these bounds is necessarily
tighter than the other. We re-examine, for the case of parallel channels, the well-
known relations between this bound and the 1961 Gallager bound which exist for the
single channel case [13, 40]. In this respect, it is shown that one of the versions of the
generalized DS2 bound is tighter than the corresponding generalization of the 1961

Gallager bound while the other is not necessarily tighter.

The new bounds are used to obtain inner bounds on the boundary of the channel
regions which are asymptotically (in the limit where we let the block length tend to
infinity) attainable under ML decoding, and the results improve on those recently
reported in [26]. The tightness of these bounds for independent parallel channels is
exemplified for structured ensembles of turbo-like codes, and the boundary of the
improved attainable channel regions is compared with previously reported regions for

Gaussian parallel channels. It shows significant improvement due the optimization
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of the tilting measures which are involved in the computation of the generalized DS2
and 1961 Gallager bounds for parallel channels.

The remainder of the thesis is organized as follows. Chapter 2 deals with the
calculation of the distance spectrum for some structured ensembles of turbo-like codes.
The system model is presented in Chapter 3, as well as preliminary material related
to our discussion. In Chapter 4, we generalize the DS2 bound for independent parallel
channels using two different approaches. Chapter 5 presents the 1961 Gallager bound
from [26], and considers its connection to the two versions of the DS2 bound, along
with the optimization of its tilting measures. Chapter 6 presents some special cases of
these upper bounds which are obtained as particular cases of the generalized bounds
in Chapters 4 and 5. Attainable channel regions are derived in Chapter 7. Inner
bounds on attainable channel regions for various ensembles of turbo-like codes and
performance bounds for moderate block lengths are exemplified in Chapter 8. Finally,
Chapter 9 concludes the thesis and considers topics for further research.

The results in this research work are also presented in [34], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).



Chapter 2

Distance Properties of some Code

Ensembles

2.1 Short overview

Bounds on the ML decoding error probability are often based on the distance proper-
ties of the considered codes or ensembles (see, e.g., [37] and references therein). The
distance spectra and their asymptotic growth rates for various turbo-like ensembles
have been studied in the literature, e.g., for ensembles of uniformly interleaved repeat-
accumulate codes and variations [2, 11, 21], ensembles of uniformly interleaved turbo
codes [4, 5, 28, 38|, and ensembles of regular and irregular LDPC codes [8, 10, 17, 27].
In this Chapter, we present the distance properties of some turbo-like ensembles con-
sidered in this dissertation. We also consider as a reference the ensemble of fully

random block codes which achieves capacity under ML decoding.

2.2 Preliminaries

Let us denote by [C(n)] an ensemble of codes of length n. We will also consider a
sequence of ensembles [C(ny)], [C(n2)],. .., all of which possess a common rate R. For
a given (n, k) linear code C, let AS (or simply Aj,) denote the distance spectrum, i.e.,

the number of codewords of Hamming weight h. For a set of codes [C(n)], we define
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the average distance spectrum as

1
Al a AC (2.1)
- e 2

Let U, 2 {6:0 = % for h = 1,...,n} denote the set of normalized distances, then

the normalized exponent of the distance spectrum w.r.t. the block length is defined as

C [C(n)]
a In A, T[C(”)]((S) a In A, .
n ’ n

r°(6)

(2.2)

The motivation for this definition lies in the interest to consider the asymptotic case
where n — oo. In this case we define the asymptotic exponent of the distance spectrum

as

rlcl(5) & nh—{{olo rlCmI(s) . (2.3)

The input-output weight enumerator (IOWE) of a linear block code is given by a

sequence {A, ,} designating the number of codewords of Hamming weight & which

are encoded by information bits whose Hamming weight is w, and it is related to the

distance spectrum by A, = Zﬁ;zo Ay . Another quantity which we will be interested
in is the weighted distance spectrum which is defined by

k

, w

h = Z EAw,Ir (2.4)
w=0

The weighted distance spectrum will be useful later for expressing bounds on the bit
error probability, while the distance spectrum will used to express bounds on the block
(decoding) error probability, both under ML decoding. Since both these quantities
can be easily derived from the IOWE, we will focus on calculating the IOWE for the
considered code ensembles. In this context, one considers the average IOWE over the

code ensemble.

As a reference to all ensembles, we begin by considering the ensemble of fully
random block codes which is capacity-achieving under ML decoding (or "typical pairs’)

decoding.
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2.3 The ensemble of fully random binary block

codes

Consider the ensemble of binary random codes [RB(n, R)], which consists of all binary
codes of length n and rate R. In the case where n — oo, we use the notation [RB(R)]
to express the asymptotic growth rate of the distance spectrum. For this ensemble,

the following well-known equalities hold:

R\ /n
qRBouR) (7 o—n
w,h w h

ARBOGR] (H)Q_nu_m

h
T[RB(n,R)}((g) — # —(1-R)In2 (2.5)
rRER)(§) = H(5)— (1— R)In2

where H(x) = —zIn(xz) — (1 — ) In(1 — x) designates the binary entropy function to

the natural base.

2.4 Turbo Codes

Turbo Codes were introduced in [7] and have been shown to exhibit astonishing
performance. Their discovery has sparked an immense amount of research dealing
with their properties, structure and performance. The encoder of a Turbo Code
consists of two (and sometimes more) constituent systematic encoders joined together
by an interleaver. In this section, we will consider an ensemble of Turbo Codes; the
ensemble is defined in terms of the interleaver which is selected at random with a
uniform distribution from the set of all possible permutations. This ensemble is thus
termed as the ensemble of wuniformly interleaved Turbo Codes, and is defined with
respect to a specific constituent encoder. A schematic diagram of the Turbo encoder
we will consider is shown in Fig. 2.1. Benedetto and Montorsi [4] have shown that it
is possible to calculate the IOWE of the Turbo Code ensemble if we know the IOWE
of each of the constituent encoders. The ensemble of Turbo Codes with recursive
systematic convolutional encoders as constituent codes has been shown (see, e.g,

(7], [12]) to yield excellent performance. Therefore, we will focus on this ensemble
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Input block
» Encoder] ———»

Encoder 2 ——»

Figure 2.1: Schematic diagram of a Turbo encoder.

and show how to calculate its IOWE. The original Turbo Codes presented in [7]
feature recursive systematic convolutional encoders as constituent codes. These codes
combined with the iterative turbo decoding scheme provide results which are not far
from theoretical limits. We will therefore analyze the performance of these codes
using upper bounds on the ML decoding error probability. To this end, we calculate
the IOWE of the ensemble of uniformly interleaved Turbo Codes with convolutional

constituent codes.

2.4.1 The IOWE of a Convolutional Encoder

First, we turn our attention to the calculation of the IOWE of convolutional codes;
this problem was solved by McElice [28] and we present the solution here.

We consider a sequence of length n at the output of a binary convolutional encoder
which has m memory cells and therefore 2™ states. A 0-closed codepath of length n is
defined as a sequence of encoder states of length n in which the first and last states
are the zero state. These codepaths are closely related to the non-zero codewords
of the convolutional code. Thus, we will be interested in enumerating the 0-closed

codepaths of length n; specifically, we will calculate the function

Wi(x,y,2) = Z W (z,y)2", (2.6)

n>m

called the input-output weight enumerating function (IOWEF), where

Wy (z,y) = Z Ay py" (2.7)

w,h>0

12



and A, j, is the IOWE of the convolutional code which is terminated after a codeword
of length n is created. To ensure proper termination of the encoder at the all-zero
state, a codeword of length n is created by "turning off” the input stream after n —m
input symbols and then forcing the encoder back into the all-zero state using a proper
input sequence of length m. This is why the summation in (2.6) starts from n = m.
As an example, consider the encoder of a rate 1/2 code appearing in Fig. 2.2(a). This
encoder has m = 2 memory cells. The encoder may also be described in terms of its
state diagram, which depicts the outputs and state transitions as a function of the
current state and input. The state diagram for the encoder in Fig. 2.2(a) is given in
Fig. 2.2(b).

The analysis of input-output weight distributions is performed by enumerating
all possible state sequences for codewords of the desired length n. This is done by
breaking down the state sequence into a sequence of transitions and by analyzing the
effect each transition has on the overall enumerator. The enumeration of a single state
transition can be done using two enumeration matrices. The first is the input-output
incidence matriz which is defined as a square matrix with number of rows equal to
the number of encoder states, in which the (m,[)-th entry is a monomial of the form
2y, where i and j are the input and output weights, respectively, associated with
the transition from state m to state [, if this transition exists; if not, the (m,[)-th
entry of the matrix is zero. For example, the state transition matrix associated with

the encoder in Fig. 2.2(a) is given by

00 10 01 11

00 1 x> 0 0

A(z,y) = 10 0 0 =zy y (2.8)
01 x> 1 0 0
11 0 0 vy zy

The second enumeration matrix is the output incidence matriz B(y) which is defined

as
B(y) = A(1,y)
The IOWEF of the convolutional code is given by the following expression (see [28,
Theorem 5.1])
W(z,y,2) = 2"{(I = zA(z,9)) " By)" }00) (2.9)

13
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(a) Encoder of a rate 1/2 convolutional

code.
00

0o
1111 1111
0/00
1

0 b i LR

7 1110
0/01 0/01

1 1

U 1/10

(b) State diagram of convolu-
tional encoder.

Figure 2.2: (a) A convolutional encoder with transfer function [1, %} . (b) The

corresponding state diagram. In this diagram ”a/bc” on a state transition i — j
means that given state ¢ of the encoder and input bit a, bits b and ¢ are the
systematic and coded outputs, respectively, and the next state is j.

We illustrate this result by exemplifying the use of (2.9) on the encoder of Fig. 2.2(a).
We have the state transition matrix A(z,y) given in (2.8), and from it we calculate
B(y) according to (2.4.1). Using a symbolic manipulation program such as Matlab,
it is easy to apply (2.9) to find that

P(z,y,2)

W(x7 y’ Z) B Q(x7 y? Z)

(2.10)

14



where
P(z,y,2) = 22+ (—2y+2y°)2 + (—ay + 2%y° + 2y — 2%%)2*
=g + 22 + 2 — 8yF)
and
Q(z,y,z) = 1+ (=1—ay)z+ (xy—y* + 2y’ —2°y°)2°
+(y? — 2%y* — % + 2ty5) 2t (2.11)

Using Matlab, the first few terms in the expansion of W (x,y, z) as a power series in

z can be found as
Wiz, y,2) = 224+ (1 +2y”)28 + (1 + (v + 2%)y° + 29°)2*
H(L+ (2 + 2+ 2°)y° + (20 + 2?)y° + 2%yT)2°
+terms of order z° and higher (2.12)
The remaining terms in the expansion of W (zx, y, z) can be obtained by noting that the

form of the denominator in (2.11) implies that the individual enumerators W, (x,y)

satisfy the fourth-order recursion

W, = (1+azy)Wyy + (—zy + 3% — 222 + 2°y°) W, _3 (2.13)
+(—y* + 2%y* + 2%y’ — 'y )W,y forn > 6. (2.14)

Therefore, we can use the recursion in (2.13) with the initial conditions

Walz,y) = 1

Wy(z,y) = 14+ay’

Wiz,y) = 1+ (@+2%)y’ +ay

Ws(z,y) = 1+ (x+2°+ 2%y’ + (22 + 2°)y° + 2%’ (2.15)

to obtain the value of W, for any n by extending the recursion as far as desired.

2.4.2 The IOWE of a Turbo Code

A Turbo encoder which appears in Fig. 2.1 is the parallel concatenation of two con-

stituent encoders. A uniformly interleaved ensemble of Turbo codes is the set of all
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possible Turbo codes with given constituent encoders, when considering all possible
interleavers. In this setting, it is possible to compute the average IOWE of the Turbo
code ensemble [4]. The average IOWE of an (ny + ny — k, k) systematic Turbo code
ensemble which is the parallel concatenation of an (ng, k) systematic code (or ensem-
ble) possessing an average IOWE A} , with an (ng, k) systematic code (or ensemble)

possessing an average IOWE Ai,h is given by

1 2
§ : Aw,hlAw,hz

hi,ho: h1+ho—w=h
App = —
’ ()

where we take into account that the systematic bits are transmitted only once. The

(2.16)

asymptotic exponent of the distance spectrum for ensembles of convolutional and

Turbo codes is given in [38].

2.5 Systematic and Non-Systematic Repeat-Accumulate

Codes and Variations

In this section we will calculate the IOWE for three ensembles of turbo-like codes.
These include the ensemble of repeat-accumulate (RA) codes and variations of this
ensemble, one of which is an ensemble of accumulate-repeat-accumulate (ARA) codes.
The encoders of these ensembles are shown in Fig. 2.3.

The component codes constructing these three ensembles are an accumulate code
(i.e., a rate-1 differential encoder), a repetition code and a single parity-check (SPC)
code. These components are serially concatenated in different combinations to create
the encoders of these ensembles and hence, the IOWE of these codes can be expressed
using the IOWE of their basic building blocks using the relations in [4, 5]. As a
preparatory step, we introduce the IOWEs of the components.

1. The IOWE of a repetition (REP) code is given by

Ap? = (i) Saqu (2.17)

where k designates the input block length, and 6, , is the discrete delta function.
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| Repetition |~ | |nterleaver = Accumulate | aN
code

N " qgN gN gN .
N 1.} Repetition Interleaver Accumulate Puncturing | -
code
N
M
. N N N .
Accumulate ‘—> Repetition d Interleaver d Accumulate d Puncturing |~
N-M code code

Figure 2.3: Systematic and Non-systematic RA and ARA codes. The interleavers of
these ensembles are assumed to be chosen uniformly at random, and are of length
gk where k designates the length of the input block (information bits) and ¢ is the

number of repetitions. The rates of all the ensembles is set to % bits per channel
use, so we set ¢ = 3 for figure (a), and ¢ = 6 and p = 3 for figures (b) and (c) where
p is the puncturing period.

2. The IOWE of an accumulate (ACC) code is given by

5= (g/) (1-1) (2.8

where n is the block length (since this code is of rate 1, the input and output
block lengths are the same). The IOWE in (2.18) can be easily obtained combi-
natorially; to this end, we rely on the fact that for the accumulate code, every
single "1’ at the input sequence flips the value at the output from this point

(until the occurrence of the next 1’ at the input sequence).

3. The IOWE function of a non-systematic single parity-check code which provides
the parity bit of each set of p consecutive bits, call it SPC(p), is given by (see
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= [Even((l + W)P) +0dd((1+ W)P)D} ! (2.19)

where

(I+W)yP+(1-W)r
2

(1+ W) —(1—-W)P
2

Even((1+ W)?) =

Odd((1+ W)P) = (2.20)

are two polynomials which include the terms with the even and odd powers of
W, respectively.
To verify (2.19), note that a parity-bit of this code is equal to 1 if and only if

the number of ones in the corresponding set of p bits is odd; also, the number

of check nodes in the considered code is equal to the block length of the code

o ] 0
N
o @/0 =X
o E/ 0
0 D/O 0
o / X

Figure 2.4: Accumulate code with puncturing period p = 3 and an equivalent
version of an SPC(p) code followed by an accumulate code.

The uniformly interleaved serial concatenation of an (IV, k) code ensemble with
average IOWE A, ;, with an (n, N) code ensemble with average IOWE AZ , yields an
(n, k) code ensemble with average IOWE given by [5]

= AL AT,
= ()

18

Aw,h -

(2.21)



In what follows, we will capitalize on this relation for the calculation of the IOWEs

of the three ensembles shown in Fig 2.3.

2.5.1 Non-systematic repeat-accumulate codes

The encoder of the ensemble of uniformly interleaved and non-systematic repeat-
accumulate (NSRA) codes [11] is shown Fig. 2.3 (a). The ensemble [NSRA(k, q)] is
defined as the set of all possible RA codes when considering the different permutations

of the interleaver. As a side note, we can show that the number of codes in the

ensemble is exactly %. This can be seen by realizing that there is a total of (¢k)!

ways to permute the order of gk bits. However, permuting the ¢ repetitions of any of

(gk)!
(g)*
possible ways for the interleaving. Strictly speaking, by permuting the information

the k information bits does not affect the result of the interleaving, so there are

bits, the vector space of the code does not change, which then yields that there are

(qF)!
(@)*H
The (average) IOWE of the ensemble of uniformly interleaved NSRA codes was

originally derived in [11, Section 5|. This ensemble is simply the serial concatenation

distinct RA codes of dimension k£ and number of repetitions q.

of a repetition code with an accumulator, so its IOWE can be obtained by using
(2.17) and (2.18) in (2.21) which gives

2 2
k
(qu)

The distance spectrum of the ensemble is therefore given by

k k—h h—1
ANSRA) _ () () (o) (2.22)

min(k, [ 22 ]) (k) (qIZ;h)( q}ifl )
Ay = 57 S, (] < n<ar - 5]
w=1 qu

where AYFAED — () for 1 < h < (4], and ANFPAKRD — 1 gince the all-zero vector
is always a codeword of a linear code. The asymptotic exponent of the distance

spectrum of this ensemble is given by (see [22])

7,,[NSRA(q)] (5) A lim T[NSRA(k,q)] (5)

k—o00

1
= max {— (1 — —) H(u)+
0<u<min(24,2—24) q

(1—68)H (ﬁ) +0H (%) } . (2.23)
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2.5.2 Systematic and Punctured Repeat-Accumulate Codes

The second ensemble we consider is the ensemble of systematic and punctured repeat-
accumulate (SPRA) codes, where the systematic branch is added and puncturing
is performed on the coded bits. The notation SPRA(k,p,q) will be used for this
ensemble, and we will consider the case where the number of repetitions is equal
to ¢ = 6 and, as a result of puncturing, every third bit of the non-systematic part
is transmitted (so the puncturing period is p = 3). We rely on the concepts of
the analysis introduced in [2] and on the serial concatenation formula (2.21) for the
calculation of the average IOWE of the ensemble of uniformly interleaved SPRA
codes; the asymptotic growth rate of the distance spectrum is also calculated.

The case where the output bits of an accumulate code are punctured with a
puncturing period p is equivalent to an SPC(p) code followed by an accumulate code
(see Fig. 2.4 which was originally shown in [2, Fig. 2]). Hence, for the uniformly
interleaved ensemble of SPRA(k,3,6) codes, we are interested in the IOWE of the
SPC(3) code. For the case where p = 3, (2.20) gives

Even((1+W)?*) =1+3W? Odd((1+W)*) =3W + W?

and (2.19) thus gives the following IOWE of the SPC(3) code [2, Eq. (15)]:

AZPO® ( ) 3 mid (d) (7; - f) 32§ (2.24)

J=0 i=max(0,j—n+d)

We rely here on the equivalence shown in Fig. 2.4, related to the inner accumulate
code with puncturing. In this respect, since the input bits to the SPC (appearing in
the right plot in Fig. 2.4) are permuted by the uniform interleaver which is placed
after the repetition code (see Fig. 2.3 (b)), then the average IOWE of this ensemble
remains unaffected by placing an additional uniform interleaver between the SPC and
the inner accumulate codes, which is of length % = 2k. By placing the additional
interleaver, the average IOWE of the serially concatenated and uniformly interleaved
ensemble whose constituent codes are the SPC(3) and the accumulate codes, call it
ACC(3), is given by Eq. (2.21), i.e

2k ASPC(?)) AACC

AQSIC(?)) _ th<2—k)hd (2.25)

h=0 h
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The substitution of (2.18) and (2.24) into (2.25) gives

ACC ii mngh {(h) (Zk: — h) <2k d) < d—1 )
. . h
h=0 j=0 i=max(0,j—2k+h) l J— LJ [i—l 1
ghti—2i 5w,2j+h}' (2.26)

Note that (2.26) is similar to [2, Eq. (19)], except that k in the latter equation is
replaced by 2k in (2.26). This follows since ? (i.e., the ratio between the number of
repetitions and the puncturing period) is equal here to 2, instead of 1 as was the case
in [2] for a code of rate one-half.

Since there is a uniform interleaver of length gk between the repetition code and
the equivalent ACC(3) code, the average IOWE of this serially concatenated and

uniformly interleaved systematic ensemble is given by

6k 4REP(6) JACC(3)

Azf”;{A(k,?),G) _ Z w,l (Gk)l,d—w
=0 l
() At

— wlTtudow (2.27)
(Gw)
where the last equality is due to the equality in (2.17). Substituting (2.26) in the
RHS of (2.27) gives the average IOWE of the ensemble as

min(j,h)

2k 2k i

h\ (2k —h\ (2k —d +w

e D D SR (0] e | G
6 h=0 j=0 i=max(0,j—2k+h) J ?

d—w-—1 e
( o )3’”32’ 56w,2j+h} (2.28)
2

Having obtained the IOWE of this ensemble, we turn to the calculation of the
asymptotic growth rate of the distance spectrum. This is obtained by normalizing
the logarithm of the average distance spectrum of the considered ensemble by n = 3k
and letting &k tend to infinity.

A marginalization of the IOWE enables one to obtain the distance spectrum via

the relation

k
Ay = Z Aw.a (2.29)
w=0
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where the IOWE A, 4 is given by (2.28). Note that unless

w 27+ h 2p2 +1
— = = 2.30
k 6k 2 (2:30)

the A, 4 vanishes, and therefore it does not affect the sum in the RHS of (2.29). In

the limit where k — oo, the asymptotic growth rate of the average distance spectrum
for the uniformly interleaved ensemble of SPRA(k, 3,6) codes is obtained from (2.28)
and (2.29) at it reads

k
' 1
TSPRA(3’6)(5) = k}g{.lo?)_k lan:OAw,d

) 1 w 6w 1
- ;}HEOIE%?{@{W (%) - (G5) + o (7)

+@k—mH($:2>+@k_d+mﬂ<ﬂ§;%535>
)

+(d—w—1)H (#ﬁl) +(h+j— 2i)1n3] } (2.31)

where we have used the well-known relation for the binomial coefficient

lim * In (;) —H(B), 0<B<L (2.32)

n—oo M n

Eq. (2.31) is more naturally expressed in terms of the normalized parameters

d A h N

a2 s s U s T

which appear in the summations in (2.28). The normalization by 3k yields that the

new parameters satisfy

Wl Do
[GVRI )

From the partial sum w.r.t. the index ¢ in the RHS of (2.28), dividing the terms in
the inequality
max (0,7 — 2k + h) < i < min(j, h)
by 3k gives
2
max<07p2 +n— 5) < P1 < min(p27 77) (235)
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Since the codes are systematic and the input block is k bits long, the terms which
contribute to the IOWE in the RHS of (2.28) satisfy

w < min(d, k), 6w=2j+h (2.36)

and, from (2.33), multiplying (2.36) by 5 gives

2p2+1 : 1
< — . .
5 min (5, 3> (2.37)

From the binomial coefficients which appear in the RHS of (2.28), it is required that
2k —d+w > h , d—w> h
2 2
so dividing both sides of these inequalities by 3k, and letting £ tend to infinity gives
n—p2+30 <2, po+2n<30. (2.38)

The asymptotic growth rate of the distance spectrum for the ensemble of uniformly
interleaved SPRA(k, 3,6) codes is therefore given by

5 2 2 -
TSPRA(3,6)(5) — max d—2 p2+ 1 o H P +>—-n| H p; P1
novpz 3 2 N 3 31
2 2,02—1-7] Ui
Y H
* (3 TG ) (2(§ — 6+ 225)

_ 2p2+7 n
*(5 6 >H<2<a—2m%>)

+(n+ p2 — 2p1) lnB} (2.39)

where the three-parameter maximization is performed over the finite domain which

is characterized by the following inequalities:

2 2
0§77§§, 0§Pz§§, 2p+1m <60, pat+2n<30

max (0,02 + 1 — =) < p1 < min(ps,m), n—ps+30 < 2. (2.40)
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2.5.3 Systematic and Punctured Accumulate-Repeat-Accumulate
Codes

The last ensemble we will consider is that of uniformly interleaved, systematic and
punctured accumulate-repeat-accumulate (SPARA) codes which appears in Fig 2.3(c).
This ensemble is similar to the SPRA ensemble except that the coded branch is pre-
ceded by an additional outer accumulator which appears in front of the repetition
code. Only k — M of the input bits are passed through this extra accumulator, and
the remaining M are passed directly to the repetition code. We thus use the notation
SPARA(k, M, p,q) for the ensemble. In order to calculate the IOWE for this ensem-
ble, we first deal with the precoder. The precoder is a binary linear block code whose
first Kk — M input bits are accumulated and the other M input bits remain unchanged.
The IOWE of this precoder, call it Pre(k, M), is given by

a5 (M
- S{EESEET)) en

where the last equality relies on (2.18). As we have mentioned before for the case of
SPRA codes, an additional uniform interleaver placed between the precoder and the
following stages of the SPARA encoder does not affect the average IOWE; this ensem-
ble can therefore be viewed as the serially concatenated, with a uniform interleaver
of length k, placed between the precoder and the repetition code in Fig. 2.3 (c) (in
addition to the uniform interleaver which is placed after the repetition code). More-
over, referring to the SPRA ensemble whose components are REP(6) and ACC(3),
the input bits (which are provided by the precoder to the second stage in Fig. 2.3 (c))
are not transmitted to the channel. In light of these two observations, the average
IOWE of the uniformly interleaved ensemble of SPARA codes shown in Fig. 2.3 (c)
is given by

k Air;e(k,M) ASPRA(k3.6)

Aswl’DU/lxRA(k,M,S,G) _ Z ’ (k)l,d—w+l , (2.42)
1=0 !

24




By substituting (2.28) and (2.41) into (2.42), one obtains the average IOWE of the

ensemble as

AqSUlT’dARA(k,M,&G) _ ii Z Z 2

6k

=0 h=0 j=0 i=max(0,j—2k+h (6[)

(h <2k—h) (2k:—d+w>
i)\ j—i |4]

d—w-—1 o
)3’”]—2% 56,,2]%}. (2.43)

2k 2k min(j,h) { (M) (k—ﬁf;ﬁm) ((llv_jlﬁl 1)
m |-
)

The asymptotic growth rate of the distance spectrum of this ensemble is obtained by

the calculation of the limit

k

1 d
SPARA(,3,6) 5) = i - ASPARA(k,Bka,S,G) S= 2 (0<§<1
r (9) kggo%wzzow,d : 5 0<o<1)
where o £ % is a normalized parameter designating the fraction of input bits which

do not pass through the outer accumulator. As in the case of SPRA codes, we will
use the parameters pq, pa, 0, and 1 defined in (2.33) and also use the three additional
parameters

s am o aw—m

M _—
3k ST 3R

«

(2.44)

w

Since M < k we have that 0 < a < % Now, 0 < m < M, so we have the additional
limitation 0 < &7 < a. Finally, the input weight w satisfies 0 < w < min(d, k) so
that we have another constraint which reads 0 < g1 +¢3 < min (5, %) After straight-
forward and tedious algebra which is similar to the calculations in Section 2.5.2, one

obtains the following expression for the asymptotic growth rate of the average distance
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spectrum of the considered ensemble of uniformly interleaved SPARA codes:

2p2+ 1 €2
SPARA(a,3.6) (5) — H(i) P2 _ H
" ( ) n,pf,%za,é@{a a + 6 2 2(202%_61)
1 2p2+1 €2
+tlg—a— +e | H
(3 6 ! (2(%—04——712”; +€1)>
209 + 2 _
ot (%) -on (0) + (3-n) 1 (52
n 2 3 2
2 7
+|lg—0+ert+e| H
(3 1 2) (2(§—5+51+52)>

+(0 — ey —e9)H <m) + (n+p2—2p1)In 3} (2.45)

where the five-parameter maximization is performed over the finite domain which is
characterized by the following inequalities which stem from the limitations on the

summation in (2.43):

2 2

0§7]§§, 0§P2§§, 0<e <a,

_ 1
0<e;+e9 <min (5,5 ,

2
max(O,,Oz +n— g) < p1 < min(p2,n),

4
Ogngmin<§—2(5+2(51+€2),25—2(€1+€2))7
2 2 2

£, < min (5—2@— p23+77+251, p23+77—251). (2.46)

We exemplify some of the results appearing in this section in Fig. 2.5 which shows the
asymptotic growth rates of the distance spectra for ensembles of repeat-accumulate

codes considered in this chapter.
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Figure 2.5: Comparison of asymptotic growth rates of the average distance spectra
of ensembles of RA codes and variations.
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Chapter 3

Definitions and Preliminaries

3.1 Short overview

In this chapter, we state the assumptions on which our analysis is based. We also
introduce notation and preliminary material related to the performance analysis of

binary linear codes whose transmission takes place over parallel channels.

3.2 System Model

We consider the case where the communication model consists of a parallel concate-

nation of J statistically independent MBIOS channels, as shown in Fig. 3.1.

1
T . 7’%‘ Channel 1 }—'
k bits Error- n bits|  Channel 2
—= Correction Mal — ;‘ Channel 2 ’% Decoder (———
pper .
Code .
— j‘]%‘ Channel J H

Figure 3.1: System model of parallel channels. A random mapper is assumed where
every bit is assigned to one of the J channels; a bit is assigned to the j* channel
independently of the other bits and with probability «; (where Z}]:1 a; =1).

Using an error-correcting linear code C of size M = 2%, the encoder selects a
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codeword ™ (m = 0,1,...,M — 1) to be transmitted, where all codewords are
assumed to be selected with equal probability (%) Each codeword consists of n
symbols and the coding rate is defined as R £ % = %; this setting is referred
to as using an (n, k) code. The channel mapper selects for each coded symbol one
of J channels through which it is transmitted. The j-th channel component has
a transition probability p(y|x;j). The considered model assumes that the channel
encoder performs its operation without prior knowledge of the specific mapping of
the bits to the parallel channels. While in reality, the choice of the specific mapping
is subject to the levels of importance of different coded bits, the considered model
assumes for the sake of analysis that this mapping is random and independent of the
coded bits. This assumption enables to average over all possible mappings, though
suitable choices of mappings for the coded bits are expected to perform better than

the average.

The received vector y is maximum-likelihood (ML) decoded at the receiver when
the specific channel mapper is known at the receiver. While this broad setting gives
rise to very general coding, mapping and decoding schemes, we will focus on the
case where the input alphabet is binary, i.e., z € {—1,1} (where zero and one are
mapped to +1 and —1, respectively). The output alphabet is real, and may be either
finite or continuous. By its definition, the mapping device divides the set of indices
{1,...,n} into J disjoint subsets Z(j) for j = 1,...,J, and transmits all the bits
whose indices are included in the subset Z(j) through the j-th channel. We will see in
the next chapter that for a fixed channel mapping device (i.e., for given sets Z(j)), the
problem of upper-bounding the ML decoding error probability is exceedingly difficult.
In order to circumvent this difficulty, a probabilistic mapping device was introduced
in [26] which uses a random assignment of the bits to the J parallel channels; this
random mapper takes a symbol and assigns it to channel j with probability «;. This
assignment is independent of that of other symbols, and by definition, the equality
Z‘j]:l a; = 1 follows. This approach enables in [26] the derivation of an upper bound
for the parallel channels which is averaged over all possible channel assignments,
and the bound can be calculated in terms of the distance spectrum of the code (or
ensemble). Another benefit of the random mapping approach is that it naturally
accommodates for practical settings where one is faced with parallel channels having

different capacities.
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3.3 Capacity Limit and Cutoff Rate of Parallel
MBIOS Channels

We consider here the capacity and cutoff rate of independent parallel MBIOS chan-
nels. These information-theoretic quantities serve as a benchmark for assessing the
gap under optimal ML decoding between the achievable channel regions for various
ensembles of codes and the capacity region. It is also useful for providing a quantita-

tive measure for the asymptotic performance of various ensembles.

3.3.1 Cutoff Rate

The cutoff rate of an MBIOS channel is given by
Ry =1—logy(1+7) (3.1)

where 7 is the Bhattacharyya constant, i.e.,
v EY VpWlo)p(yll). (32)
Yy

Clearly, for continuous-output channels, the sum in the RHS of (3.2) is replaced by
an integral.

For parallel MBIOS channels where every bit is assumed to be independently and
randomly assigned to one of J channels with a-priori probability «; (where Z;;l aj; =
1), the Bhattacharyya constant of the resulting channel is equal to the weighted sum

of the Bhattacharyya constants of these individual channels, i.e.,

J

v = Z{%ZVP(MO;J‘)MMLJ‘)} (3.3)

J=1

Consider a set of J parallel binary-input AWGN channels characterized by the tran-

sition probabilities

) 1 _ ty2)?
p(y|0;7) = Vo e 2
) 1 _ y=yT)?
p(yll;g) = Jon e = (3.4)
—co<y<oo, g=1,...,J
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where
vi 2R (—b> 3.5
J Ny i (3.5)

and <%)j is the energy per information bit to the one-sided spectral noise density

of the j-th channel. In this case, the Bhattacharyya constant is given by
J
v = Z aje” (3.6)
j=1

where v; is introduced in (3.5). From (3.1) and (3.6), the cutoff rate of J parallel
binary-input AWGN channels is given by

. _p(E
Ry =1 —log, (1 + Zozje R(NO)J'> bits per channel use. (3.7)
j=1
Consider the case of J = 2 parallel binary-input AWGN channels. Given the value of

(f,—‘;) , and the code rate R (in bits per channel use), it is possible to calculate the
1

value of (%) of the second channel which corresponds to the cutoff rate. To this
2

end, we set Ry in the LHS of (3.7) to R. Solving this equation gives

o) __ 1 , .
N 7 n - (3.8)

<Eb) 1 21°R 1 — a167R<%>1
2

3.3.2 Capacity Limit

Let C; designate the capacity (in bits per channel use) of the j-th MBIOS channel the
set of J parallel MBIOS channels. Clearly, by symmetry considerations, the capacity-
achieving input distribution for all these channels is ¢ = (%, %) The capacity of the J
parallel channels where each bit is randomly and independently assigned to the j-th

channel with probability «; is therefore given by

J
C = ZOéjCj. (39)
j=1

For the case of J parallel binary-input AWGN channels

1 w82
Ci=1— —— / e 2 In(1+ e 2%%) dy bits per channel use (3.10
/ Vorin2) Jow ( ) dy. bits p (3.10)
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Figure 3.2: Attainable channel regions for two parallel binary-input AWGN
channels, as determined by the cutoff rate and the capacity limit, referring to a code
rate of one-third bits per channel use. It is assumed that each bit is randomly and
independently assigned to one of these channels with equal probability (i.e.,
a1 = Oy = %)

where 3; £ /2v; and v; is introduced in (3.5).

In order to simplify the numerical computation of the capacity, one can express
each integral in (3.10) as a sum of two integrals from 0 to oo, and use the power
series expansion of the logarithmic function; this gives an infinite power series with
alternating signs. Using the Euler transform to expedite the convergence rate of these

infinite sums, gives the following alternative expression:

2

52
_ 1 |28 2 — (—1)F - Aay () -
Cj =1- 111(2) \/ﬁ - (Qﬂjz - 1)@(6]) + kZ:O ok+1 o Jg=1..J
(3.11)
where

N | —

Aag(j) 2 s ; { = +(I>1()km_ ——? <Z) erfex ((Zk: - 2\7;1; S)ﬁj) }
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and

erfex(z) £ 27 Q(V2z)

(note that erfex(z) ~ \/LE -1 for large values of ). The infinite sum in (3.11) converges
exponentially fast with £, and the summation of its first 30 terms gives very accurate
results irrespectively of the value of 3;.

Consider again the case of J = 2 parallel binary-input AWGN channels. Given the
value of (%) g and the code rate R (in bits per channel use), (3.9) and (3.10) enable

one to calculate the value of (]EV—E> for the second channel, referring to the capacity
2

limitation. To this end, one needs to set C' in the LHS of (3.9) to the code rate R,

Ey
No

boundary of the capacity region is represented by the continuous curve in Fig. 3.2 for

and find the resulting value of < ) which corresponds to the capacity limit. The
2

R = % bits per channel use; it is compared to the dashed curve in this figure which

represents the boundary of the attainable channel region referring to the cutoff-rate

limit (see Eq. (3.8)).

3.4 The DS2 Bound for a Single MBIOS Channel

The bounding technique of Duman and Salehi [14, 15] originates from the 1965 Gal-
lager bound [18] which states that the conditional ML decoding error probability Py,
given that a codeword z™ (of block length n) is transmitted is upper-bounded by

, A
Pem < an (ylz™) Z (%) A\p>0 (3.12)

m/#m

where p,(y|x) designates the conditional pdf of the communication channel to obtain
an n-length sequence y at the channel output, given the n-length input sequence z.
Unfortunately, this upper bound is not calculable in terms of the distance spectrum
of the code ensemble, except for ensembles of fully random block codes and orthogonal
codes transmitted over a memoryless channel, and the special case where p =1, A =
0.5 in which the bound reduces to the union-Bhattacharyya bound. With the intention
of alleviating the difficulty of calculating the bound for specific codes and ensembles,
we introduce the function W™ (y) which is an arbitrary probability tilting measure.

This function may depend in general on the index m of the transmitted codeword
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[40], and is a non-negative function which satisfies the equality fy \Il%m) (y) dy = L.

The upper bound in (3.12) can be rewritten in the following equivalent form:

p

f A
1 1 Dn(ylz™
%ﬂiﬁ@@‘W@Wm@ﬂ”Z(JLJ) Ap >0,
y

v \ Pa(ylz™)
(3.13)
Recalling that T g a probability measure, we invoke Jensen’s inequality in (3.13)

which gives

’ A
) 1ol ot [ Palylz™) 0<p<1
Pam < | D) WS (y) o palyla™)> (‘—) L, 6

m'#Fm y

which is the DS2 bound. This expression can be simplified (see, e.g., [40]) for the

case of a single memoryless channel where

n

pa(ylz) = [ [ p(yilzs).

=1

Let us consider probability tilting measures o™ (y) which can be factorized into the

form
n

v (y) =[] v )
i=1
recalling that the function 1™ may depend on the transmitted codeword z™. In this
case, the bound in (3.14) is calculable in terms of the distance spectrum of the code,
thus not requiring the fine details of the code structure.

Let C be a binary linear block code whose length is n, and let its distance spectrum
be given by {A,}}_,. Consider the case where the transmission takes place over
an MBIOS channel. By partitioning the code into subcodes of constant Hamming
weights, let Cj, be the set which includes all the codewords of C with Hamming weight
h and the all-zero codeword. Note that this forms a partitioning of a linear code into
subcodes which are in general non-linear. We apply the DS2 bound on the conditional
ML decoding error probability (given the all-zero codeword is transmitted), and finally
use the union bound w.r.t. the subcodes {C,} in order to obtain an upper bound on

the ML decoding error probability of the code C. Referring to the constant Hamming
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weight subcode Cp, the bound (3.14) gives

Pyo(h) < (Zw p(y[0) i)

(Zw p(y10) 7 p(y]1) ) S e

Clearly, for an MBIOS channel with continuous output, the sums in (3.15) are replaced
by integrals. In order to obtain the tightest bound within this form, the probability
tilting measure ¢ and the parameters A and p are optimized. The optimization of ¢
is based on calculus of variations, and is independent of the distance spectrum (this
will be shown later even for the case of parallel MBIOS channels).

Due to the symmetry of the channel and the linearity of the code C, the decoding
error probability of C is independent of the transmitted codeword. Since the code C
is the union of the subcodes {Cp}, the union bound provides an upper bound on the
ML decoding error probability of C which is expressed as the sum of the conditional
decoding error probabilities of the subcodes C; given that the all-zero codeword is
transmitted. Let d;, be the minimum distance of the code C, and R be the rate of
the code C. Based on the linearity of the code, the geometry of the Voronoi regions

(see [3]) gives the following expurgated union bound:

P, < Z Pyo(h (3.16)
h dll’]ln
For the bit error probability, the same analysis applies except that the distance

spectrum of the code is replaced by Aj given in (2.4). This is due to the following
lemma, derived by Divsalar [13].

Lemma 1 [13, Section III.C] Let C be a binary linear (n, k) block code transmitted
over an MBIOS channel. Let C(w) designate a sub-code of C containing the all-zero
codeword plus all the codewords encoded by an information block of Hamming weight
w. Then, the conditional bit error probability of C under ML decoding, given that

the all-zero codeword is transmitted, is upper bounded by
P

A
n(yle A>0
> () 20 g
cecty \Po(¥l0) 0<p<l
c#0

Fuo< Yo | 32 ()
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The following proof of the lemma was brought in [42] and is a simplified version of
the proof in [13].
Proof. The conditional bit error probability under ML decoding can be expressed

as

Bmzz}j(wi@)pAQM) (3.18)

y
where wg(y) designates the weight of the information bits in the decoded codeword,
given that the all-zero codeword is transmitted and the received vector is y. In par-
ticular, if the received vector y is within the decision region of the all-zero codeword,

then wy(y) = 0. Now, we have the following inequalities.
wo(y) < (wo (Q)

e 2

P
>, 0<p<l1

INE
VR
g
(e}
~—~
S
~~
VR
=
A/:—\
A
B
~~_
>
>
V
o

ceClwoly) MY
\ c#0
( P
Nror s ()
=& 2 Lo
\ c#0

Inequality (a) holds since the received vector y must fall in the decision region of some

codeword ¢ which is encoded by information bits of total Hamming weight wq(y);

Pn (E‘Q)
pn(y[0)
simply non-negative. The third inequality holds because of adding more non-negative

terms to the sum. The lemma follows by substituting (3.19) into the RHS of (3.18).
O

hence, the quotient ( ) is larger than 1 while the other terms in the sum are

Inequality (3.17) can be thought of as the counterpart to inequality (3.12), for the
case where m = 0, where the former inequality relates to the bit error probability and
the latter refers to the block error probability. With (3.17) as the starting point, the
derivation of the DS2 bound on the block error probability appearing in the beginning
of this section may be repeated in order to get a bound on the bit error probability.
The result (see, [36, 37]) is that the conditional DS2 bound on the bit error probability
is identical to the DS2 bound on the block error probability, except that the distance
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spectrum of the code A; appearing in the RHS of (3.15) is replaced by Aj, given in
(2.4). Since Aj, < Aj, then, as expected, the upper bound on the bit error probability
is smaller than the upper bound on the block error probability.

Finally, note that the DS2 bound is also applicable to ensembles of linear codes.
To this end, one simply needs to replace the distance spectrum or the IOWE of a
code by the average quantities over this ensemble. This follows easily by invoking
Jensen’s inequality to the RHS of (3.15) which yields that E[(A4)?] < (E[A])? for
0<p<Ll

The application of the DS2 bound to a single MBIOS channel is discussed in
further details in [14, 36, 40] and the tutorial paper [37, Chapter 4].
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Chapter 4

Generalized DS2 Bounds for
Parallel Channels

4.1 Short overview

In this chapter, we generalize the DS2 bound to independent parallel MBIOS channels,
and optimize the probability tilting measures in the generalized bound to obtain the
tightest bound within this forms. We will discuss two possible ways of generalizing
the bound. These two versions of the bound are obtained via different way of looking

on the set of parallel channels and their tightness is compared.

4.2 Generalizing the DS2 bound to Parallel Chan-
nels: First Approach

4.2.1 Derivation of the bound

Let us assume that the communication takes place over J statistically independent
parallel channels where each one of the individual channels is memoryless binary-input
output-symmetric (MBIOS) with antipodal signaling, i.e., p(ylz = 1) = p(—ylz =
—1). The essence of the approach discussed in this section is to start by considering

the case of a specific channel assignment; the calculation then proceeds by averaging
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the bound over all possible assignments. For a specific channel assignment, the as-
sumption that all J channels are independent and MBIOS means that we factor the

transition probability as

Pu (ylz™) = H IT pCil=i™: ) (4.1)

which we can plug into (3.14) to get a DS2 bound suitable for the case of parallel
channels. In order to get a bound which depends on one-dimensional sums (or one-
dimensional integrals), we impose a restriction on the tilting measure o () in (3.14)
so that it can be expressed as a J-fold product of one-dimensional probability tilting

measures, i.e.,

v ) =T I ) (42

Considering a binary linear block code C, the conditional decoding error probability
does not depend on the transmitted codeword, so P, & ﬁ Z%:_OI Pejm = FPjo where

w.0.l.o.g., one can assume that the all-zero vector is the transmitted codeword.

The channel mapper for the J independent parallel channels is assumed to trans-
mit the bits whose indices are included in the subset Z(j) over the j-th channel where

the subsets {Z(j)} constitute a disjoint partitioning of the set of indices {1,2,...,n}.

Following the notation in [26], let Ay, p, . n, designate the split weight enumerator
of the binary linear block code, defined as the number of codewords of Hamming
weight h; within the J disjoint subsets Z(j) for j = 1....J. By substituting (4.1) and
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(4.2) in (3.14), we obtain

P, = Pe\()
1Z(1)

IA

h1=0

1Z(1)

S

Iy

h1=0

1Z(1)

Iy

h1=0

IZ(J)I J

> Aniaes [T I v )
hi=0 "y J=14€Z(j)

IZ(1) J 1
> Annaeas [T TT Do v ) =op
hj=0 J=14€Z(j) i

IZ(J)I

Y

Jj=1

loss)?

2
11 (Zw v; )P p(ylo; ])’13>

_1 N
»p(yil0; )7 (

p

p(yilzi; J)
p(yi]0; )

p(yilzi; 7)
p(y:l0; 7)

> Annans [] <Z¢<y;j> Pp(y]0:5) 7 ply |1;j>A>

0<p<1
A>0

y
y

We note that the bound in (4.3) is valid for a specific assignment of bits to the

parallel channels. For structured codes or ensembles, the split weight enumerator is

in general not available when considering specific assignments. As a result of this, we

continue the derivation by using the random assignment approach. Let us designate
£ |Z(5)| to be the cardinality of the set Z(j), so E[n;] = a;n is the expected

number of bits assigned to channel no. j (where j = 1,2,...

).

Averaging (4.3)

with respect to all possible channel assignments, we get the following bound on the

average ML decoding error probability:

ni

P, <E Z

>

n]ZO

Zj nj=n

hi=0  h;=0 j=1

41
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p

Py(n)

(4.4)



where Py(n) designates the probability distribution of the discrete random vector
N 2 (ny,...,nys). Applying Jensen’s inequality to the RHS of (4.4) and changing the

order of summation give

{ > > Anhsen,Pu(n)

n;>0 h=0 h1<ni,..., hj<ny
> nj=n hi+..4+hy=h

1T (Zw v ) (05 5) 7 plylL: ) )

7=1
n;—h; P 0< <1
1 1%
0; P s 4.5
(E Dy §)' e p(yl J)) } \ >0 (4.5)

<.
Il <
—

Let the vector H = (hq, ..., hy) be the vector of partial Hamming weights referring
to the bits transmitted over each channel (n; bits are transmitted over channel no. j,
so 0 < h; < n;). Clearly, Z}]:1 h; = h is the overall Hamming weight of a codeword

in C. Due to the random assignment of the code bits to the parallel channels, we get

n
Py(n) = < > attoy? .ol
ny, N,

Lo,y

Guant) o)

-----

Pyn(hln) =

Ahhhz ,,,,, hJPﬂ(ﬂ)
= Ay Pyn(hn) Py (n)

h n—nh
= Ay aPras? ..oy 40
h O Qg ay (hb_”?hJ)(nl—hl,...,nj_hJ) 48)
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and the substitution of (4.6) in (4.5) gives

P < { > iAh ) (hl,hQ,f.L..,h)

5 >0 h=0 h1 <ni,..., hJSnJ

Y nj=n hi+..+hj=h
n—~h
ni _hlanQ_h27'--7nJ_hJ
J h;
H(@gzwyy p(10:5) 7 p(ylLs ) )
j=1
J nj—hj y p
H(a > ey ) p(ylo; J)") } :
j=1

Let k; = n; — hj for 5 = 1,2,...,J, then by changing the order of summation we

obtain

P.<i> A Y <h17h27h“_7hj)H(%Z@D(y;j) p(]0:5) 7 plylL: ]))

p

O R ) 11 (% D 0m:) il Jﬁ)kj

k1,..., ky>0
k1+.‘.+k‘]:n7h

Since ijl hj = h and Z}]:1 k; = n — h, the use of the multinomial formula gives

h
P, < ZAh (Z%Z@bw p(y]0: ) 7 p(y|1; J))

p = =

1 o A>0
(Z%Z¢ y; )7 p(yl0; J)”) > w(yg) = 1 (4.7)

which forms a possible generalization of the DS2 bound for independent parallel chan-
nels when averaging over all possible channel assignments. This result can be applied

to specific codes as well as to structured ensembles for which the average distance
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spectrum Ay, is known. In this case, the average ML decoding error probability P, is
obtained by replacing Ay, in (4.7) with the average distance spectrum A, (this can be
verified by noting that the function f(¢) = ¢ is convex for 0 < p < 1 and by invoking
Jensen’s inequality in (4.7)).

In the continuation of this section, we propose an equivalent version of the gen-
eralized DS2 bound for parallel channels where this equivalence follows the lines in
[37, 40]. Rather than relying on a probability (i.e., normalized) tilting measure, the
bound will be expressed in terms of an un-normalized tilting measure which is an
arbitrary non-negative function. This version will be helpful later for the discussion
on the connection between the DS2 bound and the 1961 Gallager bound for parallel
channels, and also for the derivation of some particular cases of the DS2 bound. We
begin by expressing the DS2 bound using the un-normalized tilting measure G
which is related to W™ by

G (y)pa(yl2™)
ST G palylz™)

yl

Ui (y) =

(4.8)

Substituting (4.8) in (3.14) gives

P < 9 22 DG palyle™) (p—”%||f;)) )

migm g Py
1—p

0<p<l1

G (y)pnlylz CL

Z (¥)pn(ylz™) L0

As before, we assume that G%m) can be factored in the product form
J
Gy =11 11 9w
J=14ieZ(j)

Following the algebraic steps in (4.3)-(4.7) and averaging as before also over all the

codebooks of the ensemble, we obtain the following upper bound on the ML decoding
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error probability:

n

Pe:Pe|0 < { Ah
h

> a; (Z g(y;j)l_ip(ylo;j)l‘AP(yll;j)A>

=0 =1 " L
(Zg(i‘/?j)l’(?ﬂoﬂ')) >_a (Z g(y;j)l_;p(y|0;j)>
. . =1 0<p<1
(zy: g(y,J)p(yIO,J)> TN (4.9)

Note that the generalized DS2 bound as derived in this subsection is applied to the
whole code (i.e., the optimization of the tilting measures refers to the whole code
and is performed only once for each of the J channels). In the next subsection, we
consider the partitioning of the code to constant Hamming weight subcodes, and
then apply the union bound. For every such subcode, we rely on the conditional
DS2 bound (given the all-zero codeword is transmitted), and optimize the J tilting
measures separately. The total number of subcodes does not exceed the block length
of the code (or ensemble), and hence the use of the union bound in this case does
not degrade the related error exponent of the overall bound; moreover, the optimized
tilting measures are tailored for each of the constant-Hamming weight subcodes, a

process which can only improve the exponential behavior of the resulting bound.

4.2.2 Optimization of the Tilting Measures

In the following, we find optimized tilting measures {(-; j >};‘]:1 which minimize the
DS2 bound (4.7). The following calculation is a possible generalization of the analysis
in [40] for a single channel to the considered case of an arbitrary number (J) of
independent parallel MBIOS channels.

Let C be a binary linear block code of length n. Following the derivation in
26, 40], we partition the code C to constant Hamming weight subcodes {Cp};_,,
where Cj, includes all the codewords of weight & (h =0, ...,n) as well as the all-zero
codeword. Let Po(h) denote the conditional block error probability of the subcode
Cp, under ML decoding, given that the all-zero codeword is transmitted. Based on the
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union bound, we get

Po< Y Paglh), (4.10)

As the code C is linear, P,o(h) = 0 for h = 0,1,...,dmin — 1 where dy;, denotes the
minimum distance of the code C. The generalization of the DS2 bound in (4.7) gives

the following upper bound on the conditional error probability of the subcode Cj,:

)
Pap(h) < (Z ozjzw y:3)' P p(yl0; ) 7 plyl:g) )

1-6
1 1 0<p<1 _,h
=5 p(y|0; §)F se un
(Zajzwyj (y] J)) >0 — (411

Note that in this case, the set of probability tilting measures {i(-; j)}}’zl may also
depend on the Hamming weight (h) of the subcode (or equivalently on §). This is the
result of performing the optimization on every individual constant-Hamming subcode
instead of the whole code.

This generalization of the DS2 bound can be written equivalently in the exponen-
tial form
By

Al g < p<1, A>0, 5éh, (4.12)

P.o(h) < e "Es —
|0()_6 0

where

EPS2 (X p, J {a;}) & —prl9(5) — poln (Z%Z@D v ) T p(yl0:9) 7 ply |1;j)A>

p(1—0)In (Z% > Wy 4)' e p(ylo; J)’lj> (4.13)

and rl€l(§) designates the normalized exponent of the distance spectrum as in (2.3).
Let

RN
gMﬁ%wm%gmmﬁmwﬁ@%%) (4.14)

then, for a given pair of A and p (where A > 0 and 0 < p < 1), we need to minimize

51n<2aj2¢yj ﬂgzy9)> (1-36 hl(Z%ZW/J Pglyj)>
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over the set of non-negative functions (- ; j) satisfying the constraints
by =1, j=1...J (4.15)
y

To this end, calculus of variations provides the following set of equations:
o)} ( aj(1—8)(1 = $)gr(y: 5)
) ’ ~N1—1 .
> S ey )P g1 (v )
N a;j0(1 = 2)ga(y; j)
>y S e (yi ) P g2(y: )

where ¢; is a Lagrange multiplier. The solution of (4.16) is given in the following

>+§j:o, j=1,...,J (4.16)

implicit form:

V(y;j) = (k?l,jgl(?/;j) + k2,j92(y;j))p ; ki koy >0, j=1,...,J

where

SNy ) iy )

k2. d  j=1 yey
2 . 4.17
ki 1—¢6 J . ( )
SN a(yih)' g2y )
=1 yey

We note that k £ Zj—j in the RHS of (4.17) is independent of j. Thus, the substitution

B; & k{ ; gives that the optimal tilting measures can be expressed as

U(yid) = Bi(oi(yid) +kaa(y: 4))”

.o AP
1+k<w) ] yeY =1, .J (418)

- ﬁj p(y|07j) p<y|07])

By plugging (4.14) into (4.17) we obtain

p—1

- b pylL: )\
>3 o |1k (GE)
k= _ (419)

, LA\ LA
3% Jas Fatolo) (BLED) 1 (B0 ]

p(y]0;5)
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and from (4.14) and (4.15), ; which is the appropriate factor normalizing the prob-
ability tilting measure v (-; 7) in (4.18) is given by

A\ P10
[Zp |0j<1+k<gz:(1)j§)>] =1, (4.20)

Note that the implicit equation for &k in (4.19) and the normalization coefficients in
(4.20) provide a possible generalization of the results derived in [36, Appendix A]
(where k is replaced there by «). The point here is that the value of Zj—; in (4.17) is
independent of j (where j € {1,2,...,J}), a property which significantly simplifies
the optimization process of the J tilting measures, and leads to the result in (4.18).

For the numerical calculation of the bound in (4.11) as a function of the normalized
Hamming weight § = 2 and for a fixed pair of A and p (where A > 0 and 0 < p < 1),
we find the optlmlzed tilting measures in (4.18) by first assuming an initial vector
5O = (3,...,3;) and then iterating between (4.19) and (4.20) until we get a fixed
point for these equations. For a fixed 9, we need to optimize numerically the bound

in (4.12) w.r.t. the two parameters A and p.

4.3 Generalizing the DS2 bound to Parallel Chan-
nels: Second Approach

4.3.1 Derivation of the new bound

In this section we show a second way of generalizing the DS2 bound for independent
parallel MBIOS channels. We begin by suggesting a system model equivalent to the
one presented in Sec. 3.2 which we term the channel side information at the receiver
(CSIR) model. Rather than viewing the set of component channels as parallel chan-
nels, we consider j (where 1 < j < J to be the internal state of a state-dependent
channel p(y|z;j) to which z is the input and y is the output). As in the parallel-
channel model shown in Fig. 3.1, j is chosen at random for each transmitted sym-
bol according to the a-priori probability distribution {a;} from the finite alphabet
{1,2,...,J}. Therefore, these two channel models are identical, except that we have
to include the receiver’s perfect knowledge of the channel state in the CSIR model.

This is easily accomplished by viewing the internal state j as part of the output of
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the channel, i.e., the output is the pair b £ (y, j); the transition probability of this
channel is thus denoted by pg(b|z). Since the channel and channel mapper both op-
erate in a memoryless manner, the CSIR channel model is also memoryless. Finally,

the transition probability pg(b|z) satisfies the relation

p(blz) = a;p(y|z; j) (4.21)

because the channel state is independent of the input. If we define —b £ (—y, j), then
we obtain from (4.21) and the symmetry of the transition probabilities p(y|z; j) that
pe(blx) = pp(—b| — z); thus, the CSIR model is also symmetric. In summary, the
parallel-channel model presented in Sec. 3.2 is equivalent to an MBIOS channel with
transition probability given in (4.21). We may thus use the DS2 bounding technique
directly on the CSIR model; using this approach, the need to average over all channel
mappings is circumvented.

Following this approach, we set the channel output to be b = (y, j) and substitute
(4.21) into (3.15) to get the upper bound

h
P, < <Z Zwyj P05 ) 7 plyl1; J))

n—h 0<p<1
(Za > Wy i)' e p(ylo; J)‘1’> A0 (4.22)
> Ywig) =1
As in the first approach (see (4.9)), this bound may also be expressed in terms
of an un-normalized tilting measure, rather than a normalized (probability) measure.
We will use this version later when we discuss special cases of this bound. The DS2
bound for parallel channels obtained using the second approach which is expressed

using the un-normalized tilting measure is as follows:

J n(1-p)
Z%‘ Zg(y;j)p(ylo;j)]
Z% (Zgyj p(yl0; 5) " p(yl1;5) )]
0<

P <

Lj=1

(n—h)p p
Za]<29yj y|0])>] , Azo' (4.23)

Lj=1
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We turn our attention to the derivation of optimized tilting measures for the gener-

alized DS2 bound obtained using the second approach.

4.3.2 Optimization of the Tilting Measures

The optimization of tilting measures for the generalized DS2 bound in (4.22) obtained
using the perfect CSIR model relies on this optimization for MBIOS channels. As
in the first approach, the bound for a specific constant Hamming-weight subcode is
expressed in exponential form

DSQQ(

Al 0<p<1, A>0, &2 (4.24)

h
Pe h) < —nE o
o(h) <e -

where

B (p.J dagy) & —pri(s péln(Za 2 V)" yiof“p(y‘“))

p(l —6)In (Za Zz/) y: ) e p(y|0; j)/13> ) (4.25)

The optimized tilting measure should be chosen so as to maximize the exponent in
(4.25). Since the perfect CSIR model is equivalent to an MBIOS channel, we can
use the results of Sec. 4.2.2 with J = 1; by substituting the transition probability
from (4.21) into (4.18), we obtain that the optimal form of the tilting measure is

A
(s J) = Bayp(y]0: ) (1 Tk (M) ) (4.26)

given by

p(w|0;4)

where k is a parameter to be optimized and 3 is a normalizing constant given by

oA\ P
_ [Z a;p(y|0; j) (1 Tk (%) )

4.4 Comparison Between the Two Generalized DS2

(4.27)

Bounds for Parallel Channels

Let us examine the two generalizations of the DS2 bound proposed in Sections 4.2

and 4.3 for the purpose of comparison. To this end, for constant weight subcodes
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of Hamming weight h (including the all-zero codeword), we write out the explicit
expressions for the two bounds, including the optimal form of the tilting measures.
By substituting (4.18) with the optimal value of k in (4.19), the bound in (4.7)
obtained by the first approach reads

17h
. plLN (4 o (PN
Feo(h) < (An) Z%Zﬁ ( (y !0,3)> <1+k°m (p(yIO;j)> )
n—h

J AN A\ P ’
. =g p(ylL;j)
;%;ﬁj p(y]0:5) (1+kopt (p@m;j))) - (4.28)

In the same way, substituting (4.26) in (4.22) gives the bound obtained by using the

second approach

h
17 A 2 L) N
it < a0 | [ S o (D) - (20 )

n—hY) "
A
Z%ZB (y]0: 5) <1+/c0pt (ig;;ji) ) . (4.29)

From these expressions one cannot conclusively deduce the superiority of one of the

bounds over the other in general. However, in the random coding setting, it can be
shown that the DS2 bound in Section 4.3 is tighter than the one in Section 4.2. To
this end, we show that the former bound attains the random coding exponent [18§]
while the latter does not.

The random coding exponent which corresponds to the MBIOS channel given by
the perfect CSIR model, from which the second version in Section 4.3 is derived, gives

the relation
P, <27 nEl)=PR) < p <] (4.30)

where

= —log,

Ey(p) = —log, (Z (%ps(bIO)lip - %pB(bu)lip) p)
(Z 0‘32( (yl0; )7 + 1p(y|1 J)“”) p) (4.31)
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We now turn to find the random coding exponent which stems from the use of the
bound in Section 4.3. We start with the bound in (4.23) which is expressed in
terms of the un-normalized tilting measure. Consider the following choice for the
un-normalized tilting measure

9(y; J) =

w1 N N )
Qp(yIO;J)HP +§p(y|1;3)1+p} p(yl0; 7)™, j=1,2,...,J (4.32)

and the distance spectrum of the ensemble of random binary block codes of length n

and rate R, given by

A, = 27 "0-R) <Z> h=0,1,...,n. (4.33)

Substituting (4.32) and (4.33) into (4.9) and setting A = ﬁp gives the bound

1 L) "
Pe <2an{20¢;2{ p(yl0: )™ + = p(yllj)w} } (4.34)

which coincides with the random coding bound in (4.30)-(4.31).
By substituting the tilting measure (4.32) in the bound in Section 4.2 (see (4.7))
we get the following error exponent, which appears instead of Ey(p) in (4.31)

1 1+p %
Eo(p) = —log, Z% (Z “ply|0; §) T + SPWlL; J)”")

Y

Using Jensen’s inequality and the fact that 0 < p < 1, it is easy to show that
Ey(p) < Eo(p), and we therefore conclude that the bound from Section 4.3 is tighter
than the one in Section 4.2 in the random coding setting.

Discussion. When comparing the two versions of the bound, it should be noted
that the two optimized forms of tilting measures as given in (4.18) and (4.26) are
not identical. While these two forms of tilting measures exhibit the same functional
behavior, the normalization conditions are slightly different, with J normalizing con-
stants in the first version of the bound (see (4.20)) and one constant (see (4.27)) in
the second version. This suggests that neither of these bounds in (4.28) and (4.29) is
uniformly tighter than the other for general codes or ensembles; this observation was

also verified numerically by comparing the two bounds for some code ensembles. For
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random codes, we note that the tightness of the first version is hindered by the use
of Jensen’s inequality which is applied in the process of averaging over all possible
channel assignments (see the move from (4.4) to (4.5)). This application of Jensen’s
inequality does not appear in the derivation of the second version of the DS2 bound,

and may be the seed of the pitfall of the first version, when applied for random codes.

4.5 Statement of the Main Result Derived in Chap-
ter 4

The analysis in this chapter leads to the following theorem:

Theorem 1 (Generalized DS2 bounds for independent parallel MBIOS channels)
Consider the transmission of binary linear block codes (or ensembles) over a set
of J independent parallel MBIOS channels. Let the pdf of the ;™ MBIOS chan-
nel be given by p(:|0;j) where due to the symmetry of the binary-input channels
p(y]0;7) = p(—y|1;7). Assume that the coded bits are randomly and independently
assigned to these channels, where each bit is transmitted over one of the J MBIOS
channels. Let a; be the a-priori probability of transmitting a bit over the j™ channel
(7=1,2,....J), so that a; > 0 and Z}]=1 a; = 1. By partitioning the code into con-
stant Hamming-weight subcodes, Eqgs. (4.11) and (4.22) provide two possible upper
bounds on the conditional ML decoding error probability for each of these subcodes,
given that the all-zero codeword is transmitted, and (4.10) forms an upper bound on
the block error probability of the whole code (or ensemble). For the bound in (4.11),
the optimized set of probability tilting measures {¢(-; j)}7_, which attains the min-
imal value of the conditional upper bound is given by the set of equations in (4.18);

for the bound in (4.22), the optimal tilting measure is given in (4.26).
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Chapter 5

The (allager Bound for Parallel
Channels and Its Connection to
the DS2 Bound

5.1 Short overview

The 1961 Gallager bound for a single MBIOS channel was derived in [17], and a
generalization of the bound for parallel MBIOS channels was proposed by Liu et al.
[26]. In the following, we outline the derivation in [26] which serves as a preliminary
step towards the discussion of its relation to the two versions of the generalized DS2
bound from Chapter 4. In this chapter, we optimize the probability tilting measures
which are related to the 1961 Gallager bound for J independent parallel channels in
order to get the tightest bound within this form (hence, the optimization is carried
w.r.t. J probability tilting measures). This optimization differs from the discussion in
[26] where the authors choose some simple and sub-optimal tilting measures. By doing
so, the authors in [26] derive bounds which are easier for numerical calculation, but
the tightness of these bounds is loosened as compared to the improved bound which
relies on the calculation of the J optimized tilting measures (this will be exemplified

in Chapter 8 for turbo-like ensembles).
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5.2 Presentation of the Bound by Liu et al.

Consider a binary linear block code C. Let 2™ be the transmitted codeword and
define the tilted ML metric

(m)
m’ A n n (y)

(ylz™)

where f,gm) () is an arbitrary function which is positive if there exists m’ # m such
that p,(ylz™) is positive. If the code is ML decoded, an error occurs if for some
m' #m

Dy (2", y) < Din(2™,y) -
As noted in [40], D,,(-,-) is in general not computable at the receiver. It is used
here as a conceptual tool to evaluate the upper bound on the ML decoding error

probability. The received set )" is expressed as a union of two disjoint subsets

yro= YUy
o2 {yed":Dy(™y) <nd}
R {g € Y": Dp(z™,y) > nd}

where d is an arbitrary real number. The conditional ML decoding error probability

can be expressed as the sum of two terms
Py = Prob(error, y € )}) + Prob(error,y € Vi)
which is upper bounded by
Py < Prob(y € Jyy) + Prob(error,y € V') . (5.2)

We use separate bounding techniques for the two terms in (5.2). Applying the Cher-

noff bound on the first term gives

P £Prob(y e V) <E (™), s>0 (5.3)
where -
W £ 1n n—@ —nd . (5.4)
pa(ylz™)
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Using a combination of the union and Chernoff bounds for the second term in the
RHS of (5.2) gives

P, £ Prob(error,y € V)
= Prob <Dm(gm/,g) < Dy, (2™, y) for some m' #m, y € yg)

< Y Prob (Dm(gm’,g) < D™, y), Din(2™,y) < nd)

m/#m

< Z E (exp(tU,, +rW)), t,r<0 (5.5)

m/#m

where, based on (5.1),

Ups = D™ ) = Dn(a™ ) = In (M) | (5.6)

Consider a codeword of a binary linear block code C which is transmitted over J
parallel MBIOS channels. Since the conditional error probability under ML decoding
does not depend on the transmitted codeword, one can assume without loss of gener-
ality that the all-zero codeword is transmitted. As in Section 4.2, we impose on the

function fi™ (y) the restriction that it can be expressed in the product form

For the continuation of the derivation, it is assumed that the functions f(-;j) are
even, i.e., f(y;j) = f(—y;j) for all y € V. Plugging (4.1), (5.4), (5.6) and (5.7) into
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(5.3) and (5.5) we get

J .
f(yhj) >S 1n- 5 e—nsd
ho= Xy:{Jngl_([]) (p(yilo;j) p(ylo’j)}
J nj
:]I{(EJMMJISﬂyﬁ> }e“dszo (5.8)
Jj=1 yey
J . . t
S (Wi 7) )7" A p(wil0;9) rd
P, < JWid) 10: ) [ 2T
= Zy:mfyémgl:[ueﬂj){(p(yim;j) P09 (P(yi\ifgm);j)) }6
SN ! wlo:)\]"
- 3. A N T ££4L>
2 2 ) A mll[%;mmmﬁ f@d)(mmhﬁ ]
n;—h;
Ilb:mmmﬁlkurl }ewﬂtr<0 (5.9)
Jj=1 Lyey

where as before, we use the notation n; £ |Z(j)|. Optimizing the parameter t gives
the value in [17, Eq. (3.27)]

t:rgl. (5.10)

Let us define
G(rij) = > plo;) " fly;5) (5.11)
Z(ri) 23 Il eyl L)) T fly ) (5.12)
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Substituting (5.10) into (5.9), combining the bounds on P, and P, in (5.8) and (5.9),

and finally averaging over all possible channel assignments, we obtain

h=1 0<h;<n; J=1
S hj=h
J
+[[IG(s:5))me ”Sd]
j=1
n J

B Z Z Z Ap., hJH[Z(r;j)]hj[(;(r;j)]nj—hje_md

n;>0 | h=10<h;<n, j=1
2 ng=n > hj=h
J r<0
+ H[G(s;j)]”je‘“d} Py(n) s>0 . (5.13)
=t —o0 < d<

Following the same procedure for random assignments as in (4.6) and (4.7), we obtain

n—h

n J hrg
P, < Z Ap (Z OéjZ(T;j)> (Z ajG(r;j)) e nrd
+ (Z%‘G(S%J)) e (5.14)

Finally, we optimize the bound in (5.14) over the parameter d which gives

n—h n(l—p)

[Z a;G(r; j) {Z ajG(S;j)}(5-15)

Jj=1

Pe S 2H(p) ZAh
h=1

J
> a;Z(r; )
7=1

where r < 0, s > 0, and

pa 2 0<p<l. (5.16)

sS—7T

The bound in (5.15), originally derived in [26], is a natural generalization of the 1961

Gallager bound for parallel channels.
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5.3 Connection to the Generalizations of the DS2
Bound

In this section we revisit the relations that exist between the DS2 bound and the
1961 Gallager bound, this time for the case of independent parallel channels. We will
compare the 1961 Gallager bound with both versions of the DS2 bound presented in
Sec. 4. For the case of a single MBIOS channel, it was shown [13, 37, 40] that the
DS2 bound is tighter than the 1961 Gallager bound.

This result easily extends to parallel channels, for the case of the second version of
the DS2 bound which was derived in Sec. 4.3 using the perfect CSIR channel model.
Under this model, the parallel-channel is expressed as a single MBIOS with output
defined as the pair b = (y,j). The results in [13, 37, 40] therefore apply directly to
the CSIR model and can be used to show that the DS2 bound in (4.22) is tighter
than the 1961 Gallager bound (5.15).

In this respect, the DS2 bound from Section 4.2 exhibits a slightly different behav-
ior. In the remainder of this section, we provide analysis linking this bound with the
1961 Gallager bound. In what follows, we will see how a variation in the derivation
of the Gallager bound leads to a form of the DS2 bound from Section 4.2, up to a
factor which varies between 1 and 2. To this end, we start from the point in the last
section where the combination of the bounds in (5.8) and (5.9) is obtained. Rather
than continuing as in the last section, we first optimize over the parameter d in the
sum of the bounds on P; and P, in (5.8) and (5.9), yielding that

n J
P < 2H(P){Z Z Ay thv(rt]) jGr]ny } HGSjng(lp

h=1 hi,...,h; 7j=1
Zth:
n J ey
- 2H(p) Z Z Ahl,.-.,hJH |:V<T7t7.])G(87]) L ]
h=1 hy,...,h; 7=1
Zj hj=

where

V(rt; ) Zp yl0; )7 (g3 )" (ig‘z:?ﬁ) (5.17)
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G(+;7) is introduced in (5.11) for j = 1,...,J, and p is given in (5.16). Averaging

the bound with respect to all possible channel assignments, we get for 0 < p <1

Pe S 2H(p) Z {[zn: Z Ah1 77777 hJH |:V(T,t j)G(S ])1—p:|hj
n; >0 h=1 hy,..h; j=1
> ;ni=n > hj=h
J 1—p]ni—h; g
[T |ct:iGs) ] PN@}
j=1

n;>0 h=1 hi,...h; j=1
Zjnj—n Ejhjzh
J P
. N l=p]mihy
[T [GesnGsii) =] ] (5.18)
j=1

where we invoked Jensen’s inequality in the last step. Following the same steps as in
(4.4)—(4.7), we get

J n—h]?
(Z %G(T;j)G(S;j)lﬂp> ) (5.19)
where from (5.10), (5.11), (5.16) and (5.17)
= p(yl0; ) (
rid) = X ptwiosg) (1% ) K

Vit = Ll () ) o

Setting A = —t, and substituting in (5.20) the following relation between the Gallager

tilting measures and the un-normalized tilting measures in the DS2 bound

N A f(i%]) ’ .
g(y,j)_(p(ym;j)) , 7=12,...,J (5.21)
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we obtain

P, < 2H(P){2Ah
h=0

J
> (Z 9(y; )" p(y10; ) p(ylL: jV)

p

(Z g(y;j)p(y\o;j)>

(Z g(y;j)p@m;j)) , 0<p<l (5.22)
4 .

which coincides with the form of the DS2 bound given in (4.9) (up to the factor 27
which lies between 1 and 2), for those un-normalized tilting measures g(-; j) such that
the resulting functions f(-;7) in (5.21) are even.

Discussion. The derivation of the 1961 Gallager bound first involves the averaging
of the bound in (5.13) over all possible channel assignments and then the optimization
over the parameter d in (5.14). To show a connection to the DS2 bound in (4.9), we
had first optimized over d and then obtained the bound averaged over all possible
channel assignments. The difference between the two approaches is that in the latter,
Jensen’s inequality had to be used in (5.18) to continue the derivation (because the
expectation over all possible channel assignments was performed on an expression
raised to the p-th power) which resulted in the DS2 bound, whereas in the derivation
of [26], the need for Jensen’s inequality was circumvented due to the linearity of the
expression in (5.13). We note that Jensen’s inequality was also used for the direct
derivation of the DS2 bound in (4.7); this use of Jensen’s inequality hinders the
tightness of this bound to the point where we cannot determine if it is tighter than
the 1961 Gallager bound or not. For the special case of J = 1, both versions of the
DS2 bound degenerate to the standard DS2 bound from Sec. 3.4. In this case, as in
the case of the DS2 bound from Section 4.3, the DS2 bound is tighter than the 1961

Gallager bound (as noted in [40]) due to the following reasons:

e For the 1961 Gallager bound, it is required that f(-;7) be even. This require-
ment inhibits the optimization of ¥(+; j) in Section 4 because the optimal choice
of ¥(+;7) given in (4.18) leads to functions f(-;j) which are not even. The ex-
act form of f(-;7) which stems from the optimal choice of ¥ (-; j) is detailed in
Appendix A.
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e The absence of the factor 2 (which is greater than 1) in both versions of
the DS2 bound implies their superiority. Naturally, this factor is of minor
importance since we are primarily interested in the exponential tightness of

these bounds.

It should be noted that, as in the case of J = 1, the optimization over the DS2
tilting measure is still over a larger set of functions as compared to the 1961 Gallager
tilting measure; hence, the derivation appearing in this section of the DS2 bound in
(4.9) from the 1961 Gallager bound only gives an expression of the same form and

not the same upper bound (disregarding the 27(°) constant).

5.4 Optimized Tilting Measures for the General-
ized 1961 (Gallager Bound

We derive in this section optimized tilting measures for the 1961 Gallager bound.
These optimized tilting measures are derived for random coding, and for the case
of constant Hamming weight codes. The 1961 Gallager bound will be used later in
conjunction with these optimized tilting measures in order to get an upper bound
on the decoding error probability of an arbitrary binary linear block code. To this
end, such a code is partitioned to constant Hamming weight subcodes (where each
one of them also includes the all-zero codeword). The 1961 Gallager bound is applied
separately for every subcode, and the union bound (4.10) is taken over the subcodes.
Using these optimized tilting measures improves the tightness of the resulting bound,

as exemplified in the continuation of this dissertation.
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5.4.1 Tilting Measures for Random Codes

Consider the ensemble of fully random binary block codes of length n. Substituting
the appropriate weight enumerator (given in (2.5)) into (5.14), we get

pPo< 27" R{ Z%Z[ Wl0;5) = +p(yl1:j) = ]zf(y;j)’”} e "

r<0

J n
{% Yoy (pl0:5) " +plyl155)' ) f(y;j)s} e s>0 (5.23)
deR

where we rely on (5.11) and (5.12), use the symmetry of the channels and the fact
that we require the functions f(-;j) (j = 1,...,J) to be even. To optimize (5.23)
over all possible tilting measures, we apply calculus of variations. This procedure

gives the following equation:

1—r 1-r\ 2
a; (P(p10:)'F +pWL:5) T ) flyis)

M- I

J

LS (p(y]0; ) 4+ plyl15) ) Fly; ) = 0 W

1

J

where L € R. This equation is satisfied for functions which are given in the form

_1
s—r

(p(w10:3)%* +p(s]1:)'F)

p(y[0; 7)== + p(y|1; 7))~

flyj) =K K €R. (5.24)

This forms a natural generalization of the tilting measure given in [17, Eq. (3.41)]
for a single MBIOS channel. We note that the scaling factor K may be omitted as it
cancels out when we substitute (5.24) in (5.15).

5.4.2 Tilting Measures for Constant Hamming Weight Codes

The distance spectrum of a constant Hamming weight code is given by

1, ifHh=0
Ap =< A, ifh' =h (5.25)

0, otherwise
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Substituting this into (5.15) and using the symmetry of the component channels and

the fact that the tilting measures f(+;j) are required to be even, we get

hp
Py(h) < 2H")AP{Z%Z (y]0; Nyl )] = Fly; J)}
0 (n—h)p
: {Zgjz [p(y10; )"+ ply[1;5) "] f(y;j)’”}
7 n(1—p)
: {Z%Z [p(y]0; )" + p(y|1;5)" ] f(y;j)s} :

Y

r<0,s>0 p= i

(5.26)

s—1

Applying calculus of variations to (5.26) yields (see Appendix B for some additional
details) that the following condition should be satisfied for all values of y € V-

J
>~ ai{ [p10:)' + ps ) =) F:3) " + Ky o et )] T (5:27)

J=1
+Ky [p(ylosj)l""+p(y!1;j)H}} =0

where K1, Ky € R. This condition is satisfied if we require

[p(y10: )5 + p(yl15 )] Fly:d)* + K [p(y]0; 5)plyl1; 5)] =
+K, [plo; )T +pylL0) T =0, Wyed, j=1,...,J

The optimized tilting measures can therefore be expressed in the form

N 1=s1—p~h) A 1=s(—p~H\ 2
o Cl<p<y|0§]) = 4yl )
yij) = . :

p(y|0; j)1 = + p(y[1; )=

+

dy (p(ylosj)l‘s(l"’_l) +p(y\1;j)1_s(1_”_l)) ¢ adieR
. . ., s>0 (5.28)
p(y|0;5) = + p(y[1;5)' } -
(¥10; ) (y[1;7) 0<o<1
where we have used (5.16). This form is identical to the optimal tilting measure for
random codes if we set d; = 0. It is possible to scale the parameters ¢; and d; without

affecting the 1961 Gallager bound (i.e., the ratio % cancels out when we substitute
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(5.28) in (5.15)). Furthermore, we note that regardless of the values of ¢; and dy, the
resulting tilting measures are even functions, as required in the derivation of the 1961

Gallager bound.

For the simplicity of the optimization, we wish to reduce the infinite intervals in
(5.28) to finite ones. It is shown in [35, Appendix A] that the optimization of the

parameter s can be reduced to the interval [0, 1] without loosening the tightness of the

c1+2d;
2¢143d1

enables one to express the optimized tilting measure in (5.28) using an equivalent form

bound. Furthermore, the substitution ¢ = as suggested in [35, Appendix B],
where the new parameter ¢ ranges in the interval [0, 1]. The numerical optimization
of the bound in (5.28) is therefore taken over the range of parameters 0 < p < 1,
0 <s<1,0<c¢<1. Basedon the calculations in [35, Appendices A, B], the

functions f(-;7) get the equivalent form

1—s(1—p71

[ (plo) I e N
f(%]) - p<y’0;j)1—s —l—p(y\l;j)l—s

_ L lmsopTh e
L2 (pl0: p(yl1ig)
p(y|0; 7)1 + plyl1; )1

. (p,s,c) €[0,1]%. (5.29)

By reducing the optimization of the three parameters over the unit cube, the com-

plexity of the numerical process is reduced to an acceptable level.

5.5 Alternative Derivation of the 1961 Gallager
Bound Using the CSIR Approach

In this section we use the CSIR approach to obtain a generalization of the 1961
Gallager bound for parallel channels, where the application of this approach is very
similar to that of Sec. 4.3. The key result here is that applying the CSIR approach
to the 1961 Gallager bound yields the same bound as in (5.15). The derivation is
as follows. We begin with the classic 1961 Gallager bound [17] for a single MBIOS

channel given that the all-zero codeword is transmitted. Applying the bound on a
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constant-Hamming weight subcode yields

p

Pyo(h) < 29008 A4, 1 [p(yl0)p(yl1)]

Y

n(l—p)
{Eywmmﬂw} (5.30)

where f () is the tilting measure associated with the bound. The optimal tilting

= f(y)T] [Zp(y\o)l"”f(y)’”]

measure for this bound is of the form

[0l )T ) 20 ) N
)= PO T o0

for some p,s,c € [0,1]*. We now make use of the CSIR model by replacing y with
b = (y,7) and substituting (4.21) in (5.30) and (5.31); this yields the bound

7 h
Pao(h) < 270 S 4 |37 ol [plyl0: j)p(y/1: )] = f@m)’”]

i) P
[i > Oz}_rp(y\o;j)”f(y;jy]
=1y .
{Zp(yl();j)l_sf(y;j)s} (5.32)
and the optimal tilting measjre
Flysd) = a; f(y:9) (5.33)

where f(y; j) is given in (5.28). By substituting (5.33) in (5.32) the optimal bound is

P.o(h) ngm{%

J
Z%’ > Ip(wl0; j)p(yl ) F f(y;j)’"]

7 n—h
[Z a Zp(yl();j)l"“f(y;j)r]

Y

J n(1-p)
{Z o Zp(ylo;j)l_sf(y;j)s} (5.34)

Y
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which is identical to the 1961 Gallager bound in (5.15), when applied for a constant

Hamming-weight code.

5.6 Statement of the Main Result Derived in Chap-
ter 5

The analysis in this chapter leads to the following theorem:

Theorem 2 (Generalized 1961 Gallager bound for parallel channels) Consider
the transmission of binary linear block codes (or ensembles) over a set of J indepen-
dent parallel MBIOS channels. Following the notation in Theorem 1, the general-
ization of the 1961 Gallager bound in (5.15) provides an upper bound on the ML
decoding error probability when the bound is taken over the whole code (as originally
derived in [26]). By partitioning the code into constant Hamming-weight subcodes,
the generalized 1961 Gallager bound on the conditional ML decoding error probability
of an arbitrary subcode (given that the all-zero codeword is transmitted) is provided
by (5.26), and (4.10) forms an upper bound on the block error probability of the
whole code (or ensemble). For an arbitrary constant Hamming weight subcode, the
optimized set of non-negative and even functions {f(-;j)}7_; which attains the min-
imal value of the conditional bound in (5.26), is given by (5.29); this set of functions

is subject to a three-parameter optimization over a cube of unit length (see (5.29)).

68



Chapter 6

Special Cases of the Generalized
DS2 Bound for Independent
Parallel Channels

6.1 Short overview

In this chapter, we rely on the two versions of the generalized DS2 bound for inde-
pendent parallel MBIOS channels, as presented in Sections 4.2 and 4.3, and apply
them in order to re-derive some of the bounds which were originally derived by Liu
et al. [26]. The derivation in [26] is based on the 1961 Gallager bound from Sec-
tion 5.2, and the authors choose particular and sub-optimal tilting measures in order
to get closed form bounds (in contrast to the optimized tilting measures in Section 5.4
which lead to more complicated bounds in terms of their numerical computation). In
this chapter, we follow the same approach in order to re-derive some of their bounds
as particular cases of the two generalized DS2 bounds (i.e., we choose some partic-
ular tilting measures rather than the optimized ones). In some cases, we re-derive
the bounds from [26] as special cases of the generalized DS2 bound, or alternatively,

obtain some modified bounds as compared to [26].

69



6.2 The Union-Bhattacharyya Bound

Asin the case of a single channel, it is a special case of both versions of the DS2 and the
1961 Gallager bound. By substituting » = 0 in the Gallager bound or p = 1,A = 0.5
in both versions of the DS2 bound, we get

n(l1—-R

)
PeS Z Ah’)/h (61)
h=1

where 7 is given by (3.3) and denotes the average Bhattacharyya parameter of J
independent parallel channels. Note that this bound is given in exponential form,
i.e., as in the single channel case, it doesn’t use the exact expression for the pairwise
error probability between two codewords of Hamming distance h. For the case of the
binary-input AWGN, we now present a tighter version which uses the Q-function to
express the exact pairwise error probability.

This form of the union bound can also be used in conjunction with other bounds
(e.g., 1961 Gallager or both versions of the DS2 bounds) for constant Hamming weight
subcodes in order to tighten the resulting bound. Unfortunately, we cannot compare
here ”two versions” of the union derived by the two different approaches which were
used for the DS2 bound in Sec. 4. This is because when applying the perfect CSIR
model, we have no exact expression for the pairwise error probability for a general
distribution «; of the channel states. Therefore, we must use the first approach of
averaging the bound over all possible channel mappings. We start the derivation by
expressing the pairwise error probability given that the all-zero codeword is transmit-
ted

J
PO = zpypy n) = Q| (2D vihy (6.2)
j=1
where z;, ;. is a codeword possessing split Hamming weights hy, ..., h; in the J
parallel channels, and v; = (%) ~designates the energy per symbol to spectral noise
j

density for the j*" AWGN channel (j = 1,2,...,J). The union bound on the block

error probability gives

n

P < Z Z Apyyny, Q

h=1 h1>0,...,h;>0
hit..+hy=h

(6.3)
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where this bound is expressed in terms of the split weight enumerator of the code.

Averaging (6.3) over all possible channel assignments gives (see (4.6))

where o designates the a-priori probability for the transmission of symbols over the
4" channel, assuming the assignments of these symbols to the .J parallel channels are

independent and random.
In order to simplify the final result, we rely on Craig’s identity for the Q)-function,

ie.,

™

Q(x) = — /2 e zZadl x > 0. (6.5)
0

Plugging (6.5) into (6.4) and interchanging the order of integration and summation

71



gives

1 (2 - h
P < ;/0 Yoo > Ah(hl,hz,...,hJ)

n; >0 h=1 0<h;<n;
ni+...4+nj=n Zhj:h

J
n—~h _vihy
( )a’fl...aﬁj | Ie sinZo > df
nl_h17n2_h27"'7nJ_hJ j=1

y 1 7 h J L I L
%/0 ,;A" 2. {(hl,hQ,...,hJ>H[O‘fe 9] }

—
o

h; >0 j=1
> hj=h
J
> (@) J} do
5520 {(k’l,kz,...,kJ e
Zj kj=n—h

T n J h
1 [z vj
© —/ S| e | o (6.6)
TJo 3o j=1

where (a) follows by substituting k; = n; — h; for j = 1,2,...,J, and (b) follows

since the sequence {a; }3-]:1 is a probability distribution, which gives the equality

n h J J n—h
_ 5 - | )
Z {(kl’k27"-akJ) H<aj) } - (ZQ]> = 1.
k;j>0 ey —
Zj klj:n—h

Eq. (6.6) provides the exact (Q-form) version of the union bound on the block error

probability for independent parallel AWGN channels.

6.3 The Simplified Sphere Bound for Parallel AWGN

Channels

The simplified sphere bound is an upper bound on the ML decoding error probability
for the binary-input AWGN channel. In [26], the authors have obtained a parallel-
channel version of the sphere bound by making the substitution f(y;j) = —i= in the

Var
1961 Gallager bound. We will show that this version is also a special case of both
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versions of the parallel-channel DS2 bound. By using the relation (5.21), between

Gallager’s tilting measure and the un-normalized DS2 tilting measure, we get

) ( £(5:9) ) o (s<y+2¢27j> )

p(/0;4)

so that

oo : : 1
/ 9(y;7)p(y|0:7) dy = ——

/mg(y;j)l_;p(y\o;j) dy = !
—o 1-s (1 - %)
/+Oo eyj <1—s<1—%))

N1-1 N .
9y )P p(y|0; ) (|1 5)* dy =

: o)

. . _ 1 _
By introducing the two new parameters § =1 — s (1 — ;) and A = 5 we get

T o(ulo: Ny — L
/_OO 9y 7)p(y10; j)dy = 4 [ 7= 5
oo 1 1
| st ety = 57} (6.7

400 B8
N1-—1 N1—\ AN 7j A —u.
g(y;7) Pp(y|0;5) " p(ylL; ) dy = =5, vy =e .
/oo Vi ’

Next, by plugging (6.7) into the DS2 bound in (4.9), we get

P n(1—p)

n J h 1 p — 0
5\ g-2 -
e ZAh<Zaﬂj> o (1—ﬁp) !
h=0 j=1

(6.8)

The same expression may be obtained by plugging (6.7) into the DS2 bound in (4.23).
This bound is identical to the parallel-channel simplified sphere bound in [26, Eq.
(24)], except that it provides a slight improvement due to the absence of the factor
2H(r) which appears in [26, Eq. (24)] (a factor bounded between 1 and 2).
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6.4 Generalizations of the Shulman-Feder Bound

for Parallel Channels

In this section, we present two generalizations of the Shulman and Feder (SF) bound,
where both bounds apply to independent parallel channels. The first bound was
previously obtained by Liu et al. [26] as a special case of the generalization of the
1961 Gallager bound and will be shown to be a special case of the DS2 bound from
Section 4.3, and the second bound follows as a particular case of the DS2 bound from
Section 4.2 for independent parallel channels.

By substituting in (5.15) the tilting measure and the parameters (see [26, Eq. (28)])

$oi0) = (3p010:0)7H + (o1

L—p P
1+p I+p P (6.9)
straightforward calculations for MBIOS channels give the following bound which was

originally introduced in [26, Lemma 2]:

n

1+p
A
H(p)onRp h -
P, <2172 (1%?2% 2n(1R)(Z)> E :0@ <§ p(y]0; )74 + p(yll ])“P)

Y

(6.10)
Due to the natural connection between the DS2 bound in Section 4.3 and the 1961
Gallager bound for parallel channels (see the discussion in Sec. 5.3), the generalized
SF bound is also a special case of the former bound. The tilting measure which should
be used in this case to show the connection has already appeared in (4.32) (as a part

of the discussion Sec. 4.4 on the random coding version of this bound) and it reads

p

N 1 N NP
= p(y|0; ) ™e + 5 p(yl1; 7)™ | p(y|0;5) ™.

9(y;j) = 5

The result is the same as the bound in (6.10) except for the absence of the factor
2H(p)

Considering the generalization of the DS2 bound in Section 4.2, it is possible to

start from Eq. (4.9) and take the maximum distance spectrum term out of the sum.
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This gives the bound

1-p
P

p J
A
< —n(1—R)p h 4 o L
P, < 2 <1I£li?<xn—2n(1R)(Z) E ;[ 9(y; 1)p(w]0; )
Y

~[Zp(y\0;j)g(y;j)1‘i (1 + (%) )] } ,0<p<1.  (6.11)

Using the J un-normalized tilting measures from (4.32) and setting A = Fp in (6.11),

gives the following bound due to the symmetry at the channel outputs:

A P
< ’an h
Foo< 2 (1?;?2% 2—n<1—R>(Z)>

1 1+p % "
Zaj (Z (910:) 7 + 5ply |1y>1+p> L 0<p<1(6.12)

Y

which forms another possible generalization of the SF bound for independent parallel
channels. Clearly, unless J = 1 (referring to the case of a single MBIOS channel),
this bound is exponentially looser than the one in (6.10). The fact that the bound in
(6.12) is exponentially looser than the bound in (6.10) follows from the use of Jensen’s

inequality for the derivation of the first version of the DS2 bound (see the move from
(4.4) to (4.5)).

6.5 Modified Shulman-Feder Bound for Indepen-
dent Parallel Channels

It is apparent from the form of the SF bound that its exponential tightness depends
on the quantity
Ap

o 9=n(1-R) B (6.13)

which measures the maximal ratio of the distance spectrum of the considered binary
linear block code (or ensemble) and the average distance spectrum of fully random
block codes with the same rate and block length. One can observe from Fig. 2.5

that this ratio may be quite large for a non-negligible portion of the normalized
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Hamming weights, thus undermining the tightness of the SF bound. The idea of
the Modified Shulman-Feder (MSF) bound is to split the set of non-zero normalized

Hamming weights ¥, £ {1 2

n)n’

...,1} into two disjoint subsets U, and ¥, where
the union bound is used for the codewords with normalized Hamming weights within
the set Wt

n?

was originally applied to the ML analysis of ensembles of LDPC codes by Miller and

and the SF bound is used for the remaining codewords. This concept

Burshtein [29]. Typically, the set WU consists of low and high Hamming weights,
where the ratio in (6.13) between the distance spectra and the binomial distribution
appears to be quite large for typical code ensembles of linear codes; the set ¥ is the
complementary set which includes medium values of the normalized Hamming weight.
The MSF bound for a given partitioning ¥, , ¥;" is introduced in [26, Lemma 3], and
gets the form

p
A
h H(p)onR, h

P, < E Apy" 4+ 2712 P<hmaX —n(l_R)(Z)>

hoT_ o—
2evw 2
h: %E\I!;f n- o

J 1+p) "
2 (Zﬁ%m;y)w+§p<y|1;y>w) (6.14)
j=1

Y

where v is introduced in (3.3), and 0 < p < 1. Liu et al. prove that in the limit
where the block length tends to infinity, the optimal partitioning of the set of non-zero

normalized Hamming weights to two disjoint subsets ¥, and W is given by (see [26,
Eq. (42)])

vk if —dlny>H(@O)+ (I —1)In2

v otherwise

de (6.15)

where
J

T2 S Y sl oy et

j=1 ze{-1,1} ¥ a'e{-1,1} p(yla’; j)

designates the average mutual information under the assumption of equiprobable bi-
nary inputs. Note that for finite block lengths, even with the same partitioning as
above, the first term in the RHS of (6.14) can be tightened by replacing the Bhat-
tacharyya bound with the exact expression for the average pairwise error probability
between two codewords of Hamming distance h. Referring to parallel binary-input

AWGN channels, the exact pairwise error probability is given in (6.6), thus providing
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the following tightened upper bound:

- ~h
1/2 vj
P < - Ap e smZo | df
= I Z :
h: bewt
o
+2H(p)2”Rp< max An

b bewy 270-R)(T)

n

ZO‘J (Z (y|0: )T + 1p( |1; J)”") : (6.16)

Y

On the selection of a suitable partitioning of the set V,, in (6.16): The asymptotic
partitioning suggested in (6.15) typically yields that the union bound is used for
low and high values of normalized Hamming weights; for these values, the distance
spectrum of ensembles of turbo-like codes deviates considerably from the binomial
distribution (referring to the ensemble of fully random block codes of the same block
length and rate). Let §;, and ¢, be the smallest and largest normalized Hamming
weights, respectively, referring to the range of values of § in (6.15) so that W, =
{6,604+ 2,...,6,}, and U} £ {1 O — 2y u{é, + 1,0, + 2,...,1} are the

sets of normalized Hamming weights. The subsets U™ and W, refer to the discrete

n,n,...

values of normalized Hamming weights for which the union bound in its exponential
form is superior to the SF bound and vice versa, respectively (see (6.14)). Our
numerical experiments show that for finite-length codes (especially, for codes of small
and moderate block lengths), this choice of ¢; and ¢, often happens to be sub-optimal
in the sense of minimizing the overall upper bounds in (6.14) and (6.16). This happens
because for § = §; (which is the left endpoint of the interval for which the SF bound
is calculated), the ratio of the average distance spectrum of the considered ensemble
and the one which corresponds to fully random block codes is rather large, so the
second term in the RHS of (6.14) and (6.16) corresponding to the contribution of
the SF bound to the overall bound is considerably larger than the first term which
refers to the union bound. Therefore, for finite-length codes, the following algorithm

is proposed to optimize the partition ¥,, = U U ¥

1. Select initial values d;, and é,, (for ¢; and §,) via (6.15). If there are less than
two solutions to the equation —dIny = H(§) + (I — 1)In2, select ¥ = W,
U = ¢ as the empty set.
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2. Optimize the value of ¢; by performing a linear search in the range [d;,, d,,] and
finding the value of §; which minimizes the overall bound in the RHS of (6.16).

This algorithm is applied to the calculation of the LMSF bound for finite-length
codes (see, e.g., Fig. 8.2 in p. 93).

Clearly, an alternative and slightly tighter version of the MSF bound can be ob-
tained from the DS2 bound from Section 4.3 for parallel channels where the difference
will be in the absence of the 27() constant. We address the MSF bound in Chapter 8,
where for various ensembles of turbo-like codes, its tightness is compared with that

of both versions of generalized DS2 and Gallager bounds.
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Chapter 7

Inner Bounds on Attainable

Channel Regions

7.1 Short overview

In this chapter, we consider inner bounds on the attainable channel regions for en-
sembles of good binary linear codes (e.g., turbo-like codes) whose transmission takes
place over independent parallel channels. The computation of these regions follows
from the upper bounds on the ML decoding error probability we have obtained in
Sections 4 and 5 (see Theorems 1 and 2), referring here to the asymptotic case where
we let the block length tend to infinity.

7.2 Bounds on Attainable Channel Regions

Let us consider an ensemble of binary linear codes, and assume that the codewords of
each code are transmitted with equal probability. A J-tuple of transition probabilities
characterizing a parallel channel is said to be an attainable channel point with respect
to a code ensemble C if the average ML decoding error probability vanishes as we let
the block length tend to infinity. The attainable channel region of an ensemble whose
transmission takes place over parallel channels is defined as the closure of the set
of attainable channel points. We will focus here on the case where each of the J

independent parallel channels can be described by a single real parameter, i.e., the
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attainable channel region is a subset of R”; the boundary of the attainable region is
called the noise boundary of the channel. Since the exact decoding error probability
under ML decoding is in general unknown, then similarly to [26], we evaluate inner
bounds on the attainable channel regions whose calculation is based on upper bounds
on the ML decoding error probability.

In [26, Section 4], Liu et al. have used special cases of the 1961 Gallager bound
to derive a simplified algorithm for calculating inner bounds on attainable channel
regions. As compared to the bounds introduced in [26], the improvement in the
tightness of the bounds presented in Theorems 1 and 2 is expected to enlarge the
corresponding inner bounds on the attainable channel regions. Our numerical results
referring to inner bounds on attainable channel regions are based on the following

theorem:

Theorem 3 (Inner bounds on the attainable channel regions for parallel channels)
Let us assume that the transmission of a sequence of binary linear block codes (or
ensembles) {[C(n)]} takes place over a set of J parallel MBIOS channels. Assume
that the bits are randomly assigned to these channels, so that every bit is transmit-
ted over a single channel and the a-priori probability for transmitting a bit over the
j-th channel is «; (where Z;.le aj =1and a; >0 for j € {1,...,J}). Let {AES(")]}
designate the (average) distance spectrum of the sequence of codes (or ensembles),

rl€l(§) designate the asymptotic exponent of the (average) distance spectrum, and

%2 VPWl0plylLg) . jed{l,...,J}

yey

designate the Bhattachryya constants of the channels. Assume that the following

conditions hold:

1.
inf EPS%1(5) >0, V€ (0,1) (7.1)

0p<6<1
where, for 0 < § < 1, EP521(§) is calculated from (4.13) by maximizing w.r.t.

A, p (A >0and 0 < p<1)and the probability tilting measures {1(-;7)}7_;.

2. The inequality

6—0 )

€] J
lim sup ) < —In <Z ogw) (7.2)
j=1
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is satisfied, where the sum inside the logarithm designates the average Bhat-
tacharrya constant over the J parallel channels, and r[¢! (0) designates the as-

ymptotic growth rate of the distance spectrum as defined in (2.3).

3. There exists a sequence {D, } of natural numbers tending to infinity with in-
creasing n so that

Dr
lim sup Z Af(")] =0 (7.3)

4. The normalized exponent of the distance spectrum satisfies

T[C(n)]((;) - T[C]((g) +o (&) ’

n
i.e., r€MI(§) converges uniformly in 6 € [0, 1] to r€)(§) at a fast enough rate.

Then, the J-tuple vector of parameters characterizing these channels lies within the

attainable channel region under ML decoding.

Proof. The reader is referred to Appendix C.

Discussion: We note that conditions 3 and 4 in Theorem 3 are similar to the
last two conditions in [25, Theorem 2.3|. Condition 2 above happens to be a natural
generalization of the second condition in [25, Theorem 2.3|, thus generalizing the single
channel case to a set of parallel channels. The distinction between [25, Theorem 2.3]
which relates to typical-pairs decoding over a single channel and the statement in
Theorem 3 for ML decoding over a set of independent parallel channels lies mainly
in the first condition of both theorems.

A similar result which involve the generalized 1961 Gallager bound for parallel
channels and the generalized DS2 bound from Section 4.3 can be proven in the same
way by replacing the first condition with an equivalent relation involving the exponent
of these bounds maximized over their respective parameters, instead of the error
exponent of the DS2 bound from Section 4.2.

The difference of our results from those presented in [26] stems from the fact that
we rely here on the generalized DS2 bounds and the 1961 Gallager bound with their
related optimized tilting measures, and not on particular cases of the latter bound.
These optimizations which are carried over the tilting measures of both bounds pro-

vide tighter bounds as compared to the bounds introduced in [26, Sections 4 and 5]
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which follow from the particular choices of the tilting measures for the generalized
1961 Gallager bound.

We later exemplify our inner bounds on the attainable channel regions for ensem-
bles of accumulate-based codes whose transmission takes place over parallel AWGN
channels. The simplest ensemble we consider is the ensemble of uniformly interleaved
and non-systematic repeat-accumulate (NSRA) codes with ¢ > 3 repetitions. It is
shown in [11, Section 5] that the third condition in Theorem 3 is satisfied for this

ensemble, and more explicitly

D, 1
1o (1)

n
h=1
where D,, = O (In(n)) (so the sequence {D,} tends to infinity logarithmically with
n). Based on the calculations of the distance spectrum of this ensemble (see [11,
Section 4]), the fourth condition in Theorem 3 is also satisfied. We note that for this
ensemble, the asymptotic growth rate of the distance spectrum satisfies
rlle)  d

€] — i €] _
r1(0) =0, limsu = — r™( =0.
(0) nawp % = L0

Hence, inequality (7.2) in Theorem 3 (i.e., the second condition in this theorem) is
also satisfied for this ensemble (since the RHS of (7.2) is always positive). Hence,
the fulfillment of all the conditions in Theorem 3 for this ensemble requires to check
under which conditions the error exponent is strictly positive (see the condition in
(7.1)).

As a second example, for the Gallager ensembles of regular (n, j, k) LDPC codes,
the second, third and fourth conditions are also satisfied for the case where 5 > 3.
Under this assumption, the minimum distance even grows linearly with the block
length (see [17, Section 2.2]), so the LHS of (7.2) becomes negative.

We make use of the fulfillment of the condition in (7.2) for regular NSRA codes
and some other variants of accumulate-based codes later in Section 8.3.

It is important to note that the low Hamming weight codewords which are ad-
dressed by the requirement in (7.3) may yield that the error probability under ML
decoding does not necessarily vanish exponentially with the block length (see, e.g.,
[29, Theorems 3 and 4] and [11, Section 5|, where the ML decoding error probability
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of the considered ensembles of turbo-like codes vanish asymptotically like the inverse

of a polynomial of the block length).
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Chapter 8

Performance Bounds for
Turbo-Like Ensembles over Parallel

Channels

8.1 Overview

In this chapter, we exemplify the performance bounds derived in this paper for various
ensembles of turbo-like codes whose transmission is assumed to take place over parallel
BIAWGN channels. We also compare the bounds to those introduced in [26], showing
the superiority of the new bounds introduced in Chapters 4 and 5. As mentioned
before, the superiority of the generalized 1961 Gallager bound in Chapter 5 over the
LMSF bound from [26] is attributed to the optimization of its related tilting measures.

We focus especially on ensembles of accumulate-based codes presented in Chap-
ter 2, i.e, uniformly interleaved ensembles of repeat-accumulate (RA) and accumulate-
repeat-accumulate (ARA) codes. These codes, originally introduced by Divsalar et al.
2, 11], are attractive since they possess low encoding and decoding complexity under
iterative decoding and show a remarkable improvement in performance over classical
algebraic codes. For independent parallel channels, we study their theoretical per-
formance under ML decoding and compare it to their performance under iterative
decoding. Both finite-length analysis and asymptotic analysis are considered. In the

former case, we present upper bounds on the ML decoding error probability, and in
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the latter case, we consider inner bounds on the attainable channel regions of these
ensembles and study the gap to the capacity region. In order to assess the tightness
of the bounds for ensembles of relatively short block lengths, we compare the upper
bounds under optimal ML decoding with computer simulations under (sub-optimal)
iterative decoding.

The structure of this chapter is as follows. Section 8.2 exemplifies performance
bounds for ensembles of short to moderate block length by focusing on a uniformly
interleaved ensemble of turbo codes, comparing various bounds on the bit error prob-
ability under ML decoding and compare the results with computer simulation of the
Log-MAP iterative decoding. Section 8.3 focuses on performance bounds for repeat-
accumulate codes and their recent variations which were presented in Chapter 2. The
attractiveness of these ensembles is due to their remarkable performance and low en-
coding and decoding complexity under iterative decoding algorithms. Inner bounds
on the attainable channel regions whose calculations are based on Theorem 3 consid-
erably extend the channel region which corresponds to the cutoff rate, and outperform
previously reported bounds. These results are compared with computer simulations
of suboptimal iterative decoding. In Section 8.4 we discuss practical considerations
related to efficient implementations of the generalized DS2 and 1961 Gallager bounds
for parallel channels, thus aiming to reduce the computational complexity related to

the evaluation of these bounds.

8.2 Performance Bounds for Uniformly Interleaved
Turbo Codes

In this section, we exemplify the tightness of the new bounds by referring to an
ensemble of uniformly interleaved turbo codes, and comparing the upper bounds
on the bit error probability under ML decoding with computer simulations of an
iterative decoder. The bounds for turbo code ensembles refer to parallel BIAWGN
channels. The reader is referred to [24] which introduces coding theorems for turbo
code ensembles under ML decoding, assuming that the transmission takes place over
a single MBIOS channel (i.e., J = 1 in our setting).

Fig. 8.2 compares upper bounds on the bit error probability of the ensemble of
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Figure 8.1: The encoder of an ensemble of uniformly interleaved turbo codes whose
interleaver is of length 1000, and there is no puncturing of parity bits.

uniformly interleaved turbo codes of rate R = % bits per channel use (see Fig. 8.2).
The calculation of the average distance spectrum and IOWE of this ensemble is
performed by calculating the IOWE of the constituent codes which are recursive
systematic convolutional codes (to this end, we rely on the general approach provided
in [28] for the calculation of the IOWE of convolutional codes), and finally, the uniform
interleaver which is placed between the two constituent codes in Fig. 8.2 enables one to
calculate the distance spectrum and the [OWE of this ensemble, based on the IOWE
of the constituent codes (see [4]). The transmission of the codes from this ensemble is
assumed to take place over two (independent) parallel binary-input AWGN channels
where each bit is equally likely to be assigned to one of these channels (o = ay = %),
and the value of the energy per bit to spectral noise density of the first channel is
fixed to <%>1 = 0 dB. Since for long enough block codes, the union bound is not
informative at rates beyond the cutoff rate, one would expect that for the considered
ensemble of codes (whose block length is roughly 3000 bits), the union bound becomes
No
setting is 3.69 dB). This limitation of the union bound is indeed reflected from Fig. 8.2,
thus showing how loose is the union bound as compared to computer simulations of

the (sub-optimal) iterative decoder. The LMSF bound depicted in Fig. 8.2 uses a

useless for values of (&) below the value in the RHS of (3.8) (whose value in this
2
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partitioning for codes of finite length which was obtained via the algorithm described
in Section 6.5; for a bit error probability of 10~ it is about 1 dB tighter than the
union bound. Both versions of the DS2 and the 1961 Gallager bounds with their
optimized tilting measures show a remarkable improvement in their tightness over
the union and LMSF bounds where for a bit error probability of 107, these three
bounds exhibit a gain of 0.8 dB over the LMSF bound. The two versions of the
DS2 bound are almost equally tight with a gap between them of less than 0.01dB
in favor of the second version. The second version of the DS2 bound gains about
0.05 dB at a bit error probability of 1073 over the 1961 Gallager bound. In spite of
a remarkable advantage of the improved bounds over the union and LMSF bounds,
computer simulations under (the sub-optimal) iterative Log-MAP decoding with 10
iterations show a gain of about 0.4 dB, so there is still room for further improvement
in the tightness of the bounds under ML decoding.

8.3 Performance Bounds for Ensembles of Accumulate-
Based Codes

In this section, we compare inner bounds on the attainable channel regions of accumulate-
based codes under ML decoding. The comparison refers to three ensembles of rate
one-third, as depicted in Fig. 2.3: the first one is the ensemble of uniformly inter-
leaved and non-systematic RA codes where the number of repetitions is ¢ = 3, the
second and the third ensembles are uniformly interleaved and systematic ensembles
of RA (SPRA) codes and ARA (SPARA) codes, respectively, where the number of
repetitions is equal to ¢ = 6 and, as a result of puncturing, only every third bit
of the non-systematic part is transmitted (so the puncturing period is p = 3). For
simplicity of notation, we make use of the abbreviations NSRA(N, ¢), SPRA(N,p, q)
and SPARA(N, M, p, q) which were introduced in Section 2.5. The calculation of the
IOWES of these three ensembles is performed in Section 2.5 and we rely on the results
of this analysis in the evaluation of inner bounds on attainable channel regions. The
two generalizations of the DS2 bound for parallel channels are then applied to these

ensembles for the asymptotic case where we let the block length tend to infinity.

The evaluation of inner bounds on the attainable channel regions for the considered

88



ensembles of accumulate-based codes in this section is based on Theorem 3.

In Fig. 8.3, we compare inner bounds on the attainable channel boundaries as
calculated by the union, LMSF, and DS2 bounds from Sections 4.2 and 4.3. This
plot refers to the ensemble of NSRA(NV, 3) codes of rate % bits per channel use (see
Fig. 2.3 (a)) where we let N tend to infinity. The asymptotic growth rate of the
distance spectrum of this ensemble is calculated by (2.23) with ¢ = 3. The remarkable
superiority of the both versions of the DS2 bound over the union and LMSF bounds
is exemplified for this ensemble of turbo-like codes; actually, the DS2 bound from
Section 4.3 appears to be slightly tighter than the DS2 bound from Section 4.2 at
the extremities of the boundary of the attainable channel region. We conjecture that
this is the region where the application of Jensen’s inequality in the latter bound (see
the move from (4.4) to (4.5)) hinders its tightness the most, possibly due to the large
variance of the summands in (4.4). This phenomenon was also observed for various
turbo-like ensembles, as well as for ensembles of fully random block codes. However,
in the middle region where the channels are not very different, the DS2 bound from
Section 4.2 is in some cases tighter than the DS2 bound from Section 4.3. In the
continuation of this section, we therefore compare inner bounds on the attainable
channel regions for various ensembles of turbo-like codes where the boundaries of
these regions by choosing the tightest version of the DS2 bound, i.e., that which

yields the largest attainable channel region. This comparison appears in Fig. 8.4.

This figure demonstrates the improved performance of the ensembles of SPARA
codes under ML decoding. This improvement is attributed to the distance spectral
thinning effect [30] which is exemplified in Fig. 2.5 for the ensembles of NSRA, SPRA
and SPARA codes of the same code rate (3 bits per channel use) where we can see
the resemblance between the distance spectrum of these ensembles to that of the
random code ensemble. The same phenomenon of distance spectral thinning occurs

by reducing the value of « for the ensembles of SPARA codes (see Fig. 2.5, comparing
1
1
on the attainable channel regions, as observed in Fig. 8.4. It is shown in this figure

that for the SPARA ensemble with the parameters p = 3,¢ = 6 and o = %, the

gap between the inner bound on the attainable channel region under ML decoding

the two plots for « = 7 and o = 1%), this in turn yields an improved inner bound

and the capacity limit is less than 0.05 dB. Note that for the examined ensembles of
NSRA and SPRA codes of the same code rate, the corresponding gaps between the

89



inner bounds on the attainable channel regions and the channel capacity are 2.2 dB
and 0.5 dB, respectively (see Fig. 8.4).

While these results hold for the case of ML decoding, it is clearly of interest
to examine the performance of these code ensembles under iterative decoding. A
comparison of the performance of these ensembles is given in Fig. 8.5. In this figure,
the performance of some SPARA codes of rate % is obtained via computer simulations
employing 32 iterations of the sum-product decoding algorithm. In this figure, the
transmission takes place over two parallel binary-input AWGN channels, where the
energy per bit to spectral noise density of the first channel is set to (%) = 0 dB,
and each bit is equally likely to be assigned to one of these two channels. An external
high-rate code is used which improves performance at the cost of slightly reducing
the coding rate. It is apparent from Fig. 8.5 that in the case of iterative decoding, the
optimal value of « lies between }1 and % This is in contrast to the performance bounds
for ML decoding which indicate that the value of a — 0 is optimal for the ensemble
of SPARA codes. For the iterative decoder, by setting a — 0 the decoding process
cannot start; this is the reason why a different value of « yields the optimal result in
this case. Disregarding the slight loss of rate due to the high-rate code, the decoder

of the SPARA ensemble with a = i performs roughly 2 dB away (in terms of <J€—g> ,

2

when (%) = 0 dB) from its ML decoding threshold (as shown in Fig. 8.4) for a bit
1

error probability of 1072. This gap between performance under iterative decoding and
ML decoding may be bridged by using an irreqular ensemble, rather than the regular
ensemble with p = 3 and ¢ = 6. Density evolution techniques which were applied to
ARA codes [32] may be used to optimize the distribution of the irregular repetition
and puncturing patterns. This process improves the performance of these ensembles
under iterative decoding, both for the case of a single communication channel and for

the case of communicating through parallel channels.
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8.4 Considerations on the Computational Complex-
ity of the Generalized DS2 and 1961 Gallager

Bounds

The brute-force calculation of the generalized DS2 bound for linear codes (or ensem-
bles) of finite length is in general computationally heavy. For every constant weight
subcode, it requires a numerical optimization over the two parameters A\ > 0 and
0 < p < 1; for each subcode of constant Hamming weight and for each choice of
values for A and p, one needs to solve numerically the explicit equations for £ and
B; (see Egs. (4.19) and (4.20)) which are related to the J optimized tilting measures.
Moreover, for each subcode and a pair of values for A and p, the evaluation of the
generalized DS2 bound requires numerical integrations (or summations, in case the
channel outputs are discrete). Performing these tedious and time-consuming opti-
mizations for every constant weight subcode would make the improved bounds less
attractive in terms of their practical use for performance evaluation of linear codes

and ensembles.

In the following, we suggest an approach which significantly reduces the com-
plexity related to the computation of the generalized DS2 bound, and enhances the
applicability of the bound using standard computational facilities. First, the code
is partitioned into constant Hamming weight subcodes, and the exact union bound
(see Eq. (6.6)) is calculated for every subcode (note that the number of subcodes
does not exceed the block length of the code). This task is rather easy, given the
(average) distance spectrum {Ap} or the weighted IOWE {A}} of the code (or en-
semble) which are calculated in advance (see (2.1) and (2.4)). In order to reduce
the computational complexity, we do not calculate the generalized DS2 bounds for
those constant-Hamming weight subcodes for which the values of the union bounds
are below a certain threshold (e.g., we may choose a threshold of 107! for bit error
probability or 107% for block error probability; these thresholds should be tailored
for the application under consideration). Next, for those constant Hamming weight
subcodes for which the union bound exceeds the above threshold, the generalized DS2
bound is evaluated. For these subcodes, we wish to reduce the infinite interval A > 0

to a finite interval; this is performed by using the transformation \ £ /\LH so that
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the two-parameter optimization is reduced to a numerical optimization over the unit
square (XN, p) € [0,1]2. In this respect, it was observed that the optimal values of
X and p vary rather slowly for consecutive values of the constant Hamming weight
h, so the search interval associated with the optimization process may be reduced
once again with no penalty in the tightness of the bound. In other words, we search
for optimal values of A" and p only within a neighborhood of the optimal X and p
found for the previous subcode. We proceed in this manner until all the relevant
subcodes are considered. As an example, we note that for the ensemble of turbo
codes depicted in Fig. 8.2, about 80% of the computational time was saved without
affecting the numerical results; in this respect, the threshold for the bit error proba-
bility analysis was chosen to be % where n designates the block length of the code.
The reduction in the computational complexity becomes however more pronounced
for higher SNR values, as the number of subcodes for which the union bound replaces
the computation of the generalized DS2 bound increases.

An analogous consideration applies to the generalized version of the 1961 Gallager
bound for parallel channels with its related optimized tilting measures.

Referring to the calculation of attainable channel regions, a search over the region
of channel parameters is required. As an example, consider a set of parallel AWGN
channels characterized by the J-tuple of SNRs (vy,...,v;). In order to find the
attainable channel boundary, we fix the values of 1v4,...,v;_1 and perform a linear
search over v; using any appropriate method (e.g., the bisection method) in order
to find the smallest value of v} for which the lower bound on the error exponent
(as obtained by an upper bound on the ML decoding error probability) vanishes. If
(v1,...,v5-1,0) is not an attainable point while (vq,...,v;_1,00) is attainable, then
the resulting value v} is such that the point (v4,...,v}) is on the boundary of the
attainable region. The overall complexity of this approach is, of course, polynomial
in J. We apply this approach in this chapter for the calculation of inner bounds on
the attainable channel regions under ML decoding, referring to the generalizations of
the DS2 and 1961 Gallager bounds in Chapters 4 and 5, respectively.
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Figure 8.2: Performance bounds for the bit error probability under ML decoding
versus computer simulation results of iterative Log-MAP decoding (with 10
iterations). The transmission of this ensemble takes place over two (independent)
parallel binary-input AWGN channels. Each bit is equally likely to be assigned to
one of these channels, and the energy per bit to spectral noise density of the first

%) = 0 dB. The compared upper bounds on the bit error
1

probability are the generalizations of the DS2 and 1961 Gallager bounds, the LMSF
bound from [26], and the union bound (based on (6.6)).

channel is set to (
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Figure 8.3: Attainable channel regions for the rate one-third uniformly interleaved
ensemble of NSRA(N, 3) codes (see Fig. 2.3 (a)) in the asymptotic case where we let
N tend to infinity. The communication takes place over J = 2 parallel binary-input

AWGN channels, and the bits are equally likely to be assigned over one of these
channels (a; = ay = %) The achievable channel region refers to optimal ML
decoding. The boundaries of the union and LMSF bounds refer to the discussion in

[26], while the boundaries referring to the two versions of the DS2 bound refer to

the derivations in Sections 4.2 and 4.3, followed by an optimization of the tilting

measures derived in these sections.
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Figure 8.4: Attainable channel regions for the rate one-third uniformly interleaved
accumulate-based ensembles with puncturing depicted in Fig. 2.3. These regions
refer to the asymptotic case where we let NV tend to infinity. The communication
takes place over J = 2 parallel binary-input AWGN channels, and the bits are
equally likely to be assigned over one of these channels (a; = ap = %) The
achievable channel region refers to optimal ML decoding. The boundaries of these
regions are calculated by selecting the tighter of the two generalizations of the DS2
bound appearing in Sections 4.2 and 4.3, followed by the optimization of their
respective tilting measures. The capacity limit and the attainable channel regions
which corresponds to the cutoff rate are given as a reference.
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Figure 8.5: Computer simulation results of SPARA codes of blocklength 30000 and
rate %, iteratively decoded using the sum-product algorithm (with 32 iterations).
The transmission of this ensemble takes place over two (independent) parallel
binary-input AWGN channels. Each bit is equally likely to be assigned to one of
these channels, and the energy per bit to spectral noise density of the first channel

is set to (%) =0 dB.
1
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Chapter 9

Summary and Conclusions

9.1 Contribution of the Thesis

This thesis is focused on the performance analysis of binary linear block codes (or
ensembles) whose transmission takes place over independent, memoryless and sym-
metric parallel channels. New bounds on the maximum-likelihood (ML) decoding
error probability are derived. These bounds are applied to various ensembles of turbo-
like codes, focusing especially on repeat-accumulate codes and their recent variations
which possess low encoding and decoding complexity and exhibit remarkable per-
formance under iterative decoding (see, e.g., [2, 11, 23, 31]). The framework of the
second version of the Duman and Salehi (DS2) bounds is generalized to the case
of parallel channels by means of two different bounding techniques, along with the
derivation of their optimized tilting measures. For the case of random codes, one of
the bounds (namely, the one derived in Sec. 4.3) attains the random coding exponent
while the other (derived in Sec. 4.2) does not. This difference is attributed to the
additional Jensen’s inequality in the transition from (4.4) to (4.5) (see p. 41) which is
circumvented in the derivation of Sec. 4.3. Nevertheless, for general code ensembles,
neither of these two bounds is tighter than the other. The generalization of the 1961
Gallager bound for parallel channels, introduced by Liu at al. [26], is reviewed and
the optimized tilting measures which are related to this bound are derived via calcu-
lus of variations (as opposed to the use of simple and sub-optimal tilting measures
in [26]). The connection between the generalized DS2 bound and the 1961 Gallager
bound, which was originally addressed by Divsalar [13] and by Sason and Shamai
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[37, 40] for a single channel, is revisited for an arbitrary number of independent par-
allel channels. In this respect, it is shown that the 1961 Gallager bound [26] is a
special case of the generalized DS2 bound derived in Sec. 4.3 and is not a special case
of the DS2 bound derived in Sec. 4.2. In the asymptotic case where we let the block
length tend to infinity, the new bounds are used to obtain improved inner bounds on
the attainable channel regions under ML decoding. The tightness of the new bounds
for independent parallel channels is exemplified for structured ensembles of turbo-like
codes. In this respect, the inner bounds on the attainable channel regions which are
computed by the DS2 bound from Sec. 4.2 are slightly looser than those computed
by the DS2 bound from Sec. 4.3 at the extremities of the boundary of the attainable
channel region. On the other hand, in the region where the channels are not very
different, the DS2 bound from Sec. 4.2 is slightly tighter. It is therefore suggested to
use in each case the tighter of the two bounds in order to maximize the attainable
channel region. For turbo-like ensembles of moderate block lengths, the two versions

of the generalized DS2 bound are almost equally tight (see, e.g., Fig. 8.2 in p. 93).

Following the approach in [2], we analyze the distance spectra and their asymptotic
growth rates for various ensembles of systematic and punctured accumulate-based
codes (see Fig. 2.3). The distance spectral analysis serves to assess the performance
of these codes under ML decoding where we rely on the bounding techniques de-
veloped in this paper and [26] for parallel channels. The improved performance of
the ensembles of systematic and punctured accumulate-repeat-accumulate (SPARA)
codes under ML decoding is demonstrated by combining the two generalized DS2
bounds (from Sections 4.2 and 4.3) in Fig. 8.4. This improvement is attributed to the
distance spectral thinning effect [30] which is exemplified in Fig. 2.5 by comparing the
asymptotic growth rates of the distance spectra for the ensembles in Fig. 2.3 (a)—(c).
We also report that for the SPARA ensemble, there is a gap between the ML decoding
bounds and computer simulation results under iterative decoding. We believe that
this gap stems from the use of an ensemble with regular repetition and puncturing
patterns. As observed in [32] for the binary erasure channel, we believe that bet-
ter results can be achieved by properly selecting irregular repetition and puncturing

patterns.

The generalization of the DS2 bound for parallel channels enables to re-derive

specific bounds which were originally derived by Liu et al. [26] as special cases of the
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1961 Gallager bound. However, the improved bounds together with their optimized
tilting measures show, regardless of the block length of the codes, an improvement
over the bounds derived as special cases of the 1961 Gallager bound; this improvement
is especially pronounced for moderate to large block lengths. However, in some cases,
the new bounds under ML decoding are a bit pessimistic as compared to computer
simulations of sub-optimal iterative decoding (see, e.g., Fig. 8.2), thus indicating that
there is still room for further improvement.

The results in this research work are also presented in [34], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).

9.2 Topics for Further Research

In what follows, we point out some possible directions for future research:

e In [6], Bennatan and Burshtein generalized the Shulman and Feder bound to an
arbitrary discrete memoryless channel (DMC). They also combine this bound
with the union-Bhattacharrya bound, a technique which we use in Chapter 6.
A possible direction of research is to generalize the improved bounds, i.e., the
DS2 bound and the 1961 Gallager bound to the case of an arbitrary DMC.
This generalization may be studied for a single DMC or for the case of parallel
DMCs. In the latter case, a random channel mapper can be assumed in order

to simplify the analysis.

e Pfister and Sason [32] have recently examined the performance of some ensem-
bles of accumulate-repeat-accumulate (ARA) codes transmitted over the BEC
and have obtained results which allow to approach capacity on this channel
with bounded decoding complexity per information bit. With these results in

mind, three directions of research are thus proposed.

— First, the results in [32] may be generalized to a set of parallel BECs. In
this respect, using the technique of a random channel mapper is expected
to simplify the analysis, in the same way as we have seen in Chapters 4 and
5. Using the random mapper approach, the density evolution equations

should be rewritten so as to accommodate the parallel channel.
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— Second, the ML analysis we performed for regular SPARA codes can be
extended to irregular ensembles, i.e, ensembles where irregular repetition
and puncturing patterns are used. The calculation of bounds under ML
decoding requires to extend the calculation of the average distance spectra
for irregular ensembles of ARA codes. This will provide a better under-

standing of the effect of the degree distributions on the gap to capacity.

— Finally, and in continuation to the last direction of research, we have
demonstrated that for the ensemble of SPARA codes discussed in Sec-
tion 8.3, there is a considerable gap between the (upper bound on) per-
formance under ML decoding and practical performance under iterative
decoding. We believe this gap stems from the use of regular repetition and
puncturing patterns (as is the case for regular LDPC ensembles where the
gap between thresholds under ML and iterative decoding is rather large).
Allowing these patterns to be irregular, as in [32], may enable to bridge
this gap. Optimized repetition and puncturing degree distributions may
be obtained using density evolution techniques, and the performance could
be compared with that of ML decoding.
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Appendix A

On the Sub-optimality of Even
Tilting Measures in the (Gallager
Bound

In the following, we derive the functions f(-; j) resulting from the optimal DS2 tilting
measures in (4.18) and demonstrate that they are not even functions. From (4.8), we

get the expression

U(y;j) = 9(y: J)p(y10;J) £ gy )p(y]0; )

> g )p(y'10; 5)

y/

for the single-letter connection between the normalized and un-normalized DS2 tilting
measures; changing the subject gives

i) = (D) (A1)

p(y0; 7)

Substituting (4.18) in (A.1) we obtain the optimal form of the un-normalized tilting

measure as

g<y~j>:c-<l+k(w)k)p (r2)
’ p(y10; 5) '
Next, we substitute (5.21) in the LHS of (A.2) and manipulate the expression to get
f(y;7) = const - p(y|0; 5) (1 +k (p(yl;j))A>Z : (A.3)
’ ’ p(y]0; 7)
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Clearly, this expression does not constitute an even function.
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Appendix B

Technical Details for Calculus of
Variations on (5.26)

The bound on the decoding error probability for constant Hamming weight codes is
given by substituting (5.25) into (5.14). Disregarding the multiplicative term 2,

we minimize the expression

U £ Ah{Z%Z[p(ylo;j)p(yll;j)llff(y;j)r}

Jj=1 Y

: {Z % > [pwl0;5) "+ p(yl1;5) ] f(y;j)r} e "

Jj=1 y
J n
+ {Z % > [pwl0:)' = + plyl1:9) ] f(y;j)s} e,
J=1 Y

r<0,s>0 —o0c0<d<o0. (B.1)

Employing calculus of variations, we substitute in (B.1) the following tilting measure

f(;g) = foly; J) +enly; j)
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where 7)(+; j) is an arbitrary function. Next, we impose the condition that aU =0

for all n(-;j). The derivative is given by

%—g i m’d{ (p(y]0; )p (yll;j))lyfo(y;j)’”]
J —r
Z%Z (y10; )p(y[1: ) 7“fo(y;j)’"177(11;‘7')]

M“

n—h
%Z (y]0; )™ + p(yl1;5)' ") f0<y¥j)1

- ’ qn—h-1
[ (l0; )+ pyl1;0)' ") foly; 5)

J o -

D5 2 (pwl0s )+ plyl1 ) ) rfoly: )y )

'M%

a; > (p(yl0; j)p(ylL; J))lQTfo(y;j)T] }

J

[ (p(y]0; )"~ + p(y|1;5)' ) fo(y;j)S]

Z%Z (9105 5)"° + p(y|1;5)" ) sfo(y;j)s‘ln(y;j)] . (B2)
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Defining the constants

h—1
o = A" hr [Z a; Z y[0; 7)p(ylL; J))lQTfo(y;j)’"]

neh
o & Z Z (y]05 5)' p(yll;j)l"")fo(y;j)rl
nehe1

o 2 AR [Z%Z (y]057)' mw%ﬂmmd

; h
e 2|0y > (plo: i) |1;j))12rfo(y;j)T]

=

net

g & el [j{: Y j{: (10;7)'~* +p(yl1; 7)) fb(y;j)s]

(B.3)

and requiring that the integrand in (B.2) be equal to zero, we get the equivalent

condition
Z%{(em[p V01301 +cxce (010000 -+ (01137 ] ) ol )

+%@@WJV”+MMLﬁkﬂﬁ@JVJ}=Q vy e .

Defining K; & <<

cs )

condition in (5.27).

Ky 2 @4 and dividing both sides by fo(y; )"~ implies the
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Appendix C

Proof of Theorem 3

The concept of the proof of this theorem is similar to the proof introduced in [25,
pp. 40-42] for the single channel case, and the proofs of [26, Theorems 2-4] for the
scenario of independent parallel channels. The difference in this proof from those
mentioned above is the starting point which relies on the generalization of the DS2
bound (see Theorem 1 in Section 4.2).

We begin by rewriting the DS2 bound for a specific constant Hamming-weight
subcode (4.11) as

Pyo(h) < A} By,

where

>

By,

(Z%wa p(y]0; §) 7 p(y|1; 5) )

(Z% > by ) “p(y|o; J)i> : (C.1)

By selecting the optimized tilting measures and optimal values of A > 0 and 0 <
p < 1, we obtain the optimized bound szt, which is related to the optimal exponent
EPS21(5) by

szt — o n(EPS2(8)+prl] (5))’ 52 ﬁ (C.2)
n

The upper bound on the ML decoding error probability of the ensemble can be written
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as

Pl < Z APB < Z A, + Z A + Z AP B (C.3)
h=Dp,+1 h=an+1

for any o > 0. This follows since for weights up to D,, we set By"

= 1, and for
Hamming weights from D,, + 1 up to an the DS2 bound is relaxed by selecting p = 1
and using the union bound (see (6.1)). Let us examine the behavior of each of the
three terms in (C.3). As we let n tend to infinity, the first term in (C.3) goes to 0
due to the third condition of the theorem.

The second term may be rewritten as

C(n
an h( rlC( )](5)

Z Ayt = Z e

h=Dn+1 h=Dnp+1

+In(y )) |

By the fourth condition of the theorem, the exponent is bounded above by

h (ln(v) + T[C](S(é) +o (%)) .

Now, the summation only has terms corresponding to h > D, so o (£22) < o(1).

The second condition implies that for small enough «, the exponent is negative and

bounded away from 0, say by —6,, where 8y > 0. Then
an Ale@)]
h<7(6>+1n 7)) Y e~ Pnbo
e e —
2 > v
h=D,+1 h=Dy+1

which tends to zero as n — oo because D,, — o0.

Finally, by using (C.2), the third term in (C.3) may be expressed as

S AEY = 3 e (EEE I 9)) 3 (PR 0e) ()
h=an h=an h=an

which vanishes as n — oo due to (7.1), thus completing the proof. O
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