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Abstract

Some communication scenarios can be modelled as standard coded transmission over

a set of parallel communication channels. These include transmission over block fad-

ing channels, rate-compatible puncturing of turbo-like codes, multi-carrier signaling

and others. This thesis is focused on the performance analysis of binary linear block

codes (or ensembles) whose transmission takes place over independent and memory-

less parallel channels. New upper bounds on the maximum-likelihood (ML) decoding

error probability are derived. These bounds include the generalization of the second

version of the Duman and Salehi (DS2) bound to the case of parallel channels and

a generalization of the classic 1961 Gallager bound to parallel channels. Optimized

tilting measures for the new bound are derived. The connection between the gen-

eralized DS2 and the 1961 Gallager bounds, which was previously addressed for a

single channel, is explored in the case of an arbitrary number of independent parallel

channels. The generalization of the DS2 bound for parallel channels enables to re-

derive specific bounds which were previously derived as special cases of the Gallager

bound. The new bounds are applied to various ensembles of turbo-like codes, focusing

especially on repeat-accumulate codes and their recent variations which possess low

encoding and decoding complexity and exhibit remarkable performance under itera-

tive decoding. In the asymptotic case where we let the block length tend to infinity,

the new bounds are used to obtain improved inner bounds on the attainable channel

regions under ML decoding. The tightness of the new bounds for independent parallel

channels is exemplified for structured ensembles of turbo-like codes. The improved

bounds with their optimized tilting measures show, irrespectively of the block length

of the codes, an improvement over the union bound and other previously reported

bounds for independent parallel channels; this improvement is especially pronounced

for moderate to large block lengths.
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Chapter 1

Introduction

Some modern communication systems are required to operate over multiple com-

munication channels at once or over a single channel which varies with time. This

situation can be modelled as having a set of independent parallel channels, where the

transmitted codeword is partitioned into disjoint sets, and the symbols within each

set are transmitted over one of these channels. Some examples in which this scenario

may be used include block-fading channels (for performance bounds of coded com-

munication systems over block-fading channels, see, e.g., [19, 43]), rate-compatible

puncturing of turbo-like codes (see, e.g., [20, 39]), incremental redundancy retrans-

mission schemes, cooperative coding, multi-carrier signaling (for performance bounds

of coded orthogonal-frequency division multiplexing (OFDM) systems, see e.g., [44]),

and other applications.

Tight analytical bounds serve as a potent tool for assessing the performance of

modern error-correction schemes, both for the case of finite block length and in the

asymptotic case where the block length tends to infinity. In the setting of a single

communication channel and by letting the block length tend to infinity, these bounds

are applied in order to obtain a noise threshold which indicates the minimum chan-

nel conditions necessary for reliable communication. When generalizing the bounds

to the scenario of independent parallel channels, this threshold is transformed into

a multi-dimensional barrier within the space of the joint parallel-channel transition

probabilities, dividing the space into channel regions where reliable communication is

available and where it is not. One of the most widespread upper bounds for a single
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channel is the union bound, which is easily applied to the analysis of many communi-

cation systems. Its main drawback is that for codes of large enough block lengths, it

is useless for rates exceeding the channel cutoff rate. Modern communication systems

are required to operate well beyond this rate. Therefore, tighter upper bounds are

required in order to assess the performance of such systems. When considering upper

bounds for a single channel or independent parallel channels, it is desirable to have

the bound expressible in terms of basic features of the code, such as the distance

spectrum. Sometimes the distance spectrum cannot be evaluated for a specific code,

but rather, an ensemble average can be obtained. Consequently, another desirable

feature of any upper bound is to be applicable to ensembles of codes as well as to

particular codes.

Tight upper bounds on the ML decoding error probability which can be applied to

specific codes as well as structured ensembles of codes and which depend on the dis-

tance spectrum of the code (or ensemble) date back to Gallager [17]. Other examples

of tight upper bounds include the generalized second version of the Duman-Salehi

bound (often termed as the DS2 bound) [15, 40], the tangential sphere bound [33],

the Shulman and Feder bound [41], and others. In this respect, it was shown by

Sason and Shamai [40] that many reported upper bounds are special cases of the DS2

bound, including the 1961 Gallager bound [17]. For a comprehensive monograph on

performance bounds of linear codes under ML decoding, the reader is referred to [37].

In his thesis [16], Ebert considered the problem of communicating over parallel

discrete-time channels, disturbed by arbitrary and independent additive Gaussian

noises, where a total power constraint is imposed upon the channel inputs. He found

explicit upper and lower bounds on the ML decoding error probability, which decrease

exponentially with block length. The exponents of the upper and lower bounds co-

incide for zero rate and for rates between the critical rate (Rcrit) and capacity. The

results were also shown to be applicable to colored Gaussian noise channels with an

average power constraint on the channel. However, this work refers only to random

codes and does not apply to specific codes or structured ensembles of codes.

The main difficulty which arises in the analysis of specific codes transmitted over

parallel channels stems from the inherent asymmetry of the parallel-channel setting,

which poses a difficulty for the analysis, as different symbols of the codeword suffer

varying degrees of degradation through the different parallel channels. This difficulty

6



was circumvented in [26] by introducing a random mapper, i.e., a device which ran-

domly and independently assigns symbols to the different channels according to a

certain a-priori probability distribution. As a result of this randomization, Liu et al.

[26] derived upper bounds on the ML decoding error probability which solely depend

on the weight enumerator of the overall code, instead of a specific split weight enumer-

ator which follows from the partitioning of a codeword into several subsets of bits and

the individual transmission of these subsets over different channels. The analysis in

[26] modifies the 1961 Gallager bound from [17, Chapter 3] and adapts this bounding

technique for communication over parallel channels. However, the results presented

in [26] rely on special cases of the 1961 Gallager bound for parallel channels and not

on the optimized version of this bound. These special cases include a generalization

of the union-Bhattacharyya bound, the Shulman-Feder bound [41], simplified sphere

bound [13], and a combination of the two former bounds. Our motivation is two-fold:

First, the 1961 Gallager bound for parallel channels can be improved by choosing

optimized parameters and tilting measures. Second, the DS2 bound ([14, 37, 40]) can

be generalized to parallel channels.

Using the approach of the random mapper by Liu et al. [26], we derive a parallel-

channel generalization of the DS2 bound [14, 37, 40] via two separate bounding tech-

niques which yield two different bounds. The comparison between these bounds yields

that for random codes, one of the bounds is tighter than the other and achieves the

channel capacity, while for a general ensemble, neither of these bounds is necessarily

tighter than the other. We re-examine, for the case of parallel channels, the well-

known relations between this bound and the 1961 Gallager bound which exist for the

single channel case [13, 40]. In this respect, it is shown that one of the versions of the

generalized DS2 bound is tighter than the corresponding generalization of the 1961

Gallager bound while the other is not necessarily tighter.

The new bounds are used to obtain inner bounds on the boundary of the channel

regions which are asymptotically (in the limit where we let the block length tend to

infinity) attainable under ML decoding, and the results improve on those recently

reported in [26]. The tightness of these bounds for independent parallel channels is

exemplified for structured ensembles of turbo-like codes, and the boundary of the

improved attainable channel regions is compared with previously reported regions for

Gaussian parallel channels. It shows significant improvement due the optimization

7



of the tilting measures which are involved in the computation of the generalized DS2

and 1961 Gallager bounds for parallel channels.

The remainder of the thesis is organized as follows. Chapter 2 deals with the

calculation of the distance spectrum for some structured ensembles of turbo-like codes.

The system model is presented in Chapter 3, as well as preliminary material related

to our discussion. In Chapter 4, we generalize the DS2 bound for independent parallel

channels using two different approaches. Chapter 5 presents the 1961 Gallager bound

from [26], and considers its connection to the two versions of the DS2 bound, along

with the optimization of its tilting measures. Chapter 6 presents some special cases of

these upper bounds which are obtained as particular cases of the generalized bounds

in Chapters 4 and 5. Attainable channel regions are derived in Chapter 7. Inner

bounds on attainable channel regions for various ensembles of turbo-like codes and

performance bounds for moderate block lengths are exemplified in Chapter 8. Finally,

Chapter 9 concludes the thesis and considers topics for further research.

The results in this research work are also presented in [34], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).
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Chapter 2

Distance Properties of some Code

Ensembles

2.1 Short overview

Bounds on the ML decoding error probability are often based on the distance proper-

ties of the considered codes or ensembles (see, e.g., [37] and references therein). The

distance spectra and their asymptotic growth rates for various turbo-like ensembles

have been studied in the literature, e.g., for ensembles of uniformly interleaved repeat-

accumulate codes and variations [2, 11, 21], ensembles of uniformly interleaved turbo

codes [4, 5, 28, 38], and ensembles of regular and irregular LDPC codes [8, 10, 17, 27].

In this Chapter, we present the distance properties of some turbo-like ensembles con-

sidered in this dissertation. We also consider as a reference the ensemble of fully

random block codes which achieves capacity under ML decoding.

2.2 Preliminaries

Let us denote by [C(n)] an ensemble of codes of length n. We will also consider a

sequence of ensembles [C(n1)], [C(n2)], . . ., all of which possess a common rate R. For

a given (n, k) linear code C, let AC
h (or simply Ah) denote the distance spectrum, i.e.,

the number of codewords of Hamming weight h. For a set of codes [C(n)], we define

9



the average distance spectrum as

A
[C(n)]
h , 1

|[C(n)]|
∑

C∈[C(n)]

AC
h . (2.1)

Let Ψn , {δ : δ = h
n

for h = 1, . . . , n} denote the set of normalized distances, then

the normalized exponent of the distance spectrum w.r.t. the block length is defined as

rC(δ) , ln AC
h

n
, r[C(n)](δ) , ln A

[C(n)]
h

n
. (2.2)

The motivation for this definition lies in the interest to consider the asymptotic case

where n →∞. In this case we define the asymptotic exponent of the distance spectrum

as

r[C](δ) , lim
n→∞

r[C(n)](δ) . (2.3)

The input-output weight enumerator (IOWE) of a linear block code is given by a

sequence {Aw,h} designating the number of codewords of Hamming weight h which

are encoded by information bits whose Hamming weight is w, and it is related to the

distance spectrum by Ah =
∑k

w=0 Aw,h. Another quantity which we will be interested

in is the weighted distance spectrum which is defined by

A′
h =

k∑
w=0

w

k
Aw,h. (2.4)

The weighted distance spectrum will be useful later for expressing bounds on the bit

error probability, while the distance spectrum will used to express bounds on the block

(decoding) error probability, both under ML decoding. Since both these quantities

can be easily derived from the IOWE, we will focus on calculating the IOWE for the

considered code ensembles. In this context, one considers the average IOWE over the

code ensemble.

As a reference to all ensembles, we begin by considering the ensemble of fully

random block codes which is capacity-achieving under ML decoding (or ’typical pairs’)

decoding.

10



2.3 The ensemble of fully random binary block

codes

Consider the ensemble of binary random codes [RB(n, R)], which consists of all binary

codes of length n and rate R. In the case where n →∞, we use the notation [RB(R)]

to express the asymptotic growth rate of the distance spectrum. For this ensemble,

the following well-known equalities hold:

A
[RB(n,R)]
w,h =

(
nR

w

)(
n

h

)
2−n

A
[RB(n,R)]
h =

(
n

h

)
2−n(1−R)

r[RB(n,R)](δ) =
ln

(
n
h

)

n
− (1−R) ln 2 (2.5)

r[RB(R)](δ) = H(δ)− (1−R) ln 2

where H(x) = −x ln(x)− (1− x) ln(1− x) designates the binary entropy function to

the natural base.

2.4 Turbo Codes

Turbo Codes were introduced in [7] and have been shown to exhibit astonishing

performance. Their discovery has sparked an immense amount of research dealing

with their properties, structure and performance. The encoder of a Turbo Code

consists of two (and sometimes more) constituent systematic encoders joined together

by an interleaver. In this section, we will consider an ensemble of Turbo Codes; the

ensemble is defined in terms of the interleaver which is selected at random with a

uniform distribution from the set of all possible permutations. This ensemble is thus

termed as the ensemble of uniformly interleaved Turbo Codes, and is defined with

respect to a specific constituent encoder. A schematic diagram of the Turbo encoder

we will consider is shown in Fig. 2.1. Benedetto and Montorsi [4] have shown that it

is possible to calculate the IOWE of the Turbo Code ensemble if we know the IOWE

of each of the constituent encoders. The ensemble of Turbo Codes with recursive

systematic convolutional encoders as constituent codes has been shown (see, e.g,

[7], [12]) to yield excellent performance. Therefore, we will focus on this ensemble
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Figure 2.1: Schematic diagram of a Turbo encoder.

and show how to calculate its IOWE. The original Turbo Codes presented in [7]

feature recursive systematic convolutional encoders as constituent codes. These codes

combined with the iterative turbo decoding scheme provide results which are not far

from theoretical limits. We will therefore analyze the performance of these codes

using upper bounds on the ML decoding error probability. To this end, we calculate

the IOWE of the ensemble of uniformly interleaved Turbo Codes with convolutional

constituent codes.

2.4.1 The IOWE of a Convolutional Encoder

First, we turn our attention to the calculation of the IOWE of convolutional codes;

this problem was solved by McElice [28] and we present the solution here.

We consider a sequence of length n at the output of a binary convolutional encoder

which has m memory cells and therefore 2m states. A 0-closed codepath of length n is

defined as a sequence of encoder states of length n in which the first and last states

are the zero state. These codepaths are closely related to the non-zero codewords

of the convolutional code. Thus, we will be interested in enumerating the 0-closed

codepaths of length n; specifically, we will calculate the function

W (x, y, z) =
∑
n≥m

Wn(x, y)zn, (2.6)

called the input-output weight enumerating function (IOWEF), where

Wn(x, y) =
∑

w,h≥0

Aw,hx
wyh (2.7)
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and Aw,h is the IOWE of the convolutional code which is terminated after a codeword

of length n is created. To ensure proper termination of the encoder at the all-zero

state, a codeword of length n is created by ’turning off’ the input stream after n−m

input symbols and then forcing the encoder back into the all-zero state using a proper

input sequence of length m. This is why the summation in (2.6) starts from n = m.

As an example, consider the encoder of a rate 1/2 code appearing in Fig. 2.2(a). This

encoder has m = 2 memory cells. The encoder may also be described in terms of its

state diagram, which depicts the outputs and state transitions as a function of the

current state and input. The state diagram for the encoder in Fig. 2.2(a) is given in

Fig. 2.2(b).

The analysis of input-output weight distributions is performed by enumerating

all possible state sequences for codewords of the desired length n. This is done by

breaking down the state sequence into a sequence of transitions and by analyzing the

effect each transition has on the overall enumerator. The enumeration of a single state

transition can be done using two enumeration matrices. The first is the input-output

incidence matrix which is defined as a square matrix with number of rows equal to

the number of encoder states, in which the (m, l)-th entry is a monomial of the form

xiyj, where i and j are the input and output weights, respectively, associated with

the transition from state m to state l, if this transition exists; if not, the (m, l)-th

entry of the matrix is zero. For example, the state transition matrix associated with

the encoder in Fig. 2.2(a) is given by

A(x, y) =

00

10

01

11

00 10 01 11


1 xy2 0 0

0 0 xy y

xy2 1 0 0

0 0 y xy




(2.8)

The second enumeration matrix is the output incidence matrix B(y) which is defined

as

B(y) = A(1, y)

The IOWEF of the convolutional code is given by the following expression (see [28,

Theorem 5.1])

W (x, y, z) = zm{(I − zA(x, y))−1B(y)m}(0,0) (2.9)

13



(a) Encoder of a rate 1/2 convolutional
code.

(b) State diagram of convolu-
tional encoder.

Figure 2.2: (a) A convolutional encoder with transfer function
[
1, 1+D2

1+D+D2

]
. (b) The

corresponding state diagram. In this diagram ”a/bc” on a state transition i → j
means that given state i of the encoder and input bit a, bits b and c are the

systematic and coded outputs, respectively, and the next state is j.

We illustrate this result by exemplifying the use of (2.9) on the encoder of Fig. 2.2(a).

We have the state transition matrix A(x, y) given in (2.8), and from it we calculate

B(y) according to (2.4.1). Using a symbolic manipulation program such as Matlab,

it is easy to apply (2.9) to find that

W (x, y, z) =
P (x, y, z)

Q(x, y, z)
(2.10)
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where

P (x, y, z) = z2 + (−xy + xy5)z3 + (−xy + x2y5 + xy6 − x2y6)z4

+(−y2 + x2y2 + xy6 − x3y6)z5

and

Q(x, y, z) = 1 + (−1− xy)z + (xy − y2 + x2y2 − x3y5)z3

+(y2 − x2y2 − x2y6 + x4y6)z4. (2.11)

Using Matlab, the first few terms in the expansion of W (x, y, z) as a power series in

z can be found as

W (x, y, z) = z2 + (1 + xy5)z3 + (1 + (x + x2)y5 + xy6)z4

+(1 + (x + x2 + x3)y5 + (2x + x2)y6 + x2y7)z5

+terms of order z6 and higher (2.12)

The remaining terms in the expansion of W (x, y, z) can be obtained by noting that the

form of the denominator in (2.11) implies that the individual enumerators Wn(x, y)

satisfy the fourth-order recursion

Wn = (1 + xy)Wn−1 + (−xy + y2 − x2y2 + x3y5)Wn−3 (2.13)

+(−y2 + x2y2 + x2y6 − x4y6)Wn−4 for n ≥ 6. (2.14)

Therefore, we can use the recursion in (2.13) with the initial conditions

W2(x, y) = 1

W3(x, y) = 1 + xy5

W4(x, y) = 1 + (x + x2)y5 + xy6

W5(x, y) = 1 + (x + x2 + x3)y5 + (2x + x2)y6 + x2y7 (2.15)

to obtain the value of Wn for any n by extending the recursion as far as desired.

2.4.2 The IOWE of a Turbo Code

A Turbo encoder which appears in Fig. 2.1 is the parallel concatenation of two con-

stituent encoders. A uniformly interleaved ensemble of Turbo codes is the set of all
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possible Turbo codes with given constituent encoders, when considering all possible

interleavers. In this setting, it is possible to compute the average IOWE of the Turbo

code ensemble [4]. The average IOWE of an (n1 + n2 − k, k) systematic Turbo code

ensemble which is the parallel concatenation of an (n1, k) systematic code (or ensem-

ble) possessing an average IOWE A1
w,h with an (n2, k) systematic code (or ensemble)

possessing an average IOWE A2
w,h is given by

Aw,h =

∑

h1,h2: h1+h2−w=h

A1
w,h1

A2
w,h2

(
k
w

) (2.16)

where we take into account that the systematic bits are transmitted only once. The

asymptotic exponent of the distance spectrum for ensembles of convolutional and

Turbo codes is given in [38].

2.5 Systematic and Non-Systematic Repeat-Accumulate

Codes and Variations

In this section we will calculate the IOWE for three ensembles of turbo-like codes.

These include the ensemble of repeat-accumulate (RA) codes and variations of this

ensemble, one of which is an ensemble of accumulate-repeat-accumulate (ARA) codes.

The encoders of these ensembles are shown in Fig. 2.3.

The component codes constructing these three ensembles are an accumulate code

(i.e., a rate-1 differential encoder), a repetition code and a single parity-check (SPC)

code. These components are serially concatenated in different combinations to create

the encoders of these ensembles and hence, the IOWE of these codes can be expressed

using the IOWE of their basic building blocks using the relations in [4, 5]. As a

preparatory step, we introduce the IOWEs of the components.

1. The IOWE of a repetition (REP) code is given by

A
REP(q)
w,d =

(
k

w

)
δd,qw (2.17)

where k designates the input block length, and δn,m is the discrete delta function.
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Accumulate Puncturing
qN

Interleaver
N

code

N

qN qN

Repetition Accumulate
code

Interleaver qN
qN qNN

Repetition

Accumulate PuncturingAccumulate
code

Interleaver
code

qN qN qN
Repetition

N−M

M

N

Figure 2.3: Systematic and Non-systematic RA and ARA codes. The interleavers of
these ensembles are assumed to be chosen uniformly at random, and are of length
qk where k designates the length of the input block (information bits) and q is the
number of repetitions. The rates of all the ensembles is set to 1

3
bits per channel

use, so we set q = 3 for figure (a), and q = 6 and p = 3 for figures (b) and (c) where
p is the puncturing period.

2. The IOWE of an accumulate (ACC) code is given by

AACC
w,d =

(
n− d

bw
2
c

)(
d− 1

dw
2
e − 1

)
(2.18)

where n is the block length (since this code is of rate 1, the input and output

block lengths are the same). The IOWE in (2.18) can be easily obtained combi-

natorially; to this end, we rely on the fact that for the accumulate code, every

single ’1’ at the input sequence flips the value at the output from this point

(until the occurrence of the next ’1’ at the input sequence).

3. The IOWE function of a non-systematic single parity-check code which provides

the parity bit of each set of p consecutive bits, call it SPC(p), is given by (see
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[2, Eq. (8)])

A(W,D) =

np∑
w=0

n∑

d=0

A
SPC(p)
w,d WwDd

=
[
Even

(
(1 + W )p

)
+ Odd

(
(1 + W )p

)
D

]n

(2.19)

where

Even
(
(1 + W )p

)
=

(1 + W )p + (1−W )p

2

Odd
(
(1 + W )p

)
=

(1 + W )p − (1−W )p

2
(2.20)

are two polynomials which include the terms with the even and odd powers of

W , respectively.

To verify (2.19), note that a parity-bit of this code is equal to 1 if and only if

the number of ones in the corresponding set of p bits is odd; also, the number

of check nodes in the considered code is equal to the block length of the code

(n).

0

0

x

0

0

x

Figure 2.4: Accumulate code with puncturing period p = 3 and an equivalent
version of an SPC(p) code followed by an accumulate code.

The uniformly interleaved serial concatenation of an (N, k) code ensemble with

average IOWE A1
w,h with an (n,N) code ensemble with average IOWE A2

w,h yields an

(n, k) code ensemble with average IOWE given by [5]

Aw,h =
N∑

l=0

A1
w,lA

2
l,h(

N
l

) . (2.21)
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In what follows, we will capitalize on this relation for the calculation of the IOWEs

of the three ensembles shown in Fig 2.3.

2.5.1 Non-systematic repeat-accumulate codes

The encoder of the ensemble of uniformly interleaved and non-systematic repeat-

accumulate (NSRA) codes [11] is shown Fig. 2.3 (a). The ensemble [NSRA(k, q)] is

defined as the set of all possible RA codes when considering the different permutations

of the interleaver. As a side note, we can show that the number of codes in the

ensemble is exactly (qk)!
(q!)kk!

. This can be seen by realizing that there is a total of (qk)!

ways to permute the order of qk bits. However, permuting the q repetitions of any of

the k information bits does not affect the result of the interleaving, so there are (qk)!
(q!)k

possible ways for the interleaving. Strictly speaking, by permuting the information

bits, the vector space of the code does not change, which then yields that there are
(qk)!

(q!)kk!
distinct RA codes of dimension k and number of repetitions q.

The (average) IOWE of the ensemble of uniformly interleaved NSRA codes was

originally derived in [11, Section 5]. This ensemble is simply the serial concatenation

of a repetition code with an accumulator, so its IOWE can be obtained by using

(2.17) and (2.18) in (2.21) which gives

A
NSRA(k,q)
w,h =

(
k
w

)(
qk−h
b qw

2
c
)(

h−1
d qw

2
e−1

)
(

qk
qw

) . (2.22)

The distance spectrum of the ensemble is therefore given by

A
NSRA(k,q)
h =

min(k,b 2h
q
c)∑

w=1

(
k
w

)(
qk−h
b qw

2
c
)(

h−1
d qw

2
e−1

)
(

qk
qw

) ,
⌈q

2

⌉
≤ h ≤ qk −

⌊q

2

⌋

where A
NSRA(k,q)
h = 0 for 1 ≤ h <

⌈
q
2

⌉
, and A

NSRA(k,q)
0 = 1 since the all-zero vector

is always a codeword of a linear code. The asymptotic exponent of the distance

spectrum of this ensemble is given by (see [22])

r[NSRA(q)](δ) , lim
k→∞

r[NSRA(k,q)](δ)

= max
0≤u≤min(2δ,2−2δ)

{
−

(
1− 1

q

)
H(u)+

(1− δ)H

(
u

2(1− δ)

)
+ δH

( u

2δ

)}
. (2.23)
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2.5.2 Systematic and Punctured Repeat-Accumulate Codes

The second ensemble we consider is the ensemble of systematic and punctured repeat-

accumulate (SPRA) codes, where the systematic branch is added and puncturing

is performed on the coded bits. The notation SPRA(k, p, q) will be used for this

ensemble, and we will consider the case where the number of repetitions is equal

to q = 6 and, as a result of puncturing, every third bit of the non-systematic part

is transmitted (so the puncturing period is p = 3). We rely on the concepts of

the analysis introduced in [2] and on the serial concatenation formula (2.21) for the

calculation of the average IOWE of the ensemble of uniformly interleaved SPRA

codes; the asymptotic growth rate of the distance spectrum is also calculated.

The case where the output bits of an accumulate code are punctured with a

puncturing period p is equivalent to an SPC(p) code followed by an accumulate code

(see Fig. 2.4 which was originally shown in [2, Fig. 2]). Hence, for the uniformly

interleaved ensemble of SPRA(k,3,6) codes, we are interested in the IOWE of the

SPC(3) code. For the case where p = 3, (2.20) gives

Even
(
(1 + W )3

)
= 1 + 3W 2, Odd

(
(1 + W )3

)
= 3W + W 3

and (2.19) thus gives the following IOWE of the SPC(3) code [2, Eq. (15)]:

A
SPC(3)
w,d =

(
n

d

) n∑
j=0

min(j,d)∑

i=max(0,j−n+d)

(
d

i

)(
n− d

j − i

)
3d+j−2i δw,2j+d. (2.24)

We rely here on the equivalence shown in Fig. 2.4, related to the inner accumulate

code with puncturing. In this respect, since the input bits to the SPC (appearing in

the right plot in Fig. 2.4) are permuted by the uniform interleaver which is placed

after the repetition code (see Fig. 2.3 (b)), then the average IOWE of this ensemble

remains unaffected by placing an additional uniform interleaver between the SPC and

the inner accumulate codes, which is of length qk
p

= 2k. By placing the additional

interleaver, the average IOWE of the serially concatenated and uniformly interleaved

ensemble whose constituent codes are the SPC(3) and the accumulate codes, call it

ACC(3), is given by Eq. (2.21), i.e.,

A
ACC(3)
w,d =

2k∑

h=0

A
SPC(3)
w,h AACC

h,d(
2k
h

) . (2.25)
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The substitution of (2.18) and (2.24) into (2.25) gives

A
ACC(3)
w,d =

2k∑

h=0

2k∑
j=0

min(j,h)∑

i=max(0,j−2k+h)

{(
h

i

)(
2k − h

j − i

)(
2k − d

bh
2
c

)(
d− 1

dh
2
e − 1

)

3h+j−2i δw,2j+h

}
. (2.26)

Note that (2.26) is similar to [2, Eq. (19)], except that k in the latter equation is

replaced by 2k in (2.26). This follows since q
p

(i.e., the ratio between the number of

repetitions and the puncturing period) is equal here to 2, instead of 1 as was the case

in [2] for a code of rate one-half.

Since there is a uniform interleaver of length qk between the repetition code and

the equivalent ACC(3) code, the average IOWE of this serially concatenated and

uniformly interleaved systematic ensemble is given by

A
SPRA(k,3,6)
w,d =

6k∑

l=0

A
REP(6)
w,l A

ACC(3)
l,d−w(

6k
l

)

=

(
k
w

)
A

ACC(3)
6w,d−w(
6k
6w

) (2.27)

where the last equality is due to the equality in (2.17). Substituting (2.26) in the

RHS of (2.27) gives the average IOWE of the ensemble as

A
SPRA(k,3,6)
w,d =

(
k
w

)
(

6k
6w

)
2k∑

h=0

2k∑
j=0

min(j,h)∑

i=max(0,j−2k+h)

{(
h

i

)(
2k − h

j − i

)(
2k − d + w

bh
2
c

)

(
d− w − 1

dh
2
e − 1

)
3h+j−2i δ6w,2j+h

}
(2.28)

Having obtained the IOWE of this ensemble, we turn to the calculation of the

asymptotic growth rate of the distance spectrum. This is obtained by normalizing

the logarithm of the average distance spectrum of the considered ensemble by n = 3k

and letting k tend to infinity.

A marginalization of the IOWE enables one to obtain the distance spectrum via

the relation

Ad =
k∑

w=0

Aw,d (2.29)
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where the IOWE Aw,d is given by (2.28). Note that unless

w

k
=

2j + h

6k
=

2ρ2 + η

2
(2.30)

the Aw,d vanishes, and therefore it does not affect the sum in the RHS of (2.29). In

the limit where k →∞, the asymptotic growth rate of the average distance spectrum

for the uniformly interleaved ensemble of SPRA(k, 3, 6) codes is obtained from (2.28)

and (2.29) at it reads

rSPRA(3,6)(δ) = lim
k→∞

1

3k
ln

k∑
w=0

Aw,d

= lim
k→∞

max
h,i,j

{
1

3k

[
kH

(w

k

)
− 6kH

(
6w

6k

)
+ hH

(
i

h

)

+(2k − h)H

(
j − i

2k − h

)
+ (2k − d + w)H

(
h

2(2k − d + w)

)

+(d− w − 1)H

(
h
2
− 1

d− w − 1

)
+ (h + j − 2i) ln 3

]}
. (2.31)

where we have used the well-known relation for the binomial coefficient

lim
n→∞

1

n
ln

(
n

βn

)
= H(β) , 0 ≤ β ≤ 1. (2.32)

Eq. (2.31) is more naturally expressed in terms of the normalized parameters

δ , d

3k
, η , h

3k
, ρ1 , i

3k
, ρ2 , j

3k
(2.33)

which appear in the summations in (2.28). The normalization by 3k yields that the

new parameters satisfy

0 ≤ δ ≤ 1, 0 ≤ η ≤ 2

3
, 0 ≤ ρ2 ≤ 2

3
. (2.34)

From the partial sum w.r.t. the index i in the RHS of (2.28), dividing the terms in

the inequality

max(0, j − 2k + h) ≤ i ≤ min(j, h)

by 3k gives

max
(
0, ρ2 + η − 2

3

)
≤ ρ1 ≤ min(ρ2, η). (2.35)
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Since the codes are systematic and the input block is k bits long, the terms which

contribute to the IOWE in the RHS of (2.28) satisfy

w ≤ min(d, k), 6w = 2j + h (2.36)

and, from (2.33), multiplying (2.36) by 1
3k

gives

2ρ2 + η

6
≤ min

(
δ,

1

3

)
. (2.37)

From the binomial coefficients which appear in the RHS of (2.28), it is required that

2k − d + w ≥
⌊

h

2

⌋
, d− w ≥

⌈
h

2

⌉

so dividing both sides of these inequalities by 3k, and letting k tend to infinity gives

η − ρ2 + 3δ ≤ 2, ρ2 + 2η ≤ 3δ. (2.38)

The asymptotic growth rate of the distance spectrum for the ensemble of uniformly

interleaved SPRA(k, 3, 6) codes is therefore given by

rSPRA(3,6)(δ) = max
η,ρ1,ρ2

{
−5

3
H

(
2ρ2 + η

2

)
+ η H

(
ρ1

η

)
+

(
2

3
− η

)
H

(
ρ2 − ρ1

2
3
− η

)

+

(
2

3
− δ +

2ρ2 + η

6

)
H

(
η

2
(

2
3
− δ + 2ρ2+η

6

)
)

+

(
δ − 2ρ2 + η

6

)
H

(
η

2
(
δ − 2ρ2+η

6

)
)

+(η + ρ2 − 2ρ1) ln 3

}
(2.39)

where the three-parameter maximization is performed over the finite domain which

is characterized by the following inequalities:

0 ≤ η ≤ 2

3
, 0 ≤ ρ2 ≤ 2

3
, 2ρ2 + η ≤ 6δ, ρ2 + 2η ≤ 3δ

max
(
0, ρ2 + η − 2

3

) ≤ ρ1 ≤ min(ρ2, η), η − ρ2 + 3δ ≤ 2. (2.40)
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2.5.3 Systematic and Punctured Accumulate-Repeat-Accumulate

Codes

The last ensemble we will consider is that of uniformly interleaved, systematic and

punctured accumulate-repeat-accumulate (SPARA) codes which appears in Fig 2.3(c).

This ensemble is similar to the SPRA ensemble except that the coded branch is pre-

ceded by an additional outer accumulator which appears in front of the repetition

code. Only k −M of the input bits are passed through this extra accumulator, and

the remaining M are passed directly to the repetition code. We thus use the notation

SPARA(k, M, p, q) for the ensemble. In order to calculate the IOWE for this ensem-

ble, we first deal with the precoder. The precoder is a binary linear block code whose

first k−M input bits are accumulated and the other M input bits remain unchanged.

The IOWE of this precoder, call it Pre(k, M), is given by

A
Pre(k,M)
w,d =

M∑
m=0

(
M

m

)
AACC

w−m,d−m

=
M∑

m=0

{(
M

m

)(
k −M − d + m

bw−m
2
c

)(
d−m− 1

dw−m
2
e − 1

)}
(2.41)

where the last equality relies on (2.18). As we have mentioned before for the case of

SPRA codes, an additional uniform interleaver placed between the precoder and the

following stages of the SPARA encoder does not affect the average IOWE; this ensem-

ble can therefore be viewed as the serially concatenated, with a uniform interleaver

of length k, placed between the precoder and the repetition code in Fig. 2.3 (c) (in

addition to the uniform interleaver which is placed after the repetition code). More-

over, referring to the SPRA ensemble whose components are REP(6) and ACC(3),

the input bits (which are provided by the precoder to the second stage in Fig. 2.3 (c))

are not transmitted to the channel. In light of these two observations, the average

IOWE of the uniformly interleaved ensemble of SPARA codes shown in Fig. 2.3 (c)

is given by

A
SPARA(k,M,3,6)
w,d =

k∑

l=0

A
Pre(k,M)
w,l A

SPRA(k,3,6)
l,d−w+l(

k
l

) . (2.42)
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By substituting (2.28) and (2.41) into (2.42), one obtains the average IOWE of the

ensemble as

A
SPARA(k,M,3,6)
w,d =

M∑
m=0

k∑

l=0

2k∑

h=0

2k∑
j=0

min(j,h)∑

i=max(0,j−2k+h)

{(
M
m

)(
k−M−l+m
bw−m

2
c

)(
l−m−1
dw−m

2
e−1

)
(
6k
6l

)
(

h

i

)(
2k − h

j − i

)(
2k − d + w

bh
2
c

)

(
d− w − 1

dh
2
e − 1

)
3h+j−2i δ6l,2j+h

}
. (2.43)

The asymptotic growth rate of the distance spectrum of this ensemble is obtained by

the calculation of the limit

rSPARA(α,3,6)(δ) = lim
k→∞

1

3k

k∑
w=0

A
SPARA(k,3kα,3,6)
w,d , δ =

d

3k
(0 ≤ δ ≤ 1)

where α , M
3k

is a normalized parameter designating the fraction of input bits which

do not pass through the outer accumulator. As in the case of SPRA codes, we will

use the parameters ρ1, ρ2, δ, and η defined in (2.33) and also use the three additional

parameters

α , M

3k
, ε1 , m

3k
, ε2 , w −m

3k
. (2.44)

Since M ≤ k we have that 0 ≤ α ≤ 1
3
. Now, 0 ≤ m ≤ M , so we have the additional

limitation 0 ≤ ε1 ≤ α. Finally, the input weight w satisfies 0 ≤ w ≤ min(d, k) so

that we have another constraint which reads 0 ≤ ε1 + ε2 ≤ min
(
δ, 1

3

)
. After straight-

forward and tedious algebra which is similar to the calculations in Section 2.5.2, one

obtains the following expression for the asymptotic growth rate of the average distance
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spectrum of the considered ensemble of uniformly interleaved SPARA codes:

rSPARA(α,3,6)(δ) = max
η,ρ1,ρ2,ε1,ε2

{
αH

(ε1

α

)
+

(
2ρ2 + η

6
− ε1

)
H

(
ε2

2
(

2ρ2+η
6

− ε1

)
)

+

(
1

3
− α− 2ρ2 + η

6
+ ε1

)
H

(
ε2

2
(

1
3
− α− 2ρ2+η

6
+ ε1

)
)

+η H

(
ρ1

η

)
− 2H

(
2ρ2 + η

2

)
+

(
2

3
− η

)
H

(
ρ2 − ρ1

2
3
− η

)

+

(
2

3
− δ + ε1 + ε2

)
H

(
η

2
(

2
3
− δ + ε1 + ε2

)
)

+(δ − ε1 − ε2)H

(
η

2(δ − ε1 − ε2)

)
+ (η + ρ2 − 2ρ1) ln 3

}
(2.45)

where the five-parameter maximization is performed over the finite domain which is

characterized by the following inequalities which stem from the limitations on the

summation in (2.43):

0 ≤ η ≤ 2

3
, 0 ≤ ρ2 ≤ 2

3
, 0 ≤ ε1 ≤ α,

0 ≤ ε1 + ε2 ≤ min
(
δ,

1

3

)
,

max
(
0, ρ2 + η − 2

3

)
≤ ρ1 ≤ min(ρ2, η),

0 ≤ η ≤ min
(4

3
− 2δ + 2(ε1 + ε2), 2δ − 2(ε1 + ε2)

)
,

ε2 ≤ min

(
2

3
− 2α− 2ρ2 + η

3
+ 2ε1,

2ρ2 + η

3
− 2ε1

)
. (2.46)

We exemplify some of the results appearing in this section in Fig. 2.5 which shows the

asymptotic growth rates of the distance spectra for ensembles of repeat-accumulate

codes considered in this chapter.
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Figure 2.5: Comparison of asymptotic growth rates of the average distance spectra
of ensembles of RA codes and variations.
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Chapter 3

Definitions and Preliminaries

3.1 Short overview

In this chapter, we state the assumptions on which our analysis is based. We also

introduce notation and preliminary material related to the performance analysis of

binary linear codes whose transmission takes place over parallel channels.

3.2 System Model

We consider the case where the communication model consists of a parallel concate-

nation of J statistically independent MBIOS channels, as shown in Fig. 3.1.

Code

Error−
Correction

Channel

Mapper

Channel 1

Channel 2 Decoder

1

2

J

k bits n bits

Channel J

...

Figure 3.1: System model of parallel channels. A random mapper is assumed where
every bit is assigned to one of the J channels; a bit is assigned to the jth channel

independently of the other bits and with probability αj (where
∑J

j=1 αj = 1).

Using an error-correcting linear code C of size M = 2k, the encoder selects a
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codeword xm (m = 0, 1, . . . , M − 1) to be transmitted, where all codewords are

assumed to be selected with equal probability ( 1
M

). Each codeword consists of n

symbols and the coding rate is defined as R , log2 M
n

= k
n
; this setting is referred

to as using an (n, k) code. The channel mapper selects for each coded symbol one

of J channels through which it is transmitted. The j-th channel component has

a transition probability p(y|x; j). The considered model assumes that the channel

encoder performs its operation without prior knowledge of the specific mapping of

the bits to the parallel channels. While in reality, the choice of the specific mapping

is subject to the levels of importance of different coded bits, the considered model

assumes for the sake of analysis that this mapping is random and independent of the

coded bits. This assumption enables to average over all possible mappings, though

suitable choices of mappings for the coded bits are expected to perform better than

the average.

The received vector y is maximum-likelihood (ML) decoded at the receiver when

the specific channel mapper is known at the receiver. While this broad setting gives

rise to very general coding, mapping and decoding schemes, we will focus on the

case where the input alphabet is binary, i.e., x ∈ {−1, 1} (where zero and one are

mapped to +1 and −1, respectively). The output alphabet is real, and may be either

finite or continuous. By its definition, the mapping device divides the set of indices

{1, . . . , n} into J disjoint subsets I(j) for j = 1, . . . , J , and transmits all the bits

whose indices are included in the subset I(j) through the j-th channel. We will see in

the next chapter that for a fixed channel mapping device (i.e., for given sets I(j)), the

problem of upper-bounding the ML decoding error probability is exceedingly difficult.

In order to circumvent this difficulty, a probabilistic mapping device was introduced

in [26] which uses a random assignment of the bits to the J parallel channels; this

random mapper takes a symbol and assigns it to channel j with probability αj. This

assignment is independent of that of other symbols, and by definition, the equality∑J
j=1 αj = 1 follows. This approach enables in [26] the derivation of an upper bound

for the parallel channels which is averaged over all possible channel assignments,

and the bound can be calculated in terms of the distance spectrum of the code (or

ensemble). Another benefit of the random mapping approach is that it naturally

accommodates for practical settings where one is faced with parallel channels having

different capacities.
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3.3 Capacity Limit and Cutoff Rate of Parallel

MBIOS Channels

We consider here the capacity and cutoff rate of independent parallel MBIOS chan-

nels. These information-theoretic quantities serve as a benchmark for assessing the

gap under optimal ML decoding between the achievable channel regions for various

ensembles of codes and the capacity region. It is also useful for providing a quantita-

tive measure for the asymptotic performance of various ensembles.

3.3.1 Cutoff Rate

The cutoff rate of an MBIOS channel is given by

R0 = 1− log2(1 + γ) (3.1)

where γ is the Bhattacharyya constant, i.e.,

γ ,
∑

y

√
p(y|0)p(y|1). (3.2)

Clearly, for continuous-output channels, the sum in the RHS of (3.2) is replaced by

an integral.

For parallel MBIOS channels where every bit is assumed to be independently and

randomly assigned to one of J channels with a-priori probability αj (where
∑J

j=1 αj =

1), the Bhattacharyya constant of the resulting channel is equal to the weighted sum

of the Bhattacharyya constants of these individual channels, i.e.,

γ =
J∑

J=1

{
αj

∑
y

√
p(y|0; j)p(y|1; j)

}
. (3.3)

Consider a set of J parallel binary-input AWGN channels characterized by the tran-

sition probabilities

p(y|0; j) =
1√
2π

e−
(y+

√
2νj)2

2

p(y|1; j) =
1√
2π

e−
(y−√2νj)2

2 (3.4)

−∞ < y < ∞, j = 1, . . . , J
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where

νj , R

(
Eb

N0

)

j

(3.5)

and
(

Eb

N0

)
j

is the energy per information bit to the one-sided spectral noise density

of the j-th channel. In this case, the Bhattacharyya constant is given by

γ =
J∑

j=1

αje
−νj (3.6)

where νj is introduced in (3.5). From (3.1) and (3.6), the cutoff rate of J parallel

binary-input AWGN channels is given by

R0 = 1− log2

(
1 +

J∑
j=1

αje
−R

(
Eb
N0

)
j

)
bits per channel use. (3.7)

Consider the case of J = 2 parallel binary-input AWGN channels. Given the value of(
Eb

N0

)
1
, and the code rate R (in bits per channel use), it is possible to calculate the

value of
(

Eb

N0

)
2

of the second channel which corresponds to the cutoff rate. To this

end, we set R0 in the LHS of (3.7) to R. Solving this equation gives

(
Eb

N0

)

2

= − 1

R
ln


21−R − 1− α1e

−R
(

Eb
N0

)
1

α2


 . (3.8)

3.3.2 Capacity Limit

Let Cj designate the capacity (in bits per channel use) of the j-th MBIOS channel the

set of J parallel MBIOS channels. Clearly, by symmetry considerations, the capacity-

achieving input distribution for all these channels is q =
(

1
2
, 1

2

)
. The capacity of the J

parallel channels where each bit is randomly and independently assigned to the j-th

channel with probability αj is therefore given by

C =
J∑

j=1

αjCj. (3.9)

For the case of J parallel binary-input AWGN channels

Cj = 1− 1√
2π ln(2)

∫ ∞

−∞
e−

(y−βj)2

2 ln
(
1 + e−2βjy

)
dy bits per channel use (3.10)
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Figure 3.2: Attainable channel regions for two parallel binary-input AWGN
channels, as determined by the cutoff rate and the capacity limit, referring to a code
rate of one-third bits per channel use. It is assumed that each bit is randomly and

independently assigned to one of these channels with equal probability (i.e.,
α1 = α2 = 1

2
).

where βj ,
√

2νj and νj is introduced in (3.5).

In order to simplify the numerical computation of the capacity, one can express

each integral in (3.10) as a sum of two integrals from 0 to ∞, and use the power

series expansion of the logarithmic function; this gives an infinite power series with

alternating signs. Using the Euler transform to expedite the convergence rate of these

infinite sums, gives the following alternative expression:

Cj = 1− 1

ln(2)


2βe−

β2
j
2√

2π
− (2β2

j − 1)Q(βj) +
∞∑

k=0

(−1)k ·∆ka0(j)

2k+1


 , j = 1, . . . , J

(3.11)

where

∆ka0(j) , 1

2
e−

β2
j
2

k∑
m=0

{
(−1)m

(k −m + 1)(k −m + 2)

(
k

m

)
erfcx

(
(2k − 2m + 3)βj√

2

)}
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and

erfcx(x) , 2ex2

Q(
√

2x)

(note that erfcx(x) ≈ 1√
π
· 1

x
for large values of x). The infinite sum in (3.11) converges

exponentially fast with k, and the summation of its first 30 terms gives very accurate

results irrespectively of the value of βj.

Consider again the case of J = 2 parallel binary-input AWGN channels. Given the

value of
(

Eb

N0

)
1
, and the code rate R (in bits per channel use), (3.9) and (3.10) enable

one to calculate the value of
(

Eb

N0

)
2

for the second channel, referring to the capacity

limitation. To this end, one needs to set C in the LHS of (3.9) to the code rate R,

and find the resulting value of
(

Eb

N0

)
2

which corresponds to the capacity limit. The

boundary of the capacity region is represented by the continuous curve in Fig. 3.2 for

R = 1
3

bits per channel use; it is compared to the dashed curve in this figure which

represents the boundary of the attainable channel region referring to the cutoff-rate

limit (see Eq. (3.8)).

3.4 The DS2 Bound for a Single MBIOS Channel

The bounding technique of Duman and Salehi [14, 15] originates from the 1965 Gal-

lager bound [18] which states that the conditional ML decoding error probability Pe|m
given that a codeword xm (of block length n) is transmitted is upper-bounded by

Pe|m ≤
∑

y

pn

(
y|xm

)

 ∑

m′ 6=m

(
pn(y|xm′

)

pn(y|xm)

)λ



ρ

λ, ρ ≥ 0 (3.12)

where pn(y|x) designates the conditional pdf of the communication channel to obtain

an n-length sequence y at the channel output, given the n-length input sequence x.

Unfortunately, this upper bound is not calculable in terms of the distance spectrum

of the code ensemble, except for ensembles of fully random block codes and orthogonal

codes transmitted over a memoryless channel, and the special case where ρ = 1, λ =

0.5 in which the bound reduces to the union-Bhattacharyya bound. With the intention

of alleviating the difficulty of calculating the bound for specific codes and ensembles,

we introduce the function Ψ
(m)
n (y) which is an arbitrary probability tilting measure.

This function may depend in general on the index m of the transmitted codeword
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[40], and is a non-negative function which satisfies the equality
∫

y
Ψ

(m)
n (y) dy = 1.

The upper bound in (3.12) can be rewritten in the following equivalent form:

Pe|m ≤
∑

y

Ψ(m)
n (y)


Ψ(m)

n (y)−
1
ρ pn

(
y|xm

) 1
ρ

∑

m′ 6=m

(
pn(y|xm′

)

pn(y|xm)

)λ



ρ

λ, ρ ≥ 0.

(3.13)

Recalling that Ψ
(m)
n is a probability measure, we invoke Jensen’s inequality in (3.13)

which gives

Pe|m ≤

 ∑

m′ 6=m

∑
y

Ψ(m)
n (y)1− 1

ρ pn(y|xm)
1
ρ

(
pn(y|xm′

)

pn(y|xm)

)λ



ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
(3.14)

which is the DS2 bound. This expression can be simplified (see, e.g., [40]) for the

case of a single memoryless channel where

pn(y|x) =
n∏

i=1

p(yi|xi).

Let us consider probability tilting measures Ψ
(m)
n (y) which can be factorized into the

form

Ψ(m)
n (y) =

n∏
i=1

ψ(m)(yi)

recalling that the function ψ(m) may depend on the transmitted codeword xm. In this

case, the bound in (3.14) is calculable in terms of the distance spectrum of the code,

thus not requiring the fine details of the code structure.

Let C be a binary linear block code whose length is n, and let its distance spectrum

be given by {Ah}n
h=0. Consider the case where the transmission takes place over

an MBIOS channel. By partitioning the code into subcodes of constant Hamming

weights, let Ch be the set which includes all the codewords of C with Hamming weight

h and the all-zero codeword. Note that this forms a partitioning of a linear code into

subcodes which are in general non-linear. We apply the DS2 bound on the conditional

ML decoding error probability (given the all-zero codeword is transmitted), and finally

use the union bound w.r.t. the subcodes {Ch} in order to obtain an upper bound on

the ML decoding error probability of the code C. Referring to the constant Hamming
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weight subcode Ch, the bound (3.14) gives

Pe|0(h) ≤ (Ah)
ρ





(∑
y

ψ(y)1− 1
ρ p(y|0)

1
ρ

)n−h

(∑
y

ψ(y)1− 1
ρ p(y|0)

1−λρ
ρ p(y|1)λ

)h




ρ

0 ≤ ρ ≤ 1

λ ≥ 0
.(3.15)

Clearly, for an MBIOS channel with continuous output, the sums in (3.15) are replaced

by integrals. In order to obtain the tightest bound within this form, the probability

tilting measure ψ and the parameters λ and ρ are optimized. The optimization of ψ

is based on calculus of variations, and is independent of the distance spectrum (this

will be shown later even for the case of parallel MBIOS channels).

Due to the symmetry of the channel and the linearity of the code C, the decoding

error probability of C is independent of the transmitted codeword. Since the code C
is the union of the subcodes {Ch}, the union bound provides an upper bound on the

ML decoding error probability of C which is expressed as the sum of the conditional

decoding error probabilities of the subcodes Ch given that the all-zero codeword is

transmitted. Let dmin be the minimum distance of the code C, and R be the rate of

the code C. Based on the linearity of the code, the geometry of the Voronoi regions

(see [3]) gives the following expurgated union bound:

Pe ≤
n(1−R)∑

h=dmin

Pe|0(h). (3.16)

For the bit error probability, the same analysis applies except that the distance

spectrum of the code is replaced by A′
h given in (2.4). This is due to the following

lemma, derived by Divsalar [13].

Lemma 1 [13, Section III.C] Let C be a binary linear (n, k) block code transmitted

over an MBIOS channel. Let C(w) designate a sub-code of C containing the all-zero

codeword plus all the codewords encoded by an information block of Hamming weight

w. Then, the conditional bit error probability of C under ML decoding, given that

the all-zero codeword is transmitted, is upper bounded by

Pb|0 ≤
∑

y

pn(y|0)




k∑
w=1

(w

k

) ∑

c∈C(w)
c 6=0

(
pn(y|c)
pn(y|0)

)λ




ρ

λ ≥ 0

0 ≤ ρ ≤ 1
. (3.17)
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The following proof of the lemma was brought in [42] and is a simplified version of

the proof in [13].

Proof. The conditional bit error probability under ML decoding can be expressed

as

Pb|0 =
∑

y

(
w0(y)

k

)
pn(y|0) (3.18)

where w0(y) designates the weight of the information bits in the decoded codeword,

given that the all-zero codeword is transmitted and the received vector is y. In par-

ticular, if the received vector y is within the decision region of the all-zero codeword,

then w0(y) = 0. Now, we have the following inequalities.

w0(y)

k
≤

(
w0(y)

k

)ρ

, 0 ≤ ρ ≤ 1

(a)

≤





(
w0(y)

k

) ∑

c∈C(w0(y))
c 6=0

(
pn(y|c)
pn(y|0)

)λ





ρ

λ ≥ 0

≤





k∑
w=1

(w

k

) ∑

c∈C(w)
c6=0

(
pn(y|c)
pn(y|0)

)λ





ρ

. (3.19)

Inequality (a) holds since the received vector y must fall in the decision region of some

codeword c which is encoded by information bits of total Hamming weight w0(y);

hence, the quotient
(

pn(y|c)
pn(y|0)

)
is larger than 1 while the other terms in the sum are

simply non-negative. The third inequality holds because of adding more non-negative

terms to the sum. The lemma follows by substituting (3.19) into the RHS of (3.18).

2

Inequality (3.17) can be thought of as the counterpart to inequality (3.12), for the

case where m = 0, where the former inequality relates to the bit error probability and

the latter refers to the block error probability. With (3.17) as the starting point, the

derivation of the DS2 bound on the block error probability appearing in the beginning

of this section may be repeated in order to get a bound on the bit error probability.

The result (see, [36, 37]) is that the conditional DS2 bound on the bit error probability

is identical to the DS2 bound on the block error probability, except that the distance
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spectrum of the code Ah appearing in the RHS of (3.15) is replaced by A′
h given in

(2.4). Since A′
h ≤ Ah then, as expected, the upper bound on the bit error probability

is smaller than the upper bound on the block error probability.

Finally, note that the DS2 bound is also applicable to ensembles of linear codes.

To this end, one simply needs to replace the distance spectrum or the IOWE of a

code by the average quantities over this ensemble. This follows easily by invoking

Jensen’s inequality to the RHS of (3.15) which yields that E[(Ah)
ρ] ≤ (E[Ah])

ρ for

0 ≤ ρ ≤ 1.

The application of the DS2 bound to a single MBIOS channel is discussed in

further details in [14, 36, 40] and the tutorial paper [37, Chapter 4].
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Chapter 4

Generalized DS2 Bounds for

Parallel Channels

4.1 Short overview

In this chapter, we generalize the DS2 bound to independent parallel MBIOS channels,

and optimize the probability tilting measures in the generalized bound to obtain the

tightest bound within this forms. We will discuss two possible ways of generalizing

the bound. These two versions of the bound are obtained via different way of looking

on the set of parallel channels and their tightness is compared.

4.2 Generalizing the DS2 bound to Parallel Chan-

nels: First Approach

4.2.1 Derivation of the bound

Let us assume that the communication takes place over J statistically independent

parallel channels where each one of the individual channels is memoryless binary-input

output-symmetric (MBIOS) with antipodal signaling, i.e., p(y|x = 1) = p(−y|x =

−1). The essence of the approach discussed in this section is to start by considering

the case of a specific channel assignment; the calculation then proceeds by averaging
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the bound over all possible assignments. For a specific channel assignment, the as-

sumption that all J channels are independent and MBIOS means that we factor the

transition probability as

pn

(
y|xm

)
=

J∏
j=1

∏

i∈I(j)

p(yi|x(m)
i ; j) (4.1)

which we can plug into (3.14) to get a DS2 bound suitable for the case of parallel

channels. In order to get a bound which depends on one-dimensional sums (or one-

dimensional integrals), we impose a restriction on the tilting measure Ψ
(m)
n (·) in (3.14)

so that it can be expressed as a J-fold product of one-dimensional probability tilting

measures, i.e.,

Ψ(m)
n (y) =

J∏
j=1

∏

i∈I(j)

ψ(m)(yi; j). (4.2)

Considering a binary linear block code C, the conditional decoding error probability

does not depend on the transmitted codeword, so Pe , 1
M

∑M−1
m=0 Pe|m = Pe|0 where

w.o.l.o.g., one can assume that the all-zero vector is the transmitted codeword.

The channel mapper for the J independent parallel channels is assumed to trans-

mit the bits whose indices are included in the subset I(j) over the j-th channel where

the subsets {I(j)} constitute a disjoint partitioning of the set of indices {1, 2, . . . , n}.

Following the notation in [26], let Ah1,h2,...,hJ
designate the split weight enumerator

of the binary linear block code, defined as the number of codewords of Hamming

weight hj within the J disjoint subsets I(j) for j = 1 . . . J . By substituting (4.1) and
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(4.2) in (3.14), we obtain

Pe = Pe|0

≤



|I(1)|∑

h1=0

. . .

|I(J)|∑

hJ=0

∑
y

Ah1,h2,...,hJ

J∏
j=1

∏

i∈I(j)

ψ(yi; j)
1− 1

ρ p(yi|0; j)
1
ρ

(
p(yi|xi; j)

p(yi|0; j)

)λ





ρ

=




|I(1)|∑

h1=0

. . .

|I(J)|∑

hJ=0

Ah1,h2,...,hJ

J∏
j=1

∏

i∈I(j)

∑
yi

ψ(yi; j)
1− 1

ρ p(yi|0; j)
1
ρ

(
p(yi|xi; j)

p(yi|0; j)

)λ





ρ

=




|I(1)|∑

h1=0

. . .

|I(J)|∑

hJ=0

Ah1,h2,...,hJ

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)hj

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)|I(j)|−hj





ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (4.3)

We note that the bound in (4.3) is valid for a specific assignment of bits to the

parallel channels. For structured codes or ensembles, the split weight enumerator is

in general not available when considering specific assignments. As a result of this, we

continue the derivation by using the random assignment approach. Let us designate

nj , |I(j)| to be the cardinality of the set I(j), so E[nj] = αjn is the expected

number of bits assigned to channel no. j (where j = 1, 2, . . . , J). Averaging (4.3)

with respect to all possible channel assignments, we get the following bound on the

average ML decoding error probability:

Pe ≤ E





n1∑

h1=0

. . .

nJ∑

hJ=0

Ah1,h2,...,hJ

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)hj

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)nj−hj





ρ

=
∑
nj≥0∑
j nj=n





n1∑

h1=0

. . .

nJ∑

hJ=0

Ah1,h2,...,hJ

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)hj

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)nj−hj





ρ

PN(n) (4.4)
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where PN(n) designates the probability distribution of the discrete random vector

N , (n1, . . . , nJ). Applying Jensen’s inequality to the RHS of (4.4) and changing the

order of summation give

Pe ≤
{ ∑

nj≥0∑
nj=n

n∑

h=0

∑

h1≤n1,...,hJ≤nJ
h1+...+hJ=h

Ah1,h2,...,hJ
PN(n)

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)hj

J∏
j=1

(∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)nj−hj
}ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
.(4.5)

Let the vector H = (h1, . . . , hJ) be the vector of partial Hamming weights referring

to the bits transmitted over each channel (nj bits are transmitted over channel no. j,

so 0 ≤ hj ≤ nj). Clearly,
∑J

j=1 hj = h is the overall Hamming weight of a codeword

in C. Due to the random assignment of the code bits to the parallel channels, we get

PN(n) =

(
n

n1, n2, . . . , nJ

)
αn1

1 αn2
2 . . . αnJ

J

PH|N(h|n) =

(
h

h1,...,hJ

)(
n−h

n1−h1,...,nJ−hJ

)
(

n
n1,...,nJ

)

Ah1,h2,...,hJ
PN(n)

= Ah PH|N(h|n) PN(n)

= Ah αn1
1 αn2

2 . . . αnJ
J

(
h

h1, . . . , hJ

)(
n− h

n1 − h1, . . . , nJ − hJ

)
(4.6)
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and the substitution of (4.6) in (4.5) gives

Pe ≤
{ ∑

nj≥0∑
nj=n

n∑

h=0

Ah

∑

h1≤n1,...,hJ≤nJ
h1+...+hJ=h

(
h

h1, h2, . . . , hJ

)

(
n− h

n1 − h1, n2 − h2, . . . , nJ − hJ

)

J∏
j=1

(
αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)hj

J∏
j=1

(
αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)nj−hj
}ρ

.

Let kj , nj − hj for j = 1, 2, . . . , J , then by changing the order of summation we

obtain

Pe ≤





n∑

h=0

Ah

∑

h1,...,hJ≥0
h1+...+hJ=h

(
h

h1, h2, . . . , hJ

) J∏
j=1

(
αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)hj

∑

k1,...,kJ≥0
k1+...+kJ=n−h

(
n− h

k1, k2, . . . , kJ

) J∏
j=1

(
αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)kj





ρ

Since
∑J

j=1 hj = h and
∑J

j=1 kj = n− h, the use of the multinomial formula gives

Pe ≤




n∑

h=0

Ah

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)h

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)n−h




ρ
0 ≤ ρ ≤ 1

λ ≥ 0∑
y ψ(y; j) = 1

j = 1 . . . J

(4.7)

which forms a possible generalization of the DS2 bound for independent parallel chan-

nels when averaging over all possible channel assignments. This result can be applied

to specific codes as well as to structured ensembles for which the average distance
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spectrum Ah is known. In this case, the average ML decoding error probability Pe is

obtained by replacing Ah in (4.7) with the average distance spectrum Ah (this can be

verified by noting that the function f(t) = tρ is convex for 0 ≤ ρ ≤ 1 and by invoking

Jensen’s inequality in (4.7)).

In the continuation of this section, we propose an equivalent version of the gen-

eralized DS2 bound for parallel channels where this equivalence follows the lines in

[37, 40]. Rather than relying on a probability (i.e., normalized) tilting measure, the

bound will be expressed in terms of an un-normalized tilting measure which is an

arbitrary non-negative function. This version will be helpful later for the discussion

on the connection between the DS2 bound and the 1961 Gallager bound for parallel

channels, and also for the derivation of some particular cases of the DS2 bound. We

begin by expressing the DS2 bound using the un-normalized tilting measure G
(m)
n

which is related to Ψ
(m)
n by

Ψ(m)
n (y) =

G
(m)
n (y)pn(y|xm)∑

y′
G(m)

n (y′)pn(y′|xm)
. (4.8)

Substituting (4.8) in (3.14) gives

Pe|m ≤




∑

m′ 6=m

∑
y

G(m)
n (y)1− 1

ρ pn(y|xm)

(
pn(y|xm′

)

pn(y|xm)

)λ




ρ


∑

y

G(m)
n (y)pn(y|xm)




1−ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
.

As before, we assume that G
(m)
n can be factored in the product form

G(m)
n (y) =

J∏
j=1

∏

i∈I(j)

g(yi; j).

Following the algebraic steps in (4.3)-(4.7) and averaging as before also over all the

codebooks of the ensemble, we obtain the following upper bound on the ML decoding
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error probability:

Pe = Pe|0 ≤
{

n∑

h=0

Ah

[
J∑

j=1

αj

(∑
y

g(y; j)1− 1
ρ p(y|0; j)1−λp(y|1; j)λ

)

(∑
y

g(y; j)p(y|0; j)

) 1−ρ
ρ




h [
J∑

j=1

αj

(∑
y

g(y; j)1− 1
ρ p(y|0; j)

)

(∑
y

g(y; j)p(y|0; j)

) 1−ρ
ρ




n−h




ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (4.9)

Note that the generalized DS2 bound as derived in this subsection is applied to the

whole code (i.e., the optimization of the tilting measures refers to the whole code

and is performed only once for each of the J channels). In the next subsection, we

consider the partitioning of the code to constant Hamming weight subcodes, and

then apply the union bound. For every such subcode, we rely on the conditional

DS2 bound (given the all-zero codeword is transmitted), and optimize the J tilting

measures separately. The total number of subcodes does not exceed the block length

of the code (or ensemble), and hence the use of the union bound in this case does

not degrade the related error exponent of the overall bound; moreover, the optimized

tilting measures are tailored for each of the constant-Hamming weight subcodes, a

process which can only improve the exponential behavior of the resulting bound.

4.2.2 Optimization of the Tilting Measures

In the following, we find optimized tilting measures {ψ(·; j)}J
j=1 which minimize the

DS2 bound (4.7). The following calculation is a possible generalization of the analysis

in [40] for a single channel to the considered case of an arbitrary number (J) of

independent parallel MBIOS channels.

Let C be a binary linear block code of length n. Following the derivation in

[26, 40], we partition the code C to constant Hamming weight subcodes {Ch}n
h=0,

where Ch includes all the codewords of weight h (h = 0, . . . , n) as well as the all-zero

codeword. Let Pe|0(h) denote the conditional block error probability of the subcode

Ch under ML decoding, given that the all-zero codeword is transmitted. Based on the
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union bound, we get

Pe ≤
n∑

h=0

Pe|0(h). (4.10)

As the code C is linear, Pe|0(h) = 0 for h = 0, 1, . . . , dmin − 1 where dmin denotes the

minimum distance of the code C. The generalization of the DS2 bound in (4.7) gives

the following upper bound on the conditional error probability of the subcode Ch:

Pe|0(h) ≤ (Ah)
ρ





(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)δ

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)1−δ




nρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
δ , h

n
. (4.11)

Note that in this case, the set of probability tilting measures {ψ(·; j)}J
j=1 may also

depend on the Hamming weight (h) of the subcode (or equivalently on δ). This is the

result of performing the optimization on every individual constant-Hamming subcode

instead of the whole code.

This generalization of the DS2 bound can be written equivalently in the exponen-

tial form

Pe|0(h) ≤ e−nE
DS21
δ (λ,ρ,J,{αj}), 0 ≤ ρ ≤ 1, λ ≥ 0, δ , h

n
. (4.12)

where

EDS21
δ (λ, ρ, J, {αj}) , −ρr[C](δ)− ρδ ln

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)

−ρ(1− δ) ln

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)
(4.13)

and r[C](δ) designates the normalized exponent of the distance spectrum as in (2.3).

Let

g1(y; j) , p(y|0; j)
1
ρ , g2(y; j) , p(y|0; j)

1
ρ

(
p(y|1; j)

p(y|0; j)

)λ

(4.14)

then, for a given pair of λ and ρ (where λ ≥ 0 and 0 ≤ ρ ≤ 1), we need to minimize

δ ln

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ g2(y; j)

)
+ (1− δ) ln

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ g1(y; j)

)
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over the set of non-negative functions ψ(· ; j) satisfying the constraints

∑
y

ψ(y; j) = 1, j = 1 . . . J. (4.15)

To this end, calculus of variations provides the following set of equations:

ψ(y; j)−
1
ρ

(
αj(1− δ)(1− 1

ρ
)g1(y; j)

∑
y

∑J
j=1 αjψ(y; j)1− 1

ρ g1(y; j)

+
αjδ(1− 1

ρ
)g2(y; j)

∑
y

∑J
j=1 αjψ(y; j)1− 1

ρ g2(y; j)

)
+ ξj = 0, j = 1, . . . , J (4.16)

where ξj is a Lagrange multiplier. The solution of (4.16) is given in the following

implicit form:

ψ(y; j) =
(
k1,jg1(y; j) + k2,jg2(y; j)

)ρ
, k1,j, k2,j ≥ 0, j = 1, . . . , J

where

k2,j

k1,j

=
δ

1− δ

J∑
j=1

∑
y∈Y

αjψ(y; j)1− 1
ρ g1(y; j)

J∑
j=1

∑
y∈Y

αjψ(y; j)1− 1
ρ g2(y; j)

. (4.17)

We note that k , k2,j

k1,j
in the RHS of (4.17) is independent of j. Thus, the substitution

βj , k ρ
1,j gives that the optimal tilting measures can be expressed as

ψ(y; j) = βj

(
g1(y; j) + kg2(y; j)

)ρ

= βj p(y|0; j)

[
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
]ρ

y ∈ Y j = 1, . . . , J. (4.18)

By plugging (4.14) into (4.17) we obtain

k =
δ

1− δ

J∑
j=1

∑
y∈Y



αjβ

1− 1
ρ

j p(y|0; j)

[
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
]ρ−1





J∑
j=1

∑
y∈Y



αjβ

1− 1
ρ

j p(y|0; j)

(
p(y|1; j)

p(y|0; j)

)λ
[
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
]ρ−1





(4.19)
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and from (4.14) and (4.15), βj which is the appropriate factor normalizing the prob-

ability tilting measure ψ(·; j) in (4.18) is given by

βj =

[∑
y

p(y|0; j)

(
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
)ρ]−1

, j = 1, . . . , J. (4.20)

Note that the implicit equation for k in (4.19) and the normalization coefficients in

(4.20) provide a possible generalization of the results derived in [36, Appendix A]

(where k is replaced there by α). The point here is that the value of
k2,j

k1,j
in (4.17) is

independent of j (where j ∈ {1, 2, . . . , J}), a property which significantly simplifies

the optimization process of the J tilting measures, and leads to the result in (4.18).

For the numerical calculation of the bound in (4.11) as a function of the normalized

Hamming weight δ , h
n
, and for a fixed pair of λ and ρ (where λ ≥ 0 and 0 ≤ ρ ≤ 1),

we find the optimized tilting measures in (4.18) by first assuming an initial vector

β(0) = (β1, . . . , βJ) and then iterating between (4.19) and (4.20) until we get a fixed

point for these equations. For a fixed δ, we need to optimize numerically the bound

in (4.12) w.r.t. the two parameters λ and ρ.

4.3 Generalizing the DS2 bound to Parallel Chan-

nels: Second Approach

4.3.1 Derivation of the new bound

In this section we show a second way of generalizing the DS2 bound for independent

parallel MBIOS channels. We begin by suggesting a system model equivalent to the

one presented in Sec. 3.2 which we term the channel side information at the receiver

(CSIR) model. Rather than viewing the set of component channels as parallel chan-

nels, we consider j (where 1 ≤ j ≤ J to be the internal state of a state-dependent

channel p(y|x; j) to which x is the input and y is the output). As in the parallel-

channel model shown in Fig. 3.1, j is chosen at random for each transmitted sym-

bol according to the a-priori probability distribution {αj} from the finite alphabet

{1, 2, . . . , J}. Therefore, these two channel models are identical, except that we have

to include the receiver’s perfect knowledge of the channel state in the CSIR model.

This is easily accomplished by viewing the internal state j as part of the output of
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the channel, i.e., the output is the pair b , (y, j); the transition probability of this

channel is thus denoted by pB(b|x). Since the channel and channel mapper both op-

erate in a memoryless manner, the CSIR channel model is also memoryless. Finally,

the transition probability pB(b|x) satisfies the relation

pB(b|x) = αjp(y|x; j) (4.21)

because the channel state is independent of the input. If we define −b , (−y, j), then

we obtain from (4.21) and the symmetry of the transition probabilities p(y|x; j) that

pB(b|x) = pB(−b| − x); thus, the CSIR model is also symmetric. In summary, the

parallel-channel model presented in Sec. 3.2 is equivalent to an MBIOS channel with

transition probability given in (4.21). We may thus use the DS2 bounding technique

directly on the CSIR model; using this approach, the need to average over all channel

mappings is circumvented.

Following this approach, we set the channel output to be b = (y, j) and substitute

(4.21) into (3.15) to get the upper bound

Pe ≤ (Ah)
ρ

(
J∑

j=1

α
1
ρ

j

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)h

(
J∑

j=1

α
1
ρ

j

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)n−h 0 ≤ ρ ≤ 1

λ ≥ 0∑
y,j ψ(y; j) = 1

(4.22)

As in the first approach (see (4.9)), this bound may also be expressed in terms

of an un-normalized tilting measure, rather than a normalized (probability) measure.

We will use this version later when we discuss special cases of this bound. The DS2

bound for parallel channels obtained using the second approach which is expressed

using the un-normalized tilting measure is as follows:

Pe ≤ (Ah)
ρ

[
J∑

j=1

αj

∑
y

g(y; j)p(y|0; j)

]n(1−ρ)

[
J∑

j=1

αj

(∑
y

g(y; j)1− 1
ρ p(y|0; j)1−λp(y|1; j)λ

)]hρ

[
J∑

j=1

αj

(∑
y

g(y; j)1− 1
ρ p(y|0; j)

)](n−h)ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (4.23)
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We turn our attention to the derivation of optimized tilting measures for the gener-

alized DS2 bound obtained using the second approach.

4.3.2 Optimization of the Tilting Measures

The optimization of tilting measures for the generalized DS2 bound in (4.22) obtained

using the perfect CSIR model relies on this optimization for MBIOS channels. As

in the first approach, the bound for a specific constant Hamming-weight subcode is

expressed in exponential form

Pe|0(h) ≤ e−nE
DS22
δ (λ,ρ,J,{αj}), 0 ≤ ρ ≤ 1, λ ≥ 0, δ , h

n
(4.24)

where

EDS22
δ (λ, ρ, J, {αj}) , −ρr[C](δ)− ρδ ln

(
J∑

j=1

α
1
ρ

j

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)

−ρ(1− δ) ln

(
J∑

j=1

α
1
ρ

j

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)
. (4.25)

The optimized tilting measure should be chosen so as to maximize the exponent in

(4.25). Since the perfect CSIR model is equivalent to an MBIOS channel, we can

use the results of Sec. 4.2.2 with J = 1; by substituting the transition probability

from (4.21) into (4.18), we obtain that the optimal form of the tilting measure is

given by

ψ(y; j) = βαjp(y|0; j)

(
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
)ρ

(4.26)

where k is a parameter to be optimized and β is a normalizing constant given by

β =

[∑
y,j

αjp(y|0; j)

(
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
)ρ]−1

(4.27)

4.4 Comparison Between the Two Generalized DS2

Bounds for Parallel Channels

Let us examine the two generalizations of the DS2 bound proposed in Sections 4.2

and 4.3 for the purpose of comparison. To this end, for constant weight subcodes
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of Hamming weight h (including the all-zero codeword), we write out the explicit

expressions for the two bounds, including the optimal form of the tilting measures.

By substituting (4.18) with the optimal value of k in (4.19), the bound in (4.7)

obtained by the first approach reads

Pe|0(h) ≤ (Ah)
ρ








J∑
j=1

αj

∑
y

β
1− 1

ρ

j p(y|0; j)

(
p(y|1; j)

p(y|0; j)

)λ
(

1 + k
(1)
opt

(
p(y|1; j)

p(y|0; j)

)λ
)ρ−1




h




J∑
j=1

αj

∑
y

β
1− 1

ρ

j p(y|0; j)

(
1 + k

(1)
opt

(
p(y|1; j)

p(y|0; j)

)λ
)ρ−1




n−h




ρ

. (4.28)

In the same way, substituting (4.26) in (4.22) gives the bound obtained by using the

second approach

Pe|0(h) ≤ (Ah)
ρ








J∑
j=1

αj

∑
y

β1− 1
ρ p(y|0; j)

(
p(y|1; j)

p(y|0; j)

)λ
(

1 + k
(2)
opt

(
p(y|1; j)

p(y|0; j)

)λ
)ρ−1




h




J∑
j=1

αj

∑
y

β1− 1
ρ p(y|0; j)

(
1 + k

(2)
opt

(
p(y|1; j)

p(y|0; j)

)λ
)ρ−1




n−h




ρ

. (4.29)

From these expressions one cannot conclusively deduce the superiority of one of the

bounds over the other in general. However, in the random coding setting, it can be

shown that the DS2 bound in Section 4.3 is tighter than the one in Section 4.2. To

this end, we show that the former bound attains the random coding exponent [18]

while the latter does not.

The random coding exponent which corresponds to the MBIOS channel given by

the perfect CSIR model, from which the second version in Section 4.3 is derived, gives

the relation

Pe ≤ 2−n(E0(ρ)−ρR) 0 ≤ ρ ≤ 1 (4.30)

where

E0(ρ) = − log2

(∑

b

(
1

2
pB(b|0)

1
1+ρ +

1

2
pB(b|1)

1
1+ρ

)1+ρ
)

= − log2

(
J∑

j=1

αj

∑
y

(
1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ
)

(4.31)
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We now turn to find the random coding exponent which stems from the use of the

bound in Section 4.3. We start with the bound in (4.23) which is expressed in

terms of the un-normalized tilting measure. Consider the following choice for the

un-normalized tilting measure

g(y; j) =

[
1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

]ρ

p(y|0; j)−
ρ

1+ρ , j = 1, 2, . . . , J (4.32)

and the distance spectrum of the ensemble of random binary block codes of length n

and rate R, given by

Ah = 2−n(1−R)

(
n

h

)
, h = 0, 1, . . . , n. (4.33)

Substituting (4.32) and (4.33) into (4.9) and setting λ = 1
1+ρ

gives the bound

Pe ≤ 2nRρ

{
J∑

j=1

αj

∑
y

[
1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

]1+ρ
}n

(4.34)

which coincides with the random coding bound in (4.30)-(4.31).

By substituting the tilting measure (4.32) in the bound in Section 4.2 (see (4.7))

we get the following error exponent, which appears instead of E0(ρ) in (4.31)

Ẽ0(ρ) = − log2




J∑
j=1

αj




(∑
y

1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ



1
ρ




ρ

.

Using Jensen’s inequality and the fact that 0 ≤ ρ ≤ 1, it is easy to show that

Ẽ0(ρ) ≤ E0(ρ), and we therefore conclude that the bound from Section 4.3 is tighter

than the one in Section 4.2 in the random coding setting.

Discussion. When comparing the two versions of the bound, it should be noted

that the two optimized forms of tilting measures as given in (4.18) and (4.26) are

not identical. While these two forms of tilting measures exhibit the same functional

behavior, the normalization conditions are slightly different, with J normalizing con-

stants in the first version of the bound (see (4.20)) and one constant (see (4.27)) in

the second version. This suggests that neither of these bounds in (4.28) and (4.29) is

uniformly tighter than the other for general codes or ensembles; this observation was

also verified numerically by comparing the two bounds for some code ensembles. For
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random codes, we note that the tightness of the first version is hindered by the use

of Jensen’s inequality which is applied in the process of averaging over all possible

channel assignments (see the move from (4.4) to (4.5)). This application of Jensen’s

inequality does not appear in the derivation of the second version of the DS2 bound,

and may be the seed of the pitfall of the first version, when applied for random codes.

4.5 Statement of the Main Result Derived in Chap-

ter 4

The analysis in this chapter leads to the following theorem:

Theorem 1 (Generalized DS2 bounds for independent parallel MBIOS channels)

Consider the transmission of binary linear block codes (or ensembles) over a set

of J independent parallel MBIOS channels. Let the pdf of the jth MBIOS chan-

nel be given by p(·|0; j) where due to the symmetry of the binary-input channels

p(y|0; j) = p(−y|1; j). Assume that the coded bits are randomly and independently

assigned to these channels, where each bit is transmitted over one of the J MBIOS

channels. Let αj be the a-priori probability of transmitting a bit over the jth channel

(j = 1, 2, . . . , J), so that αj ≥ 0 and
∑J

j=1 αj = 1. By partitioning the code into con-

stant Hamming-weight subcodes, Eqs. (4.11) and (4.22) provide two possible upper

bounds on the conditional ML decoding error probability for each of these subcodes,

given that the all-zero codeword is transmitted, and (4.10) forms an upper bound on

the block error probability of the whole code (or ensemble). For the bound in (4.11),

the optimized set of probability tilting measures {ψ(·; j)}J
j=1 which attains the min-

imal value of the conditional upper bound is given by the set of equations in (4.18);

for the bound in (4.22), the optimal tilting measure is given in (4.26).
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Chapter 5

The Gallager Bound for Parallel

Channels and Its Connection to

the DS2 Bound

5.1 Short overview

The 1961 Gallager bound for a single MBIOS channel was derived in [17], and a

generalization of the bound for parallel MBIOS channels was proposed by Liu et al.

[26]. In the following, we outline the derivation in [26] which serves as a preliminary

step towards the discussion of its relation to the two versions of the generalized DS2

bound from Chapter 4. In this chapter, we optimize the probability tilting measures

which are related to the 1961 Gallager bound for J independent parallel channels in

order to get the tightest bound within this form (hence, the optimization is carried

w.r.t. J probability tilting measures). This optimization differs from the discussion in

[26] where the authors choose some simple and sub-optimal tilting measures. By doing

so, the authors in [26] derive bounds which are easier for numerical calculation, but

the tightness of these bounds is loosened as compared to the improved bound which

relies on the calculation of the J optimized tilting measures (this will be exemplified

in Chapter 8 for turbo-like ensembles).
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5.2 Presentation of the Bound by Liu et al.

Consider a binary linear block code C. Let xm be the transmitted codeword and

define the tilted ML metric

Dm(xm′
, y) , ln

(
f

(m)
n (y)

pn(y|xm′)

)
(5.1)

where f
(m)
n (y) is an arbitrary function which is positive if there exists m′ 6= m such

that pn(y|xm′
) is positive. If the code is ML decoded, an error occurs if for some

m′ 6= m

Dm(xm′
, y) ≤ Dm(xm, y) .

As noted in [40], Dm(·, ·) is in general not computable at the receiver. It is used

here as a conceptual tool to evaluate the upper bound on the ML decoding error

probability. The received set Yn is expressed as a union of two disjoint subsets

Yn = Yn
g ∪ Yn

b

Yn
g ,

{
y ∈ Yn : Dm(xm, y) ≤ nd

}

Yn
b ,

{
y ∈ Yn : Dm(xm, y) > nd

}

where d is an arbitrary real number. The conditional ML decoding error probability

can be expressed as the sum of two terms

Pe|m = Prob(error, y ∈ Yn
b ) + Prob(error, y ∈ Yn

g )

which is upper bounded by

Pe|m ≤ Prob(y ∈ Yn
b ) + Prob(error, y ∈ Yn

g ) . (5.2)

We use separate bounding techniques for the two terms in (5.2). Applying the Cher-

noff bound on the first term gives

P1 , Prob(y ∈ Yn
b ) ≤ E

(
esW

)
, s ≥ 0 (5.3)

where

W , ln

(
f

(m)
n (y)

pn(y|xm)

)
− nd . (5.4)
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Using a combination of the union and Chernoff bounds for the second term in the

RHS of (5.2) gives

P2 , Prob(error, y ∈ Yn
g )

= Prob
(
Dm(xm′

, y) ≤ Dm(xm, y) for some m′ 6= m, y ∈ Yn
g

)

≤
∑

m′ 6=m

Prob
(
Dm(xm′

, y) ≤ Dm(xm, y), Dm(xm, y) ≤ nd
)

≤
∑

m′ 6=m

E (exp(tUm′ + rW )) , t, r ≤ 0 (5.5)

where, based on (5.1),

Um′ = Dm(xm′
, y)−Dm(xm, y) = ln

(
pn(y|xm)

pn(y|xm′)

)
. (5.6)

Consider a codeword of a binary linear block code C which is transmitted over J

parallel MBIOS channels. Since the conditional error probability under ML decoding

does not depend on the transmitted codeword, one can assume without loss of gener-

ality that the all-zero codeword is transmitted. As in Section 4.2, we impose on the

function f
(m)
n (y) the restriction that it can be expressed in the product form

f (m)
n (y) =

J∏
j=1

∏

i∈I(J)

f(yi; j) . (5.7)

For the continuation of the derivation, it is assumed that the functions f(·; j) are

even, i.e., f(y; j) = f(−y; j) for all y ∈ Y . Plugging (4.1), (5.4), (5.6) and (5.7) into
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(5.3) and (5.5) we get

P1 ≤
∑

y





J∏
j=1

∏

i∈I(j)

(
f(yi; j)

p(yi|0; j)

)s

p(yi|0; j)



 e−nsd

=
J∏

j=1

{(∑
y∈Y

p(y|0; j)1−sf(y; j)s

)nj
}

e−nsd s ≥ 0 (5.8)

P2 ≤
∑

y

∑

m′ 6=m

J∏
j=1

∏

i∈I(j)

{(
f(yi; j)

p(yi|0; j)

)r

p(yi|0; j)

(
p(yi|0; j)

p(yi|x(m′)
i ; j)

)t}
e−nrd

=

n1∑

h1=0

. . .

nJ∑

hJ=0



Ah1,...,hJ

J∏
j=1

[∑
y∈Y

p(y|0; j)1−rf(y; j)r

(
p(y|0; j)

p(y|1; j)

)t
]hj

J∏
j=1

[∑
y∈Y

p(y|0; j)1−rf(y; j)r

]nj−hj



 e−nrd, t, r ≤ 0 (5.9)

where as before, we use the notation nj , |I(j)|. Optimizing the parameter t gives

the value in [17, Eq. (3.27)]

t =
r − 1

2
. (5.10)

Let us define

G(r; j) ,
∑

y

p(y|0; j)1−rf(y; j)r (5.11)

Z(r; j) ,
∑

y

[p(y|0; j)p(y|1; j)]
1−r
2 f(y; j)r. (5.12)
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Substituting (5.10) into (5.9), combining the bounds on P1 and P2 in (5.8) and (5.9),

and finally averaging over all possible channel assignments, we obtain

Pe ≤ E




n∑

h=1

∑

0≤hj≤nj∑
hj=h

Ah1,...,hJ

J∏
j=1

[Z(r; j)]hj [G(r; j)]nj−hje−nrd

+
J∏

j=1

[G(s; j)]nje−nsd

]

=
∑
nj≥0∑
nj=n





n∑

h=1

∑

0≤hj≤nj∑
hj=h

Ah1,...,hJ

J∏
j=1

[Z(r; j)]hj [G(r; j)]nj−hje−nrd

+
J∏

j=1

[G(s; j)]nje−nsd

}
PN(n) ,

r ≤ 0

s ≥ 0

−∞ < d < ∞
. (5.13)

Following the same procedure for random assignments as in (4.6) and (4.7), we obtain

Pe ≤
n∑

h=1



Ah

(
J∑

j=1

αjZ(r; j)

)h (
J∑

j=1

αjG(r; j)

)n−h


 e−nrd

+

(
J∑

j=1

αjG(s; j)

)n

e−nsd . (5.14)

Finally, we optimize the bound in (5.14) over the parameter d which gives

Pe ≤ 2H(ρ)





n∑

h=1

Ah

[
J∑

j=1

αjZ(r; j)

]h [
J∑

j=1

αjG(r; j)

]n−h




ρ {
J∑

j=1

αjG(s; j)

}n(1−ρ)

(5.15)

where r ≤ 0, s ≥ 0, and

ρ , s

s− r
, 0 ≤ ρ ≤ 1 . (5.16)

The bound in (5.15), originally derived in [26], is a natural generalization of the 1961

Gallager bound for parallel channels.
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5.3 Connection to the Generalizations of the DS2

Bound

In this section we revisit the relations that exist between the DS2 bound and the

1961 Gallager bound, this time for the case of independent parallel channels. We will

compare the 1961 Gallager bound with both versions of the DS2 bound presented in

Sec. 4. For the case of a single MBIOS channel, it was shown [13, 37, 40] that the

DS2 bound is tighter than the 1961 Gallager bound.

This result easily extends to parallel channels, for the case of the second version of

the DS2 bound which was derived in Sec. 4.3 using the perfect CSIR channel model.

Under this model, the parallel-channel is expressed as a single MBIOS with output

defined as the pair b = (y, j). The results in [13, 37, 40] therefore apply directly to

the CSIR model and can be used to show that the DS2 bound in (4.22) is tighter

than the 1961 Gallager bound (5.15).

In this respect, the DS2 bound from Section 4.2 exhibits a slightly different behav-

ior. In the remainder of this section, we provide analysis linking this bound with the

1961 Gallager bound. In what follows, we will see how a variation in the derivation

of the Gallager bound leads to a form of the DS2 bound from Section 4.2, up to a

factor which varies between 1 and 2. To this end, we start from the point in the last

section where the combination of the bounds in (5.8) and (5.9) is obtained. Rather

than continuing as in the last section, we first optimize over the parameter d in the

sum of the bounds on P1 and P2 in (5.8) and (5.9), yielding that

Pe ≤ 2H(ρ)

{
n∑

h=1

∑

h1,...,hj∑
j hj=h

Ah1,...,hj

J∏
j=1

V (r, t; j)hjG(r; j)nj−hj

}ρ J∏
j=1

G(s; j)nj(1−ρ)

= 2H(ρ)

{
n∑

h=1

∑

h1,...,hj∑
j hj=h

Ah1,...,hj

J∏
j=1

[
V (r, t; j)G(s; j)

1−ρ
ρ

]hj

J∏
j=1

[
G(r; j)G(s; j)

1−ρ
ρ

]nj−hj

}ρ

, t, r ≤ 0, s ≥ 0

where

V (r, t; j) ,
∑

y

p(y|0; j)1−rf(y; j)r

(
p(y|0; j)

p(y|1; j)

)t

(5.17)
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G(·; j) is introduced in (5.11) for j = 1, . . . , J , and ρ is given in (5.16). Averaging

the bound with respect to all possible channel assignments, we get for 0 ≤ ρ ≤ 1

Pe ≤ 2H(ρ)
∑
nj≥0∑
j nj=n

{[
n∑

h=1

∑

h1,...,hj∑
j hj=h

Ah1,...,hj

J∏
j=1

[
V (r, t; j)G(s; j)

1−ρ
ρ

]hj

J∏
j=1

[
G(r; j)G(s; j)

1−ρ
ρ

]nj−hj

]ρ

PN(n)

}

≤ 2H(ρ)




∑
nj≥0∑
j nj=n

n∑

h=1

∑

h1,...,hj∑
j hj=h

Ah1,...,hj
PN(n)

J∏
j=1

[
V (r, t; j)G(s; j)

1−ρ
ρ

]hj

J∏
j=1

[
G(r; j)G(s; j)

1−ρ
ρ

]nj−hj

]ρ

(5.18)

where we invoked Jensen’s inequality in the last step. Following the same steps as in

(4.4)–(4.7), we get

Pe ≤ 2H(ρ)




n∑

h=1

Ah

(
J∑

j=1

αjV (r, t; j)G(s; j)
1−ρ

ρ

)h

(
J∑

j=1

αjG(r; j)G(s; j)
1−ρ

ρ

)n−h



ρ

, (5.19)

where from (5.10), (5.11), (5.16) and (5.17)

G(s; j) =
∑

y

p(y|0; j)

(
f(y; j)

p(y|0; j)

)s

G(r; j) =
∑

y

p(y|0; j)

(
f(y; j)

p(y|0; j)

)s(1− 1
ρ
)

V (r, t; j) =
∑

y

p(y|0; j)

(
f(y; j)

p(y|0; j)

)s(1− 1
ρ
) (

p(y|0; j)

p(y|1; j)

)t

. (5.20)

Setting λ = −t, and substituting in (5.20) the following relation between the Gallager

tilting measures and the un-normalized tilting measures in the DS2 bound

g(y; j) ,
(

f(y; j)

p(y|0; j)

)s

, j = 1, 2, . . . , J (5.21)
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we obtain

Pe ≤ 2H(ρ)

{
n∑

h=0

Ah

[
J∑

j=1

αj

(∑
y

g(y; j)1− 1
ρ p(y|0; j)1−λp(y|1; j)λ

)

(∑
y

g(y; j)p(y|0; j)

) 1−ρ
ρ




h [
J∑

j=1

αj

(∑
y

g(y; j)1− 1
ρ p(y|0; j)

)

(∑
y

g(y; j)p(y|0; j)

) 1−ρ
ρ




n−h




ρ

, 0 ≤ ρ ≤ 1 (5.22)

which coincides with the form of the DS2 bound given in (4.9) (up to the factor 2H(ρ)

which lies between 1 and 2), for those un-normalized tilting measures g(·; j) such that

the resulting functions f(·; j) in (5.21) are even.

Discussion. The derivation of the 1961 Gallager bound first involves the averaging

of the bound in (5.13) over all possible channel assignments and then the optimization

over the parameter d in (5.14). To show a connection to the DS2 bound in (4.9), we

had first optimized over d and then obtained the bound averaged over all possible

channel assignments. The difference between the two approaches is that in the latter,

Jensen’s inequality had to be used in (5.18) to continue the derivation (because the

expectation over all possible channel assignments was performed on an expression

raised to the ρ-th power) which resulted in the DS2 bound, whereas in the derivation

of [26], the need for Jensen’s inequality was circumvented due to the linearity of the

expression in (5.13). We note that Jensen’s inequality was also used for the direct

derivation of the DS2 bound in (4.7); this use of Jensen’s inequality hinders the

tightness of this bound to the point where we cannot determine if it is tighter than

the 1961 Gallager bound or not. For the special case of J = 1, both versions of the

DS2 bound degenerate to the standard DS2 bound from Sec. 3.4. In this case, as in

the case of the DS2 bound from Section 4.3, the DS2 bound is tighter than the 1961

Gallager bound (as noted in [40]) due to the following reasons:

• For the 1961 Gallager bound, it is required that f(·; j) be even. This require-

ment inhibits the optimization of ψ(·; j) in Section 4 because the optimal choice

of ψ(·; j) given in (4.18) leads to functions f(·; j) which are not even. The ex-

act form of f(·; j) which stems from the optimal choice of ψ(·; j) is detailed in

Appendix A.
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• The absence of the factor 2H(ρ) (which is greater than 1) in both versions of

the DS2 bound implies their superiority. Naturally, this factor is of minor

importance since we are primarily interested in the exponential tightness of

these bounds.

It should be noted that, as in the case of J = 1, the optimization over the DS2

tilting measure is still over a larger set of functions as compared to the 1961 Gallager

tilting measure; hence, the derivation appearing in this section of the DS2 bound in

(4.9) from the 1961 Gallager bound only gives an expression of the same form and

not the same upper bound (disregarding the 2H(ρ) constant).

5.4 Optimized Tilting Measures for the General-

ized 1961 Gallager Bound

We derive in this section optimized tilting measures for the 1961 Gallager bound.

These optimized tilting measures are derived for random coding, and for the case

of constant Hamming weight codes. The 1961 Gallager bound will be used later in

conjunction with these optimized tilting measures in order to get an upper bound

on the decoding error probability of an arbitrary binary linear block code. To this

end, such a code is partitioned to constant Hamming weight subcodes (where each

one of them also includes the all-zero codeword). The 1961 Gallager bound is applied

separately for every subcode, and the union bound (4.10) is taken over the subcodes.

Using these optimized tilting measures improves the tightness of the resulting bound,

as exemplified in the continuation of this dissertation.
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5.4.1 Tilting Measures for Random Codes

Consider the ensemble of fully random binary block codes of length n. Substituting

the appropriate weight enumerator (given in (2.5)) into (5.14), we get

Pe ≤ 2−n(1−R)

{
1

2

J∑
j=1

αj

∑
y

[
p(y|0; j)

1−r
2 + p(y|1; j)

1−r
2

]2

f(y; j)r

}n

e−nrd

+

{
1

2

J∑
j=1

αj

∑
y

(
p(y|0; j)1−s + p(y|1; j)1−s

)
f(y; j)s

}n

e−nsd ,

r ≤ 0

s ≥ 0

d ∈ R
(5.23)

where we rely on (5.11) and (5.12), use the symmetry of the channels and the fact

that we require the functions f(·; j) (j = 1, . . . , J) to be even. To optimize (5.23)

over all possible tilting measures, we apply calculus of variations. This procedure

gives the following equation:

J∑
j=1

αj

(
p(y|0; j)

1−r
2 + p(y|1; j)

1−r
2

)2

f(y; j)r−1

−L

J∑
j=1

αj

(
p(y|0; j)1−s + p(y|1; j)1−s

)2
f(y; j)s−1 = 0 ∀y.

where L ∈ R. This equation is satisfied for functions which are given in the form

f(y; j) = K





(
p(y|0; j)

1−r
2 + p(y|1; j)

1−r
2

)2

p(y|0; j)1−s + p(y|1; j)1−s





1
s−r

K ∈ R. (5.24)

This forms a natural generalization of the tilting measure given in [17, Eq. (3.41)]

for a single MBIOS channel. We note that the scaling factor K may be omitted as it

cancels out when we substitute (5.24) in (5.15).

5.4.2 Tilting Measures for Constant Hamming Weight Codes

The distance spectrum of a constant Hamming weight code is given by

Ah′ =





1, if h′ = 0

Ah, if h′ = h

0, otherwise

(5.25)
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Substituting this into (5.15) and using the symmetry of the component channels and

the fact that the tilting measures f(·; j) are required to be even, we get

Pe|0(h) ≤ 2H(ρ)Aρ
h

{
J∑

j=1

αj

∑
y

[p(y|0; j)p(y|1; j)]
1−r
2 f(y; j)r

}hρ

·
{

J∑
j=1

αj

2

∑
y

[
p(y|0; j)1−r + p(y|1; j)1−r

]
f(y; j)r

}(n−h)ρ

·
{

J∑
j=1

αj

2

∑
y

[
p(y|0; j)1−s + p(y|1; j)1−s

]
f(y; j)s

}n(1−ρ)

,

r ≤ 0, s ≥ 0, ρ =
s

s− r
. (5.26)

Applying calculus of variations to (5.26) yields (see Appendix B for some additional

details) that the following condition should be satisfied for all values of y ∈ Y :

J∑
j=1

αj

{[
p(y|0; j)1−s + p(y|1; j)1−s

]
f(y; j)s−r + K1 [p(y|0; j)p(y|1; j)]

1−r
2 (5.27)

+K2

[
p(y|0; j)1−r + p(y|1; j)1−r

]}
= 0

where K1, K2 ∈ R. This condition is satisfied if we require

[
p(y|0; j)1−s + p(y|1; j)1−s

]
f(y; j)s−r + K1 [p(y|0; j)p(y|1; j)]

1−r
2

+K2

[
p(y|0; j)1−r + p(y|1; j)1−r

] ≡ 0 , ∀y ∈ Y , j = 1, . . . , J.

The optimized tilting measures can therefore be expressed in the form

f(y; j) =

{
c1

(
p(y|0; j)

1−s(1−ρ−1)
2 + p(y|1; j)

1−s(1−ρ−1)
2

)2

p(y|0; j)1−s + p(y|1; j)1−s
+

d1

(
p(y|0; j)1−s(1−ρ−1) + p(y|1; j)1−s(1−ρ−1)

)

p(y|0; j)1−s + p(y|1; j)1−s

} ρ
s

,

c1, d1 ∈ R
s ≥ 0

0 ≤ ρ ≤ 1

(5.28)

where we have used (5.16). This form is identical to the optimal tilting measure for

random codes if we set d1 = 0. It is possible to scale the parameters c1 and d1 without

affecting the 1961 Gallager bound (i.e., the ratio c1
d1

cancels out when we substitute
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(5.28) in (5.15)). Furthermore, we note that regardless of the values of c1 and d1, the

resulting tilting measures are even functions, as required in the derivation of the 1961

Gallager bound.

For the simplicity of the optimization, we wish to reduce the infinite intervals in

(5.28) to finite ones. It is shown in [35, Appendix A] that the optimization of the

parameter s can be reduced to the interval [0, 1] without loosening the tightness of the

bound. Furthermore, the substitution c , c1+2d1

2c1+3d1
, as suggested in [35, Appendix B],

enables one to express the optimized tilting measure in (5.28) using an equivalent form

where the new parameter c ranges in the interval [0, 1]. The numerical optimization

of the bound in (5.28) is therefore taken over the range of parameters 0 ≤ ρ ≤ 1,

0 ≤ s ≤ 1, 0 ≤ c ≤ 1. Based on the calculations in [35, Appendices A, B], the

functions f(·; j) get the equivalent form

f(y; j) =

{
(1− c)

(
p(y|0; j)

1−s(1−ρ−1)
2 − p(y|1; j)

1−s(1−ρ−1)
2

)2

p(y|0; j)1−s + p(y|1; j)1−s

+
2c

(
p(y|0; j)p(y|1; j)

) 1−s(1−ρ−1)
2

p(y|0; j)1−s + p(y|1; j)1−s

} ρ
s

, (ρ, s, c) ∈ [0, 1]3. (5.29)

By reducing the optimization of the three parameters over the unit cube, the com-

plexity of the numerical process is reduced to an acceptable level.

5.5 Alternative Derivation of the 1961 Gallager

Bound Using the CSIR Approach

In this section we use the CSIR approach to obtain a generalization of the 1961

Gallager bound for parallel channels, where the application of this approach is very

similar to that of Sec. 4.3. The key result here is that applying the CSIR approach

to the 1961 Gallager bound yields the same bound as in (5.15). The derivation is

as follows. We begin with the classic 1961 Gallager bound [17] for a single MBIOS

channel given that the all-zero codeword is transmitted. Applying the bound on a
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constant-Hamming weight subcode yields

Pe|0(h) ≤ 2H(ρ)



Ah

[∑
y

[p(y|0)p(y|1)]
1−r
2 f̃(y)r

][∑
y

p(y|0)1−rf̃(y)r

]n−h




ρ

{∑
y

p(y|0)1−sf̃(y)s

}n(1−ρ)

(5.30)

where f̃(·) is the tilting measure associated with the bound. The optimal tilting

measure for this bound is of the form

f̃(y) =

{
(1− c)

(
p(y|0)

1−r
2 + p(y|1)

1−r
2

)2

+ 2c (p(y|0)1−r + p(y|1)1−r)

p(y|0)1−s + p(y|1)1−s

} ρ
s

(5.31)

for some ρ, s, c ∈ [0, 1]3. We now make use of the CSIR model by replacing y with

b = (y, j) and substituting (4.21) in (5.30) and (5.31); this yields the bound

Pe|0(h) ≤ 2H(ρ)



Ah

[
J∑

j=1

∑
y

α1−r
j [p(y|0; j)p(y|1; j)]

1−r
2 f̃(y; j)r

]h

[
J∑

j=1

∑
y

α1−r
j p(y|0; j)1−rf̃(y; j)r

]n−h




ρ

{∑
y

p(y|0; j)1−sf̃(y; j)s

}n(1−ρ)

(5.32)

and the optimal tilting measure

f̃(y; j) = αjf(y; j) (5.33)

where f(y; j) is given in (5.28). By substituting (5.33) in (5.32) the optimal bound is

Pe|0(h) ≤ 2H(ρ)

{
Ah

[
J∑

j=1

αj

∑
y

[p(y|0; j)p(y|1; j)]
1−r
2 f(y; j)r

]

[
J∑

j=1

αj

∑
y

p(y|0; j)1−rf(y; j)r

]n−h




ρ

{
J∑

j=1

αj

∑
y

p(y|0; j)1−sf(y; j)s

}n(1−ρ)

(5.34)
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which is identical to the 1961 Gallager bound in (5.15), when applied for a constant

Hamming-weight code.

5.6 Statement of the Main Result Derived in Chap-

ter 5

The analysis in this chapter leads to the following theorem:

Theorem 2 (Generalized 1961 Gallager bound for parallel channels) Consider

the transmission of binary linear block codes (or ensembles) over a set of J indepen-

dent parallel MBIOS channels. Following the notation in Theorem 1, the general-

ization of the 1961 Gallager bound in (5.15) provides an upper bound on the ML

decoding error probability when the bound is taken over the whole code (as originally

derived in [26]). By partitioning the code into constant Hamming-weight subcodes,

the generalized 1961 Gallager bound on the conditional ML decoding error probability

of an arbitrary subcode (given that the all-zero codeword is transmitted) is provided

by (5.26), and (4.10) forms an upper bound on the block error probability of the

whole code (or ensemble). For an arbitrary constant Hamming weight subcode, the

optimized set of non-negative and even functions {f(·; j)}J
j=1 which attains the min-

imal value of the conditional bound in (5.26), is given by (5.29); this set of functions

is subject to a three-parameter optimization over a cube of unit length (see (5.29)).
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Chapter 6

Special Cases of the Generalized

DS2 Bound for Independent

Parallel Channels

6.1 Short overview

In this chapter, we rely on the two versions of the generalized DS2 bound for inde-

pendent parallel MBIOS channels, as presented in Sections 4.2 and 4.3, and apply

them in order to re-derive some of the bounds which were originally derived by Liu

et al. [26]. The derivation in [26] is based on the 1961 Gallager bound from Sec-

tion 5.2, and the authors choose particular and sub-optimal tilting measures in order

to get closed form bounds (in contrast to the optimized tilting measures in Section 5.4

which lead to more complicated bounds in terms of their numerical computation). In

this chapter, we follow the same approach in order to re-derive some of their bounds

as particular cases of the two generalized DS2 bounds (i.e., we choose some partic-

ular tilting measures rather than the optimized ones). In some cases, we re-derive

the bounds from [26] as special cases of the generalized DS2 bound, or alternatively,

obtain some modified bounds as compared to [26].
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6.2 The Union-Bhattacharyya Bound

As in the case of a single channel, it is a special case of both versions of the DS2 and the

1961 Gallager bound. By substituting r = 0 in the Gallager bound or ρ = 1, λ = 0.5

in both versions of the DS2 bound, we get

Pe ≤
n(1−R)∑

h=1

Ahγ
h (6.1)

where γ is given by (3.3) and denotes the average Bhattacharyya parameter of J

independent parallel channels. Note that this bound is given in exponential form,

i.e., as in the single channel case, it doesn’t use the exact expression for the pairwise

error probability between two codewords of Hamming distance h. For the case of the

binary-input AWGN, we now present a tighter version which uses the Q-function to

express the exact pairwise error probability.

This form of the union bound can also be used in conjunction with other bounds

(e.g., 1961 Gallager or both versions of the DS2 bounds) for constant Hamming weight

subcodes in order to tighten the resulting bound. Unfortunately, we cannot compare

here ”two versions” of the union derived by the two different approaches which were

used for the DS2 bound in Sec. 4. This is because when applying the perfect CSIR

model, we have no exact expression for the pairwise error probability for a general

distribution αj of the channel states. Therefore, we must use the first approach of

averaging the bound over all possible channel mappings. We start the derivation by

expressing the pairwise error probability given that the all-zero codeword is transmit-

ted

Pe(0 → xh1,h2,...,hJ
) = Q




√√√√2
J∑

j=1

νjhj


 (6.2)

where xh1,h2,...,hJ
is a codeword possessing split Hamming weights h1, . . . , hJ in the J

parallel channels, and νj ,
(

Es

N0

)
j

designates the energy per symbol to spectral noise

density for the jth AWGN channel (j = 1, 2, . . . , J). The union bound on the block

error probability gives

Pe ≤
n∑

h=1

∑

h1≥0,...,hJ≥0
h1+...+hJ=h

Ah1,...,hJ
Q




√√√√2
J∑

j=1

νjhj


 (6.3)
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where this bound is expressed in terms of the split weight enumerator of the code.

Averaging (6.3) over all possible channel assignments gives (see (4.6))

Pe ≤
∑
nj≥0

n1+...+nJ=n

{
n∑

h=1

∑

0≤hj≤nj∑
j hj=h

Ah PH|N(h|n) PN(n) Q




√√√√2
J∑

j=1

νjhj




}

=
∑
nj≥0

n1+...+nJ=n





n∑

h=1

∑

0≤hj≤nj∑
j hj=h

Ah

(
h

h1, h2, . . . , hJ

)

(
n− h

n1 − h1, n2 − h2, . . . , nJ − hJ

)

αn1
1 . . . αnJ

J Q




√√√√2
J∑

j=1

νjhj






 (6.4)

where αj designates the a-priori probability for the transmission of symbols over the

jth channel, assuming the assignments of these symbols to the J parallel channels are

independent and random.

In order to simplify the final result, we rely on Craig’s identity for the Q-function,

i.e.,

Q(x) =
1

π

∫ π
2

0

e−
x2

2 sin2 θ dθ , x ≥ 0. (6.5)

Plugging (6.5) into (6.4) and interchanging the order of integration and summation
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gives

Pe ≤ 1

π

∫ π
2

0

∑
nj≥0

n1+...+nJ=n





n∑

h=1

∑

0≤hj≤nj∑
hj=h

Ah

(
h

h1, h2, . . . , hJ

)

(
n− h

n1 − h1, n2 − h2, . . . , nJ − hJ

)
αn1

1 . . . αnJ
J

J∏
j=1

e−
νjhj

sin2 θ

}
dθ

(a)
=

1

π

∫ π
2

0

n∑

h=1

Ah

∑

hj≥0∑
hj=h

{(
h

h1, h2, . . . , hJ

) J∏
j=1

[
αje

− νj

sin2 θ

]hj

}

∑

kj≥0∑
j kj=n−h

{(
n− h

k1, k2, . . . , kJ

) J∏
j=1

(αj)
kj

}
dθ

(b)
=

1

π

∫ π
2

0

n∑

h=1

Ah

[
J∑

j=1

αje
− νj

sin2 θ

]h

dθ (6.6)

where (a) follows by substituting kj = nj − hj for j = 1, 2, . . . , J , and (b) follows

since the sequence {αj}J
j=1 is a probability distribution, which gives the equality

∑

kj≥0∑
j kj=n−h

{(
n− h

k1, k2, . . . , kJ

) J∏
j=1

(αj)
kj

}
=

(
J∑

j=1

αj

)n−h

= 1.

Eq. (6.6) provides the exact (Q-form) version of the union bound on the block error

probability for independent parallel AWGN channels.

6.3 The Simplified Sphere Bound for Parallel AWGN

Channels

The simplified sphere bound is an upper bound on the ML decoding error probability

for the binary-input AWGN channel. In [26], the authors have obtained a parallel-

channel version of the sphere bound by making the substitution f(y; j) = 1√
2π

in the

1961 Gallager bound. We will show that this version is also a special case of both
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versions of the parallel-channel DS2 bound. By using the relation (5.21), between

Gallager’s tilting measure and the un-normalized DS2 tilting measure, we get

g(y; j) =

(
f(y; j)

p(y|0; j)

)s

= exp

(
s(y +

√
2νj)

2

2

)

so that

∫ +∞

−∞
g(y; j)p(y|0; j) dy =

1√
1− s∫ +∞

−∞
g(y; j)1− 1

ρ p(y|0; j) dy =
1√

1− s
(
1− 1

ρ

)

∫ +∞

−∞
g(y; j)1− 1

ρ p(y|0; j)1−λp(y|1; j)λ dy =
e

νj

(
1−s(1− 1

ρ)
)

√
1− s

(
1− 1

ρ

) .

By introducing the two new parameters β = 1− s
(
1− 1

ρ

)
and λ = β

2
we get

∫ +∞

−∞
g(y; j)p(y|0; j)dy =

√
1− ρ

1− βρ∫ +∞

−∞
g(y; j)1− 1

ρ p(y|0; j)dy = β−
1
2 (6.7)

∫ +∞

−∞
g(y; j)1− 1

ρ p(y|0; j)1−λp(y|1; j)λdy =
γβ

j√
β

, γj , e−νj .

Next, by plugging (6.7) into the DS2 bound in (4.9), we get

Pe ≤




n∑

h=0

Ah

(
J∑

j=1

αjγ
β
j

)h

β−
n
2





ρ (
1− ρ

1− βρ

)n(1−ρ)
2

,
0 ≤ ρ ≤ 1

1 ≤ β ≤ 1
ρ

. (6.8)

The same expression may be obtained by plugging (6.7) into the DS2 bound in (4.23).

This bound is identical to the parallel-channel simplified sphere bound in [26, Eq.

(24)], except that it provides a slight improvement due to the absence of the factor

2H(ρ) which appears in [26, Eq. (24)] (a factor bounded between 1 and 2).
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6.4 Generalizations of the Shulman-Feder Bound

for Parallel Channels

In this section, we present two generalizations of the Shulman and Feder (SF) bound,

where both bounds apply to independent parallel channels. The first bound was

previously obtained by Liu et al. [26] as a special case of the generalization of the

1961 Gallager bound and will be shown to be a special case of the DS2 bound from

Section 4.3, and the second bound follows as a particular case of the DS2 bound from

Section 4.2 for independent parallel channels.

By substituting in (5.15) the tilting measure and the parameters (see [26, Eq. (28)])

f(y; j) =

(
1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ

r = −1− ρ

1 + ρ
, s =

ρ

1 + ρ
, 0 ≤ ρ ≤ 1 (6.9)

straightforward calculations for MBIOS channels give the following bound which was

originally introduced in [26, Lemma 2]:

Pe ≤ 2H(ρ)2nRρ

(
max
1≤h≤n

Ah

2−n(1−R)
(

n
h

)
)ρ





J∑
j=1

αj

(∑
y

1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ




n

.

(6.10)

Due to the natural connection between the DS2 bound in Section 4.3 and the 1961

Gallager bound for parallel channels (see the discussion in Sec. 5.3), the generalized

SF bound is also a special case of the former bound. The tilting measure which should

be used in this case to show the connection has already appeared in (4.32) (as a part

of the discussion Sec. 4.4 on the random coding version of this bound) and it reads

g(y; j) =

[
1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

]ρ

p(y|0; j)−
ρ

1+ρ .

The result is the same as the bound in (6.10) except for the absence of the factor

2H(ρ).

Considering the generalization of the DS2 bound in Section 4.2, it is possible to

start from Eq. (4.9) and take the maximum distance spectrum term out of the sum.
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This gives the bound

Pe ≤ 2−n(1−R)ρ

(
max
1≤h≤n

Ah

2−n(1−R)
(

n
h

)
)ρ





J∑
j=1

αj

[∑
y

g(y; j)p(y|0; j)

] 1−ρ
ρ

·
[ ∑

y

p(y|0; j)g(y; j)1− 1
ρ

(
1 +

(
p(y|1; j)

p(y|0; j)

)λ
)]}nρ

, 0 ≤ ρ ≤ 1. (6.11)

Using the J un-normalized tilting measures from (4.32) and setting λ = 1
1+ρ

in (6.11),

gives the following bound due to the symmetry at the channel outputs:

Pe ≤ 2nRρ

(
max
1≤h≤n

Ah

2−n(1−R)
(

n
h

)
)ρ





J∑
j=1

αj




(∑
y

1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ



1
ρ





nρ

, 0 ≤ ρ ≤ 1(6.12)

which forms another possible generalization of the SF bound for independent parallel

channels. Clearly, unless J = 1 (referring to the case of a single MBIOS channel),

this bound is exponentially looser than the one in (6.10). The fact that the bound in

(6.12) is exponentially looser than the bound in (6.10) follows from the use of Jensen’s

inequality for the derivation of the first version of the DS2 bound (see the move from

(4.4) to (4.5)).

6.5 Modified Shulman-Feder Bound for Indepen-

dent Parallel Channels

It is apparent from the form of the SF bound that its exponential tightness depends

on the quantity

max
1≤h≤n

Ah

2−n(1−R)
(

n
h

) (6.13)

which measures the maximal ratio of the distance spectrum of the considered binary

linear block code (or ensemble) and the average distance spectrum of fully random

block codes with the same rate and block length. One can observe from Fig. 2.5

that this ratio may be quite large for a non-negligible portion of the normalized
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Hamming weights, thus undermining the tightness of the SF bound. The idea of

the Modified Shulman-Feder (MSF) bound is to split the set of non-zero normalized

Hamming weights Ψn ,
{

1
n
, 2

n
, . . . , 1

}
into two disjoint subsets Ψ+

n and Ψ−
n where

the union bound is used for the codewords with normalized Hamming weights within

the set Ψ+
n , and the SF bound is used for the remaining codewords. This concept

was originally applied to the ML analysis of ensembles of LDPC codes by Miller and

Burshtein [29]. Typically, the set Ψ+
n consists of low and high Hamming weights,

where the ratio in (6.13) between the distance spectra and the binomial distribution

appears to be quite large for typical code ensembles of linear codes; the set Ψ−
n is the

complementary set which includes medium values of the normalized Hamming weight.

The MSF bound for a given partitioning Ψ−
n , Ψ+

n is introduced in [26, Lemma 3], and

gets the form

Pe ≤
∑

h: h
n
∈Ψ+

n

Ahγ
h + 2H(ρ)2nRρ

(
max

h: h
n
∈Ψ−n

Ah

2−n(1−R)
(

n
h

)
)ρ

·




J∑
j=1

αj

(∑
y

1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ




n

(6.14)

where γ is introduced in (3.3), and 0 ≤ ρ ≤ 1. Liu et al. prove that in the limit

where the block length tends to infinity, the optimal partitioning of the set of non-zero

normalized Hamming weights to two disjoint subsets Ψ−
n and Ψ+

n is given by (see [26,

Eq. (42)])

δ ∈
{

Ψ+
n if − δ ln γ ≥ H(δ) + (I − 1) ln 2

Ψ−
n otherwise

(6.15)

where

I ,
J∑

j=1

αj

2

∑

x∈{−1,1}

∑
y

p(y|x; j) log2

p(y|x; j)

1/2
∑

x′∈{−1,1} p(y|x′; j)

designates the average mutual information under the assumption of equiprobable bi-

nary inputs. Note that for finite block lengths, even with the same partitioning as

above, the first term in the RHS of (6.14) can be tightened by replacing the Bhat-

tacharyya bound with the exact expression for the average pairwise error probability

between two codewords of Hamming distance h. Referring to parallel binary-input

AWGN channels, the exact pairwise error probability is given in (6.6), thus providing
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the following tightened upper bound:

Pe ≤ 1

π

∫ π
2

0





∑

h: h
n
∈Ψ+

n

Ah

[
J∑

j=1

αje
− νj

sin2 θ

]h

dθ





+2H(ρ)2nRρ

(
max

h: h
n
∈Ψ−n

Ah

2−n(1−R)
(

n
h

)
)ρ

·




J∑
j=1

αj

(∑
y

1

2
p(y|0; j)

1
1+ρ +

1

2
p(y|1; j)

1
1+ρ

)1+ρ




n

. (6.16)

On the selection of a suitable partitioning of the set Ψn in (6.16): The asymptotic

partitioning suggested in (6.15) typically yields that the union bound is used for

low and high values of normalized Hamming weights; for these values, the distance

spectrum of ensembles of turbo-like codes deviates considerably from the binomial

distribution (referring to the ensemble of fully random block codes of the same block

length and rate). Let δl and δr be the smallest and largest normalized Hamming

weights, respectively, referring to the range of values of δ in (6.15) so that Ψ−
n ,{

δl, δl + 1
n
, . . . , δr

}
, and Ψ+

n ,
{

1
n
, 2

n
, . . . , δl − 1

n
} ∪ {δr + 1

n
, δr + 2

n
, . . . , 1

}
are the

sets of normalized Hamming weights. The subsets Ψ+
n and Ψ−

n refer to the discrete

values of normalized Hamming weights for which the union bound in its exponential

form is superior to the SF bound and vice versa, respectively (see (6.14)). Our

numerical experiments show that for finite-length codes (especially, for codes of small

and moderate block lengths), this choice of δl and δr often happens to be sub-optimal

in the sense of minimizing the overall upper bounds in (6.14) and (6.16). This happens

because for δ = δl (which is the left endpoint of the interval for which the SF bound

is calculated), the ratio of the average distance spectrum of the considered ensemble

and the one which corresponds to fully random block codes is rather large, so the

second term in the RHS of (6.14) and (6.16) corresponding to the contribution of

the SF bound to the overall bound is considerably larger than the first term which

refers to the union bound. Therefore, for finite-length codes, the following algorithm

is proposed to optimize the partition Ψn = Ψ+
n ∪Ψ−

n :

1. Select initial values δl0 and δr0 (for δl and δr) via (6.15). If there are less than

two solutions to the equation −δ ln γ = H(δ) + (I − 1) ln 2, select Ψ+
n = Ψn,

Ψ−
n = φ as the empty set.
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2. Optimize the value of δl by performing a linear search in the range [δl0 , δr0 ] and

finding the value of δl which minimizes the overall bound in the RHS of (6.16).

This algorithm is applied to the calculation of the LMSF bound for finite-length

codes (see, e.g., Fig. 8.2 in p. 93).

Clearly, an alternative and slightly tighter version of the MSF bound can be ob-

tained from the DS2 bound from Section 4.3 for parallel channels where the difference

will be in the absence of the 2H(ρ) constant. We address the MSF bound in Chapter 8,

where for various ensembles of turbo-like codes, its tightness is compared with that

of both versions of generalized DS2 and Gallager bounds.
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Chapter 7

Inner Bounds on Attainable

Channel Regions

7.1 Short overview

In this chapter, we consider inner bounds on the attainable channel regions for en-

sembles of good binary linear codes (e.g., turbo-like codes) whose transmission takes

place over independent parallel channels. The computation of these regions follows

from the upper bounds on the ML decoding error probability we have obtained in

Sections 4 and 5 (see Theorems 1 and 2), referring here to the asymptotic case where

we let the block length tend to infinity.

7.2 Bounds on Attainable Channel Regions

Let us consider an ensemble of binary linear codes, and assume that the codewords of

each code are transmitted with equal probability. A J-tuple of transition probabilities

characterizing a parallel channel is said to be an attainable channel point with respect

to a code ensemble C if the average ML decoding error probability vanishes as we let

the block length tend to infinity. The attainable channel region of an ensemble whose

transmission takes place over parallel channels is defined as the closure of the set

of attainable channel points. We will focus here on the case where each of the J

independent parallel channels can be described by a single real parameter, i.e., the
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attainable channel region is a subset of RJ ; the boundary of the attainable region is

called the noise boundary of the channel. Since the exact decoding error probability

under ML decoding is in general unknown, then similarly to [26], we evaluate inner

bounds on the attainable channel regions whose calculation is based on upper bounds

on the ML decoding error probability.

In [26, Section 4], Liu et al. have used special cases of the 1961 Gallager bound

to derive a simplified algorithm for calculating inner bounds on attainable channel

regions. As compared to the bounds introduced in [26], the improvement in the

tightness of the bounds presented in Theorems 1 and 2 is expected to enlarge the

corresponding inner bounds on the attainable channel regions. Our numerical results

referring to inner bounds on attainable channel regions are based on the following

theorem:

Theorem 3 (Inner bounds on the attainable channel regions for parallel channels)

Let us assume that the transmission of a sequence of binary linear block codes (or

ensembles) {[C(n)]} takes place over a set of J parallel MBIOS channels. Assume

that the bits are randomly assigned to these channels, so that every bit is transmit-

ted over a single channel and the a-priori probability for transmitting a bit over the

j-th channel is αj (where
∑J

j=1 αj = 1 and αj ≥ 0 for j ∈ {1, . . . , J}). Let {A[C(n)]
h }

designate the (average) distance spectrum of the sequence of codes (or ensembles),

r[C](δ) designate the asymptotic exponent of the (average) distance spectrum, and

γj ,
∑
y∈Y

√
p(y|0; j)p(y|1; j) , j ∈ {1, . . . , J}

designate the Bhattachryya constants of the channels. Assume that the following

conditions hold:

1.

inf
δ0<δ≤1

EDS21(δ) > 0, ∀ δ0 ∈ (0, 1) (7.1)

where, for 0 < δ ≤ 1, EDS21(δ) is calculated from (4.13) by maximizing w.r.t.

λ, ρ (λ ≥ 0 and 0 ≤ ρ ≤ 1) and the probability tilting measures {ψ(·; j)}J
j=1.

2. The inequality

lim sup
δ→0

r[C](δ)
δ

< − ln

(
J∑

j=1

αjγj

)
(7.2)
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is satisfied, where the sum inside the logarithm designates the average Bhat-

tacharrya constant over the J parallel channels, and r[C](δ) designates the as-

ymptotic growth rate of the distance spectrum as defined in (2.3).

3. There exists a sequence {Dn} of natural numbers tending to infinity with in-

creasing n so that

lim sup
n→∞

Dn∑

h=1

A
[C(n)]
h = 0 (7.3)

4. The normalized exponent of the distance spectrum satisfies

r[C(n)](δ) = r[C](δ) + o

(
Dn

n

)
,

i.e., r[C(n)](δ) converges uniformly in δ ∈ [0, 1] to r[C](δ) at a fast enough rate.

Then, the J-tuple vector of parameters characterizing these channels lies within the

attainable channel region under ML decoding.

Proof. The reader is referred to Appendix C.

Discussion: We note that conditions 3 and 4 in Theorem 3 are similar to the

last two conditions in [25, Theorem 2.3]. Condition 2 above happens to be a natural

generalization of the second condition in [25, Theorem 2.3], thus generalizing the single

channel case to a set of parallel channels. The distinction between [25, Theorem 2.3]

which relates to typical-pairs decoding over a single channel and the statement in

Theorem 3 for ML decoding over a set of independent parallel channels lies mainly

in the first condition of both theorems.

A similar result which involve the generalized 1961 Gallager bound for parallel

channels and the generalized DS2 bound from Section 4.3 can be proven in the same

way by replacing the first condition with an equivalent relation involving the exponent

of these bounds maximized over their respective parameters, instead of the error

exponent of the DS2 bound from Section 4.2.

The difference of our results from those presented in [26] stems from the fact that

we rely here on the generalized DS2 bounds and the 1961 Gallager bound with their

related optimized tilting measures, and not on particular cases of the latter bound.

These optimizations which are carried over the tilting measures of both bounds pro-

vide tighter bounds as compared to the bounds introduced in [26, Sections 4 and 5]
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which follow from the particular choices of the tilting measures for the generalized

1961 Gallager bound.

We later exemplify our inner bounds on the attainable channel regions for ensem-

bles of accumulate-based codes whose transmission takes place over parallel AWGN

channels. The simplest ensemble we consider is the ensemble of uniformly interleaved

and non-systematic repeat-accumulate (NSRA) codes with q ≥ 3 repetitions. It is

shown in [11, Section 5] that the third condition in Theorem 3 is satisfied for this

ensemble, and more explicitly

Dn∑

h=1

A
[C(n)]
h = O

(
1

n

)

where Dn = O (ln(n)) (so the sequence {Dn} tends to infinity logarithmically with

n). Based on the calculations of the distance spectrum of this ensemble (see [11,

Section 4]), the fourth condition in Theorem 3 is also satisfied. We note that for this

ensemble, the asymptotic growth rate of the distance spectrum satisfies

r[C](0) = 0, lim sup
δ→0

r[C](δ)
δ

=
d

dδ
r[C](δ)

∣∣∣∣
δ=0

= 0.

Hence, inequality (7.2) in Theorem 3 (i.e., the second condition in this theorem) is

also satisfied for this ensemble (since the RHS of (7.2) is always positive). Hence,

the fulfillment of all the conditions in Theorem 3 for this ensemble requires to check

under which conditions the error exponent is strictly positive (see the condition in

(7.1)).

As a second example, for the Gallager ensembles of regular (n, j, k) LDPC codes,

the second, third and fourth conditions are also satisfied for the case where j ≥ 3.

Under this assumption, the minimum distance even grows linearly with the block

length (see [17, Section 2.2]), so the LHS of (7.2) becomes negative.

We make use of the fulfillment of the condition in (7.2) for regular NSRA codes

and some other variants of accumulate-based codes later in Section 8.3.

It is important to note that the low Hamming weight codewords which are ad-

dressed by the requirement in (7.3) may yield that the error probability under ML

decoding does not necessarily vanish exponentially with the block length (see, e.g.,

[29, Theorems 3 and 4] and [11, Section 5], where the ML decoding error probability
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of the considered ensembles of turbo-like codes vanish asymptotically like the inverse

of a polynomial of the block length).

83



84



Chapter 8

Performance Bounds for

Turbo-Like Ensembles over Parallel

Channels

8.1 Overview

In this chapter, we exemplify the performance bounds derived in this paper for various

ensembles of turbo-like codes whose transmission is assumed to take place over parallel

BIAWGN channels. We also compare the bounds to those introduced in [26], showing

the superiority of the new bounds introduced in Chapters 4 and 5. As mentioned

before, the superiority of the generalized 1961 Gallager bound in Chapter 5 over the

LMSF bound from [26] is attributed to the optimization of its related tilting measures.

We focus especially on ensembles of accumulate-based codes presented in Chap-

ter 2, i.e, uniformly interleaved ensembles of repeat-accumulate (RA) and accumulate-

repeat-accumulate (ARA) codes. These codes, originally introduced by Divsalar et al.

[2, 11], are attractive since they possess low encoding and decoding complexity under

iterative decoding and show a remarkable improvement in performance over classical

algebraic codes. For independent parallel channels, we study their theoretical per-

formance under ML decoding and compare it to their performance under iterative

decoding. Both finite-length analysis and asymptotic analysis are considered. In the

former case, we present upper bounds on the ML decoding error probability, and in
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the latter case, we consider inner bounds on the attainable channel regions of these

ensembles and study the gap to the capacity region. In order to assess the tightness

of the bounds for ensembles of relatively short block lengths, we compare the upper

bounds under optimal ML decoding with computer simulations under (sub-optimal)

iterative decoding.

The structure of this chapter is as follows. Section 8.2 exemplifies performance

bounds for ensembles of short to moderate block length by focusing on a uniformly

interleaved ensemble of turbo codes, comparing various bounds on the bit error prob-

ability under ML decoding and compare the results with computer simulation of the

Log-MAP iterative decoding. Section 8.3 focuses on performance bounds for repeat-

accumulate codes and their recent variations which were presented in Chapter 2. The

attractiveness of these ensembles is due to their remarkable performance and low en-

coding and decoding complexity under iterative decoding algorithms. Inner bounds

on the attainable channel regions whose calculations are based on Theorem 3 consid-

erably extend the channel region which corresponds to the cutoff rate, and outperform

previously reported bounds. These results are compared with computer simulations

of suboptimal iterative decoding. In Section 8.4 we discuss practical considerations

related to efficient implementations of the generalized DS2 and 1961 Gallager bounds

for parallel channels, thus aiming to reduce the computational complexity related to

the evaluation of these bounds.

8.2 Performance Bounds for Uniformly Interleaved

Turbo Codes

In this section, we exemplify the tightness of the new bounds by referring to an

ensemble of uniformly interleaved turbo codes, and comparing the upper bounds

on the bit error probability under ML decoding with computer simulations of an

iterative decoder. The bounds for turbo code ensembles refer to parallel BIAWGN

channels. The reader is referred to [24] which introduces coding theorems for turbo

code ensembles under ML decoding, assuming that the transmission takes place over

a single MBIOS channel (i.e., J = 1 in our setting).

Fig. 8.2 compares upper bounds on the bit error probability of the ensemble of
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Figure 8.1: The encoder of an ensemble of uniformly interleaved turbo codes whose
interleaver is of length 1000, and there is no puncturing of parity bits.

uniformly interleaved turbo codes of rate R = 1
3

bits per channel use (see Fig. 8.2).

The calculation of the average distance spectrum and IOWE of this ensemble is

performed by calculating the IOWE of the constituent codes which are recursive

systematic convolutional codes (to this end, we rely on the general approach provided

in [28] for the calculation of the IOWE of convolutional codes), and finally, the uniform

interleaver which is placed between the two constituent codes in Fig. 8.2 enables one to

calculate the distance spectrum and the IOWE of this ensemble, based on the IOWE

of the constituent codes (see [4]). The transmission of the codes from this ensemble is

assumed to take place over two (independent) parallel binary-input AWGN channels

where each bit is equally likely to be assigned to one of these channels (α1 = α2 = 1
2
),

and the value of the energy per bit to spectral noise density of the first channel is

fixed to
(

Eb

N0

)
1

= 0 dB. Since for long enough block codes, the union bound is not

informative at rates beyond the cutoff rate, one would expect that for the considered

ensemble of codes (whose block length is roughly 3000 bits), the union bound becomes

useless for values of
(

Eb

N0

)
2

below the value in the RHS of (3.8) (whose value in this

setting is 3.69 dB). This limitation of the union bound is indeed reflected from Fig. 8.2,

thus showing how loose is the union bound as compared to computer simulations of

the (sub-optimal) iterative decoder. The LMSF bound depicted in Fig. 8.2 uses a
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partitioning for codes of finite length which was obtained via the algorithm described

in Section 6.5; for a bit error probability of 10−4 it is about 1 dB tighter than the

union bound. Both versions of the DS2 and the 1961 Gallager bounds with their

optimized tilting measures show a remarkable improvement in their tightness over

the union and LMSF bounds where for a bit error probability of 10−4, these three

bounds exhibit a gain of 0.8 dB over the LMSF bound. The two versions of the

DS2 bound are almost equally tight with a gap between them of less than 0.01dB

in favor of the second version. The second version of the DS2 bound gains about

0.05 dB at a bit error probability of 10−3 over the 1961 Gallager bound. In spite of

a remarkable advantage of the improved bounds over the union and LMSF bounds,

computer simulations under (the sub-optimal) iterative Log-MAP decoding with 10

iterations show a gain of about 0.4 dB, so there is still room for further improvement

in the tightness of the bounds under ML decoding.

8.3 Performance Bounds for Ensembles of Accumulate-

Based Codes

In this section, we compare inner bounds on the attainable channel regions of accumulate-

based codes under ML decoding. The comparison refers to three ensembles of rate

one-third, as depicted in Fig. 2.3: the first one is the ensemble of uniformly inter-

leaved and non-systematic RA codes where the number of repetitions is q = 3, the

second and the third ensembles are uniformly interleaved and systematic ensembles

of RA (SPRA) codes and ARA (SPARA) codes, respectively, where the number of

repetitions is equal to q = 6 and, as a result of puncturing, only every third bit

of the non-systematic part is transmitted (so the puncturing period is p = 3). For

simplicity of notation, we make use of the abbreviations NSRA(N, q), SPRA(N, p, q)

and SPARA(N,M, p, q) which were introduced in Section 2.5. The calculation of the

IOWEs of these three ensembles is performed in Section 2.5 and we rely on the results

of this analysis in the evaluation of inner bounds on attainable channel regions. The

two generalizations of the DS2 bound for parallel channels are then applied to these

ensembles for the asymptotic case where we let the block length tend to infinity.

The evaluation of inner bounds on the attainable channel regions for the considered

88



ensembles of accumulate-based codes in this section is based on Theorem 3.

In Fig. 8.3, we compare inner bounds on the attainable channel boundaries as

calculated by the union, LMSF, and DS2 bounds from Sections 4.2 and 4.3. This

plot refers to the ensemble of NSRA(N, 3) codes of rate 1
3

bits per channel use (see

Fig. 2.3 (a)) where we let N tend to infinity. The asymptotic growth rate of the

distance spectrum of this ensemble is calculated by (2.23) with q = 3. The remarkable

superiority of the both versions of the DS2 bound over the union and LMSF bounds

is exemplified for this ensemble of turbo-like codes; actually, the DS2 bound from

Section 4.3 appears to be slightly tighter than the DS2 bound from Section 4.2 at

the extremities of the boundary of the attainable channel region. We conjecture that

this is the region where the application of Jensen’s inequality in the latter bound (see

the move from (4.4) to (4.5)) hinders its tightness the most, possibly due to the large

variance of the summands in (4.4). This phenomenon was also observed for various

turbo-like ensembles, as well as for ensembles of fully random block codes. However,

in the middle region where the channels are not very different, the DS2 bound from

Section 4.2 is in some cases tighter than the DS2 bound from Section 4.3. In the

continuation of this section, we therefore compare inner bounds on the attainable

channel regions for various ensembles of turbo-like codes where the boundaries of

these regions by choosing the tightest version of the DS2 bound, i.e., that which

yields the largest attainable channel region. This comparison appears in Fig. 8.4.

This figure demonstrates the improved performance of the ensembles of SPARA

codes under ML decoding. This improvement is attributed to the distance spectral

thinning effect [30] which is exemplified in Fig. 2.5 for the ensembles of NSRA, SPRA

and SPARA codes of the same code rate (1
3

bits per channel use) where we can see

the resemblance between the distance spectrum of these ensembles to that of the

random code ensemble. The same phenomenon of distance spectral thinning occurs

by reducing the value of α for the ensembles of SPARA codes (see Fig. 2.5, comparing

the two plots for α = 1
4

and α = 2
15

); this in turn yields an improved inner bound

on the attainable channel regions, as observed in Fig. 8.4. It is shown in this figure

that for the SPARA ensemble with the parameters p = 3, q = 6 and α = 2
15

, the

gap between the inner bound on the attainable channel region under ML decoding

and the capacity limit is less than 0.05 dB. Note that for the examined ensembles of

NSRA and SPRA codes of the same code rate, the corresponding gaps between the
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inner bounds on the attainable channel regions and the channel capacity are 2.2 dB

and 0.5 dB, respectively (see Fig. 8.4).

While these results hold for the case of ML decoding, it is clearly of interest

to examine the performance of these code ensembles under iterative decoding. A

comparison of the performance of these ensembles is given in Fig. 8.5. In this figure,

the performance of some SPARA codes of rate 1
3

is obtained via computer simulations

employing 32 iterations of the sum-product decoding algorithm. In this figure, the

transmission takes place over two parallel binary-input AWGN channels, where the

energy per bit to spectral noise density of the first channel is set to
(

Eb

N0

)
1

= 0 dB,

and each bit is equally likely to be assigned to one of these two channels. An external

high-rate code is used which improves performance at the cost of slightly reducing

the coding rate. It is apparent from Fig. 8.5 that in the case of iterative decoding, the

optimal value of α lies between 1
4

and 1
3
. This is in contrast to the performance bounds

for ML decoding which indicate that the value of α → 0 is optimal for the ensemble

of SPARA codes. For the iterative decoder, by setting α → 0 the decoding process

cannot start; this is the reason why a different value of α yields the optimal result in

this case. Disregarding the slight loss of rate due to the high-rate code, the decoder

of the SPARA ensemble with α = 1
4

performs roughly 2 dB away (in terms of
(

Eb

N0

)
2
,

when
(

Eb

N0

)
1

= 0 dB) from its ML decoding threshold (as shown in Fig. 8.4) for a bit

error probability of 10−3. This gap between performance under iterative decoding and

ML decoding may be bridged by using an irregular ensemble, rather than the regular

ensemble with p = 3 and q = 6. Density evolution techniques which were applied to

ARA codes [32] may be used to optimize the distribution of the irregular repetition

and puncturing patterns. This process improves the performance of these ensembles

under iterative decoding, both for the case of a single communication channel and for

the case of communicating through parallel channels.
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8.4 Considerations on the Computational Complex-

ity of the Generalized DS2 and 1961 Gallager

Bounds

The brute-force calculation of the generalized DS2 bound for linear codes (or ensem-

bles) of finite length is in general computationally heavy. For every constant weight

subcode, it requires a numerical optimization over the two parameters λ ≥ 0 and

0 ≤ ρ ≤ 1; for each subcode of constant Hamming weight and for each choice of

values for λ and ρ, one needs to solve numerically the explicit equations for k and

βj (see Eqs. (4.19) and (4.20)) which are related to the J optimized tilting measures.

Moreover, for each subcode and a pair of values for λ and ρ, the evaluation of the

generalized DS2 bound requires numerical integrations (or summations, in case the

channel outputs are discrete). Performing these tedious and time-consuming opti-

mizations for every constant weight subcode would make the improved bounds less

attractive in terms of their practical use for performance evaluation of linear codes

and ensembles.

In the following, we suggest an approach which significantly reduces the com-

plexity related to the computation of the generalized DS2 bound, and enhances the

applicability of the bound using standard computational facilities. First, the code

is partitioned into constant Hamming weight subcodes, and the exact union bound

(see Eq. (6.6)) is calculated for every subcode (note that the number of subcodes

does not exceed the block length of the code). This task is rather easy, given the

(average) distance spectrum {Ah} or the weighted IOWE {A′
h} of the code (or en-

semble) which are calculated in advance (see (2.1) and (2.4)). In order to reduce

the computational complexity, we do not calculate the generalized DS2 bounds for

those constant-Hamming weight subcodes for which the values of the union bounds

are below a certain threshold (e.g., we may choose a threshold of 10−10 for bit error

probability or 10−6 for block error probability; these thresholds should be tailored

for the application under consideration). Next, for those constant Hamming weight

subcodes for which the union bound exceeds the above threshold, the generalized DS2

bound is evaluated. For these subcodes, we wish to reduce the infinite interval λ ≥ 0

to a finite interval; this is performed by using the transformation λ′ , λ
λ+1

so that

91



the two-parameter optimization is reduced to a numerical optimization over the unit

square (λ′, ρ) ∈ [0, 1]2. In this respect, it was observed that the optimal values of

λ′ and ρ vary rather slowly for consecutive values of the constant Hamming weight

h, so the search interval associated with the optimization process may be reduced

once again with no penalty in the tightness of the bound. In other words, we search

for optimal values of λ′ and ρ only within a neighborhood of the optimal λ′ and ρ

found for the previous subcode. We proceed in this manner until all the relevant

subcodes are considered. As an example, we note that for the ensemble of turbo

codes depicted in Fig. 8.2, about 80% of the computational time was saved without

affecting the numerical results; in this respect, the threshold for the bit error proba-

bility analysis was chosen to be 10−6

n
where n designates the block length of the code.

The reduction in the computational complexity becomes however more pronounced

for higher SNR values, as the number of subcodes for which the union bound replaces

the computation of the generalized DS2 bound increases.

An analogous consideration applies to the generalized version of the 1961 Gallager

bound for parallel channels with its related optimized tilting measures.

Referring to the calculation of attainable channel regions, a search over the region

of channel parameters is required. As an example, consider a set of parallel AWGN

channels characterized by the J-tuple of SNRs (ν1, . . . , νJ). In order to find the

attainable channel boundary, we fix the values of ν1, . . . , νJ−1 and perform a linear

search over νJ using any appropriate method (e.g., the bisection method) in order

to find the smallest value of ν∗J for which the lower bound on the error exponent

(as obtained by an upper bound on the ML decoding error probability) vanishes. If

(ν1, . . . , νJ−1, 0) is not an attainable point while (ν1, . . . , νJ−1,∞) is attainable, then

the resulting value ν∗J is such that the point (ν1, . . . , ν
∗
J) is on the boundary of the

attainable region. The overall complexity of this approach is, of course, polynomial

in J . We apply this approach in this chapter for the calculation of inner bounds on

the attainable channel regions under ML decoding, referring to the generalizations of

the DS2 and 1961 Gallager bounds in Chapters 4 and 5, respectively.
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Figure 8.2: Performance bounds for the bit error probability under ML decoding
versus computer simulation results of iterative Log-MAP decoding (with 10

iterations). The transmission of this ensemble takes place over two (independent)
parallel binary-input AWGN channels. Each bit is equally likely to be assigned to
one of these channels, and the energy per bit to spectral noise density of the first

channel is set to
(

Eb

N0

)
1

= 0 dB. The compared upper bounds on the bit error

probability are the generalizations of the DS2 and 1961 Gallager bounds, the LMSF
bound from [26], and the union bound (based on (6.6)).
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Figure 8.3: Attainable channel regions for the rate one-third uniformly interleaved
ensemble of NSRA(N, 3) codes (see Fig. 2.3 (a)) in the asymptotic case where we let
N tend to infinity. The communication takes place over J = 2 parallel binary-input

AWGN channels, and the bits are equally likely to be assigned over one of these
channels (α1 = α2 = 1

2
). The achievable channel region refers to optimal ML

decoding. The boundaries of the union and LMSF bounds refer to the discussion in
[26], while the boundaries referring to the two versions of the DS2 bound refer to
the derivations in Sections 4.2 and 4.3, followed by an optimization of the tilting

measures derived in these sections.
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Figure 8.4: Attainable channel regions for the rate one-third uniformly interleaved
accumulate-based ensembles with puncturing depicted in Fig. 2.3. These regions
refer to the asymptotic case where we let N tend to infinity. The communication
takes place over J = 2 parallel binary-input AWGN channels, and the bits are
equally likely to be assigned over one of these channels (α1 = α2 = 1

2
). The

achievable channel region refers to optimal ML decoding. The boundaries of these
regions are calculated by selecting the tighter of the two generalizations of the DS2

bound appearing in Sections 4.2 and 4.3, followed by the optimization of their
respective tilting measures. The capacity limit and the attainable channel regions

which corresponds to the cutoff rate are given as a reference.
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Figure 8.5: Computer simulation results of SPARA codes of blocklength 30000 and
rate 1

3
, iteratively decoded using the sum-product algorithm (with 32 iterations).

The transmission of this ensemble takes place over two (independent) parallel
binary-input AWGN channels. Each bit is equally likely to be assigned to one of

these channels, and the energy per bit to spectral noise density of the first channel

is set to
(

Eb

N0

)
1

= 0 dB.
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Chapter 9

Summary and Conclusions

9.1 Contribution of the Thesis

This thesis is focused on the performance analysis of binary linear block codes (or

ensembles) whose transmission takes place over independent, memoryless and sym-

metric parallel channels. New bounds on the maximum-likelihood (ML) decoding

error probability are derived. These bounds are applied to various ensembles of turbo-

like codes, focusing especially on repeat-accumulate codes and their recent variations

which possess low encoding and decoding complexity and exhibit remarkable per-

formance under iterative decoding (see, e.g., [2, 11, 23, 31]). The framework of the

second version of the Duman and Salehi (DS2) bounds is generalized to the case

of parallel channels by means of two different bounding techniques, along with the

derivation of their optimized tilting measures. For the case of random codes, one of

the bounds (namely, the one derived in Sec. 4.3) attains the random coding exponent

while the other (derived in Sec. 4.2) does not. This difference is attributed to the

additional Jensen’s inequality in the transition from (4.4) to (4.5) (see p. 41) which is

circumvented in the derivation of Sec. 4.3. Nevertheless, for general code ensembles,

neither of these two bounds is tighter than the other. The generalization of the 1961

Gallager bound for parallel channels, introduced by Liu at al. [26], is reviewed and

the optimized tilting measures which are related to this bound are derived via calcu-

lus of variations (as opposed to the use of simple and sub-optimal tilting measures

in [26]). The connection between the generalized DS2 bound and the 1961 Gallager

bound, which was originally addressed by Divsalar [13] and by Sason and Shamai
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[37, 40] for a single channel, is revisited for an arbitrary number of independent par-

allel channels. In this respect, it is shown that the 1961 Gallager bound [26] is a

special case of the generalized DS2 bound derived in Sec. 4.3 and is not a special case

of the DS2 bound derived in Sec. 4.2. In the asymptotic case where we let the block

length tend to infinity, the new bounds are used to obtain improved inner bounds on

the attainable channel regions under ML decoding. The tightness of the new bounds

for independent parallel channels is exemplified for structured ensembles of turbo-like

codes. In this respect, the inner bounds on the attainable channel regions which are

computed by the DS2 bound from Sec. 4.2 are slightly looser than those computed

by the DS2 bound from Sec. 4.3 at the extremities of the boundary of the attainable

channel region. On the other hand, in the region where the channels are not very

different, the DS2 bound from Sec. 4.2 is slightly tighter. It is therefore suggested to

use in each case the tighter of the two bounds in order to maximize the attainable

channel region. For turbo-like ensembles of moderate block lengths, the two versions

of the generalized DS2 bound are almost equally tight (see, e.g., Fig. 8.2 in p. 93).

Following the approach in [2], we analyze the distance spectra and their asymptotic

growth rates for various ensembles of systematic and punctured accumulate-based

codes (see Fig. 2.3). The distance spectral analysis serves to assess the performance

of these codes under ML decoding where we rely on the bounding techniques de-

veloped in this paper and [26] for parallel channels. The improved performance of

the ensembles of systematic and punctured accumulate-repeat-accumulate (SPARA)

codes under ML decoding is demonstrated by combining the two generalized DS2

bounds (from Sections 4.2 and 4.3) in Fig. 8.4. This improvement is attributed to the

distance spectral thinning effect [30] which is exemplified in Fig. 2.5 by comparing the

asymptotic growth rates of the distance spectra for the ensembles in Fig. 2.3 (a)–(c).

We also report that for the SPARA ensemble, there is a gap between the ML decoding

bounds and computer simulation results under iterative decoding. We believe that

this gap stems from the use of an ensemble with regular repetition and puncturing

patterns. As observed in [32] for the binary erasure channel, we believe that bet-

ter results can be achieved by properly selecting irregular repetition and puncturing

patterns.

The generalization of the DS2 bound for parallel channels enables to re-derive

specific bounds which were originally derived by Liu et al. [26] as special cases of the
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1961 Gallager bound. However, the improved bounds together with their optimized

tilting measures show, regardless of the block length of the codes, an improvement

over the bounds derived as special cases of the 1961 Gallager bound; this improvement

is especially pronounced for moderate to large block lengths. However, in some cases,

the new bounds under ML decoding are a bit pessimistic as compared to computer

simulations of sub-optimal iterative decoding (see, e.g., Fig. 8.2), thus indicating that

there is still room for further improvement.

The results in this research work are also presented in [34], which was recently

accepted for publication in the IEEE Trans. on Information Theory (as a full paper).

9.2 Topics for Further Research

In what follows, we point out some possible directions for future research:

• In [6], Bennatan and Burshtein generalized the Shulman and Feder bound to an

arbitrary discrete memoryless channel (DMC). They also combine this bound

with the union-Bhattacharrya bound, a technique which we use in Chapter 6.

A possible direction of research is to generalize the improved bounds, i.e., the

DS2 bound and the 1961 Gallager bound to the case of an arbitrary DMC.

This generalization may be studied for a single DMC or for the case of parallel

DMCs. In the latter case, a random channel mapper can be assumed in order

to simplify the analysis.

• Pfister and Sason [32] have recently examined the performance of some ensem-

bles of accumulate-repeat-accumulate (ARA) codes transmitted over the BEC

and have obtained results which allow to approach capacity on this channel

with bounded decoding complexity per information bit. With these results in

mind, three directions of research are thus proposed.

– First, the results in [32] may be generalized to a set of parallel BECs. In

this respect, using the technique of a random channel mapper is expected

to simplify the analysis, in the same way as we have seen in Chapters 4 and

5. Using the random mapper approach, the density evolution equations

should be rewritten so as to accommodate the parallel channel.
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– Second, the ML analysis we performed for regular SPARA codes can be

extended to irregular ensembles, i.e, ensembles where irregular repetition

and puncturing patterns are used. The calculation of bounds under ML

decoding requires to extend the calculation of the average distance spectra

for irregular ensembles of ARA codes. This will provide a better under-

standing of the effect of the degree distributions on the gap to capacity.

– Finally, and in continuation to the last direction of research, we have

demonstrated that for the ensemble of SPARA codes discussed in Sec-

tion 8.3, there is a considerable gap between the (upper bound on) per-

formance under ML decoding and practical performance under iterative

decoding. We believe this gap stems from the use of regular repetition and

puncturing patterns (as is the case for regular LDPC ensembles where the

gap between thresholds under ML and iterative decoding is rather large).

Allowing these patterns to be irregular, as in [32], may enable to bridge

this gap. Optimized repetition and puncturing degree distributions may

be obtained using density evolution techniques, and the performance could

be compared with that of ML decoding.
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Appendix A

On the Sub-optimality of Even

Tilting Measures in the Gallager

Bound

In the following, we derive the functions f(·; j) resulting from the optimal DS2 tilting

measures in (4.18) and demonstrate that they are not even functions. From (4.8), we

get the expression

ψ(y; j) =
g(y; j)p(y|0; j)∑

y′
g(y′; j)p(y′|0; j)

, c−1 · g(y; j)p(y|0; j)

for the single-letter connection between the normalized and un-normalized DS2 tilting

measures; changing the subject gives

g(y; j) = c ·
(

ψ(y; j)

p(y|0; j)

)
. (A.1)

Substituting (4.18) in (A.1) we obtain the optimal form of the un-normalized tilting

measure as

g(y; j) = c ·
(

1 + k

(
p(y|1; j)

p(y|0; j)

)λ
)ρ

(A.2)

Next, we substitute (5.21) in the LHS of (A.2) and manipulate the expression to get

f(y; j) = const · p(y|0; j)

(
1 + k

(
p(y|1; j)

p(y|0; j)

)λ
) ρ

s

. (A.3)
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Clearly, this expression does not constitute an even function.
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Appendix B

Technical Details for Calculus of

Variations on (5.26)

The bound on the decoding error probability for constant Hamming weight codes is

given by substituting (5.25) into (5.14). Disregarding the multiplicative term 2h(ρ),

we minimize the expression

U , Ah

{
J∑

j=1

αj

∑
y

[p(y|0; j)p(y|1; j)]
1−r
2 f(y; j)r

}h

·
{

J∑
j=1

αj

2

∑
y

[
p(y|0; j)1−r + p(y|1; j)1−r

]
f(y; j)r

}n−h

e−nrd

+

{
J∑

j=1

αj

2

∑
y

[
p(y|0; j)1−s + p(y|1; j)1−s

]
f(y; j)s

}n

e−nsd,

r ≤ 0, s ≥ 0 −∞ < d < ∞. (B.1)

Employing calculus of variations, we substitute in (B.1) the following tilting measure

f(y; j) = f0(y; j) + εη(y; j)

103



where η(·; j) is an arbitrary function. Next, we impose the condition that ∂U
∂ε

∣∣
ε=0

= 0

for all η(·; j). The derivative is given by

∂U

∂ε

∣∣∣∣
ε=0

= Ahe
−nrd



h

[
J∑

j=1

αj

∑
y

(p(y|0; j)p(y|1; j))
1−r
2 f0(y; j)r

]h−1

[
J∑

j=1

αj

∑
y

(
p(y|0; j)p(y|1; j)

) 1−r
2 rf0(y; j)r−1η(y; j)

]

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−r + p(y|1; j)1−r

)
f0(y; j)r

]n−h

+(n− h)

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−r + p(y|1; j)1−r

)
f0(y; j)r

]n−h−1

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−r + p(y|1; j)1−r

)
rf0(y; j)r−1η(y; j)

]

[
J∑

j=1

αj

∑
y

(
p(y|0; j)p(y|1; j)

) 1−r
2 f0(y; j)r

]h




+e−nsdn

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−s + p(y|1; j)1−s

)
f0(y; j)s

]n−1

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−s + p(y|1; j)1−s

)
sf0(y; j)s−1η(y; j)

]
. (B.2)
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Defining the constants

c1 , Ahe
−nrdhr

[
J∑

j=1

αj

∑
y

(
p(y|0; j)p(y|1; j)

) 1−r
2 f0(y; j)r

]h−1

c2 ,
[

J∑
j=1

αj

2

∑
y

(
p(y|0; j)1−r + p(y|1; j)1−r

)
f0(y; j)r

]n−h

c3 , Ahe
−nrd r(n− h)

2

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−r + p(y|1; j)1−r

)
f0(y; j)r

]n−h−1

c4 ,
[

J∑
j=1

αj

∑
y

(
p(y|0; j)p(y|1; j)

) 1−r
2 f0(y; j)r

]h

c5 , e−nsd ns

2

[
J∑

j=1

αj

2

∑
y

(
p(y|0; j)1−s + p(y|1; j)1−s

)
f0(y; j)s

]n−1

(B.3)

and requiring that the integrand in (B.2) be equal to zero, we get the equivalent

condition

J∑
j=1

αj

{(
c1c2 [p(y|0; j)p(y|1; j)]

1−r
2 + c3c4

[
p(y|0; j)1−r + p(y|1; j)1−r

])
f0(y; j)r−1

+c5

[
p(y|0; j)1−s + p(y|1; j)1−s

]
f0(y; j)s−1

}
= 0, ∀y ∈ Y .

Defining K1 , c1c2
c5

, K2 , c3c4
c5

, and dividing both sides by f0(y; j)r−1 implies the

condition in (5.27).
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Appendix C

Proof of Theorem 3

The concept of the proof of this theorem is similar to the proof introduced in [25,

pp. 40–42] for the single channel case, and the proofs of [26, Theorems 2–4] for the

scenario of independent parallel channels. The difference in this proof from those

mentioned above is the starting point which relies on the generalization of the DS2

bound (see Theorem 1 in Section 4.2).

We begin by rewriting the DS2 bound for a specific constant Hamming-weight

subcode (4.11) as

Pe|0(h) ≤ Aρ
hBh

where

Bh ,





(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1−λρ
ρ p(y|1; j)λ

)δ

(
J∑

j=1

αj

∑
y

ψ(y; j)1− 1
ρ p(y|0; j)

1
ρ

)1−δ




nρ

. (C.1)

By selecting the optimized tilting measures and optimal values of λ ≥ 0 and 0 ≤
ρ ≤ 1, we obtain the optimized bound Bopt

h , which is related to the optimal exponent

EDS21(δ) by

Bopt
h = e−n(EDS21 (δ)+ρr[C](δ)), δ , h

n
. (C.2)

The upper bound on the ML decoding error probability of the ensemble can be written
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as

P [C(n)]
e ≤

n∑

h=1

Aρ
hB

opt
h ≤

Dn∑

h=1

Ah +
αn∑

h=Dn+1

Ahγ
h +

n∑

h=αn+1

Aρ
hB

opt
h (C.3)

for any α > 0. This follows since for weights up to Dn we set Bopt
h = 1, and for

Hamming weights from Dn + 1 up to αn the DS2 bound is relaxed by selecting ρ = 1

and using the union bound (see (6.1)). Let us examine the behavior of each of the

three terms in (C.3). As we let n tend to infinity, the first term in (C.3) goes to 0

due to the third condition of the theorem.

The second term may be rewritten as

αn∑

h=Dn+1

Ahγ
h =

αn∑

h=Dn+1

e
h

(
r[C(n)](δ)

δ
+ln(γ)

)

.

By the fourth condition of the theorem, the exponent is bounded above by

h

(
ln(γ) +

r[C](δ)
δ

+ o

(
Dn

n

))
.

Now, the summation only has terms corresponding to h > Dn, so o
(

Dn

n

) ≤ o(1).

The second condition implies that for small enough α, the exponent is negative and

bounded away from 0, say by −θ0, where θ0 > 0. Then

αn∑

h=Dn+1

e
h

(
r[C(n)](δ)

δ
+ln(γ)

)

≤
αn∑

h=Dn+1

e−hθ0 ≤ e−Dnθ0

1− e−θ0

which tends to zero as n →∞ because Dn →∞.

Finally, by using (C.2), the third term in (C.3) may be expressed as

n∑

h=αn

Aρ
hB

opt
h =

n∑

h=αn

e−n(EDS21 (δ)+ρ(r[C](δ)−r[C(n)](δ))) =
n∑

h=αn

e−n(EDS21(δ)+o(1)) (C.4)

which vanishes as n →∞ due to (7.1), thus completing the proof. 2
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