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Abstract

This paper provides simple lower bounds on the number ddtitars which is required for successful message-
passing decoding of some important families of graph-baset® ensembles (including low-density parity-check
codes and variations of repeat-accumulate codes). Theniasion of the code ensembles is assumed to take place
over a binary erasure channel, and the bounds refer to threpasiic case where we let the block length tend to
infinity. The simplicity of the bounds derived in this papégras from the fact that they are easily evaluated and are
expressed in terms of some basic parameters of the enseriale iwclude the fraction of degree-2 variable nodes,
the target bit erasure probability and the gap between tlamradd capacity and the design rate of the ensemble.
This paper demonstrates that the number of iterations wikickquired for successful message-passing decoding
scales at least like the inverse of the gap (in rate) to capamiovided that the fraction of degree-2 variable nodes
of these turbo-like ensembles does not vanish (hence, th&wuof iterations becomes unbounded as the gap to
capacity vanishes).

Index terms- Accumulate-repeat-accumulate (ARA) codes, area thedserary erasure channel (BEC), density
evolution (DE), extrinsic information transfer (EXIT) dftg, iterative message-passing decoding, low-densityypar
check (LDPC) codes, stability condition.

. INTRODUCTION

During the last decade, there have been many developmetiie iconstruction and analysis of low-complexity
error-correcting codes which closely approach the Shanapacity limit of many standard communication channels
with feasible complexity. These codes are understood toodes defined on graphs, together with the associated
iterative decoding algorithms. Graphs serve not only tacdes the codes themselves, but more importantly, they
structure the operation of their efficient sub-optimalatare decoding algorithms.

Proper design of codes defined on graphs enables to asyoafiiotichieve the capacity of the binary erasure
channel (BEC) under iterative message-passing decodapadty-achieving sequences of ensembles of low-density
parity-check (LDPC) codes were originally introduced bysiollahi [29] and by Luby et al. [13], and a systematic
study of capacity-achieving sequences of LDPC ensemblesowasented by Oswald and Shokrollahi [19] for the
BEC. Analytical bounds on the maximal achievable rates oPCDensembles were derived by Barak et al. [6]
for the asymptotic case where the block length tends to tgfitliis analysis provides a lower bound on the gap
between the channel capacity and the achievable rates o€LddiBembles under iterative decoding. The decoding
complexity of LDPC codes under iterative message-passiegding scales linearly with the block length, though
their encoding complexity may be super-linear with the kldength. However, the class of repeat-accumulate
codes and their more recent variants (see, e.g., [1], [10][2h]) exhibit the 'interleaver gain’ phenomenon, and
their encoding and decoding complexities scale both ligeaith the block length. Due to the simplicity of the
density evolution analysis for the BEC, suitable constans of capacity-achieving ensembles of variants of repeat
accumulate codes were devised in [10], [20], [21] and [26].tlhese works rely on the density evolution analysis
for the BEC, and provide an asymptotic analysis which referthe case where we let the block length of these
code ensembles tend to infinity.

Rateless capacity-achieving codes for the BEC were intediby Luby [14], and later improved by Shokrollahi
[30]. The innovation of this approach enables to achievectdygacity of the BEC without the knowledge of the
channel parameter.
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The performance analysis of finite-length LDPC code ensestahose transmission takes place over the BEC
was introduced by Di et al. [8]. This analysis considers sptimal iterative message-passing decoding as well as
optimal maximume-likelihood decoding. In [2], an efficierp@oach to the design of LDPC codes of finite length
was introduced by Amraoui et al.; this approach is speadlifor the BEC, and it enables to design such code
ensembles which perform well under iterative decoding waitpractical constraint on the block length. In [23],
Richardson and Urbanke initiated the analysis of the dhistion of the number of iterations needed for the decoding
of LDPC ensembles of finite block length which are commumidaiver the BEC.

For general channels, the number of iterations is an impbffiactor in assessing the decoding complexity
of graph-based codes under iterative message-passinglidgcdhe second factor determining the decoding
complexity of such codes is the complexity of the Tanner rayhich is used to represent the code; this latter
guantity, defined as the number of edges in the graph perigfiion bit, serves as a measure for the decoding
complexity per iteration.

The extrinsic information transfer (EXIT) charts, pionegiby ten Brink ([31], [32]), form a powerful tool for an
efficient design of codes defined on graphs by tracing theargewnce behavior of their iterative decoders. EXIT
charts provide a good approximative engineering tool facitrg the convergence behavior of soft-input soft-output
iterative decoders; they suggest a simplified visualinatibthe convergence of these decoding algorithms, based
on a single parameter which represents the exchange ofggtinformation between the constituent decoders. For
the BEC, the EXIT charts coincide with the density evolutanmalysis (see [22]) which is simplified in this case
to a one-dimensional analysis.

A numerical approach for the joint optimization of the desigte and decoding complexity of LDPC ensembles
was provided in [4]; it is assumed there that the transmissfdhese code ensembles takes place over a memoryless
binary-input output-symmetric (MBIOS) channel, and thelgsis refers to the asymptotic case where we let the
block length tend to infinity. For the simplification of the marical optimization, a suitable approximation of the
number of iterations was used in [4] to formulate this joiptimization as a convex optimization problem. Due
to the efficient tools which currently exist for a numericalition of convex optimization problems, this approach
suggests an engineering tool for the design of good LDPCrelnles which possess an attractive tradeoff between
the decoding complexity and the asymptotic gap to capaeityefe the block length of these code ensembles is
large enough). This numerical approach however is not ablerfar drawing rigorous theoretical conclusions on
the tradeoff between the number of iterations and the pmadace of the code ensembles. A different numerical
approach for approximating the number of iterations for KD&nhsembles operating over the BEC is addressed in
[15].

A different approach for characterizing the complexity terative decoders was suggested by Khandekar and
McEliece (see [11], [12], [16]). Their questions and cohjiees were related to the tradeoff between the asymptotic
achievable rates and the complexity under iterative mespagsing decoding; they initiated a study of the encoding
and decoding complexity of graph-based codes in terms ad¢h&vable gap (in rate) to capacity. It was conjectured
there that for a large class of channels, if the design rate safitably designed ensemble forms a fractione of
the channel capacity, then the decoding complexity scﬂdes%lln % The logarithmic term in this expression was
attributed to the graphical complexity (i.e., the decodowgnplexity per iteration), and the number of iterations
was conjectured to scale Iik? There is one exception: For the BEC, the complexity underitérative message-
passing decoding algorithm behaves I]ke;_L (see [13], [25], [26] and [29]). This is true since the absekeliability
provided by the BEC allows every edge in the graph to be usédamnte during the iterative decoding. Hence, for
the BEC, the number of iterations performed by the decoderesemainly to measure the delay in the decoding
process, while the decoding complexity is closely relatethe complexity of the Tanner graph which is chosen to
represent the code. The graphical complexity required PC and systematic irregular repeat-accumulate (IRA)
code ensembles to achieve a fractior ¢ of the capacity of a BEC under iterative decoding was studi€@5]
and [26]. It was shown in these papers that the graphical ity of these ensembles must scale at least like
In %; moreover, some explicit constructions were shown to aggirdhe channel capacity with such a scaling of the
graphical complexity. An additional degree of freedom vihis obtained by introducing state nodes in the graph
(e.g., punctured bits) was exploited in [20] and [21] to ¢ capacity-achieving ensembles of graph-based codes
which achieve an improved tradeoff between complexity arfdewvable rates. Surprisingly, these capacity-achieving
ensembles under iterative decoding were demonstrated irctaima bounded graphical complexityegardless of
the erasure probability of the BEC. A similar result of a bded graphical complexity for capacity-achieving
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ensembles over the BEC was also obtained in [9].

This paper provides simple lower bounds on the number ddtiters which is required for successful message-
passing decoding of graph-based code ensembles. The tsaimmof these ensembles is assumed to take place
over the BEC, and the bounds refer to the asymptotic caseevtherblock length tends to infinity. The simplicity
of the bounds derived in this paper stems from the fact theyt #ve easily evaluated and are expressed in terms of
some basic parameters of the considered ensemble; thés@erbe fraction of degree-2 variable nodes, the target
bit erasure probability and the gap between the channekisEnd the design rate of the ensemble. The bounds
derived in this paper demonstrate that the number of itarativhich is required for successful message-passing
decoding scales at least like the inverse of the gap (in tateapacity, provided that the fraction of degree-2
variable nodes of these turbo-like ensembles does notlvghence, the number of iterations becomes unbounded
as the gap to capacity vanishes). The behavior of these Ibaends matches well with the experimental results
and the conjectures on the number of iterations and contples provided by Khandekar and McEliece (see [11],
[12] and [16]). Note that lower bounds on the number of iierst in terms of the target bit erasure probability
can be alternatively viewed as lower bounds on the achievaiblerasure probability as a function of the number
of iterations performed by the decoder. As a result of this, simple bounds derived in this paper provide some
insight on the design of stopping criteria for iterativelcdded ensembles over the BEC (for other stopping criteria
see, e.g., [3], [27]).

This paper is structured as follows: Section Il presentsespneliminary background, definitions and notation,
Section Il introduces the main results of this paper andwdises some of their implications, the proofs of these
statements and some further discussions are provided itioBd¥. Finally, Section V summarizes this paper.
Proofs of some technical statements are relegated to trendjmes.

[I. PRELIMINARIES
This section provides preliminary background and intredunotation for the rest of this paper.

A. Graphical Complexity of Codes Defined on Graphs

As noted in Section |, the decoding complexity of a grapheldasode under iterative message-passing decoding
is closely related to its graphical complexity, which we ndefine formally.

Definition 2.1 (Graphical Complexity)Let C be a binary linear block code of lengthand rateR, and letg
be an arbitrary representation 6fby a Tanner graph. Denote the number of edge§ ihy E. The graphical
complexity of G is defined as the number of edgesdrper information bit of the codé€, i.e., A(G) = % .
Note that the graphical complexity depends on the specifim@agraph which is used to represent the code. An
analysis of the graphical complexity for some families ofgh-based codes is provided in [9], [20], [21], [25],

[26].

B. Accumulate-Repeat-Accumulate Codes

Accumulate-repeat-accumulate (ARA) codes form an attacatoding scheme of turbo-like codes due to the
simplicity of their encoding and decoding (where both sdalearly with the block length), and due to their
remarkable performance under iterative decoding [1]. Byiesuitable constructions of puncturing patterns, ARA
codes with small maximal node degree are presented in [ggettcodes perform very well even for short to
moderate block lengths, and they suggest flexibility in tlesigh of efficient rate-compatible codes operating on
the same ARA decoder.

Ensembles of irregular and systematic ARA codes, which asytically achieve the capacity of the BEC
with bounded graphical complexity, are presented in [21jisTbounded complexity result stays in contrast to
LDPC ensembles, which have been shown to require unbourrdetigal complexity in order to approach channel
capacity, even under maximum-likelihood decoding (sed)[456 this section, we present ensembles of irregular
and systematic ARA codes, and give a short overview of thesoding and decoding algorithms; this overview
is required for the later discussion. The material conthiimethis section is taken from [21, Section Il], and is
introduced here briefly in order to make the paper self-coath

From an encoding point of view, ARA codes are viewed as ietartd and serially concatenated codes. The
encoding of ARA codes is done as follows: first, the informatbits are accumulated (i.e., differentially encoded),
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and then the bits are repeated a varying number of times (byregular repetition code) and interleaved. The
interleaved bits are partitioned into disjoint sets (whege is not fixed in general), and the parity of each set of
bits is computed (i.e., the bits are passed through an iegingle parity-check (SPC) code). Finally, the bits are
accumulated a second time. A codeword of systematic ARA sdgl€omposed of the information bits and the
parity bits at the output of the second accumulator.

Since the iterative decoding algorithm of ARA codes is penied on the appropriate Tanner graph (see Fig. 1),
this leads one to view them as sparse-graph codes from a idggoeint of view.

Following the notation in [21], we refer to the three layeffshit nodes in the Tanner graphs as ‘systematic
bits’ which form the systematic part of the codeword, ‘pumet bits’ which correspond to the output of the first
accumulator and are not a part of the transmitted codewaoidi;@de bits’ which correspond to the output of the
second accumulator and form the parity-bits of the codeW®eéd Fig. 1). Denoting the block length of the code by
n and its dimension by, each codeword is composed lokystematic bits and — & code bits. The two layers of
check nodes are referred to as ‘parity-check 1’ nodes amnitypzheck 2’ nodes, which correspond to the first and
the second accumulators of the encoder, respectively. Aareble of irregular ARA codes is defined by the block
lengthn and the degree distributions of the ‘punctured bit'" and itgatheck 2’ nodes. Following the notation in
[21], the degree distribution of the ‘punctured bit' nodeggiven by the power series

D23 L (1)
=1

where L; designates the fraction of ‘punctured bit' nodes whose eedgs:. Similarly, the degree distribution of
the ‘parity-check 2’ nodes is given by
z) £ R’ )
i=1

where R; designates the fraction of these nodes whose degreeliisboth cases, degree of a node only refers
to edges connecting the ‘punctured bit' and the ‘parityeth®’ layers, without the extra two edges which are
connected to each of the ‘punctured bit' nodes and ‘palityek 2’ nodes from the accumulators (see Fig. 1).
Considering the distributions from the edge perspective et

= Z Nz p(x) & Zpixi_l 3)
=1 =1

designate the degree distributions from the edge perspebere \; (p;) designates the fraction of edges connecting
‘punctured bit’ nodes to ‘parity-check 2' nodes which argaadnt to ‘punctured bit'" (‘parity-check 2") nodes of
degreei. The design rate of a systematic ARA ensemble is g|veany where

a, & ZzL = L'
4 / )\
ar = ZZR R(1 (4)

/p

designate the average degrees of the ‘punctured bit' anitypzheck 2’ nodes, respectively.

Iterative decoding of ARA codes is performed by passing egss on the edges of the Tanner graph in a layer-
by-layer approach. Each decoding iteration starts withsagss for the ‘systematic bit' nodes to the ‘parity-check 1’
nodes, the latter nodes then use this information to cakuaw messages to the ‘punctured bit' nodes and so
the information passes through layers down the graph ankl igacintil the iteration ends with messages from the
‘punctured bit’ nodes to the ‘parity-check 1' nodes. The ffiphase of messages from the ‘parity-check 1' nodes
to the ‘systematic bit' nodes is omitted since the latterewdre of degree one and so the outgoing message is
not changed by incoming information. Assume that the codeissmitted over a BEC with erasure probability
Since the systematic bits receive input from the channelptbability of erasure in messages from the ‘systematic
bit' nodes to the ‘parity-check 1’ nodes is equal gadhroughout the decoding process. For other messages, we
denote bywz(-l) wherei = 0,1,...,5 the probability of erasure of the different message typegeabding iteration

a+a
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Fig. 1. Tanner graph of an irregular and systematic accuewiipeat-accumulate code. This figure is reproduced f2ih [

number! (where we start counting at zero). The variabj)g corresponds to the probability of erasure in message
from the ‘parity-check 1’ nodes to the ‘punctured bit’ nodeg) tracks the erasure probability of messages from
the ‘punctured bit' nodes to the ‘parity-check 2’ nodes andos. The density evolution (DE) equations for the
decoder based on the Tanner graph in Figure 1 are given in §ad] we repeat them here:

:L'((]l) = 1- (1 — xél_l)) (1-p)
A= (o) A (o)
2y = 1-R(1-20)(1-2{7") 1=12,...
ORI @
3 Py
wil) = 1- (1 — x:())l))2 p (1 — wgl))
wél) = w((]l) L (xfll)) . ®)

The stability condition for systematic ARA ensembles isivit in [21, Section 11.D] and states that the fixed point

xf.” = 0 of the iterative decoding algorithm is stable if and only if

2pRTl)> 1
l-p

P 2o (p'(1> + <1, (6)

C. Big-O notation

The termg0, 2 and© are widely used in computer science to describe asymptlatonships between functions
(for formal definitions see e.g., [34]). In our context, wéereto the gap (in rate) to capacity, denoted dyyand
discuss in particular the case whéreC ¢ < 1 (i.e., sequences of capacity-approaching ensemblespréicgly,
we define

« f(e) = O(y(¢)) means that there are positive constangmdd, such thad < f(¢) < c g(e) forall 0 <e < 4.
o f(e) = Q(g(e)) means that there are positive constangsidd, such that < ¢ g(e) < f(e) forall 0 <e < 4.
e f(e) = O©(g(e)) means that there are positive constantsc; andd, such tha) < ¢; g(e) < f(e) < 2 g(e)
forall 0 <e <.
Note that for all the above definitions, the valuescpt;, co andé must be fixed for the functiorf and should
not depend orz.
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I11. M AIN RESULTS

In this section, we present lower bounds on the required rumbiterations used by a message-passing decoder
for code ensembles defined on graphs. The communicatiorsisresl to take place over a BEC, and we consider
the asymptotic case where the block length of these coderdikse tends to infinity.

Definition 3.1: Let {Cm}mEN be a sequence of code ensembles. Assume a common block [engtiof the
codes inC,, which tends to infinity asn grows. Let the transmission of this sequence take place avgEC
with capacityC. The sequenc¢C,,} is said toachieve a fractionl — ¢ of the channel capacity under some given
decoding algorithmf the asymptotic rate of the codes @, satisfiesR > (1 —¢)C and the achievable bit erasure
probability under the considered algorithm vanishesnabecomes large.

In the continuation, we consider a standard iterative nggsgassing decoder for the BEC, and address the number
of iterations which is required in terms of the achievablecfion of the channel capacity under this decoding
algorithm.

Theorem 3.1:;[Lower bound on the number of iterations for LDPC ensembles transmitted over the BEC].

Let {(nm, )\,p)}meN be a sequence of LDPC ensembles whose transmission takesgyar a BEC with erasure
probability p. Assume that this sequence achieves a fractienc of the channel capacity under message-passing
decoding. LetLs, = Ly(¢) be the fraction of variable nodes of degree 2 for this seqeleimcthe asymptotic case
where the block length tends to infinity, let= I(¢,p, B,) denote the number of iterations which is required to
achieve an average bit erasure probabiltyover the ensemble. Under the mild condition tiigt< p Lo (e), the
required number of iterations satisfies the lower bound

e )z 1o ((ohale) - V) L .

Corollary 3.1: Under the assumptions of Theorem 3.1, if the fraction of degt variable nodes stays strictly
positive as the gap (in rate) to capacity vanishes, i.e., if

lim La(e) > 0
e—0

then the number of iterations which is required in order tbi@ge an average bit erasure probabiliy < p Ls ()
under iterative message-passing decoding scales at ilea¢hé inverse of this gap to capacity, i.e.,

le,p, Py) = Q G) .

Discussion 3.1:[Effect of messages scheduling on the number of iterations] The lower bound on the number
of iterations as provided in Theorem 3.1 refers to fla@ding schedulavhere in each iteration, all the variable
nodes and subsequently all the parity-check nodes sendcagess$o their neighbors. Though it is the commonly
used scheduling used by iterative message-passing decaldjorithms, an alternative scheduling of the messages
may provide a faster convergence rate for the iterative diexcd\s an example, [28] considers the convergence rate
of a serial schedulingvhere instead of sending all the messages from the variauesito parity-check nodes and
then all the messages from check nodes to variable nodegnasinl the flooding schedule, these two phases are
interleaved. Based on the density evolution analysis whpgtlies to the asymptotic case of an infinite block length,
it is demonstrated in [28] that under some assumptions,afaeired number of iterations for LDPC decoding over
the BEC with serial scheduling is reduced by a factor of twe® ¢ampared to the flooding scheduling). It is noted
that the main result of Theorem 3.1 is the introduction ofgomus and simple lower bound on the number of
iterations for LDPC ensembles which scales like the reciprof the gap between the channel capacity and the
design rate of the ensemble. Though such a scaling of thisdb@i proved for the commonly used approach
of flooding scheduling, it is likely to hold also for other efeént approaches of scheduling. It is also noted that
this asymptotic scaling of the lower bound on the numberafations supports the conjecture of Khandekar and
McEliece [11].

Discussion 3.2:[On the dependence of the bounds on the fraction of degree-2 variable nodes] The lower
bound on the number of iterations in Theorem 3.1 becomeialtishen the fraction of variable nodes of degree 2
vanishes. Let us focus our attention on sequences of enesmhich approach the channel capacity under iterative
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message-passing decoding (i 0). For the BEC, several such sequences have been const(seted.g. [13],
[29]). Asymptotically, as the gap to capacity vanishes,dcdlthese sequences known to date satisfy the stability
condition with equality; this property is known as the flaseondition [29]. In [24, Lemma 7], the asymptotic
fraction of degree 2 variable nodes for capacity-approagisequences of LDPC ensembles over the BEC is
calculated. This lemma states that for such sequences vghiisfy the following two conditions as the gap to
capacity vanishes:

« The stability condition is satisfied with equality (i.e.etflatness condition holds)

« The limit of the ratio between the standard deviation andetkygectation of the right degree exists and is finite
the asymptotic fraction of degree—2 variable nodes doesvaoish. In fact, for various sequences of capacity
approaching LDPC ensembles known to date (see [13], [19]),[he ratio between the standard deviation and the
expectation of the right degree-distribution tends to zerahis case, [24, Lemma 7] implies that the fraction of
degree-2 variable nodes tends%tdrrespectively of the erasure probability of the BEC, as barverified directly
for these code ensembles.

Discussion 3.3:[Concentration of the lower bound] Theorem 3.1 applies to the required number of iterations
for achieving an average bit erasure probabilfywhere this average is taken over the LDPC ensemble whosk bloc
length tends to infinity. Although we consider an expectatiger the LDPC ensemble, note thas deterministic as
it is the smallest integer for which the average bit erasuobability does not exceed a fixed value. As shown in the
proof (see Section V), the derivation of this lower bounlieeon the density evolution technique which addresses
the average performance of the ensemble. Based on cortcanireequalities, it is proved that the performance of
individual codes from the ensemble concentrates aroundvbeage performance over the ensemble as we let the
block length tend to infinity [22, Appendix C]. In light of thiconcentration result and the use of density evolution
in Section IV (which applies to the case of an infinite blockgth), it follows that the lower bound on the number
of iterations in Theorem 3.1 is valid with probability 1 fordividual codes from the ensemble. This also holds for
the ensembles of codes defined on graphs considered in The&@ and 3.3.

Discussion 3.4:[On the number of required iterations for showing a mild improvement in the erasure
probability during the iterative process] Note that for capacity-approaching LDPC ensembles, theddwound
on the number of iterations tells us that even for succdgsétidrting the iteration process and reducing the bit
erasure probability by a factor which is below the fractidndegree-2 variable nodes, the required number of
iterations already scales Iikg. This is also the behavior of the lower bound on the numberterhiions even
when the bit erasure probability should be made arbitragityall; this lower bound therefore indicates that for
capacity-approaching LDPC ensembles, a significant numbtre iterations is performed for the starting process
of the iterative decoding where the bit erasure probabiditynerely reduced by a factor (%f as compared to the
erasure probability of the channel (see Discussion 3.2 astdig¢ation for the one-half factor). This conclusion is
also well interpreted by the area theorem and the asympeti@vior of the two EXIT curves (for the variable
nodes and the parity-check nodes) in the limit where: 0; as the gap to capacity vanishes, both curves tend to
be a step function jumping frort to 1 at the origin, so the iterations progress very slowly at thigal stages of
the decoding process.

In the asymptotic case where we let the block length tend finifyp and the transmission takes place over the
BEC, suitable constructions of capacity-achieving syst®nARA ensembles enable a fundamentally improved
tradeoff between their graphical complexity and their aghble gap (in rate) to capacity under iterative decoding
(see [21]). The graphical complexity of these systematidAdRsembles remains bounded (and quite small) as the
gap to capacity for these ensembles vanishes under iedéivoding; this stays in contrast to un-punctured LDPC
code ensembles [25] arsystematidrregular repeat-accumulate (IRA) ensembles [26] whosglgjcal complexity
necessarily becomes unbounded as the gap to capacity garniseée [21, Table I]). This observation raises the
guestion whether the number of iterations which is requieedchieve a desired bit erasure probability under
iterative decoding, can be reduced by using systematic ARFembles. The following theorem provides a lower
bound on the number of iterations required to achieve a elkdiit erasure probability under iterative message-
passing decoding; it shows that similarly to the parallsuiefor LDPC ensembles (see Theorem 3.1), the required
number of iterations for systematic ARA codes scales at ldasthe inverse of the gap to capacity.

Theorem 3.2:;[Lower bound on the number of iterations for systematic ARA ensembles transmitted over
the BEC]. Let {(nm, A, p)}meN be a sequence of systematic ARA ensembles whose transmia&ies place over
a BEC with erasure probability. Assume that this sequence achieves a fractien of the channel capacity under
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message-passing decoding. Uet= Ls(e) be the fraction of ‘punctured bit’ nodes of degree 2 for thegsence
(where the two edges related to the accumulator are not taiteraccount). In the asymptotic case where the
block length tends to infinity, let = I(e, p, P,) designate the required number of iterations to achieve arage
bit erasure probability?, of the systematic bits. Under the mild condition that /1 — % < p Ly(e), the number
of iterations satisfies the lower bound

2

le.p Po) = 2p(1 — ) | \/p La(e) - 1—\/1—% . ®)

As noted in Section 1I-B, systematic ARA codes can be viewseskgially concatenated codes where the systematic
bits are associated with the outer code. These codes cariteédie decoded iteratively by using a turbo-like decoder
for interleaved and serially concatenated codes. Thevilig proposition states that the lower bound on the number
of iterations in Theorem 3.2 is also valid for such an itesiilecoder.

Proposition 3.1:[Lower bound on the number of iterations for systematic ARA codes under turbo-like
decoding]. Under the assumptions and notation of Theorem 3.2, therlbeend on the number of iterations in
(8) is valid also when the decoding is performed by a turke-lilecoder for uniformly interleaved and serially
concatenated codes.

The reader is referred to Appendix | for a detailed proof. Tdiowing theorem which refers to irregular repeat-
accumulate (IRA) ensembles is proved in a conceptuallylaimiay to the proof of Theorem 3.2.

Theorem 3.3:;[Lower bound on the number of iterations for IRA ensembles transmitted over the BEC].

Let {(nm,)\,p)}meN be a sequence of (systematic or non-systematic) IRA engasmithose transmission takes
place over a BEC with erasure probabiljty Assume that this sequence achieves a fractiens of the channel
capacity under message-passing decoding.llet Ly(¢) be the fraction of ‘information bit' nodes of degree 2
for this sequence. In the asymptotic case where the bloakhetends to infinity, let = (s, p, P,,) designate the
required number of iterations to achieve an average bitieegzobability, of the information bits. For systematic
codes, if B, < p La(e), then the number of iterations satisfies the lower bound

e P 220 -6) (o Lo - VR L. ©

For non-systematic codes, i, < Ls(¢), then

le,p, Py) > 2(1 — ¢) <1/L2(z—:) - ﬂ)z

(10)

IV. DERIVATION OF THE BOUNDS ON THENUMBER OF ITERATIONS

A. Proof of Theorem 3.1

Let {sc(l)}leN designate the expected fraction of erasures in messagedtimvariable nodes to the check nodes
at the!'th iteration of the message-passing decoding algorithmef& we start counting dt= 0). From density
evolution, in the asymptotic case where the block lengtldsem infinity, z() is given by the recursive equation

ﬂ””:pA@—pu—x@D, leN (11)

with the initial condition
20 =p (12)

wherep designates the erasure probability of the BEC. Considaisgquence of (n,,, A, p)} LDPC ensembles
where we let the block length,,, tend to infinity, the average bit erasure probability aftexitth iteration is given
by

R =pL(1—p(1—2D)) (13)
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1L slope:(p)\z)_1
slope:(p)\z)_1 Vo
hy
slopez(p)\z)_1 v, h, slope = p'(1)
2 slope = p'(1)
3 slope:(p)\z)_1 v 2
_g 2
T i slope = p'(1)
v V() = A" (x/p) K
z xaopl Vs 3
S /] slope = p/(1)
()]
a . h4
2 | slope=(or)™
=
()
-
e
= o(x) = 1-p(1-x)
@
slope = p'(1)
0 |
0 1

p
Left to Right Message Erasure Probability

Fig. 2. Plot of the functiong(x) andv(x) for an ensemble of LDPC codes which achieves vanishing guge probability under iterative
message-passing decoding when communicated over a BEGvenasure probability is equal g0 The horizontal and vertical lines track
the evolution of the expected fraction of erasure messages the variable nodes to the check nodes at each iteratidreahessage-passing
decoding algorithm.

where L designates the common left degree distribution of the ehkenfrom the node perspective. Since the
function f(x) = pA(1 — p(1 — z)) is monotonically increasing, Egs. (11)—(13) imply that aerage bit erasure
probability of P, is attainable under iterative message-passing decodiagdifonly if

pAML—p(l—a)) <z, Vre (e (14)

wherez* is the unique solution of
By=pL(1—p(1-1")).

Let us define the functions

V1(5) o<es<o

15
1 p<z<l1 (15)

ce) £1-p(l—2), v(x)= {
From the condition in (14), an average bit erasure prolgholi £, is attained if and only ife(x) < v(x) for all
x € (z*, p]. Since we assume that vanishing bit erasure probabilitghgesable under message-passing decoding, it
follows thatc(z) < v(z) for all z € (0, p]. Figure 2 shows a plot of the functionéx) andv(z) for an ensemble of
LDPC codes which achieves vanishing bit erasure probghitider iterative decoding as the block length tends to
infinity. The horizontal and vertical lines, labelgd; }, . and{v;},_, respectively, are used to track the expected

fraction of erased messages from the variable nodes to thigy-pheck nodes at each iteration of the message-
passing decoding algorithm. From (11) and (12), the explefttection of erased left to right messages in ille
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decoding iteration (where we start counting at zero) is etyuthe = value at the left tip of the horizontal link;.
The right-angled triangles shaded in gray will be used latehe proof.
The first step in the proof of Theorem 3.1 is calculating theaavounded by the curvesz) andv(zx). This is
done in the following lemma which is based on the area thedernthe BEC [5].
Lemma 4.1:
_C—-R

aL

1
| @) = @) (16)
whereC' = 1—p is the capacity of the BECR is the design rate of the ensemble, ands the average left degree
of the ensemble.

Proof: The proof of this equality is straightforward. Alternatiyethe reader is referred to the matching

condition in [22, Section 3.14.4] which is justified via theea theorem in [5]. [ |

Let us consider the two sets of right-angled triangles shiovtwo shades of gray in Figure 2. The set of triangles
which are shaded in dark gray are defined so that one of theofegsingle numbet (counting from right to left
and starting at zero) is the vertical ling, and the slope of the hypotenuse is equat'{6) = p’(1). Sincec(z) is
concave for allz € [0, 1], these triangles are guaranteed to be above the curve afiticidnc. Since the slope of
the hypotenuse ig’(1), the area of the'th triangle in this set is

1 |vi Eis

Ai =g fuil <p/(1)> -~ 2p(1) (a7)
where |v;| is the length ofv;. We now turn to consider the second set of triangles, whiehsaaded in light gray.
Note that the function\(x) is monotonically increasing and convex|[in 1] and also that(0) = 0 and A(1) = 1.
This implies that\~! is concave in0, 1] and therefore(z) is concave in0, p]. The triangles shaded in light gray
are defined so that one of the legs of triangle numb@gain, counting from the right and starting at zero) is the
vertical linev; and the slope of the hypotenuse is given by

N BTV S |
U(O)_E(Al)m)_m_@

where the second equality follows singé0) = 0. The concavity ofv(z) in [0, p] guarantees that these triangles
are below the curve of the of functian The area of thé'th triangle in this second set of triangles is given by

2

B; = % vil (Jvil pA2) = p/\22|vl| : (18)
Sincev(z) is monotonically increasing with, the dark-shaded triangles lie below the curve of the famcti.
Similarly, the monotonicity ofe(z) implies that the light-shaded triangles are above the cofhe functione.
Hence, both sets of triangles form a subset of the domain dexibby the curves of(z) and v(z). By their
definitions, thei’th dark triangle is on the right of;, and thei'th light triangle lies to the left ofv;; therefore,
the triangles do not overlap. Combining (17), (18) and thet fhat the triangles do not overlap, and applying
Lemma 4.1, we get

C-R
a

1
= /(v(:ﬂ)—c(w))dx
0

> (AZ + BZ)

@
Il
o

! A S (o 19
(W+p 2>;|Uz'| (19)

wherel is an arbitrary natural number. Since we assume that therésiuee probability vanishes under iterative
message-passing decoding, the stability condition iraptat

N —

o0 >pAa. (20)
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Substituting (20) and? = (1 — ¢)C' in (19) gives
I-1
Ce > aL pAa Z ]vi\z. (21)
i=0
The definition ofh; andv; in Figure 2 implies that for an arbitrary iteratidn

l
1—p1—az®)=czW)=1- Z [vi] -
i=0

Substituting the last equality in (13) yields that the agerait erasure probability after iteration numlder 1 can
be expressed as

-1
P =pL (1 -y M) . (22)

i=0
Let [ designate the number of iterations required to achieve arage bit erasure probabilith, over the ensemble
(where we let the block length tend to infinity), i.é.is the smallest integer which satisfiféél_l) < B, since we
start counting at = 0. Although we consider an expectation over the LDPC ensemble that is deterministic as
it is the smallest integer for which the average bit erasuwobability does not exceell,. SinceL is monotonically
increasing, (22) provides a lower bound @j;}] |v;| of the form

-1
Sl z1-17 (). (23)
i=0 p

From the Cauchy-Schwartz inequality, we get

-1 2 1 1 -1
(Z |vi|> <SS P =1 vl (24)
=0 =0 =0 =0

Combining the above inequality with (21) and (23) gives thequality

2
aL p)\g (1 — L1 (%))
l
which provides the following lower bound on the number ofatens!:

2
ap p/\g 1—L1 By
s (1-(8)
(1—pe
To continue the proof, we derive a lower bound ba L~!(z) for z € (0, 1). Since the fraction of variable nodes
of degreei is non-negative for alf = 2,3,..., we have

L(x) = ZLiazi > L2x2, z > 0.
i

Ce >

(25)

Substitutingt = L(z) gives
t> Ly (L7'(1)*, Ve (0,1)

which is transformed into the following lower bound an- L=!(x):

1-LYz)>1- L% vz € (0,1). (26)

Under the assumptionlq;E < Lo, substituting (26) in (25) gives

_ are (Vi3
- Lo (1 —p)z—:
aL A2 (vVp Ly — \/ﬁb)2
L2 (1 —p)z—: )

(27)
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The lower bound in (7) is obtained by substituting the edqudl, = % into (27).
Taking the limit where the average bit erasure probabibtyds to zero on both sides of (7) gives the following
lower bound on the number of iterations:

2p Lo ).

l(e,p, By — 0) >
(e,p b—>)_1_p -

B. Proof of Theorem 3.2

We begin the proof by considering the expected fraction aare messages from the ‘punctured bit’ nodes to
the ‘parity-check 2’ nodes (see Fig. 1). The following lempravides a lower bound on the expected fraction of
erasures in thé'th decoding iteration in terms of this expected fractiortta preceding iteration.

Lemma 4.2:Let (n, A, p) be an ensemble of systematic ARA codes whose transmisdien dace over a BEC
with erasure probabilityp. Then, in the limit where the block length tends to infinithetexpected fraction of
erasure messages from the ‘punctured bit' nodes to thetypetieck 2’ nodes at théth iteration satisfies

29 > X (1 — 51— xgl‘”)) S 1=1,2,... (28)
where the tilted degree distributionsand 5 are given as follows (see [21]):
2
M) 2 ( P ) AMa 29
L oaf 1-p >2
i) 2 (1) 2@ (30)
and L and R designate the degree distributions of the ARA ensemble fftesmnode perspective.
Proof: See Appendix ILLA. |

From Fig. 1, it can be readily verified that the probabilitigsand z; for erasure messages at iteration number
zero are equal to 1, i.e.,
ac(()o) = acgo) = 1. (32)

Let us look at the RHS of (28) as a function of and observe that it is monotonically increasing over theral
[0,1]. Let us compare the performance of a systematic ARA ensewibdse degree distributions afg, p) with

an LDPC ensemble whose degree distributions are give(\by) (see (29) and (30)) under iterative message-
passing decoding. Given the initial conditimﬁwo) = 1, the following conclusion is obtained by recursively apply
Lemma 4.2: For any iteration, the erasure probability fossages delivered from ‘punctured bit' nodes to ‘parity-
check 2’ nodes of the ARA ensemble (see Fig. 1) is lower bodrethe erasure probability of the left-to-right
messages of the LDPC ensemble; this holds even if the a-pmimrmation from the BEC is not used by the
iterative decoder of the LDPC ensemble (note that the comftiof X in the RHS of (28) is equal to one). Note
that unless the fraction of ‘parity-check 2’ nodes of degkae strictly positive (i.e.R; > 0), the iterative decoding
cannot be initiated for both ensembles (unless some theevaltisome ’punctured bits’ of the systematic ARA
ensemble are known, as in [21]). Hence, the comparison dieiveeen the ARA and LDPC ensembles is of interest
under the assumption th&t, > 0; this property is implied by the assumption of vanishingdyisure probability
for the systematic ARA ensemble under iterative messagsipg decoding.

In [21, Section 11.C.2], a technique called ‘graph reduetis introduced. This technique transforms the Tanner
graph of a systematic ARA ensemble, transmitted over a BEGse/lerasure probability ig into a Tanner graph
of an equivalent LDPC ensemble (where this equivalenceshialthe asymptotic case where the block length tends
to infinity). The variable and parity-check nodes of the gglgint LDPC code evolve from the ‘punctured bit’ and
‘parity-check 2’ nodes of the ARA ensemble, respectivehy their degree distributions (from the edge perspective)
are given by\ andp, respectively. It is also shown in [21] thatand 5 are legitimate degree distribution functions,
i.e., all the derivatives at zero are non-negative ahb) = p(1) = 1. As shown in [21, Egs. (9)—(12)], the left and
right degree distributions of the equivalent LDPC ensenfill;n the node perspective are given, respectively, by

At
fA “ T 52
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and

N Gt
R(z) =20 . b . (33)
[awar PR

Let Pél) designate the average erasure probability of the systeritti after thel'th decoding iteration (where
we start counting at = 0). For LDPC ensembles, a simple relationship between thsusrgprobability of the
code bits and the erasure probability of the left-to-riglessages at thith decoding iteration is given in (13). For
systematic ARA ensembles, a similar, though less diretdtiomship exists between the erasure probability of the
systematic bits after thEth decoding iteration and:il); this relationship is presented in the following lemma.

Lemma 4.3:Let (n, A, p) be an ensemble of systematic ARA codes whose transmisdien dace over a BEC
with erasure probability. Then, in the asymptotic case where the block length tendaditoty, the average erasure
probability of the systematic bits after tligh decoding iteration,Pél), satisfies the inequality

1—«1—%(1)2“1—5(1—95&”)) (34)

wherep and L are defined in (30) and (32), respectively (similarly to thafinitions in [21]).
Proof: See Appendix II.B. [ |
Remark 4.1:We note that wherPtfl) is very small, the LHS of (34) satisfies

1—4|1- PL(I) ~ Pl(l)
p 2p
S0 (34) takes a similar form to (13) which refers to the eraguobability of LDPC ensembles.
Consider the number of iterations required for the mesg@gsing decoder, operating on the Tanner graphs of the
systematic ARA ensemble, to achieve a desired bit erasutgapility P,. Combining Lemmas 4.2 and 4.3, and
the initial condition in (31), a lower bound on this numberitefations can be deduced. More explicitly, it is lower

bounded by the number of iterations which is required to e@hia bit erasure probability af — /1 — % for

the LDPC ensemble whose degree distributions(%\;@) and where the erasure probability of the BEC is equal

to 1. It is therefore tempting to apply the lower bound on thenber of iterations in Theorem 3.1, which refers to

LDPC ensembles, as a lower bound on the number of iteratmomthé ARA ensemble. Unfortunately, the LDPC

ensemble with the tilted pair of degree distributiqﬁsﬁ) is transmitted over a BEC whose erasure probability is

1, so the channel capacity is equal to zero and the multiplegap to capacity is meaningless. This prevents a

direct use of Theorem 3.1; however, the continuation of tle®@ffollows similar lines in the proof of Theorem 3.1.
Let * denote the unique solution {9, 1] of the equation

1—,/1—%:&1—,’5(1—35*)). (35)

From (28), (31) and (34), a necessary condition for achgpairbit erasure probability}, of the systematic bits is
that

X1-p(1—2) <z, VYze (z*1]. (36)
In the limit where the fixed point of the iterative decodinggess is attained, the inequalities in (28), (31) and
(34) are replaced by equalities; hence, (36) also forms ficiuft condition. Analogously to the case of LDPC
ensembles, as in the proof of Theorem 3.1, we define the it

dz)=1-p(1—=) and v(z) =1"'(z). (37)

Due to the monotonicity oh in [0, 1], the necessary and sufficient condition for attaining asweea probability
B, of the systematic bits in (36) can be rewritten as

clx) <v(z), Vxe (z*1].
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Since we assume that the sequence of ensembles asymptaicialeves vanishing bit erasure probability under
message-passing decoding, it follows that

c(x) <v(z), Vxe(0,1].

The next step in the proof is calculating the area of the dorbaunded by the curvegz) andv(z). This is done
in the following lemma which is analogous to Lemma 4.1.

Lemma 4.4:
C—-R

1
| @)~ eta))ds - R

wherev andc are introduced in (37} = 1 — p is the capacity of the BECR is the design rate of the systematic
ARA ensemble, andg is defined in (4) and it designates the average degree of #rayqheck 2' nodes when
the edges that are connected to the ‘code bit' nodes aredggnor

Proof: From (37)

(38)

1 1
= ﬁ(m)dx—/o AMz)dx (39)

where the second equality is obtained via integration bysp@ote thatX(O) =0 and X(l) = 1). From (32), we
get
1 1 P P
AMz)dr = = =—— == 40
/0 (x)dx T D0 a (40)

(see also [21, Eq. (23)]) wherg is defined in (4), and it designates the average degree ofpilnectured bit’
nodes in Fig. 1 when the edges that are connected to theyymdugtick 1' nodes are ignored. Similarly, (33) gives

L 1 1-p 1-p
/Op(x)dx_fz/(l)_R’(l)_ an (41)

(see also [21, Eq. (24)]). Substituting (40) and (41) intB)(8ives

1 1-R-p
aRr 1-R
C—-R

- (1-R)ar 42)

where(a) follows since the design rate of the systematic ARA ensensbigven by R = 42— (see Fig. 1). ®

To continue the proof, we consider a plot similar to the on€&igure 2 with the exception tha{x) andv(x)
are replaced by(x) andv(z), respectively. Note that in this case the horizontal lineis reduced to the point
(1,1). Consider the two sets of gray-shaded right-angled tremgdrhe triangles shaded in dark gray are defined

so that the height of triangle numbgfcounting from right to left and starting at zero) is the it line v; and
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the slope of their hypotenuse is equald@) = p'(1). Sincec(z) is concave, these triangles form a subset of the
domain bounded by the curvésy) andv(z). The area of the'th triangle in this set is given by

1 ol \ il
Ai =3 Joil <ﬁ’(1)) ~27(1)
where |v;| is the length ofv;. The second set of right-angled triangles, which are shaudight gray, are also
defined so that the height of th#h triangle (counting from right to left and starting at egris the vertical line
v;, but the triangle lies to the left af; and the slope of its hypotenuse is equal to

ey (v—1) I 1 1

where the second equality follows sinE(aO) = 0 and the third equality follows from the definition ofin (29).

Since\ is monotonically increasing and convex over the intef0al] and it satisfies\(0) = 0 and (1) = 1, then

it follows thatv(x) = A~!(x) is concave over this interval. Hence, the triangles shaddmt gray also form a
subset of the domain bounded by the curvgs) andv(z). The area of the'th light-gray triangle is given by

1 P2 s v |2
Bi= 5 il (julp?s) = 2220

Applying Lemma 4.4 and the fact that the triangles in botls st not overlap, we get

— > - = A i 43
<1—R>aR—2<ﬁ/<1>+p 2)2'“' (43)
where! is an arbitrary natural number. Since the sequence of erlesmalsymptotically achieves vanishing bit
erasure probability under iterative message-passingdilegothe stability condition for systematic ARA codes (see
(6) or equivalently [21, Eq. (14)]) implies that

Pt .1 (44)

=YW+ 2T 7

where the last equality follows from (30). Substituting Y44 (43) gives

C—-R S S,
——— > > |uil*. 45
(1—R)aR_p 2@.:0‘ | (45)

Let () denote ther value of the left tip of the horizontal ling;. The value ofz(!) satisfies the recursive equation
2D :X(l—ﬁ(1—x<l>)), VieN (46)

with z(©) = 1. As was explained above (immediately following Lemma 4t@)m (28), (31), and the monotonicity
of the functionf(z) = A\(1 — p(1 — x)) over the interval0, 1], we get thatr() < x&l) for [ € N. The definition of
h; andv; in Figure 2 implies that

l
1-5(1-2®) =2@®) =1 |u. (47)
=0
Starting from (34) and applying the monotonicity bfand 5 gives
(1-1)
'y = - 1-1)
1—4|1— b > L(1-p(1 -4
D =z ( A 1 ))

> L(1-p(1-20))
l

~ -1
1=0
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where the last equality follows from (47). Sindeis strictly monotonically increasing ifo, 1], then

-1 N (1-1)
Z\vilzl—L_1<1— 1- =2 ) (48)

i=0 p
Applying the Cauchy-Schwartz inequality (as in (24)) to RS of (45), we get

C—R oy 2
> pAA v;
(1-R)ar - p 2§| |

AV
|
>
'S
|
L[MT
=
~

2 ~ (I-1)
s P 1—L—1<1— - B )
D

where the last inequality follows from (48). Since the dagigte R is assumed to be a fractidn- ¢ of the capacity
of the BEC, the above inequality gives

2
P (1— R)ar (1 —Z—1<1— 1 - Pé;”))

l
wherel is an arbitrary natural number. Létdesignate the number of iterations required to achieve arage bit
erasure probability3, of the systematic bits, i.el,is the smallest integer which satisfiéél_l) < B, (since we
start counting the iterations at= 0). Note that/ is deterministic since it refers to the smallest numberafitions
required to achieve a desired average bit erasure prolyatider the ensemble. From the inequality above and the
monotonicity on, we obtain that

Ce >

Pho(1-Ryar (1-L7' (1 /1- %))2
l

which provides a lower bound on the number of iterations efftrm

Ce >

Pl —Ryar (1-L71 (1-\/1- %))2
- Ce

B p*ha(l—¢e)aL (1—Z—1 (1—\/@))2 (49)

€

where the last equality follows sin(,gei = % (see Fig. 1) and? = (1 — ¢)C. To continue the proof, we derive

a lower bound on — E‘l(x). Following the same steps which lead to (26) gives the inktgua

1-L'@)>1- /=, Ya>0 (50)
Lo
where (32) implies that N
- L// L//
Ly — 2(0) _P 2(0) — pLs. (51)

Under the assumption that— /1 — % < p Lo, substituting (50) and (51) in (49) gives

l>p/\2(1—e)aL (\/p—Lg—Ml_\/? §)2.

- Lye

Finally, the lower bound on the number of iterations in (8)dias from (52) by substitutingl, = %

(52)
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Considering the case wherg — 0 on both sides of (8) gives

L2(€) '

Uep, Py — 0) = 2p° (1 — &) =

V. SUMMARY AND CONCLUSIONS

In this paper, we consider the number of iterations whicheguired for successful message-passing decoding
of code ensembles defined on graphs. In the consideredgsettinlet the block length of these ensembles tend to
infinity, and the transmission takes place over a binaryueeashannel (BEC).

In order to study the decoding complexity of these code ebfesrunder iterative decoding, one needs also
to take into account the graphical complexity of the Tannaphs of these code ensembles. For the BEC, this
graphical complexity is closely related to the total numbgioperations performed by the iterative decoder. For
various families of code ensembles, Table | compares thebeuwf iterations and the graphical complexity which
are required to achieve a given fraction- ¢ (wheree can be made arbitrarily small) of the capacity of a BEC
with vanishing bit erasure probability. The results in Eablare based on lower bounds and some achievability
results which are related to the graphical complexity ofouss families of code ensembles defined on graphs (see
[20], [21], [25], [26]); the results related to the numberitrations are based on the lower bounds derived in this
paper.

Code Number of decoding iterations Graphical complexity
family as function ofe as function ofe
LDPC Q () (Theorem 3.1) © (In 1) [25, Theorems 2.1 and 2.3]
Systematic IRA Q (1) (Theorem 3.3) © (In 1) [26, Theorems 1 and 2]
Non-systematic IRA Q () (Theorem 3.3) (1) [20]
Systematic ARA Q (1) (Theorem 3.2) 0(1) [21]
TABLE |

NUMBER OF ITERATIONS AND GRAPHICAL COMPLEXITY REQUIRED TO AGBIIEVE A FRACTION 1 — € OF THE CAPACITY OF ABECWITH
VANISHING BIT ERASURE PROBABILITY UNDER ITERATIVE MESSAGEPASSING DECODING

Theorems 3.1-3.3 demonstrate that for various attracivelies of code ensembles (including low-density parity-
check (LDPC) codes, systematic and non-systematic iraeg@peat-accumulate (IRA) codes, and accumulate-
repeat-accumulate (ARA) codes), the number of iteratiomichvis required to achieve a desired bit erasure
probability scales at least like the inverse of the gap betwthe channel capacity and the design rate of the
ensemble. This conclusion holds provided that the fraatibtdegree-2 variable nodes in the Tanner graph does not
tend to zero as the gap to capacity vanishes.

When the graphical complexity of these families of ensemlideconsidered, the results are less homogenous.
More explicitly, assume a sequence of LDPC codes (or ensshthose block length tends to infinity, and consider
the case where their transmission takes place over a megseriginary-input output-symmetric channel. It follows
from [25, Theorem 2.1] that if a fractioh — ¢ of the capacity of this channel is achieved with vanishirgelior
(erasure) probability under ML decoding (or any sub-optigecoding algorithm), then the graphical complexity
of an arbitrary representation of the codes using bipagtiéghs scales at least Iilke%. For systematic IRA codes
which are transmitted over the BEC and decoded by a stanmadive message-passing decoder, a similar result on
their graphical complexity is obtained in [26, Theorem 1][25, Theorem 2.3], the lower bound on the graphical
complexity of LDPC ensembles is achieved for the BEC (up tanalsadditive constant), even under iterative
message-passing decoding, by the right-regular LDPC drissmof Shokrollahi [29]. Similarly, [26, Theorem 2]
presents an achievability result of this form for ensembliesystematic IRA codes transmitted over the BEC; the
graphical complexity of these ensembles scales logaritliyi with % For ensembles of non-systematic IRA and
systematic ARA codes, however, the addition of state naddseir standard representation by Tanner graphs allows
to achieve an improved tradeoff between the gap to capactyttee graphical complexity; suitable constructions of
such ensembles enable to approach the capacity of the BECvaiitishing bit erasure probability under iterative
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decoding while maintaining bounded graphical complexigee [20] and [21]). We note that the ensembles in
[21] have the additional advantage of being systematicclvihllows a simple decoding of the information bits.

The lower bounds on the number of iterations in Theorems33Llbecome trivial when the fraction of degree-
2 variable nodes vanishes. As noted in Discussion 3.2, fokredwn capacity-approaching sequences of LDPC
ensembles, this fraction tends %oas the gap to capacity vanishes. For some ensembles of sappproaching
systematic ARA codes presented in [21], the fraction of deg ‘punctured bit’ nodes (as introduced in Fig. 1) is
defined to be zero (see [21, Table 1]). For these ensembledowrer bound on the required number of iterations in
Theorem 3.2 is ineffective. However, this is mainly a resdilbur focus on the derivation of simple lower bounds
on the number of iterations which do not depend on the fultatiarization of the degree distributions of the code
ensembles. Following the proofs of Theorems 3.1 and 3.2f@ndsing on the case where the fraction of degree-2
variable nodes vanishes, it is possible to derive lower dewm the number iterations which are not trivial even in
this case; these bounds, however, require the knowleddm afritire degree distribution of the examined ensembles.

The simple lower bounds on the number of iterations of griagéed ensembles, as derived in this paper, scale
like the inverse of the gap in rate to capacity and also dementhe target bit erasure probability. The behavior
of these lower bounds matches well with the experimentallt®snd the conjectures on the number of iterations
and complexity, as provided by Khandekar and McEliece (44¢ [12] and [16]). In [12, Theorem 3.5], it was
stated that for LDPC and IRA ensembles which achieve a @mdti- ¢ of the channel capacity of a BEC with a
target bit erasure probability af, under iterative message-passing decoding, the numbeeratidns grows like
(@] %P In light of the outline of the proof of this statement, as gesfed in [12, p. 71], it implicitly assumes that
the flatness condition is satisfied for these code ensembtealao that the target bit erasure probability vanishes;
under these assumptions, the reasoning suggested by Kdzaridd12, Section 3.6] serves to support the behavior
of the simple and rigorous lower bounds which are derivedis paper.

The matching condition for generalized extrinsic inforioattransfer (GEXIT) curves serves to conjecture in [17,
Section XI] that the number of iterations scales like theeinge of the achievable gap in rate to capacity (see also
[18, p. 92]); this conjecture refers to LDPC ensembles wlicssesmission takes place over a general memoryless
binary-input output-symmetric (MBIOS) channel. Focusorgthe BEC, the derivation of the lower bounds on the
number of iterations (see Section 1V) makes the heuristsoring of this scaling rigorous. It also extends the
bounds to various graph-based code ensembles (e.g., IRAARAdensembles) under iterative message-passing
decoding, and makes them universal for the BEC in the seraetliby are expressed in terms of some basic
parameters of the ensembles which include the fraction gifede? variable nodes, the target bit erasure probability
and the asymptotic gap between the channel capacity andeigndrate of the ensemble (but the bounds here do
not depend explicitly on the degree distributions of theecedsembles). An interesting and challenging direction
which calls for further research is to extend these lowermbisuon the number of iterations for general MBIOS
channels; as suggested in [17, Section XI], a consequentteeahatching condition for GEXIT curves has the
potential to lead to such lower bounds on the number of iratwhich also scale like the inverse of the gap to
capacity for general MBIOS channels.
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APPENDICES
APPENDIX|. PROOF OFPROPOSITION3.1

We begin the proof by considering an iterative decoder ofesyatic ARA codes by viewing them as interleaved
and serially concatenated codes. The outer code of thensggteARA code consists of the first accumulator which
operates on the systematic bits (see the upper zigzag il fifpllowed by the irregular repetition code. The inner
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code consists of the irregular SPC code, followed by thersegcumulator (see the lower zigzag in Fig. 1). These
two constituent codes are joined by an interleaver whicimpégs the repeated bits at the output of the outer code
before they are used as input to the inner encoder; for theidered ARA ensemble, we assume that the interleaver
is chosen uniformly at random over all interleavers of thprapriate length. The turbo-like decoding algorithm is
based on iterating extrinsic information between bitwisAmdecoders of the two constituent codes (see e.g., [7]).
Each decoding iteration begins with an extrinsic bitwise Ri8ecoding for each non-systematic output bit of the
outer code (these are the bits which serve as input to the goue) based on the information regarding these bits
received from the extrinsic bitwise MAP decoder of the inoede in the previous iteration and the information on
the systematic bits received from the communication chiatmeéhe second stage of the iteration, this information
is passed from the outer decoder to an extrinsic bitwise MA&Boder of the inner code and is used as a-priori
knowledge for decoding the input bits of the inner code. Arfirgraph for turbo-like decoding of systematic ARA
codes is presented in Figure 3. Considering the asymptasie where the block length tends to infinity, we denote
the probability of erasure messages from the outer decodbetinner decoder and vice versa at ttile decoding
iteration bym((]l) andxgl), respectively. Keeping in line with the notation in the piof Theorems 3.1 and 3.2, we
begin counting the iterations at= 0. Since there is no a-priori information regarding the ngstesmatic output
bits of the outer decoder (which are permuted to form thetifyits of the inner decoder, as shown in Fig. 3) we
have

:Ug_l) = acg_l) =1 (1.1)

outer code
DE systematic

bits
parity
checks 1

punctured
bits

random permutation \

parity
checks 2

code
bits

inner code

Fig. 3. Tanner graph of a systematic accumulate-repearadate (ARA) code for turbo-like decoding as an interlehesd serially
concatenated code.

We now turn to calculate the erasure probabilﬁg) in an extrinsic bitwise MAP decoding of non-systematic
output bits of the outer code, given that the a-priori eragumobability of these bits isv%l_l). To this end, we
consider the Tanner graph of the outer code, shown in the ¢apob Figure 3. We note that this Tanner graph
contains no cycles, and therefore bitwise MAP decoding &f tdode can be performed by using the standard
iterative message-passing decoding algorithm until a fp@idt is reached. In such a decoder which operates on
the Tanner graph of the outer code, messages are transketeden the ‘punctured bit" and the ‘parity-check 1’
nodes of the graph. Let us denote by,(z) the probability of erasure in messages from the ‘puncturiéd b
nodes to the ‘parity-check 1' nodes at the fixed point of tkesiive decoding algorithm, when the a-priori erasure
probability of the output bits is.. Similarly, we denote byr; o(z) the erasure probability in messages from the
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'parity-check 1’ nodes to the 'punctured bit’ nodes at thedipoint, wherer is the a-priori erasure probability of
the non-systematic output bits. Based on the structureeofTimner graph, we have

20,0(2) = 21,0(2) - L(2) (1.2)
and
T1o(z) =1—(1—=p)(1 — z00(x)) (1.3)
wherelL is defined in (1) and it forms the degree distribution of thenptured bit’ nodes from the node perspective,
andp denotes the erasure probability of the BEC. Substitutiri) (hto (1.3) gives
p
= . 1.4
ol = ) 4
Therefore, the structure of the Tanner graph of the outee @ogblies that the erasure probabil'rtg) in messages
from the outer decoder to the inner decoder at iteration rurhbf the turbo-like decoding algorithm is given by

- 2 —_
7 = (wolal ™) M)

2
_ p L0-1)
- (1—(1—p)L(w§l_1))) M)

= i) (1.5)
where the second equality relies on (1.4), ahds introduced in (29)). We now employ a similar technique to
calculate the erasure probabili D in an extrinsic bitwise MAP decoding of input bits of the imredde, given
that the a-priori erasure probability of these bitSUE,Q. Since the Tanner of the inner code is also cycle-free (see
the lower box in Figure 3), extrinsic bitwise MAP decodinghdae done by using the iterative decoder operating
on the Tanner graph of the inner code. We denoterdyz) the erasure probability of messages from the ‘parity
check 2’ nodes to the ‘code bit’ nodes at the fixed point of teeative decoding algorithm whenis the a-priori
erasure probability of the input bits. Similarly; j(z) designates the erasure probability of messages from tlue ‘co
bit'’ nodes to the ‘parity check 2’ nodes at the fixed point af ttecoding algorithm, when is the a-priori erasure
probability of the input bits. The structure of the Tanneaigr implies that

zoi(z) =1— (1 —a1i(z))R(1 — 2) (1.6)
and
z1i(z) = pxoi(x) (1.7)
where R is defined in (2). Substituting (1.6) into (1.7) gives
_ p(1-R(1 —2))
z1i(x) = I pRO—2) (1.8)

Therefore, the erasure probabil'tty) in messages from the inner decoder to the outer decoderratiore number
[ of the turbo-like decoding algorithm is given by

2
o) = 1= (1= a(ey) p(1 - 2p)

2
l—p )
=1- pll—x
(1_pR(1_mg>)) ( o)

=1-p(1 - ay) (1.9)

where the second equality relies on (1.8), anid the tilted degree distribution resulting from graph retthn (see
(30)). Combining (1.1), (1.5) and (1.9) gives

) = AiY) =M1 =1,

zy =A(1-p(1-z(")), leN. (1.10)
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Observing the proof of Theorem 3.2, we note tlnéi =z® forall I =0,1,..., where is thez(") value at the left
tip of the horizontal linek; in Figure 2 (see Eg. (46) on page 15).
Let Pb(l) designate the average erasure probability of the systerbds at the end of thé'th iteration of the

turbo-like decoder. From the definition of the turbo-likecdding aIgorithm,Pb(l) is the erasure probability of
bitwise MAP decoding for the input bits to the outer code egithat the a-priori erasure probability of the output
bits of this code is given bycgl). Based of the structure of the Tanner graph of the outer aodiégure 3, we get

RV =p [1 -(1- xo,o(wﬁ”))z] (111)

where zq o(z) in the fixed point erasure probability of messages from thengtured bit'’ nodes to the ‘parity-
check 1’ nodes in the case that the a-priori erasure pratabfl the non-systematic output bits of the coderis
Substituting (1.3) in (1.2) gives
__ pL(»)

1—(1=p)L(z)

Substituting the above equality into (1.11), we have
- 2
Y = p [1 - (1-L@E) ]
2
= p [1 — (1 - f(l - p(1— xé”))) ]

where the first equality follows from the definition &fin (32) and the second equality relies on (1.9). Using simple
algebra

xo o)

Pél) = ~ l
1— —T:L(l—p(l—xé))). (1.12)
Hence, the lower bound on the average erasure probabilitheobystematic bits at the end of thith iteration
of the standard iterative decoder for ARA codes in Lemma 4.8atisfied (with equality) also for the turbo-like
decoder.
Let [ designate the required number of iterations for the tuik®-tlecoder to achieve an average erasure
probability P, of the systematic bits. Eq. (1.12) implies thais the smallest natural number which satisfies

[ P = - (1-1)
1—4/l1——>L(1—p(l—=x .
p = ( p( 0 ))

However, this is exactly the quantity for which we calcuthtee lower bound in the proof of Theorem 3.2 (see
Lemmas 4.2 and 4.3, and Eq. (31)). Therefore, the lower bauricheorem 3.2 also holds when the considered
turbo-like algorithm is used to decode the systematic ARAesoas interleaved and serially concatenated codes.

APPENDIX II.
A. Proof of Lemma 4.2

The proof of Lemma 4.2 is based on the DE equations in (5) fetesyatic ARA ensembles. From the DE

equations forg:g) and a:gl), we have

A = p[i-R(1-a) (1-200)]
> plt-r(1-a) (1-41)]

where the inequality follows since the decoding process ame add erasures, aél) is monotonically decreasing
with [ (for i = 0,1,...,5). This gives

1-2{ < L—p : (I1.1)
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Substituting (11.1) into the DE equation forgf) (see (5)) gives

2
1—
21 () 20-0)

= 1—5(1—x§l)) (11.2)
wherep is defined in (30). From (5), we get

A = [ (1) - p) L (o)

and solving forl — :cgl) gives
-2 (o))

0
1 -z’ < . (11.3)
1-(1-p)L (wfll))
Substituting (11.3) into the DE equation ferél) in (5) gives
(@) p
x> .
"L ()
Substituting this inequality into the DE equation fm}” gives
) > A (2 7Y) (11.4)

where) is defined in (29). Finally (28) follows from (I1.2), (Il.4)gand the monotonicity ok over the intervalo, 1].

B. Proof of Lemma 4.3
From Fig. 1) and the DE equation fmgl) in (5)

2
Py = p[l—(1—x§” }

2
= p [1 —(1-af'L (=) ] . (1.5)
The DE equation (5) fomgl) and (29) imply that
(1) ,2
2
()" - e

AeA) - a-ne (7))

L
p
- (1—(1—p>L(x$‘”))

where the last inequality follows from (l1.4), and then

p

O]
xy > — . (1.6)
1-1-p)L (acy 1))
Substituting (11.6) in (I1.5), we get
[ 0] 2
pL(x,
RV > pl1-(1- ( )(1_1)
1—(1—p)L(x4 )
[ 0] 2]
> pli- (1 pL () (1.7)
=P @ '
1—(1—p)L(x4 )
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which follows sincemgf) < :ngf_l), and from (32)

v

Y

pli-(1-2())]
p{1-[1-L(1-0 (=)} (1.8)

v

where the last inequality follows from (11.2). Finally, (Béollows directly from (11.8).
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