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On Universal Properties of Capacity-Approaching
LDPC Code Ensembles

Igal SasonMember

Abstract

This paper is focused on the derivation of some universapgnt@s of capacity-approaching low-density parity-¢hec
(LDPC) code ensembles whose transmission takes place ay@iorgless binary-input output-symmetric (MBIOS) chasnel
Properties of the degree distributions, graphical compleand the number of fundamental cycles in the bipartitgogsaare
considered via the derivation of information-theoretizibds. These bounds are expressed in terms of the target/ tibck
error probability and the gap (in rate) to capacity. Mosttef bounds are general for any decoding algorithm, and sonsgsot
are proved under belief propagation (BP) decoding. Prothiege bounds under a certain decoding algorithm, validhtes
automatically also under any sub-optimal decoding algoritA proper modification of these bounds makes them unil/érsa
the set of all MBIOS channels which exhibit a given capa@gunds on the degree distributions and graphical compiexiply
to finite-length LDPC codes and to the asymptotic case of &nitie block length. The bounds are compared with capacity-
approaching LDPC code ensembles under BP decoding, an@dtaejhown to be informative and are easy to calculate. kjnall
some interesting open problems are considered.

Index Terms

Belief propagation (BP), bipartite graphs, complexityleg, density evolution (DE), linear programming (LP) bdsjiow-
density parity-check (LDPC) codes, maximume-likelihood.(Miecoding, memoryless binary-input output-symmetri®3{K1S)
channels, sphere-packing bounds, stability.

. INTRODUCTION

Low-density parity-check (LDPC) codes form a class of pduleerror-correcting codes which are efficiently
encoded and decoded with low-complexity algorithms. THesar block codes, originally introduced by Gallager
in the early sixties [14], are characterized by sparse ypahtck matrices which facilitate their low-complexity
decoding with iterative message-passing algorithms. Ite sif the seminal work of Gallager, LDPC codes were
ignored for a long time. Following the breakthrough in cagitmeory, made by the introduction of turbo codes
[5] and the rediscovery of LDPC codes [25] in the mid 1990sydis realized that an efficient design of these
codes enables to closely approach the channel capacitg widintaining reasonable decoding complexity. This
breakthrough attracted many coding-theorists during dlse decade (see, e.g., [9], [37], [55]).

The asymptotic analysis of LDPC code ensembles underiiteratessage-passing decoding algorithms relies on
the density evolutio(DE) approach which was developed by Richardson and Urbésge=[34], [35], [37]). This
technique is commonly used for optimizing the degree dhigtions of capacity-approaching LDPC code ensembles
where the target is to maximize the achievable rate for angoleannel model or to maximize the threshold for
a given code rate subject to some constraints on the degse@diions [2]. Some approximate techniques which
optimize the degree distributions of LDPC code ensemblekeufurther practical constraints are of interest (e.g.,
an optimization for obtaining a good tradeoff between thgmgsotic gap to capacity and the decoding complexity
[3]). For the binary erasure channel (BEC), the DE approacahtch simplified since it leads to a one-dimensional
analysis. As a result of this significant simplification, soexplicit expressions for capacity-achieving sequentes o
LDPC code ensembles have been derived for the BEC (see|2l].[29], [37] and [48]). For general memoryless
binary-input output-symmetric (MBIOS) channels, as of yere are no closed-form expressions for capacity-
achieving LDPC code ensembles under iterative decoding),tla@ DE technique serves as a numerical tool for
the design of capacity-approaching LDPC code ensembldseidimhit where their block length tends to infinity.
Although maximume-likelihood (ML) decoding is prohibitile complex, capacity-achieving sequences of LDPC
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code ensembles have been constructed under ML decodingnyoM&IOS channel where the analysis relies on
upper bounds on the decoding error probability which areetbas the distance spectra of these ensembles (see
[18], [19], [39], and [40, Theorem 2.2]).

Consider right-regular LDPC codes (i.e., LDPC codes whieeedegree of the parity-check nodes is fixed to a
certain valueagr), and assume that their transmission takes place over aybsyanmetric channel (BSC). In his
thesis, Gallager derived an upper bound on the maximal eablie rate of these codes where it is required to
obtain vanishing block error probability as we let the bldekgth tend to infinity (see [14, Theorem 3.3]). This
information-theoretic bound holds under ML decoding or anp-optimal decoding algorithm. This bound shows
that right-regular LDPC codes cannot achieve the chanrmmaty on a BSC, even under ML decoding. Based
on this bound, the inherent gap between the achievable nateh& channel capacity is well approximated by an
expression which decreases to zero exponentially fagk.iBurshteinet al. have generalized Gallager’s bound for
general LDPC code ensembles whose transmission takes @iacean MBIOS channel [7]. An improved upper
bound on the achievable rates of LDPC code ensembles wags@diay Wiechman and Sason [53], followed by a
generalization of this bound to the case where the tran@misakes place over a set of parallel MBIOS channels
[41]. This work partially relies on the analysis in [53] (s8ection Il for relevant background).

Khandekar and McEliece suggested to measure the encodindeanding complexity of codes defined on graphs
in terms of the achievable gap (in rate) to capacity, and #isy had some conjectures regarding the behavior of
the complexity as the gap to capacity vanishes [21]. Foligvtheir approach, the tradeoff between the performance
and complexity is analyzed in the literature for LDPC codsesnbles and some other variants of codes defined
on graphs (see, e.g., [18], [19], [31], [32], [40], [41], [4853] and references therein).

In this paper, we consider some properties of capacityesgmhring LDPC code ensembles whose transmission
takes place over MBIOS channels. One question which is addckin this paper is the following:

Question 1:How do the degree distributions of capacity-approachin@Clxode ensembles behave as a function
of the achievable gap (in rate) to capacity ?

The behavior of the degree distributions of capacity-appihing LDPC code ensembles is addressed in this work
via the derivation of some information-theoretic boundem® of them hold under ML decoding or any sub-
optimal decoding algorithm, and some other bounds are praweler belief propagation (BP) decoding where we
refer to the sum-product decoding algorithm (see [22] ard Zhapter 2]). For the characterization of the degree
distributions for capacity-approaching LDPC code enses\bh special consideration is given to the fraction of
degree-2 variable noded«) and the fraction of edges connected to these ngdes This focus was partially
motivated by the influence ok, on the satisfiability of the stability condition; this cotidn is necessary for
achieving vanishing bit error probability under iteratimessage-passing decoding when we let the block length
tend to infinity [34]. Also, some previously reported infation-combining bounds on the performance of LDPC
code ensembles under iterative decoding are sensitiveigajtiantity (see, e.g., [49]). This motivates a study of
the behavior ofL,; and )\, for capacity-approaching LDPC code ensembles, where thadsoon these quantities
are expressed in terms of the gap between the channel gapaditthe achievable rates of these code ensembles
under BP decoding. We also demonstrate the tightness & timends for the BEC by considering the right-regular
sequence of capacity-achieving LDPC code ensembles prdims Shokrollahi [48].

General upper bounds on the degree distributions of capapjtroaching LDPC code ensembles are derived
in this paper for the case where the transmission takes pla@ean MBIOS channel. The bounds are expressed
in terms of the gap (in rate) to capacity with a target bit (twck) error probability. These linear programming
(LP) upper bounds on the degree distributions of LDPC codemibles are general with respect to the decoding
algorithm, and they also hold for ensembles of finite-lenggdes or for the asymptotic case of an infinite block
length. We note that two LP problems are formulated in [1]dptimizing the degree distributions of finite-length
LDPC code ensembles whose transmission takes place ovelCa &t also a convex optimization problem is
formulated in [3] for optimizing the degree distributionsL&PC code ensembles with the goal of obtaining a good
tradeoff between performance and decoding complexitys ftdted that the LP-based optimizations in [1] and [3]
hold under BP decoding, whereas the LP bounds which areedkiivthis paper are information-theoretic bounds
which hold under ML decoding or any sub-optimal decodingoatgm. Although the degree distributions of the
parity-check nodes are often set to be regular (or almostlaeg and the irregularity often refers to the degree
distributions of the variable nodes, this is not necessgtiré case for capacity-approaching ensembles. For example
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[32, Section VI] introduces some capacity-achieving segas of accumulate-repeat-accumulate code ensembles
for the BEC, which also possess a bounded complexity perrirdgton bit under BP decoding; they are designed
in a way where the degree distributions of the LDPC code ehkmafter a proper graph reduction (as explained
in [32, Section 1l]) are self-matched and are both irregulde irregularity of the parity-check degree distribuson

in the design of LDPC codes appears to be useful in variousscaader BP decoding, e.g., the optimization
of finite-length LDPC code ensembles whose transmissioestgtace over the BEC [1], the heavy-tail Poisson
distribution introduced in [24] and [48] which gives risedapacity-achieving degree distributions for the BEC, the
design of bilayer LDPC code ensembles for a degraded relags®vehannel [4], and the design of LDPC code
ensembles for unequal error protection [43].

It is well known that linear block codes which are represeéritg cycle-free bipartite (Tanner) graphs have poor
performance even under ML decoding [12]. The bipartite bsagf capacity-approaching LDPC codes should have
cycles. Hence, another question which is addressed in #ferpas a continuation to a previous study in [12] and
[40] (see also [37, Problems 4.52 and 4.53]), is the follgwin

Question 2:How does the average cardinality of the fundamental systeoydes of bipartite graphs behave
as a function of the achievable gap to capacity of the unthgylyDPC code ensembles ?

The fundamental tradeoff between the graphical complextity performance of codes defined on graphs is of
interest, especially for codes of finite-length. In this @apve address the following question:

Question 3:Consider the representation of a finite-length binary lifdack code by an arbitrary bipartite graph.
How simple can such a graphical representation be as a éunatithe channel model, target block error probability,
and code rate (which is below capacity) ?

We note that the graphical complexity referred to in thisgrapeasures the total number of edges used for the
representation of finite-length codes by bipartite grafhsreferring to the total number of edges, the graphical
complexity is strongly related to the decoding complexigyr fieration. This differs from the graphical complexity
in [3], [18], [31] and [32] which measures the number of edges information bit in the asymptotic case where
we let the block length tend to infinity. Although it may apped first glance that the aforementioned distinction
is just a matter of normalization, this is not the case: ttasoa is that given the target block error probability and
the required gap to capacity for achieving this target witly finite-length block code, one needs first to calculate
the minimal block length which potentially allows to fulfiithese requirements. It is done in this work via the
calculation of classical and recent sphere-packing bosels [44], [45], [51] and [54]).

A universal design of LDPC code ensembles which enable®tbedes to operate reliably over a multitude of
channels is of great theoretical and practical interestr&féer the reader to recent studies on universal LDPC codes
(see, e.g., [13], [30], [38] and [47]). A simple modificatiohthe bounds derived in this paper makes them universal
in the sense that they hold for the set of MBIOS channels whidtibit a given channel capacity. The universality
of the bounds derived in this paper stems also from the faattttrey do not depend on the full characterization
of the LDPC code ensembles, but only on the gap between thenehaapacity and the design rates of these
ensembles, and they also depend on the target bit/ block @r@rasure) probability. The bounds derived in this
work are expressed in closed form and are easily calculated.

This paper is structured as follows: Section Il provides egmneliminary material and notation, Section llI
introduces the new information-theoretic bounds of thipgsaSection IV then provides their proofs followed by
some discussions, and Section V formulates some algoritalated to the bounds derived in this paper, it discusses
their implications, and provides numerical results. Ringbection VI summarizes this work, and it provides some
interesting open problems which are related to this rebearc

[l. PRELIMINARIES
We introduce in this section some preliminary material anthtion which serve for the analysis in this paper.

A. LDPC Code Ensembles

LDPC codes are linear block codes which are characterizedplyse parity-check matrices. A parity-check
matrix is represented by a bipartite graph where the variald parity-check nodes are on the left and right
sides of this graph, respectively. An edge connects a Mariade with a parity-check node in this graph if the
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corresponding parity-check equation involves the codebs}mwvhich is represented by this variable node (it is
illustrated in Fig. 1). The requirement for a sparse pathgeck matrix is equivalent to the requirement that the
number of edges in the corresponding bipartite graph sdialesrly with the block length.

We move to consider ensembles of binary LDPC codes. Folgpwitandard notation, leX; and p; denote the
fraction of edges attached, respectively, to variable amdtypcheck nodes of degree Let A; andI'; denote,
respectively, the fraction of variable and parity-checkle® of degreé¢. The LDPC code ensemble is characterized
by a triple (n, ), p), wheren designates the block length of the codes, afid) £ >°. Az~ andp(z) £ 3, piat~?
represent, respectively, the left and right degree digidbs from the edge perspective. Equivalently, this efdem
is also characterized by the triple, A,T') whereA(z) £ ", A;z* andT'(z) £ Y, T;a¢ represent, respectively, the
left and right degree distributions from the node perspectVe denote by LDP@, X, p) (or LDPC(n, A,T")) the
ensemble whose bipartite graphs are constructed accamlitige corresponding pairs of degree distributions. The
connections between the edge€manating from the variable nodes to the parity-check nagesonstructed by
first numbering the connectors on the left and on the righdssaf the graph. The number of connectors is the same
on both sides of the graph, and it is equal&d=n)_,iA; = m ). iI'; wheren andm designate the number of
variable nodes and parity-check nodes, respectively.llifinbhe edges which connect the variable nodes with the
parity-check nodes of the bipartite graph are determinedidigg a permutation : {1,...,[E|} — {1,...,|E|}
which is chosen uniformly at random, and associates coanecimber: on the left side of this graph with the
connector whose number is(i) on the right. The degree distributions with respect to thdesoand edges of a
bipartite graph are related via the following equations:

Jo Au)du Jo plw)du
A(z) = %0—7"— ['(z) = —5—— 1
(@) fol Au)du (@) fol p(u)du @
o) =5 ) = @

For an LDPC code ensemble, whose codes are representedityygback matrices of dimensiam x n, thedesign
rate is defined afRqg £ 1 — %. This forms a lower bound on the rate of any code from this mde, and the rate

is equal to the design rate if the particular parity-checkrixaepresenting this code is full rank (i.e., there are no
redundant parity-check equations in this matrix). The giesate is expressed in terms of the degree distributions

in the following two forms:

1
o Jyelwydz N
Ra= 01 Az)dx =1 (1) ®
Note that
|
ar, = A (1) 01 )\(w)dw (4)
, _ 1
ar=I"(1) = 7]5 S (5)

designate the average left and right degrees (i.e., theagwedegrees of the variable and parity-check nodes,
respectively).

B. Functionals Related to Memoryless Binary-Input Outputametric Channels

Consider an MBIOS channel whose channel input and chantplibare designated by andY’, respectively,
and letpy|x(-|-) be its transition probability. The associated log-likelill ratio (LLR)I(y) when the channel

output isY = y is given by
pYX(y’0)>
l(y)=In|{ ———————= | .
(@) <pYX(y|1)

The LLR associated with the random variablds defined ad. = I(Y). Let a designate the conditiongldf of the
random variablel, given that the channel input i& = 0 (to be referred as thé-density function). This density
function satisfies the symmetry propettyl) = ¢! a(—1) for everyl € R [35].
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This paper relies on the following two functionals (varicatber functionals are presented in [37, Section 4.1]).
Lemma 1:[Capacity functional] Consider an MBIOS channel whose symmeifticlensity function is denoted
by a. Then the capacity of this channel in units of bits per chaose,C' = C(a), is given by

C :/ a(1) (1 — logy(1 +¢1) dl. 6)
An equivalent form of the capacity is given by
_ [ iy (4 _ 1
0_/0 a(l)(1 +e )(1 h2<1+el)> . @)

This lemma is proved in [37, page 193].
Definition 1: [The Bhattacharyya functional] The Bhattacharyya constant which is associated with the sym
metric L-density functiona is given by

Ba)2 [ a(l)e zdl. 8)

The analysis in this paper relies partially on EttabTI??y condition This condition applies to the asymptotic case
where we let the block length tend to infinity, and it forms aemsary condition for successful decoding in the
sense that it requires that the fixed point of zero error ratestable. Consider an LDPC code ensemble with a
given pair of degree distributions\, p) whose transmission takes place over an MBIOS channel, cesized by
its L-density functiona. Then, the stability condition under BP decoding gets thenf¢see [37, Theorem 4.125])

B(a)X2p' (1) < 1. 9)

The reader is referred to [37, Section 4.9] for a proof.

C. Lower Bound on the Conditional Entropy for Binary Linedoék Codes Transmitted over MBIOS Channels

We start this section by outlining in Section II-C.1 the #ation of a lower bound on the conditional entropy
of the transmitted codeword given the received sequendesabutput of an MBIOS channel. Section 1I-C.1 relies
on [53, Section V] and its appendices where it is assumetdtiigacode is represented by a full-rank parity-check
matrix (the same assumption is also made in [37, Sectior{)4 3éction II-C.2 revisits the derivation in Section II-
C.1 in order to extend the bound for the case where the bimaead block code is represented by a parity-check
matrix which is not necessarily full-rank; this extensioasshinted briefly in [53, Section V] (along the lines of
the section on numerical results), and we take this occasiagive a rigorous proof which serves as a crucial
preparatory step towards the analysis in the continuatiathis paper.

1) The analysis for a full-rank parity-check matrixve assume in the following that the transmission of a binary
linear block code takes place over an MBIOS channel.(dLbe a binary linear block code of lengthand rateR,
and letX andY be the transmitted codeword and received sequence, raghechssume that the codewords of
C have no bits which are set a-priori to zero. We assume thatddeC is represented by a parity-check matrix
H which is full rank. In the following,C' designates the capacity of the communication channel its wfibits
per channel use.

« Define an equivalent channel whose output is the LLR of thgimal channel.
o The LLR is represented by a pair which includes its sign arsbhite value.
« For the characterization of the equivalent channel, letftimetion a designate thd.-density function.
« We randomly generate an i.i.d. sequeddg}’ , with respect to the.-density functiona, and define

0 if L;>0

Qié’Li‘, @Z‘é 1 if L; <0 .
0 or 1 equally likely if L; =0
Note that{©;} is a sequence which represents the signs of the LLR (conditi@nX = 0).
« The output of the equivalent channel¥s= (Y3, ...,Y,) where
}A;;':((I)Z‘,Qi), izl,...,n

and ®; = 0, + X; (modulo-2 addition). This channel is memoryless.
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« The output of this channel at timeis Y; € {0,1} x R;. Note that®; is a binary random variable which is
affected by the channel inpl{;, and(?; is a non-negative random variable which is not affectedxhy
« Due to the symmetry of the communication channel, gbéof the absolute value of the LLR satisfies

alw)+a(—w)=(1+e ) a(w) if w>0,
a(0) if w=0.

The conditional entropy of the transmitted codeword givee teceived sequence at the output of the MBIOS
channel satisfies

H(X|Y) = HX[Y)
= H(X) 4+ H(Y|X) — H(Y)
= nR+nH(Y1|X,) — H(Y)
— nR+n[H(YV) — I(X;Y1)] — H(Y) (10)

and
I(X;;71) = I(X1371) < C (11)

H(Yq) = H(®1,Q))
H(Mh) + H((I)1|Ql)
H() + (12)
The last transition in (12) is due to the fact that given theddlite value of the LLR, its sign is equally likely to

be positive or negative. The entropy(2;) is not expressed explicitly as it will cancel out.
The entropy of the vecto¥ satisfies

H(Y) = H(®1,Q1,..., 80, Q)
:H(Ql,...,Qn)—|—H((I)1,...,(I)n ‘ Qla---7Qn)
:nH(Ql)+H(¢1,,q}n|Ql,,Qn) (13)

« Define the syndrome vect& 2 (®4,...,®,)H”. SinceH is assumed to be a full-rank parity-check matrix
of C thenS € {0,1}*1-5) i.e., the syndrom& is composed of.(1 — R) binary components.

o Let M be the index of the vectq®y,...,®,) in the coset which corresponds to the syndrdsne

e« H(M) = nR since all the codewords are transmitted with equal proltgbénd we get

H(®1, ..., @ |Q1,..., Q)
=H(S,M|Q1,...,Q)
<H(M)+H(S|Q1,...,Q)
n(1—R)
<nR+ > H(S;|Q,...,Q). (14)
j=1
« SinceXHT = 0 for every codewordX < C, and also®; = X; + ©; for all i, thenS = (04,...,0,)H" is
independent of the transmitted codeword.
Combining (10)—(14) gives

7’L—

H(X|Y) > n(1 — Z H(Sj|Q,- .., Q0) (15)

where
« S;=1Iif and only if ©; = 1 for an odd number of indicesin the j-th parity-check equation.
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« Due to the symmetry of the channel
P(a;) £ Prob(©; = 1] = o)
B a(—ay) B 1
alag) Fa(—ag) 14ex’

In order to calculate the conditional entropy of a single ponent of the syndrome, the following lemma is used:
Lemma 2:If the j-th component of the syndronf involves k variables whose indices aféy, ..., i} then

PI’Ot(Sj = 1‘911 =o1,... >Qik = Oék)
1

=3 - ﬁ (1= 2P(an)) |

m=1
where N
1 —2P(a) = tanh <§) .
The proof of this lemma follows from [14, Lemma 4.1].

« For a parity-check node of degréethe conditional entropy{(Sj\Ql, ...,$,) is equal to thek-dimensional
integral

/OOO . /OOO h (% [1 - f:[l tanh(%m)D f:[l falam) day . .. day,

where fq is the pdf of the absolute value of the LLR, arig is the binary entropy function to the base 2.
« Using the following Taylor series expansion if:

1 & (1—2x)%
ha(z) =1 — <r<1 16
2(2) T3 2 pap—1) USTS (16)

p=1
then, for a parity-check node of degréethe abovek-dimensional integral is transformed to the following
infinite sum of one-dimensional integrals (see [53, Appenil]):

H(Sj|Q, ..., Q)

e}

=1- 21112 Z{p(2p1_ R </OOO a(l)(1 + e_l)tanh2p<%> dz)k} : 17)

p=1

For an arbitrary full-rank parity-check matrix of a binampdar block codeC, let I';, designate the fraction of
the parity-checks involving: variables, and lef'(z) £ Y, T'xz*. The combination of (15) and (17) leads to the
following lower bound on the conditional entropy of the tsaritted codeword given the received sequence at the
channel output:

H(X]Y) 1-R <~ T(g)
ARY) S po ) 18
n 2 R O+21n2 pzz:lp(2p—1) (18)
where - l
gp = / a(l)(1 + e~y tanh? <§> dl, peN. (19)
0

The above lower bound on the conditional entropy holds for rpresentation of the code by a full-rank parity-
check matrix. The symmetry condition for MBIOS channelgestahata(l) = e'a(—1) for all I € R, and therefore
(19) gives that

L
gp=E [tanth <5>} ., peN (20)
whereE designates the statistical expectation with respect td tdensity functiona, and L is a random variable

which stands for the LLR at the output of the channel givert tha input bit is zero. Eq. (20) implies that the
non-negative sequende, },>1 is monotonically non-increasing and it only depends on thraraunication channel
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(but not on the code). Note also that, from (20)< g, < 1 for all p € N (unless the channel is perfect, which
then implies thay, = 1 for all values ofp).

We note that the conditional entropy on the LHS of (18) depeonly on the code and the communication
channel, but its lower bound on the RHS of (18) depends alstherspecific representation of the code by a
bipartite graph.

The lower bound in (18) improves the bound in [7, Eq. (15)fcept for the binary symmetric channel (BSC)
where they both coincide. The reason is that the derivatiofl®) relies on the un-quantized soft output of the
channel whereas the derivation of the bound in [7, Eq. (1&)s on a two-level quantization of this output (which
therefore does not loosen the bound for a BSC).

2) An adaptation of the analysis to LDPC codes which are noessarily represented by full-rank parity-check
matrices: The derivation of the lower bound in (18) relies on the asdionpthat the parity-check matrix is full
rank. Though it seems like a feasible requirement for spebifiary linear block codes, this poses a problem when
considering ensembles of LDPC codes. In the latter caserity-pheck matrix which corresponds to a randomly
chosen bipartite graph with a given pair of degree distigmst may not be full rank.To this end, we present the
following lemma:

Lemma 3:For (regular and irregular) ensembles of binary LDPC cotles,inequality in (18) stays valid for
every code from the ensemble with the following modificasion

« The rateR of the code is replaced with the design rafg) of the ensemble.

« The sequencdl';} denotes the degree distribution of the parity-check nodethe ensemble (where the
representation of a code by a parity-check matrix, with thvergdegree distribution, possibly includes some
linearly dependent rows).

Proof: See Appendix I. [ |

D. Sphere-Packing Bounds

Sphere-packing bounds are commonly used for the study opén®rmance limitations of finite-length error-
correcting codes over memoryless symmetric channels. Rdgogal on classical sphere-packing bounds, the reader
is referred to [39, Chapter 5]. This paper relies on the Waithg sphere-packing bounds (see Section V-D):

o The SP59 boundThe 1959 sphere-packing (SP59) bound of Shannon [44] sdorethe evaluation of the
performance limits of block codes whose transmission tgk&se over an AWGN channel. This lower bound
on the decoding error probability is expressed in terms efilock length and the rate of the code; however, it
does not take into account the modulation used, but onlynassthat the modulated signals have equal energy.
It is often used as a reference for quantifying the sub-agdttynof error-correcting codes under some practical
decoding algorithms (see [39, Chapter 5] and referencesitt)e An efficient algorithm for the calculation of
the SP59 bound is introduced in [54, Section IV.C].

« ThelSP boundThis sphere-packing bound was recently derived in [541i&ed¢ll]. The ISP bound applies to
all memoryless symmetric channels. For codes of finite blealgth, it improves the classical sphere-packing
bound of Shannon, Gallager and Berlekamp [45] and the spdearking bound of Valembois and Fossorier
[51] where this improvement is especially pronounced fayrsto moderate block lengths. We note that the
ISP bound in [54] is not uniformly tighter than the SP59 bodiodequi-energy signals transmitted over an
AWGN channel.

Comparisons between the sphere-packing bounds in [44]83d [54, Section 1] are shown in [54, Section V].

E. Cycles in Graphs

We consider in this paper the cycles in bipartite graphs Wwhigpresent capacity-approaching LDPC code
ensembles. To this end, we define and exemplify some notidrshvare relevant to the analysis in this paper.

1A concentration of the code rate to the design rate of LDP@ @tsembles is proved asymptotically (for an infinite blaakgth) under
some conditions (see [27] and [37, Lemma 3.22]). Howeverareeinterested in a lower bound on the conditional entropickvhlso holds
for finite-length binary linear block codes regardless a@$ @symptotic concentration property.
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Definition 2: [Cycle and cycle length]A cyclein an un-directed graph is a closed path. The length of a cycle
is the number of edges on this closed path. Giveh of an un-directed graph is defined as the shortest length of
its cycles.

Definition 3: [Tree] A treeis a connected graph that has no cycles.

From Definition 3, a removal of any edge from a tree makes tlaplgidisconnected. An important property of
trees is that any two vertices are connected by a single path.

Every graphG has subgraphs that are trees. This motivates the followgfigiton:

Definition 4: [Spanning tree] A spanning treeof a connected graply is a tree which spans all the vertices
of G. Note that by repeatedly removing edges which originallgate cycles in the graph, it follows that every
connected graph has a spanning tree.

Definition 5: [Number of components of a graph]Let G be a possibly disconnected graph. Tinember of
component®f G is the minimal number of its connected subgraphs whose uftions the graphG (clearly, a
connected graph has a single component).

Definition 6: [Cycle rank] Let G be an un-directed graph witfg| vertices,| Eg| edges and’(G) components.
The cycle rankof G, denoted by3(G), is defined as the maximal number of edges which can be removed
the graph without increasing its number of components (ot each component becomes a spanning tree after
the removal of these edges).

From Definition 6, the cycle rank of a graph is a measure of ttgegedundancy with respect to the connectedness
of this graph. The cycle rank satisfies the following equalitee [16, p. 154]):

B(G) = |Eg| — |Vg| + C(G). (21)

Definition 7: [Full spanning forest] Let G be an un-directed graph. fll spanning forestF of the graphg is
the subgraph of that results from removing thé(G) edges from Definition 6. Clearly, the number of components
of F andg is the same. Note that a graph may have a multiplicity of fplreing forests.

Definition 8: [Fundamental cycle] Let F be a full spanning forest of an un-directed graphand lete be an
edge in the relative complement @f. The cycle of the subgraplt U {e} (whose existence and uniqueness is
guaranteed by [16, Theorem 3.1.11]) is calletiadamental cycl®f G which is associated wittF.

Remark 1:Each of the edges in the relative complement of a full spanfamestF gives rise to adifferent
fundamental cycle of the graph.

Definition 9: [Fundamental system of cyclesThefundamental system of cyclesa graphG which is associated
with a full spanning forest is the set of all fundamental cycles Gfassociated wittsF.

Remark 2:From Remark 1, the cardinality of the fundamental systemyules of G associated with a full
spanning forest of this graph is equal to the cycle rg@f¥).

Example 1:[Fundamental system of cycles in a bipartite graph]This example refers to the bipartite graph
in Fig. 1. This graph is connected, but it is clearly not a .trée an example, consider the cyale), ¢4, v19, 5, v9)
whose length is 4. Since the number of vertices in this graptbi and the number of its edges is 30, then from
(21), the cycle rank of this connected graptBis— 15 + 1 = 16.

In order to get a spanning tree of the graph in Fig. 1, we remepeatedly 16 edges which create cycles while
preserving the connectivity of the graph.

The parity-check matrix] = [hw] in Fig. 2, with 16 bolded zero entries which correspond tordreoved edges
from the original graph in Fig. 1, represents a spanning dfethis graph. To exemplify its connectivity, note that
the variable nodes; andvs are connected by the path, c2, v3, c1,v1, ¢4, vs) Which is of length 6. This path can
be observed directly from the parity-check matfix = [h; ;| by alternate horizontal and vertical moves through
the ones off: epr|C|tIy this path is determined by a horizontal moverf‘rh26 to h2 .3, a vertical move tchl 3
a horizontal move tchl 1, a vertical move tdz4 1 and flnally a horizontal move tb4 5. In a similar way, it can be
verified that every two vertices in the bipartite graph‘bhre connected, and it spans all the 15 vertices of the graph
in Fig. 1 (since there is no row or column i which is a zero vector). Hence, this graph is indeed a spgrinée
of the bipartite graph in Fig. 1. This spanning tree enaldeshtain a set of 16 fundamental cycles by returning
back a single bolded zero in Fig. 2 (among its 16 bolded zeimd) For example, by settingy; ¢ = 1 (which is
equivalent to returning the edge which connegtswith ¢;), we get the fundamental cycles, co, vs, c1, v3).
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a A~ W N

Fig. 1. A parity-check matrixd and the corresponding bipartite graph. For illustratinig tielationship, column 8 and row 2 df are
bolded; the corresponding variable and parity-check noaled the attached edges are also bolded (this figure appef8§]).

12345678910
1 /1110000000
210011011100
310000000010
411000100000
5\1000000011

Fig. 2. A parity-check matrix which corresponds to a spagrinee of the bipartite graph in Fig. 1. As compared to thetpafieck matrix
H in Fig. 1, the new parity-check matri& is obtained by changing the values of the bolded 16 entri@s fr to 0.

F. Notation

We consider in this paper sequences of capacity-approgitid®C code ensembles, and refer to the case where
the fractional gap (in rate) to capacity) vanishes. Accordingly, based on standard notation [56]d@fne
« f(g) = O(y(e)) means that there are positive constarasidd, such thad < f(e) < c g(e) forall 0 < e < 6.
o f(e) = Q(g(e)) means that there are positive constanémdd, such that < c g(e) < f(e) forall 0 < e < 4.
Note that the values of andé must be fixed, and should not dependson
Throughout the paper
ho(z) & —xlogy(z) — (1 — x)logy(l —x), 0<z<1

denotes the binary entropy function to the base 2,}331]d: [0,1] — [0, %] is the inverse of the restriction &f to
[0, %] We also denote the block error probability and the bit eprabability of a code byPs and B, respectively
(for the BEC, the error probability is replaced with an erasprobability). Note thatP, refers to the bit error
probability of the information bits.
This paper is focused on the analysis for MBIOS channels. Femic definitions and examples of MBIOS
channels, the reader is referred to [37, Section 4.1] (whids a slightly different abbreviation: BMS channels).
For further notation used throughout this paper, SectieA frovides the setting and notation for the degree
distributions and the design rate of LDPC code ensemblegioBell-B provides the notation for the capacity and
Bhattacharyya functionals, Section II-C presents thetiwoteor the lower bound on the conditional entropy (see
(18)—(20)), and Section II-E provides the terminology amdation used here in the context of cycles in bipartite
graphs.

I1l. NEW INFORMATION-THEORETIC BOUNDS

This section introduces information-theoretic boundschhare related to the degree distributions, graphical
complexity, and the number of fundamental systems of cyiddke bipartite graphs of LDPC code ensembles.

Theorem 1:[On the average degree of the parity-check noded]et C be a binary linear block code of block
lengthn whose transmission takes place over an MBIOS channelGlUe¢ a bipartite graph which corresponds
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to a full-rank parity-check matrix of. Let C' designate the capacity of the channel, in bits per chanreslarsd
a be theL-density function of this channel. Assume that the code isafat least) a fraction — ¢ of the channel
capacity (wherd) < ¢ < 1), and the code achieves a block error probabiligyor a bit error probability, under
some decoding algorithm. Then, the average right degrebeobipartite graph (i.e., the average degree of the

parity-check nodes i) satisfies
21In L
( (f&%))

aR > (22)
1
ln(a)
whereg; is given in (19) (and it depends only on the channel), and
52 B+ @ for a block error probabilityPs 23)
ho(Pp) for a bit error probability,

Furthermore, among all the MBIOS channels which exhibit\egicapacityC' and for which a target block error
probability (Ps) or a bit error probability £) is obtained under some decoding algorithm, a universalidweand
on ar holds by replacingy; on the RHS of (22) withC'.

For the BEC, the following tightened version of (22) holds:

In (1+ %)

In (fp)

wherep is the erasure probability of the channel, aRdis the bit erasure probability at the decoder.

ar Z (24)

Remark 3:[The relation of Theorem 1 to the bound in [53]] In the particular case wherg, vanishes, the
bound in (22) forms a tightened version of the bound giverbBy Eq. (77)]. This point is clarified in Discussion 1
which succeeds the proof of Theorem 1 (see page 17). In thiewirere the gap (in rate) to capacity vanishes
(and with vanishingP,), the lower bounds on the average right degree in (22) andB§3 (77)] both grow like
the logarithm of the inverse of this gap, and they therefasspss the same asymptotic behavior where

ar 2 ar(e) = Q <1n 1) . (25)

€

However, in spite of the similarity in the asymptotic bettavof the two lower bounds as— 0, they may differ
significantly even for rather small values of(see Example 3 on p. 27).

Theorem 1 also provides a universal lower bound on the aeeight degree for the set of all MBIOS channels
with a given capacity’. This theorem states the conditions where the bound in (8®)its extreme values among
all MBIOS channels which exhibit a given capacity.

Remark 4:[Adaptation of Theorem 1 to LDPC code ensemblesAs is clarified in Discussion 2 (see page 17),
Theorem 1 can be adapted to hold for an arbitrary ensembjle,of p) LDPC codes. In this case, the requirement
of a full-rank parity-check matrix of a particular codefrom this ensemble is relaxed by requiring that the design
rate of the LDPC code ensemble is equal to a fractiens of the channel capacity. In this cade, and Ps stand
for the average bit and block error (or erasure) probadditf the ensemble under some decoding algorithm.

Remark 5:[The graphical complexity of finite-length LDPC codes]in Section V-D, we apply Theorem 1 and
sphere-packing bounds on the decoding error probabilég [44], [45], [51], [54]) to obtain information-theoretic
lower bounds on the graphical complexity of finite-lengthR®O codes. These bounds are expressed as a function
of the target block error probability and the gap betweendbsign rate of the code and the channel capacity.
We note that in this context, the graphical complexity meesuhe number of edges used for the representation
of finite-length codes by bipartite graphs. By referring e total number of edges, the graphical complexity is
strongly related to the decoding complexity per iteratidhe bounds are compared with capacity-approaching
LDPC code ensembles under BP decoding, and they are showsitddimative (see Section V-D).

Based on Remark 4 and the background which is provided ind®ebitE, the following result is derived:
Corollary 1: [On the asymptotic average cardinality of the fundamental gstem of cycles of LDPC code
ensembles] et { (n, A, p) } be a sequence of LDPC code ensembles whose transmissiarptake over an MBIOS
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channel. Let the design rate of these ensembles be a fractionof the channel capacit¢, and assume that the
average bit error/ erasure probability of this sequencéstas under some decoding algorithm as we let the block
length (n) tend to infinity. Consider the average cardinality of thedamental system of cycles in bipartite graphs
from the LDPC code ensemble, A, p) where the graphs are chosen uniformly at random (from Rerdatke
cardinality of the fundamental system of cycles in a grgpis equal to its cycle rank(G)). Then, the following
asymptotic lower bound holds:

E
lim inf LDPC(n,\,p) [ﬁ(g)]

n—00 n

-2
(1-0) 1n<91 [1 — 2hyt (1_%1—_(2)(;)} )
1
(5
whereg; is introduced in (19). For a BEC whose erasure probability, ia tightened bound gets the form:
limn inf ELDPC(n,A,p) [ﬁ(g)} < p ln (1 —p+ g)

T )

>

1 (26)

1 27)

Remark 6:Corollary 1 provides two results which are of the tydln 1).

Theorem 2:[On the degree distributions of capacity-approaching LDPCcode ensemblesl.et (n,)\,p) (or
(n,A,T")) be an ensemble of LDPC codes whose transmission takesqtacan MBIOS channel. Assume that the
design rate of the ensemble is equal to a fracliens of the channel capacitg', and letP, designate the average
bit error (or erasure) probability of the ensemble under Micatling or any sub-optimal decoding algorithm. Then,
the following properties hold for an arbitrary finite (and€i® degree

Ai(e) = 0(1) (28)

Li(e) = O(eC + ha(Py)) (29)

M@:OQ—J?—> (30)
hl m

m@:0<?i%£@>. (3D)
1 SCFha ()

For the case where the transmission takes place over the tRE®@punds above are tightened by replacip@p;,)
with F.

Remark 7:[On the connection between Theorems 1 and 2Theorem 2 implies that for every capacity-
approaching LDPC code ensemble whose bit error probahiihishes and also for an arbitrary finite degiee
their bipartite graphs, the fraction of edges attached t@bke nodes or parity-check nodes of degréends to zero
as the gap to capacity) vanishes. This conclusion is consistent with Theorem 1 wktates that the average left
and right degrees of the bipartite graphs scale at Ieasﬂﬂi%e hence, these average degrees necessarily become
unbounded as the gap to capacity vanishes.

Corollary 2: Under the assumptions of Theorem 2, if the asymptotic bdréarasure probability vanishes then
the following properties hold for an arbitrary finite degree

Ai=0(1), Ty = 0(e),

1 €
Ai=0|—x], Pi=0|—7]-
(111%) “ <ln%>

Remark 8:[Linear programming upper bounds on the degree distributions of LDPC code ensembles]
Theorem 2 and Corollary 2 provide asymptotic results for diegree distributions of LDPC code ensembles in
the limit where the gap to capacity vanishes (i5> 0). Section V-C provides linear programming (LP) upper
bounds on the degree distributions which are expressedrimstef the target average bit error probability, and
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the (possibly non-zero) gap between the channel capaciytia design rate of the ensemble for achieving this
target. Similarly to Theorem 2 and Corollary 2, the LP bouimd$ection V-C hold under ML decoding, and are

therefore general in terms of the decoding algorithm. Wes ibait these LP bounds apply to finite-length LDPC
code ensembles and to the asymptotic case of an infinite docjth. Analytical solutions for these LP bounds are
provided in Section V-C, and these bounds are also compaitbdsame capacity-achieving sequences of LDPC
code ensembles for the BEC under BP decoding. Additional ddhls are derived to hold for the set of all the

MBIOS channels which exhibit a given capacity, and that alslmieve a target bit error probability. These universal
LP bounds are compared with the LP bounds which refer to 8p@dBIOS channels (see Section V-C).

We turn now our attention to sequences of LDPC code ensemtigsh asymptotically achieve vanishing
bit error probability under BP decoding. The following them gives upper bounds on the fraction of degree-2
variable nodegA2) and the fraction of edges attached to these n¢dgsfor an arbitrary sequence of LDPC code
ensembles whose transmission takes place over an MBIOSiehdirrelies on information-theoretic arguments and
the stability condition. We note that;, is involved in the stability condition (see (9)). Moreoveame previously
reported information-combining bounds on the performaaté DPC code ensembles under BP decoding are
sensitive to the value of, (see, e.g., [49]).

Theorem 3:[On the fraction of degree-2 variable nodes and the fractiorof edges attached to these nodes for
LDPC code ensembleslet { (n,,, A(z), p(z))}, ., be a sequence of LDPC code ensembles whose transmission
takes place over an MBIOS channel. Assume that this sequesyaptotically achieves a fraction— ¢ of the
channel capacity under BP decoding with vanishing bit eprmbability. Then, the fraction of degree-2 variable

nodes satisfies
1-C eC
As < 2B(a) <1+—1_C>

In (;)

1+ (32)
In 9 .
([1—%21(%)] )
and the fraction of edges attached to these nodes satisfies
In (g—ll)
Ay < (33)

Bla) 1“( [1-%21(?;@)0)]2)

where the Bhattacharyya constd#(z) and the parameter are introduced in (8) and (19), respectively. Consider
the set of all the MBIOS channels with a given capacityand a Bhattacharyya constafita), for which the bit
error probability vanishes under BP decoding. Then, usadeupper bounds o, and A, hold for this set of
channels by replacing; on the RHS of (32) and (33), respectively, with

For a BEC with an erasure probability the following tightened bounds hold:

A2<1<1+E(1p_p)> {1+lnm(11’0} (34)

2 (1-p+2)
In (fp)

pln(l—p—kg)'

and

)\2<

(35)

Corollary 3: Under the assumptions of Theorem 3, in the limit where the tgapapacity vanishes under BP
decoding (i.e.¢ — 0), the fraction of degree-2 variable nodes satisfies
1-C
2B(a)

Ay < (36)
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where this upper bound is necessarily not larger t@aINote that this forms a universal upper bound on the fraction
of degree-2 variable nodes for all MBIOS channels with a mieapacityC' and a Bhattacharyya constaf§ita)
for which the bit error probability vanishes under BP deogdiand for which the gap to capacity vanishes.

In the continuation to this paper, sufficient conditions tloe tightness of (36) are considered (see Lemma 7 on
page 24).

Remark 9:Note that for capacity-achieving sequences of LDPC coderahkes whose transmission takes place
over the BEC, the bound in (36) is particuIarized%taegardless of the erasure probability of this chanrighis
is indeed the case for some sequences of LDPC code ensenthitdsachieve the capacity of the BEC under BP
decoding (see, e.g., [24], [29], [48]).

Corollary 4: [A looser and simpler version of the upper bound on)\;] The bound (33) implies that

1
Ay < (37)

[01 + coln (%)} i

for some constants; and c; which only depend on the MBIOS channel, and whérg™ = max(x,1); the
coefficientc, of the logarithm in (37) is given by

B(a)

In <g%>
and it is strictly positive.

In the following proposition, it is shown that for the BEC,ettbounds in (35) and (37) are tight under BP
decoding.

Proposition 1: [On the tightness of the upper bound on), for capacity-achieving sequences of LDPC code
ensembles over the BECThe bounds in (35) and (37) are tight for the capacity-adh@gsequence of right-regular
LDPC code ensembles over the BEC in [48]. For this sequekgé; \o(c) vanishes ag — 0 similarly to the
upper bound in (37) with the same coefficientin (38).

Cy = (38)

IV. PROOFS ANDDISCUSSIONS
A. Proof of Theorem 1

Let X be a random codeword from the binary linear block cddeand letY designate the output of the
communication channel wheX is transmitted. Based on the assumption that the cbiderepresented by a full-
rank parity-check matrix an@ is the corresponding bipartite graph which representsciike, then inequality (18)
holds. Sincef(t) = ! is convex for anyr > 0 then Jensen’s inequality gives

I(z) = Zfixi > gritli =z®,  x>0.
i

Substituting the inequality above in (18) implies that

H(X[Y) 1-R X gF
kil B - . 39
P TR ;k(%—l) (39)
Lemma 4:
g > ()", VkEN. (40)

Proof: For k > 1, Jensen’s inequality and (20) give

g =E [tanh%(g)] k
> <E {tanhz(g)b

= (g1)".
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The substitution of (40) in (39) gives

H(X]Y) 1-R N (g5)"
>R — . 41
n 2 R C’—1_21n2 Z::lk(%:—l) (41)
The substitution: = 1=/* in (16) gives
1 < b 1—Vau
2m222k@k_1)_1_h2< 5 >7Vuemﬂi (42)

Since0 < tanh?(z) < 1 for all z € R, we get from (20) thab < g; < 1 (this property holds for the entire
sequencegy }7° ). Substituting (42) into (41) gives the following lower bailion the conditional entropy:

ar/2
5%?921—C—mf4a@<51%—>. (43)

On the other hand, Fano’s inequality provides the upper doun

HXIY) _ [ Rpp ol
n B R hg(Pb)

where, for the bound which is expressed in terms of the bitrgprobability 7, one can assume without any
loss of generality that the firstR bits of the code are its information bits, and their knowlkeds sufficient for
determining the codeword.
In order to make the statement also valid for code ensemtielse( clarified in Discussion 2), we rely on the
inequality R < 1, and loosen the bound in (44) to get
HX]Y) _

(44)

) (45)
n

whered is introduced in (23). Combining (43) and (45) gives

1 _gaR/Q
521-C—(1-R)h (—2— ). (46)

Since the RHS of (46) is monotonically increasingAn then following our assumption thdt > (1 — ¢)C, the
bound is loosened by replacing with (1 — ¢)C. This gives the inequality

_ OR/2 _C—
hy 1—-g > 1-C-6§ .
2 1—-(1-¢)C
Since the binary entropy functiol, is monotonically increasing off), %] then

R 1-C—-9¢
S <1 _op-1
g =1 %QQ—uwm>

which gives the lower bound ok in (22).

Let us now consider the particular case where the transwnigsi over the BEC. Note that for a BEC with
erasure probability, g» = 1 — p for all £ € N (in this case we havé € {0, +oo} with probabilitiesp and1 — p,
respectively, and the equalitynh(+o00) = 1 is exploited in (20)). Therefore (39) is particularized to

HXY) o =R =p)" 1

n 21In2 k(2k — 1)~
k=1

o0

Substitutingu = 1 in (42) gives the equality

1 1
=1 47
2m2g;k@k—1) (47)
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and
H(X[Y)

n

Note that the RHS of (48) is monotonic increasing as a functb the rateR. Following the assumption that
R > (1 —¢)C whereC =1 — p is the capacity of the BEC, we get

>R—C+(1-R)1-p)™. (48)

HOY) 5 -+ (1- (-1 -p) (- p)™. (49)
Similarly to (44) and (45), we get for the BEC
HXY) (50)

where the decoder find&; with probability 1 — B,; otherwise, the bitX; is not determined by the decoder, and
its conditional entropy (given the sequengg is upper bounded by 1 bit. Combining (49) with (50) gives

P> —e(l=p)+(1-(1-e)(1-p)(1—p)™=. (51)

Finally, the lower bound on the average right degree in (B#ipws from (51) by simple algebra. Note that in the
case wherel, = 0, the resulting lower bound coincides with the result otedimn [40, p. 1619] (though it was
derived there in a different way), and it gets the form

1n(1+(1_’+p)€).

()

We wish now to show that among all the MBIOS channels whichileh given capacityC, the lower bound
on the average degree of the parity-check nodes as giver2)rafiins its maximal and minimal values for a BSC
and BEC, respectively.

Lemma 5:[Extreme values ofg; among all MBIOS channels with a given capacity]Among all the MBIOS
channels with a given capacity, the value ofg; satisfies

C<g<(1-2n'(1-0))° (53)

aR > (52)

and these upper and lower boundsgnare attained for a BSC and BEC, respectively.
Proof: See Appendix II. |
Remark 10:This lemma is in fact equivalent to the statement in [20, Thrp1] with the extreme values derived
in its proof (note that (20) implies that the sequekgg} is equal to the sequendensy} in [20], from which the
equivalence between Lemma 5 and [20, Theorem 1] followsctiife In Appendix Il, we present an alternative
proof which is more elementafy.

Remark 11:The ratio between the upper and lower boundgofsee Lemma 5) is equal igC') = w

Based on (42), one can verify thatis a monotonic decreasing function of the capacity whereenids to
2In2 =~ 1.386 whenC' — 0, and it is 1 (i.e., the upper and lower bounds coincide)do« 1.

Consider the set of all MBIOS channels with a given capacitjor which a target block error probability
(Pg)) or bit error probability(7,) is obtained under some decoding algorithm. To complete theff the last
statement in Theorem 1, note that among this set of charthelspwer bound in (22) is maximized or minimized
by maximizing or minimizing the value of;, respectively. It therefore follows from Lemma 5 that a wngal
bound onag for the above set of channels holds by replaging@n the RHS of (22) withiC'. The gives the following

universal lower bound:
21n 1
1—2h;" (%)

(i)

>The author was un-aware of [20] until its publication as afaill paper. The alternative proof on Lemma 5 was found incidgetly of
this work.

aRr Z (54)
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Discussions on Theorem 1 via its Proof

In the following we discuss Theorem 1 via its proof, and cdesisome of the generalizations of this theorem.
Discussion 1:[A discussion on the bounds in Theorem 1 and [53, Eq. (77)]if the bit error probability
vanishes, the lower bound in (22) forms a tightened versidb® Eg. (77)]. We note that both bounds are based
on (18) but the difference in their derivation follows sir[&8] relies on the fact that the RHS of (18) is an infinite
sum of non-negative terms, and a simple lower bound is obdaiim [53] by truncating this sum after its first term.

In the proof of Theorem 1, on the other hand, a tightened |dveend on the average right degrieg) is derived
by applying Jensen’s inequality to the RHS of (18) (see (4dny calculating exactly the resulting bound via (42).
In this context, see Remark 3 on page 11. The additional dlee of the bound in (22) oR, makes Theorem 1
valid for codes of finite block length, whereas the bound i8, [Rq. (77)] can be only applied to the asymptotic
case of vanishing bit error (or erasure) probability byimettthe block length tend to infinity.

Discussion 2:[An adaptation of Theorem 1 for LDPC code ensembles]The statement in Theorem 1 can
be adapted for finite-length LDPC code ensembles whosentiag®n takes place over an MBIOS channel. First,
from Section II-C.2, the lower bound on the conditional epyr (18) holds for every code from this ensemble if we
relax the requirement of a full-rank parity-check matrindainstead replace the rafe of the code by the design
rate Rq of the ensemble. Similarly to the derivation of (43), we get

. ar/2
E%?Qzl_c_u_R&M<L%%_>

Assume thatRy > (1 — ¢)C. Since the RHS of the above inequality is monotonic incregasiith Ry, then for
every code in this ensemble

ar/2
Mm—c—(l—u—s)c)@(%). (55)

Note that this lower bound on the conditional entropy is gldb the sense that it does not depend on the code from
the (n, \, p) LDPC code ensemble; all these codes are represented byiteipsaphs whose common value @f

is equal to(fo1 p(x) dm)_l. Note also that the parametgr does not depend on the code. Taking the expectation
over the LDPC code ensemble gives

n

1— gaR/Z
}21—0—(1—(1—5)0)@(%). (56)
Note that0 < ¢g; < 1 (unlessg; = 1 when the capacity of the binary-input channel is 1 bit pemaigh use which
implies that the channel is noiseless).

The loosening of the bound in the transition from (44) to (#&bYyue to the fact that an upper bound on the
rate R of a code from this ensemble is required; since binary codesansidered, a trivial upper bound on the
rate is 1 bit per channel use (note that the rate of an ariytrelnosen code from this ensemble may exceed the
channel capacity). Due to the concavity of the binary entriymction, Jensen’s inequality gives

Eggﬁqg{gégﬁ 57)
n 2(Lp

where Ps £ E[Ps] and P, £ E[P,] designate the average block and bit error probabilitiespeetively, of the
ensemble. Combining (56) and (57) leads to an adaptationhebem 1 for LDPC code ensembles with the
following modifications:
« The parity-check matrices of the codes are not required tolbeank (which otherwise would be problematic
for LDPC code ensembles).
« The requirement on the rate a code is replaced by the sameenagmt on the design rate of the LDPC code
ensemble where we refer to the average block and bit errdrapitities of this ensemble.
Note that the adaptation of the statement in Theorem 1 for@@Bde ensembles whose transmission takes place
over the BEC is more direct. For a BEC, sineg(F;,)) on the LHS of (46) is replaced bi, on the LHS of (51),
then there is no need for Jensen’s inequality as in (57).
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Discussion 3:[Adaptation of Theorem 1 for punctured LDPC code ensembles]n the following, we consider
an adaptation of Theorem 1 for LDPC code ensembles with raratdntentional puncturing where the transmission
takes place over an MBIOS channel. To this end, the readeffesred to [41, Section V] where lower bounds are
derived on the average right degree and the graphical caitypld such ensembles. The derivation of these bounds
relies on a lower bound [41, Eqgs. (2) and (3)] which geneeslid 8) to the case of statistically independent parallel
MBIOS channels. This lower bound was particularized in [8&ctions 11-1V] for the two settings of randomly
and intentionally punctured LDPC code ensembles which amentunicated over a single MBIOS channel. The
concept of the proof of Theorem 1 enables to tighten the Idwends on the average right degree and the graphical
complexity, as presented in [41, Section V], for both rantjoamd intentionally punctured LDPC code ensembles.
More explicitly, by comparing the proof of (22) with the detion of [53, Eqg. (77)] under the assumption of
vanishing bit error probability, one notices that the tagtihg of the bound in the former case is enabled by
combining Lemma 4 with the equality in (42) (instead of thentration of a non-negative infinite series after its
first term, as was done for the derivation of the looser bounfb3]). This difference can be exploited exactly in
the same way in connection with the results from [41, Sectbfor improving the tightness of the lower bounds
on the average right degree and the graphical complexitpdoctured LDPC code ensembles.

Proof of Corollary 1

The following lemma relies on the background material int®®ecll-E, and it serves for proving Corollary 1.
Lemma 6:[Cardinality of the fundamental system of cycles]Under the assumptions of Theorem 1, the
cardinality of the fundamental system of cycles of a biparjraphg, associated with a full spanning forest @f
is larger than
n[(1—R)(ar — 1) — 1] (58)

wherear can be replaced by the lower bounds in (22) and (24) for a géMBIOS channel and a BEC, respectively.
From (25), the cardinality of the fundamental system of egaf the bipartite grapf which is associated with a
full spanning forest of this graph i@ (In1).

Proof: From Remark 2 (see Section II-E), the cardinality of the fameéntal system of cycles of a bipartite
graphg, which is associated with a full spanning forest@f is equal to the cycle rank(G). From Eq. (21),
B(G) > |Eg| — |Vg| where|Eg| and |Vg| designate the number of edges and vertices. Specializisgfdh a
bipartite graphG which represents a full-rank parity-check matrix of a bjnénear block code, the number of
vertices satisfie§lg| = n(2 — R) (since there are variable nodes and(1 — R) parity-check nodes in the graph)
and the number of edges satisfigs;| = n(1 — R)ar. Combining these equalities gives the lower bound on the
cardinality of the fundamental system of cycles in (58). [ |

The proof of (26) and (27) is based on Remark 4 and Lemma 6. Bgtisuting 7, = 0 in (22), one obtains the
following lower bound on the average right degree as theameebit error probability of the LDPC code ensemble

vanishes:
- (())
1n<gil) '

Since the average bit error probability of the ensemble ssimed to vanish as the block length tends to infinity,
then asymptotically with probability 1, the code rate of ahiteary code from the considered ensemble does not
exceed the channel capacity. By substituting the lower Baamagr from (59) and an upper bound aR (i.e.,

R < C) into (58), the asymptotic result in (26) follows readily.shmilar proof of the tightened bound for the BEC
in (27) follows by substituting®, = 0 in (24). This concludes the proof of Corollary 1.

aRr > (59)

B. Proof of Theorem 2

Eq. (28) is trivial (though it is demonstrated in the congtian that, for degree-2 variable nodes, this result is
asymptotically tight as the gap to capacity vanishes).

We turn now to consider the degrees of the parity-check nd8iesilarly to Discussion 2 (which succeeds the
proof of Theorem 1), we denote bX a random codeword from the LDPC code enserr(bie)\,p) where the
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randomness is over the selected code from the ensemble amddieword which is selected from the code. et
designate the output of the communication channel wKeis transmitted. From (18) and its adaptation to LDPC
code ensembles (see Section 1I-C.2)

H(X]Y)

n

>

> Ra— 21 2 Zk:%—l

s l=(=9C N %

=t T ;{P’;k(%—l)} (60)

where the last equality follows from the equalltyz) = >, I';z* (see Section 1I-A) and also since, by assumption,
the design rate of the LDPC code ensemble forms a fradtierx of the channel capacity. Applying Lemma 4 to
the RHS of (60), we get

H(X[Y)
1-(1-¢)C & = (g}
Ty ;{Fikz:lk(%l—l)}

i/2

:_ECJr(l_(l_E)C)i [1_h2 (1_291 )] r,}

where the last equality follows from (42). Combining (45)twthe last result gives

(3] i/2
hg(Pb)E—EC—i-(l—(l—s)C)Zll—hg<1 291 )] T
i=1

() i/2
1-— g1 eC + hQ(Pb)
1—nh I <—F——= 61
S () rf =i e
where B, designates the average bit error probability of the enserabtler the considered decoding algorithm.
Since all the terms in the sum on the LHS of (61) are non-neggathis sum is lower bounded by itgh term, for
any degreé. This provides the following upper bound on the fraction afity-check nodes of any finite degrée
eC + hz(Pb) 1

S 1-(-9C | _ pa (=40)

and therefore

I

< (EC + hz(Pb))

1 1
1-C 1— hy <1g;/2)] : (62)

This completes the proof of (29) for a general MBIOS chanbet.us now consider the particular case where the
transmission is over a BEC with an erasure probabjityin this caseg, = 1 — p for all £ € N (this equality
follows directly from (19)), and the channel capacity is algto 1 — p bits per channel use. Therefore, (60) is
particularized to

H(X|Y)

——c(l-p)+(1-(1=e)(1—p)) > Ti(1—p) (63)
i=1
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where the above equality holds sinke: , T % TS — = 21n 2. Applying the upper bound on the conditional entropy
(50) to the LHS of (63), we get

P>—<c(l-p)+(p+e(l—p ZF (1-p

where P, denotes the average bit erasure probability of the enserabtbtherefore

= i e(l-p+5H
;{Pi(l —p) } < m (64)

Since the sum on the LHS of (64) is of non-negative terms, therget
Li<(e(1-p)+B) (*) (65)

p(1—p)

S0 ha(Fp) in (29) is replaced for the BEC witl#,.
We turn now to consider the pair of degree distributions fitbe edge perspective. The average left deguge
of the LDPC code ensemble satisfies

L-fa

L =2

which implies that for any degreeof the variable nodes
A< —. (67)

aL

Since the design rate of the LDPC code ensemble is assumesddiriactionl — ¢ of the channel capacity, then
the average right and left degrees satisfy

=(1-(1-¢)C)ar
> (1 — C)(IR. (68)

Substituting (68) on the RHS of (67) and applying the loweurmbonag in (22) gives
o
zln(a)

A <

2(1-C) In 1
(12h21 <71],C(I’li§§b))

Using the power series for the binary entropy function in)(a6d truncating the sum on the RHS after the first
term gives

(69)

(1—2z2)2
_ > 7
L= ha(@) 2 595
and substituting: = ha(x) yields
(1-2n (w)*<2m2-(1-u), VO<u<l (70)

Combining (69) and (70) gives
iln(g—ll)

A <
(1-C) In <21}12 P%)
) iln(g%)
—(1—e)C
(1-C) In (ﬁ %)
< iln(g%)

(1-0) [111 <m> +In (%)}
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which completes the proof of (30) for general MBIOS channBly the BEC, we substitute (68) and the lower
bound on the average right degree in (24) into the RHS of (@ 9et

zln( p)
p In (1+ ﬁ)
i ()
p In (S50
in(;)
p | (sbiem) + )]

Hence,h2(F) in (30) is replaced by?, when the communication channel is a BEC. Considering the dggree
distribution of the ensemble, we have
-3k
=1

By following the same steps as in (66)—(71), one obtains greupound onp; for any degree of the parity-
check nodes. The asymptotic behavior of the resulting uppand onp; is similar to the upper bound ok; as
given in (71). However, as we show in the following, a tightgper bound on the fraction of edges connected to
parity-check nodes of degreéds derived from the equality

1

i

< (71)

pi = : (72)
aR
Substituting (22) and (62) in the above equality, we get
1
eC + ho(By) ln(g—1> ' i 73)

pi < S
1-C 1-g;/
21n L 1=k ( 2 >
1-2h;" <7lf(§’f‘;§§b)>

Applying (70) to the denominator of the second term on the R 3) gives

Ot (R In(2) P
PETT0 (21}12 1—1101’“‘;%)) 1—hy (45
Ccoamm) () i

120 (o ) 1 ke (S

} (L) £C + ho(Ry) i .
- 1-C ln<m)+ln(21n2) — ha <1 i )

This proves (31) regarding the fraction of edges connectguhtity-check nodes of an arbitrary finite degie€or
a BEC, a substitution of (24) and (65) in (72) gives

e =)+ By i ()
PETTIO-DT (1+ )

Followed by some straightforward algebra, this proves 8Lthe BEC when(Fy) is replaced withp,.
Remark 12:[Note on Theorem 2 and Corollary 2] Consider the capacity-achieving sequence of right-regula
LDPC code ensemble as introduced in [48]. The gap to capégditgan be made arbitrarily small for this sequence
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(even under BP decoding), although= 1 for some integes. At first glance, it looks contradictory to Corollary 2
(see p. 12) which states thatis upper bounded by an expression which scalesdfefor any finite degree, and
it therefore should tend to zero as the gap to capacity vasigHowever, the right degree of this sequence scales
like ln% (see [48] and [40, Theorem 2.3]), hence the indéar which p;, = 1 becomes unbounded as— 0. Note
that Corollary 2 applies on the other hand to finite and bodrndlsgrees in the limit where the gap to capacity
vanishes. Moreover, as we let— 0 for this capacity-achieving and right-regular sequenkenp; is identically
zero for all finite and bounded degrees

Remark 13:[On the degree distribution of the parity-check nodes for tte set of MBIOS channels with a
given capacity] Consider the set of all MBIOS channels of a given capa€ityand consider a required bit error
probability p,. By combining the inequality constraint (61) with the extie values ofg; in Lemma 5 (see (53)),
we obtain the following universal inequality constraintialh should hold for this set of channels:

Si{FfJQ<1;c%> i}<sc+hx&)

“1-(1-¢)C"
We refer later to this inequality when we consider lineargoamnming bounds for the degree distributions of
capacity-approaching LDPC code ensembles (see Section V).

(74)

C. Proof of Theorem 3

Consider bipartite graphs which correspond to an LDPC coderable with pair of degree distributio(s, p).
The average degrees of the variable nodes and the paritkciaes of these graphs are given in (4) and (5),
respectively. Hence, the fraction of degree-2 variableesdd given by

Ao a A
Np=220 = 22 (75)

2 2 [y Mx)dz

and the design rate of this ensemble is given by (3). Usingvﬁ@)rewritefo1 A(z)dz at the denominator of (75)

as
1 1 1
/0 Az)dx = R /0 p(x)dx . (76)

By assumption, the considered sequence of ensembles ashiamishing bit error probability under BP decoding,
and hence the stability condition in (9) is satisfied. Cormgr(9), (75) and (76) leads to the following upper bound
on As:

1—
< % . (77)
2B8(a) p/(1) [, p(z)dz
From the convexity off (t) = z! for > 0, Jensen’s inequality gives
1
/ p(x)dx
0
1 .
= / Zpix’_ldx

0

1
> / 22 Pi (=1

0

1
= / 2” Wy
0
_ 1
(1) +1
which implies that
J1) > —1=ap—1. (78)
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Substituting (78) in (77) and sincBy = (1 — €)C then

< E (1 ! p%l))

< 1— Ry 14 1
~— 2B(a) ag — 1
1-C eC 1
= — |14+ — 1 . 79
2B(a)<+1—0><+aR—1> (79)
Since the RHS of (79) is monotonically decreasing with therage right degree:g), this bound still holds when

ar is replaced by a lower bound. For all € N, let A, ,,, designate the average bit error probability of the LDPC
code ensemblén,,, A(z), p(z)) under BP decoding. Applying Theorem 1 whefg,, vanishes asn — oo gives

21In < - 1 — >
> 1-2h;" (=555)
aRr = 1 .
hl(a)
The upper bound in (32) follows by substituting (80) in (79).
We now turn to derive the upper bound on the fraction of edgaistware connected to degree-2 variable nodes.

Since the considered sequence of LDPC code ensembles eshiavishing bit error probability under BP decoding,
then the stability condition (9) implies that

(80)

1
p'(1) B(a)
whereB(a) is given in (8). Combining this with (78) gives

Ay = N(0) <

1

» < r - 1D B)

(81)
wherear designates the common average right degree of the sequérosambles. The upper bounds bnin
(33) and (35) are obtained by substituting (80) and (52)sgha&re the lower bounds aig derived in Theorem 1
for vanishing bit error/ erasure probability), respediyén (81).

Consider the set of all MBIOS channels with a given capa€Citgnd a Bhattacharyya constafita), for which
the bit error probability of the BP decoder vanishes for thiesidered sequence of LDPC code ensembles. Universal
upper bound o\, and A, follow directly by combining the bounds in (32) and (33), pestively, with Lemma 5
(note that the upper bound on the RHS of (32) is a monotonicedsing function ofg;; this bound therefore
attains its maximal value at the minimal value @f i.e., wheng; = (). Therefore, the universal upper bounds
on A, and )\, hold for all the channels from the above set by substituting= C' on the RHS of (32) and (33),
respectively.

For a transmission over the BEC, the improved upper bounti@degree-2 variable nodes follows by substituting
the lower bound in (24) (where the bit erasure probabififyvanishes) into (79). Note that for a BEC with erasure
probability p, 1 — C = B(a) = p and 213;@(5) = % Similarly, the upper bound on the fraction of edges whioh ar
attached to degree-2 variable nodes follows by substgu@4) andB(a) = p into (81).

Discussion 4:[On the tightness of the upper bound(36) on the fraction of degree-2 variable nodes for
capacity-achieving LDPC code ensembles over MBIOS chanrgdlin the following, the tightness of the bound
in (36) is considered:

Lemma 7:[On the asymptotic fraction of degree 2 variable nodes for cpacity-achieving sequences of
LDPC code ensembleslet (n,,, Am, o) be a sequence of LDPC code ensembles whose transmissiarplake
over an MBIOS channel of capacity (in bits per channel use). Assume that this sequence is itgaatieving
under BP decoding, and also that the flatness condition mpisyically satisfied for this sequence (i.e., the stabilit
condition in (9) is satisfied asymptotically with equalit{et us also assume that the limit of the ratio between the
standard deviation and the expectation of the right degigehiition in the LDPC code ensemble,,,, A, pim)
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is finite asm — oo, and denote this limit by'. Then, the asymptotic fraction of degree-2 variable nodethis
sequence is equal to

lim Agm) = 1-C

A 2(1+ K2) B(a) 62)

whereB(a) is introduced in (8).
Proof: See Appendix Il [ |

As a particular case of Lemma 7, = 0 (this happens, e.g., when the right degree is fixed), theagmptotic
fraction of degree-2 variable nodes in (82) coincides wlith tipper bound in (36).

Remark 14:We note that the property proved in Lemma 7 for the non-vamishsymptotic fraction of degree-2
variable nodesof capacity-achieving sequences of LDPC code ensemblemmiscent of another information-
theoretic property which was proved by Shokrollahi withpest to the non-vanishing fraction of degre@@put
nodesfor capacity-achieving sequences of Raptor codes whossriigsion takes place over an MBIOS channel
(see [11, Theorem 11 and Proposition 12]).

Proof of Corollary 3 The upper bound (36) on the fraction of degree-2 variabléesdor capacity-achieving
LDPC code ensembles follows directly by letting the gap tpacaty ¢ tend to zero in (32). We wish to show that
the upper bound in (36) is necessarily not larger t%aimr all MBIOS channels, and it is equal %)for a BEC
regardless of the erasure probability of this channel. T® ¢hd, we prove the following lemma:

Lemma 8:For every MBIOS channel, the sum of its capacity and its Bitdaryya constant is at least 1. The
minimal value of this sum is attained for a BEC, irrespedyivaf the erasure probability of this channel, and is
equal to 1.

Proof: See Appendix IV. [ |

Combining Lemma 8 and the RHS of (36) implies that the fractid degree-2 variable nodes for an arbitrary
capacity-achieving sequence of LDPC code ensembles uridateBoding is upper bounded léy Note that this
maximal value is attained for a BEC (see also Remark 9 on payeThis completes the proof of Corollary 3.

In the following, we compare two upper bounds on the fractbredges connected to degree-2 variable nodes.
One of these bounds is given in Theorem 3, and the other ballogd/é along the lines of the proof of Theorem 2.

Discussion 5:[Comparison between two upper bounds oms: ML versus iterative decoding] In the proof of
Theorem 2, we derive an upper bound on the fraction of edgessmed to variable nodes of degider ensembles
of LDPC codes which achieve a bit error (or erasure) prolighif, under an arbitrary decoding algorithm (see
(69) and the tightened version (71) of this bound for the BER®ferring to degree-2 variable nodes and letting
By, vanish, (69) gives

)\2 S g1

(1-0) ln<ﬁ>

(83)

whereR = (1 — ¢)C. It is interesting to see that there is some similarity betvéhe two upper bounds ok
as given in (33) and (83). In the following, we compare betw#e two bounds or\, by calculating the ratio
between the bound in (33) which relies on the stability cbodj and the bound in (83) which follows along the
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lines of the proof of Theorem 2. This gives

1
e 1<7<—>>

- . (84)
" o) 2 )

1-R

Hence, as the gap to capacity vanishes (t.e= 0), the expression in (84) for the ratio between the two bowrds
A2 tends tog=%. By Lemma 8,8(a)+C — 1 > 0, which implies thati=< < 1. Hence, the upper bound oa in

(33) improves the bound in (83) by at least a factor of 2 (whkeeformer bound is given in Theorem 3, and the
latter bound follows along the lines of the proof of Theorem\®e note that the basis of the comparison between
these two upper bounds o is the assumption of vanishing bit error probability und& &ecoding, though the
bound in (83) also holds with the weaker requirement of Ma@ng bit error probability under ML decoding.

Proof of Corollary 4: See Appendix V.
Proof of Proposition 1:See Appendix VI.

V. IMPLICATIONS OF THEINFORMATION-THEORETIC BOUNDS AND NUMERICAL RESULTS

We provide here some implications of the information-tle¢ierbounds and numerical results which refer to the
following issues:

« Examination of the tightness of the bounds provided in $adti by comparing these bounds to the asymptotic
performance of some LDPC code ensembles under BP decodifegriing here to the sum-product decoding).
In order to make this comparison more conclusive, we compia@enew bounds with previously reported
bounds (see Section V-A) in order to exemplify their preality.

« Information-theoretic lower bound on the cardinality oktfundamental system of cycles of LDPC code
ensembles, expressed in terms of the achievable gap toiga(see Section V-B).

« Linear programming (LP) bounds on the degree distributimihsapacity-approaching LDPC code ensembles.
The bounds refer to the case where the communication taies plzer an MBIOS channel, as well as universal
bounds which are valid for the set of all MBIOS channels wteéghibit a given capacity’. These bounds are
valid under ML decoding (and hence, they are also valid umagr sub-optimal decoding algorithm). These
LP bounds are solved analytically, and are also comparddtivit degree distributions of capacity-approaching
LDPC code ensembles under BP decoding (see Section V-C).

« Lower bounds on the graphical complexity of binary lineasdil codes which are represented by an arbitrary
bipartite graph and whose transmission takes place over BIOBI channel. The graphical complexity is
measured by the total humber of edges in the graph, and thedbmovides a quantitative measure of the
minimal number of edges required for this graphical repregt®n as a function of the target block error
probability and the gap (in rate) to capacity. This boun@nmeto codes of finite-length, and is valid under ML
decoding (or any sub-optimal decoding). It can be also edpth LDPC code ensembles, and then it provides a
lower bound on the decoding complexity per iteration of a BBatler. Comparison of the information-theoretic
lower bound on the graphical complexity in terms of the aghlide gap to capacity with a target block error
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probability with some efficient finite-length LDPC codes alniare provided in the literature enables to evaluate
the maximal potential gain that can be attained by futuraégdesf such finite-length codes in terms of the
tradeoff between performance and graphical complexitg &ection V-D).

A. Numerical Results for the Asymptotic Analysis under BEodiag

The following sub-section relies on the theoretic resutisvigled in Section 1, and it exemplifies the use of
these results in the context of capacity-approaching semseof LDPC code ensembles whose transmission takes
place over an MBIOS channel, and whose bit error probabitizishes under BP decoding. As representatives of
MBIOS channels, the considered communication channeltharbinary erasure channel (BEC), binary symmetric
channel (BSC) and the binary-input AWGN channel (BIAWGNG@$ presented in [37, Example 4.1]).

Example 2:[BEC] Consider a sequence of LDPC code ensemples, p) where the block lengtkin) tends to
infinity and the pair of degree distributions is given by

A(z) = 0.409z + 0.20222 4 0.076823 + 0.197125 + 0.115127
p(x) = 5.
The design rate of this ensemblefis= 0.5004, and the threshold under BP decoding is (see [37, Theore})3.5

BP : z

= ;pen(lof,u AMl-p(l—z)) 04810
so the minimum capacity of a BEC over which it is possible amémit with vanishing?, under BP decoding is
C =1 —pBP = 0.5190 bits per channel use, and the multiplicative gap to capasity= 1 — g = 0.0358. The
lower bound on the average right degree in (24) with vangshim erasure probability (i.e 4 = 0) gives that the
average right degree should be at least 5.0189. By impospripaassumption that the LDPC code ensemble has
a fixed right degree (as is the case with the above LDPC codenwis), then it follows that this right degree
cannot be below 6. Hence, the lower bound is attained in thée evith equality. An upper bound on the fraction
of edges which are connected to degree-2 variable npxgsis calculated from (81) with3(a) = pB° = 0.4810,
and the above lower bound ary (for LDPC code ensembles of a fixed right degree) which is etu#®; this
gives from (81) that\, < 0.4158 as compared to the exact value which is equal to 0.409. Thet #rtue of the
fraction of degree-2 variable nodes is

)\2 ap )\2 (1 — R) a

Ay = =

2 2
as compared to the upper bound in (79), combined with the tayher boundar > 6, which givesAs < 0.6232.
We note that without the prior assumption about the fixedtraggree, the universal bounds givg > 5.0189 and
A2 < 0.5173 so these bounds are clearly loosened.

Example 3:[Comparison of the lower bound on the average right degree sm Theorem 1 and Discussion 2
with the bound in [53]] In the following, we exemplify the practical use of the lowsyund on the average right
degree of LDPC code ensembles, as given in Theorem 1 andhitgadibn to LDPC code ensembles in Discussion 2,
and compare it with the previously reported bound in [53 tiadV]. Consider the case where the communications
takes place over a BIAWGNC. The LDPC code ensembles in eamphesee are specified by the following pairs
of degree distributions, followed by their correspondirgsidn rates and thresholds under BP decoding:

Ensemble 1:

R —0.6130

Mz) ==z, plx)=2", Rg=0.9000.
ogp = 0.4156590.
Ensemble 2:

AMz) = 0.40122 + 0.59812% + 0.00072%, p(x) = 2**
Rg = 0.9000, ogp = 0.4741840.

These code ensembles are taken from the data base in [2].[BTofaxample 4.38] which expresses the capacity of
the BIAWGNC in terms of the standard deviatierof the Gaussian noise, the minimum capacity of a BIAWGNC
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TABLE |
BOUNDS VS, EXACT VALUES OF A2 AND ar FOR TWO SEQUENCES O£ DPC CODE ENSEMBLES OF DESIGN RATE: TRANSMITTED OVER
THE BIAWGNC. THE SEQUENCES ARE GIVEN IN8, TABLE |l] AND ACHIEVE VANISHING BIT ERROR PROBABILITY UNDER THE BELIEF
PROPAGATION(BP) DECODING ALGORITHM WITH THE INDICATED GAPS TO CAPACITY

LDPC Gap to Lower bound Upper bound
ense- | capacity aRr on ar A2 on A2
mble (e) (Theorem 1) (Theorem 3)

1 3.72-107° | 10.938 9.249 0.170 0.205
2 2.22-1073 | 12.000 10.129 0.153 0.185

over which it is possible to communicate with vanishing bitoe probability under BP decoding i§' = 0.9685
and 0.9323 bits per channel use for Ensembles 1 and 2, rasghecThe corresponding gap (in rate) to capacity
e=1- % is equal toe = 7.07 - 1072 and 3.46 - 10~2, respectively. Therefore, for the first ensemble which
is a (2,20) regular LDPC code ensemble, the new lower bountheraverage right degree which follows from
Discussion 2 is equal to 9.949 whereas the lower bound fragn $ection 1V] (i.e., the un-numbered equation
before [53, Eq. (77)]) is equal to 2.392. For the second ebemhose fixed right degree is equal to 25, the new
lower bound on the average right degree is 16.269 wheredswes bound from [53] is 14.788. This shows that
the improvement obtained in Theorem 1 followed by Discusgids of practical use.

We note that the gap which still exists between the lower deurn the average right degrees and the actual
values ofar for the above two ensembles is partially attributed to thet fhat this information-theoretic lower
bound holds even under ML decoding, although we apply thisndohere under the sub-optimal BP decoding
algorithm. The gaps to capacity under ML decoding are sm#flen those calculated under BP decoding, and
smaller values ot provide improved lower bounds ark.

Example 4:[BIAWGNC] Table | considers two sequences of LDPC code ensembles igﬁ'\dtm;e% which are
taken from [8, Table Il]. The transmission of these ensemideassumed to take place over the BIAWGNC. The
pair of degree distributions of the ensembles in each segusriixed and the block length of these ensembles tends
to infinity. The LDPC code ensembles in each sequence ardisgday the following pairs of degree distributions:

Ensemble 1:

Mz) = 0.1700312 4 0.160460x> + 0.1128372°
+0.04748925 + 0.01148127 + 0.0915372°

+0.1529782%° + 0.03613122° + 0.2170562%°
1 15

_ = .9 -
A TR T

Ensemble 2:

Az) = 0.1534252 + 0.14752622 + 0.041539z°
+0.1475512% + 0.0479382'7 + 0.1195552 '8

+0.0363792°* + 0.1267142°° + 0.1793732%°
11

plz) =x".
The asymptotic thresholds of the considered LDPC code dnissmnder BP decoding are calculated with the DE
technique, and these calculations provide the threshaigds= 0.97592 and 0.97704, respectively. The minimum
capacity of a BIAWGNC which enables to communicate Ensembl@nd 2 with vanishing bit error probability
under BP decoding is thereforé = 0.5019 and 0.5011 bits per channel use, respectively (it is caledlgia the
power series expansion of the capacity of a BIAWGNC as give[B7, page 194]). This leads to the indicated
gaps (in rate) to capacity as given in Table I. The valuapfor each sequence of LDPC code ensembles (where
we let the block length tend to infinity) is compared with thgpar bound in Theorem 3 which corresponds to
BP decoding. Note that for calculating the bound in Theorenth8 Bhattacharyya constant in (8) is given by
B(a) = exp(—RTEob) for the BIAWGNC Where% designates the energy per information bit over the onedside
noise spectral density, and we substitute here the thréslale of% under BP decoding. The average right
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TABLE I
COMPARISON OF THEORETICAL BOUNDS AND ACTUAL VALUES OF\2 AND ar FOR TWO SEQUENCES OEDPC CODE ENSEMBLES
TRANSMITTED OVER THEBSC. THE SEQUENCES ARE TAKEN FROM2] AND ACHIEVE VANISHING BIT ERROR PROBABILITY UNDER THE
BELIEF PROPAGATION(BP) DECODING ALGORITHM WITH THE INDICATED GAPS TO CAPACITY

LDPC Gap to Lower bound Upper bound
ense- | capacity aRr on ar A2 on A2
mble (e) (Theorem 1) (Theorem 3)
1 1.85-1072 | 5.172 4.301 0.291 0.371
2 6.18-10° | 11.000 9.670 0.160 0.185

degree of each sequence is also compared with the lower boufiteorem 1. These comparisons exemplify that
for the examined LDPC code ensembles, both of the theordtmands are informative.

Example 5:[BSC] Table Il considers two sequences of LDPC code ensemblem) tatm [2], where the pair
of degree distributions of the ensembles in each sequerb@dand the block length of these ensembles tends to
infinity. The transmission of these ensembles is assumeako filace over the BSC. The LDPC code ensembles
in each sequence are specified by the following pairs of @edistributions and design rates:

Ensemble 1:

Az) = 0.291157x 4 0.189174x2 + 0.0408389x"
+0.0873393z° + 0.007427182°% + 0.11258127
+0.0925954z° + 0.018657222° + 0.124064232
+0.0160022% 4 0.02016442

p(z) = 0.8z" +0.22°

R =0.250

Ensemble 2:

Az) = 0.160424z + 0.1605412% + 0.06103392°
+0.15343425 + 0.03690412'2 + 0.020068z*°
+0.005485621¢ + 0.1281272'% + 0.02338122:*
+0.05285542234 + 0.05741042°%7 + 0.0898442458
+0.0504923z%

p(x) = 2!

R = 0.500.

The thresholds of the above LDPC code ensembles under BRlidgcare equal tggsc = 0.2120 and 0.1090,
respectively. Hence, for Ensembles 1 and 2, the minimumaigpaf a BSC which enables to communicate with
vanishing bit error probability under BP decoding(s= 0.2547 and 0.5031 bits per channel use. Since of the
design rates of these two ensembles Age= 0.250 and 0.500, respectively, then the gaps to capacity are given
Table Il. The value of\, for each sequence is compared with the upper bound givenéorém 3. Note that for
calculating the bound in Theorem 3, the Bhattacharyya emtst«) introduced in (8) satisfieB(a) = \/4p(1 — p)

for a BSC whose crossover probability is equalptoand we substitute here the threshold valuep afnder BP
decoding. Also, for the calculation of this bound for such®® Eq. (97) gives thaj; = (1 — 2p)2. The average
right degree of each sequence is also compared with the lbawerd in Theorem 1. These comparisons show that
for the considered sequences of LDPC code ensembles, bakie dheoretical bounds are fairly tight; the upper
bound on)q is within a factor of 1.3 from the actual value for the two sences of LDPC code ensembles while
the lower bound on the average right degree is not lower 83&h of the corresponding actual values. The LDPC
code ensembles referred to in Table Il were obtained in [2jhgyDE technique with the goal of minimizing the
gap to capacity under a constraint on the maximal degree.
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Fig. 3. Plot of the asymptotic lower bounds in Corollary 1e(&Hs. (26) and (27)) for memoryless binary-input outputisietric (MBIOS)
channels. These lower bounds correspond to the averagmalaydof the fundamental system of cycles for bipartitags representing
codes from an arbitrary LDPC code ensemble; the above dquasthormalized with respect to the block length of the erldemand the
asymptotic result refers to the case where we consider @neguof LDPC code ensembles whose block lengths tend totynfirtie bounds
are plotted versus the achievable gap (in rate) betweenhienel capacity and the design rate of the LDPC code enssnifihés figure
shows the bounds for the binary symmetric channel (BSCargimput AWGN channel (BIAWGNC) and the binary erasurerstel (BEC)
where it is assumed that the design rate of the LDPC code dhsens equal to one-half bit per channel use.

B. On the Fundamental System of Cycles for Capacity-AppiogcSequences of LDPC Code Ensembles

Corollary 1 considers an arbitrary sequence of LDPC coderahkes, specified by a pair of degree distributions,
whose transmission takes place over an MBIOS channel. Tdrigllary refers to the asymptotic case where we
let the block length of the ensembles in this sequence teridfitity and the bit error (or erasure) probability
vanishes; the design rate of these ensembles is assumedadraetion1 — ¢ of the channel capacity (for an
arbitrarye € (0,1)). In Corollary 1, Eqg. (26) applies to a general MBIOS charenad a tightened version of this
bound is given in (27) for the BEC. Based on these resultsadlyenptotic average cardinality of the fundamental
system of cycles for bipartite graphs representing codes itDPC code ensembles as above, where this average
cardinality is normalized with respect to the block lengjigws at least likén % We consider here the BSC, BEC,
and BIAWGNC as three representatives of the class of MBIO&ohkls, and assume that the design rate of the
LDPC code ensembles is fixed to one-half bit per channel as&shown in Fig. 3 that for a given ggp) to the
channel capacity and for a fixed design rate, the extremeesadfi this lower bounds correspond to the BSC and
BEC (which attain the maximal and minimal values, respetyiv This observation is consistent with the last part
of the statement in Corollary 1.

C. Linear Programming Bounds for the Degree Distributiorid BPC Code Ensembles

This sub-section provides LP bounds on the degree disiteibf LDPC code ensembles. These bounds, which
are based on Sections lll and IV, are formulated in terms eft#iget bit error probability and the gap (in rate)
to capacity required to achieve this target. The following hounds refer to the node and the edge perspectives
of the pair of degree distributions, and they provide uppmrras on the fraction of edges or nodes up to degree
k wherek is a parameter. Similarly to Theorem 2, the LP bounds whiehitroduced in this section hold under
ML decoding, and are therefore general in terms of the degpdigorithm. These LP bounds apply to finite-
length LDPC code ensembles as well as to the asymptotic daseiofinite block length. Analytical solutions for
these LP bounds are provided in Section V-C, and these boanedalso compared with some capacity-achieving
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sequences of LDPC code ensembles for the BEC under BP decddie following LP bounds are separated into
four categories:

o LP1: 'LP1’ forms an LP upper bound on the degree distribution e parity-check nodes for LDPC code
ensembles whose transmission takes place over an MBIOSehdts first version gives an upper bound on
the fraction of parity-check nodes up to degieévherek > 1 is an integer) as a function of the achievable
rate (and its gap to the channel capacity) with a given bitrgprobability /,. By combining (61) with the
trivial constraints for an arbitrary degree distributidghe following optimization problem follows:

k
maximize > I';, k=1,2,...
=1

subject to
X 1—g2 C+ha (P
5 { |- m (i) |1} = e
SIi=1
i=1
[; >0, i=1,2,

where the optimization variables af€;};>,. From (1), the following equality holds:

r= ()7 (®5)
j=1

The substitution of this equality in the first constraint loé tabove LP bound gives the following optimization
problem for the degree distribution of the parity-check @ffom the edge perspective (i.e., we get an upper
bound on the fraction of edges which are connected to pahigck nodes up to degrée> 1):

k
maximize > p;, k=1,2,...
=1

subject to
= 1-g2 . sc+h2(Pb =
£ ([ (#)] o) = e
i=1 2:1
o
Yo pi=1
=1
pi>0, i=1,2,...

where the optimization variables afe;};~1. These two LP bounds on the parity-check degree distributio
(from the node and edge perspectives) rely both on Theoremrsd12, and are therefore valid under ML
decoding (hence, they also hold under any other decodingyitdgn). These bounds hold for finite-length
codes and also for the asymptotic case of an infinite blocgtlen
An analytical solution of the LP1 bound is given in AppendikIVThis bound is tightened in Appendix VIII
for the BEC, followed by its analytical solution.

o LP2: 'LP2’ provides a universal LP upper bound on the degreeridigion of the parity-check nodes for
LDPC code ensembles as a function of the required achievatdgand its gap to the channel capacity) with
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a required bit error probability?,. This bound follows from (74) and (85), and it gets the form:

k
maximize > p;, k=1,2,...
i=1

subject to
o0 i OO
Sl < g
1= =1
o0
> pi=1
i=1
pi >0, 1=12,...

where the optimization variables afg; };>1, and the bound holds under the same conditions as of theopisevi
item. However, as opposed to the LP1 bound, the LP2 boundvensal since it holds for all MBIOS channels
which exhibit a given capacit¢’. Note that the LP2 bound is similar to the LP1 bound, excepepfacing
the parametey; in the LP1 bound with the channel capacity This follows directly by comparing (61) and
(74). Note that the transition from (61) to (74) follows frdbemma 5 which implies that among all MBIOS
channels with a given capacity, the channel which attains the minimal value @fis the BEC, and the
minimal value ofg; is equal toC'.

The analytical solution of the LP2 bound follows directhprn the analysis in Appendix VIII for the LP1
bound, by replacing; in the LP1 bound with the channel capacityin the LP2 bound.

o LP3: 'LP3 provides an LP upper bound on the degree distributidrthe variable nodes (from the edge
perspective) for LDPC code ensembles whose transmisskas falace over an MBIOS channel. This bound
provides an upper bound on the fraction of edges which areexiad to variable nodes up to degketor a
parametelk > 2, and it is expressed in terms of the required achievable(eatée its gap to capacity) with a
given bit error probability’,. From (3) and (22), this LP bound gets the form

k
maximize > \;, k=2,3,...
=2
subject to
In( 2
Z % é n(g1)
=2 2(1—0)(1"1‘ 1€CC)1H<1 1(110h'2(Pb))>
—2hy "\ T
o0
SN =1
=2
A >0, i=2,3,

where the optimization variables afe\;};>2. Since the bound relies on Theorem 1, then it is therefore
valid under ML decoding (or any other decoding algorithmhalds for finite block-length as well as in the
asymptotic case where we let the block length tend to infikitg note that the focus on the degree distribution
of the variable nodes from the edge perspective is due toréhe@ and Remark 9 (see p. 14).

o LP4: 'LP4’ provides a universal LP upper bound on the degreeitigion of the variable nodes for LDPC
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Fig. 4. LP1 versus LP2 upper bounds on the degree distrilmitid the parity-check nodes, from the edge perspectiveLBi*C code
ensembles whose design rateAs— % The stair functions show upper bounds on the fraction ofeitiges which are connected to parity-
check nodes whose degrees are at nkofbr an integerk > 2. The bounds are valid under ML decoding or any sub-optimabding
algorithm. All these curves refer to a target bit error piliy of B, = 107'°. The two LP1 bounds (solid lines) refer to binary-input
AWGN (BIAWGN) channels for whichﬁ—0 =0.300 and 0.188 dB, so the corresponding channel capmeitee” = 0.5086 and 0.5001 bits
per channel use, respectively; the corresponding gapsi@) to capacity are therefore equakte- 1.68-1072 and1.42-10*, respectively.
The two universal LP2 bounds (dashed lines) correspond tha&alMBIOS channels which exhibit a given capacity, whoskieaoincides
in each case with the capacity of the considered BIAWGN chhnn

code ensembles (from the edge perspective). It is based)@n{B3(54) which give the following problem:

k
maximize > \;,, k=2,3,...
i=2
subject to
i A< 1“(%)
P v
=2 2(1—0)(1"1‘ 1€CC)1H<1 1(]10h'2(Pb))>
—2hy "\ T—m=oc
[ee)
ST =1
i=2
A >0, =23,

where the optimization variables af@;},>2. This bound holds for all MBIOS channels with a given capacit
C.

The universal (LP2) bound is compared in Figure 4 to the LPdnddor the BIAWGN channel with the same
capacity. It is shown in this figure that the difference betwéhese two bounds is not large. Note that the universal
bound is attained for the BEC with the same capacity as of i#&\E&N channel.

Remark 15:[A discussion on the constraints given in the LP1 and LP2 bouds and the un-necessity of
adding the constraint in Theorem 1] We prove in Appendix VIl that adding the constraint whichrigpiosed by
the lower bound on the average right degree (i.e., the lowen® onag = > .2, I';) does not affect the LP1
and LP2 bounds introduced here. This simplifies the formaraof the LP bounds serves for the derivation of
closed-form analytical solutions of these bounds latehia section.
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Remark 16:[The LP1 and LP2 bounds and their connection with the asympttic behavior as given in
Theorem 2] As shown via the upper bounds in Fig. 4, the fraction of edgeikhvare connected to parity-check
nodes of low degree is small, especially when the achievgdgteto capacity vanishes. This is consistent with the
theoretical result in Theorem 2 and Corollary 2 which stdked the fraction of parity-check nodes of any finite
degree scales at most likeand the fraction of edges connected to parity-check nodesyfinite degree scales at
so both quantitiesttezero as the gap to capacity

vanishes.

For solving the LP1 and LP2 bounds which are introduced is $leiction we originally used [15], a package for
specifying and solving convex optimization problems [&]ehables to solve these problems on a standard PC in
a fraction of a second. However, it is still nice to get an gii@lsolution of these LP bounds.

Analytical solutions for the LP1 and LP2 bounds The LP1 problem can be expressed in the following
equivalent form:

k

maximize > p;, k=1,2,...
i=1

subject to

> dip; <0
=1

1—g; C+ha(Py
di = [1 - h2< - ) - 51—(1—5)0)]
Z pi=1
i=1

p; >0, i=1,2,...

An analytical solution for the LP1 bound is obtained in ApgnVIll (via the use of strong Lagrange duality).

In the following, the final solution of the LP1 bound is pretsgh To this end, note that for indicégslarge
enough,d; < 0 and alsolim;_., d; = 0. Let d* = min;>; d; be the minimal value of this sequence, andilet |
be the corresponding index @f which achieves this minimal value of the sequerdg}. Clearly, d* < 0. The
resulting closed-form solution for the LP1 bound gets tHtofang form (see Appendix VIII):

« For values oft below the lower bound on the average right degree in (22§, é@qual to— d*.
« For values ofk larger or equal to the lower bound on the average right deigré22), it is equal to 1.

A similar solution is obtained for the LP2 bound where theyodifference is thaty; in the definition of the
sequence(d;} is replaced by the channel capacity These analytical solutions match the numerical solutions
obtained via [15].

Example 6:[A comparison of the LP1 bound and capacity-achieving LDPC ode ensembles over the BEC]

In the following, we compare the LP1 bound for the BEC and thgrde distributions of two capacity-achieving
sequences of LDPC code ensembles under iterative mesaagiggp decoding.

The first capacity-achieving sequence for the BEC refershio heavy-tail Poisson distribution, and it was
introduced in [24, Section 1V], [48] (see also [37, Probler2(). The second capacity-achieving sequence refers
to the right-regular LDPC code ensembles [48], based alsthemanalysis in the proof of Proposition 1 (see
Section V).

This first capacity-achieving sequence is obtained via ie qf degree distributions

“ 1 !

)\a(w):—a In(1 —x) 7

pa(w) — ea(ac—l) — e @ Z OZ..Z'

7!
i=0

which satisfies the equalit&a(l — pa(l —2)) =z for all a > 0. Starting with the heavy-tail Poisson distribution
as above and proceeding along the lines in [37, Section 3tth&]following two steps are performed for the
construction of capacity-approaching LDPC code ensenfblethe BEC:
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« The degree distributioﬁa(x) is truncated so that it consists of the firgtterms of its Taylor series expansion
(up to and including the term™¥—1).
« The truncated power serieéfv) (x) is normalized so that it is equal to 1 at= 1. The left degree distribution

(from the edge perspective) is then equal)\ﬁév)(x) = i%jiﬁg)) The right degree distributiom,,(z), is not
modified. :
This procedure provides the following degree distribugion
1 .
A\ = AN D=1’ 1=2,3,...N
—a,i—1
c ¢ i=1,2,... (86)

Pi:m,

where H(k) £ Zle% for £ > 1 is a truncated harmonic sum. From (3), straightforward wak shows that the
design rate of the corresponding LDPC code ensembile is ¢gual

Jy palx) de
fol /\((IN) (x)dz
NH(N-1)(1-e9)
B (N — 1« '
We need to determine the parametarand N so that the design rate in (87) forms (at least) a fractione of
the capacity of the BEC. Let designate the erasure probability of the channel, and tet(1 — ¢)(1 — p) be

the lower bound on the required design rate. We need to chea@sel N to satisfy the inequalityrq(cr, N) > r
with vanishing bit erasure probability under BP decodinignifarly to the calculations in [37, Example 3.88], the

satisfiability of the inequality )
AW Jy pala)de
) M g 1) S€
L-X(1) \ Jy Ao /() dz
implies this requirement, and straightforward algebraegithe inequality

H(N-1) e
a NO=e™) 4 <. (88)
1 - HWV-1) N-1

Ry(a, N) =

1 (87)

By choosinga to satisfy the equalityﬁui—_l) = 1—r and replacingl — e~ by 1, we get from (88) the following
stronger requirement:

1—r 1
— < 89
r N-—-17 c (89)
which then provides a proper choice fdf. To conclude, the parameteisand N are chosen to be
H(N -1 1-—
oz HN -1 N:[ 7WH. (90)
1—r er

In the following, we calculate the heavy-tail Poisson disttion in (86) with the choice of parameters in (90). The
resulting degree distribution of the parity-check nodesn(f the edge perspective) is compared with the LP1 bound
for the BEC where the analytical solution of this bound isegiin Appendix VIII.

Comparisons between the heavy-tail Poisson distributiehthe LP1 bound are shown in Figure 5. We note that
the LP1 bound is an upper bound on the parity-check degrégbdison which is valid under ML decoding (and
hence, it is general for any decoding algorithm), whereashimavy-tail Poisson distribution is designed to achieve
a certain gap to capacity under BP decoding. We also showdrfitfure the fixed degree of the parity-check nodes
for the right-regular LDPC code ensemble; this calculai®done via (112), (113), (118) where the right degree
is equal toag = [ﬂ + 1. Although the latter case corresponds to a step functiendégree where this function
switches from zero to one provides an indication to the neale tightness of the LP1 upper bound with respect
to the value of the parity-check degrgéewhere this upper bound is close to 1.

The following analysis compares between the behavior oftifipeer bound om; as given in Corollary 2 with the
behavior of the heavy-tail Poisson distribution in the timvhere the gap to capacity vanishes under BP decoding:



. SASON: ON UNIVERSAL PROPERTIES OF CAPACITY-APPROACHINEGDPC CODE ENSEMBLES 35

LP1 bound Heavy-tail Poisson distribution

10 E
o
x I
N
107 E
107 right-regular E
Il Il Il Il Il Il Il
2 4 6 8 10 12 14 16 18
Degree of parity—check nodes (k)
Heavy-tail
Poisson E
distribution
o
I
[

right-regular 4

5 10 15 20 25
Degree of parity—-check nodes (k)

Fig. 5. A comparison between the LP1 bound, the heavy-tagd®a degree distribution in (86) and (90), and the pafitye& degree
distribution of the right-regular LDPC ensemble (it is edéted via (112), (113), (118) where the right degree is etpar = [ﬂ +1).
This comparison refers to a BEC whose capacity is one-half€uplot) and three-quarters (lower plot) bits per chamsel, and the setting
where 99.9% of the channel capacity is achieved under BPdéegavith vanishing bit erasure probability. The stair ftians correspond
to the fraction of edges which are attached to parity-chesdes whose degrees are at mbdor a positive integek.

Note that the truncated harmonic sut{k) scales like the logarithm of (more preciselyH (k) ~ In(k) + ~ for
k> 1 wherevy ~ 0.5772 is Euler’s constant), and the value &f as given in (90) becomes un-bounded as the gap
to capacity vanishes (since it is inversely proportionatxoHence, for small values of the gap to capacity (i.e.,
whene < 1), we get from (90)

o~ ﬁ, N~ L-r

1—r er

and therefore (86) yields that the fraction of edges whiah attached to parity-check nodes of a given degree
scales likes (ln %)Z_l for i > 1. The upper bound op; as given in Corollary 2 scales likg=r, where this
bound is even valid under ML decoding. For a comparison betmibis general upper bound and the behavior of
the Poisson distribution when the gap to capacity vanishesjote that for any rate < 1, a positive integet and

+1
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e < 1, the inequalityeﬁ (ha%)l_1 < 31 holds, as expected from a comparison of a degree distribwtith a
general upper bound. Moreover, it follows from the asyniptanalysis that for small design rates (i< 1), the
Poisson distribution gets closer to the LP1 bound in thetlimfieree — 0 (as exemplified in Fig. 5 by comparing
the upper and lower plots which correspond to a capacit%/ ahd% bits per channel use, respectively).

Analytical solutions for the LP3 and LP4 bounds Consider an LP problem of the form

k

maximize > \;, k=2,3,...
i=2

subject to

1=

SN =1
=2

Ni>0, i=23,...

If ko <1 then the optimal solution is obtained by setting= ko, A\; = 1 — ko for somej — oo where all the
other \;’s are set to zero. This gives a solution which is equa[jb:1 Ai = A\, = ka. If ka > 1 then the optimal
solution is obtained by setting,, = 1 and all the othen\;'s to be zero. Hence, the solution of this LP problem is
given bymin{ka, 1} which implies that the closed-form solutions of the LP3 arRlbounds are given by

1
kln(gl) ©1)

_ eC_ 1
2(1 C) (1 + 1—C> 1n<1_2h21 (IC’lz(Pb))>

1—(1—e)C

min ¢ 1,

and

kin(z)
(92)
2(1-0C) (1 + 18—CC> 1n<1_2hz1 (M)>

1—(1—e)C

min ¢ 1,

respectively.

Based on the observations in Theorems 2 and 3, the fractiedg¥s connected to variable nodes of small degree
is expected to be significantly larger than the fraction ajesdwhich are connected to parity-check nodes of the
same degree. This is shown in the following example:

Example 7 (P3 bound): Consider LDPC code ensembles whose design rate is one4ihaémbchannel use,
and whose transmission takes place over a BIAWGN channé$ asesume that we wish to find upper bounds
on the fraction of edges up to degrée(for a parametek > 2) for the setting of a bit error probability of (at
most) B, = 10~!° under ML decoding (or any sub-optimal decoding algorithm)’%;a: 0.188 dB. This implies a
gap to capacity which is equal to= 1.42 - 10~*. From (91), we obtain the following inequalities (also Vied
numerically via [15]):

Ao < 0.2683

Ao+ A3 < 0.4025

Ao+ A3+ Mg <0.5367

A2+ Az + A+ A5 <0.6709

A2+ A3+ As+ A5+ A < 0.8051

Ao+ A3+ M+ A5+ Ag + A7 <0.9392

A2+ A3+ A+ A5 + Ag + A7 + Ag < 1.0000.

A comparison of these numerical results with those preseimte~ig. 4 for the same value o%} shows a big
difference between the two upper bounds on the sequenge¢sand{p;}. This difference is well expected in light



I. SASON: ON UNIVERSAL PROPERTIES OF CAPACITY-APPROACHINDPC CODE ENSEMBLES 37

of the bounds in Corollary 2 where for every finite degie¢he upper bounds oi; and p; scale like bél and

—£ ., respectively. We note that this difference is not an atifaf the bounding technique, as is demonstrated in

log

Proposition 1 for the BEC.

D. Bounds on the Graphical Complexity of Finite-Length CGode

In various applications, there is a need to design a comnatiait system which fulfills several requirements on
the available bandwidth with acceptable delay for tranmgitand processing the data while maintaining a certain
fidelity criterion in reconstructing the data. In this segti one wishes to design a code which satisfies the delay
constraint (i.e., the block length is limited) while adimgrito the required performance over the given channel. By
fixing the communication channel model and code rate (whichelated to the bandwidth expansion caused by
the error-correcting code), sphere-packing bounds ansfwaned into lower bounds on the minimal block length
required to achieve a target block error probability at @atergap to capacity using an arbitrary block code and
decoding algorithm. This issue is studied in [54, Section V]

10°

10" LB2 Lower Bound on the Channel: Binary-Input AWGN E
number of edges in Modulation: BPSK ]
the bipartite graph Rate: 0.5 bits/ channel use
= max(LB1, LB2) Capacity limit: Eb/No = 0.187 dB

Block error probability: 10°°

LB1 (Lower Bound 1):
Theorem 1 + SP59 bound [44]

LB2 (Lower Bound 2):

5 LB1 Theorem 1 + ISP bound [54] 4

NUMBER OF EDGES IN THE BIPARTITE GRAPH

Capacity
limit
10°F

‘ 3
0.2 0.4 06 08 1 12 1.4 16 18 2 2.2
Eb/No [dB]

Fig. 6. A comparison between the graphical complexity ofious efficient LDPC code ensembles and an information-#teotower
bound. The graphical complexity is measured by the numberdgés which are used to represent the codes (or code ensgimplaipartite
graphs in order to achieve a fixed target block error proligliler a given communication channel. It is assumed thatcitde is BPSK
modulated and transmitted over a binary-input AWGN chanfibls figure refers to a target block error probability & = 10~°, and a
design rate of one-half bit per channel use. The informati@oretic lower bound is valid under maximum-likelihoddL() decoding (and,
hence, it also holds under any sub-optimal decoding afyo)it For the comparison of the lower bound with various LDR@eensembles,
we refer to both ML and belief-propagation (BP) decodingodthms. The circled points refer to ML decoding, and theg based on the
tangential-sphere upper bound which is applied to the j&d@ular LDPC code ensembles of Gallager for block lengths040, 10080,
20160 and 40320 bits (these points rely on [50, Table II])e Bither three points in this figure refer to LDPC code ensesnieich are
decoded by a BP decoder. The point marked-bY refers to a non-punctured protograph LDPC code ensembldéook tength 7360 bits
and of rate one-half (see [10, Fig. 9]). The other two poinkéctv are marked byx’ refer to irregular quasi-cyclic LDPC code ensembles
(see [23, Figs. 10 and 11]). The two information-theoretiwdr bounds on the graphical complexity (LB1’ and 'LB2")lyerespectively,
on the sphere-packing bound of Shannon [44] and the recentttyduced sphere-packing bound in [54]. Both of these Heusiso rely on
Theorem 1 which serves as a lower bound on the average rignteleThe information-theoretic lower bound that is shomithis figure
is obtained by taking the maximum of the LB1 and LB2 bounds.

In the following, we refer to the graphical complexity of arbigrary bipartite graph which represents a binary
linear block code. The graphical complexity has an opemationeaning for an iterative message-passing decoder
since the number of edges is equal to the number of righeftoahd left-to-right messages which are delivered in
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each iteration. As opposed to [18], [31] and [32], we refereh® the graphical complexity diite-length codes

In order to evaluate an information-theoretic lower boundtwe graphical complexity which is expressed in terms
of the target block error probability and the correspondinbievable gap to capacity, we rely here on the following
algorithm:

« Step 1 Sphere-packing bounds are used to calculate a lower bonrtdeominimal required block length in
terms of the achievable rate with a target block error prdiyaland its gap to capacity. For a memoryless
symmetric channel, the lower bound on the minimal block terig calculated via the ISP bound (for finite-
length codes, this recent sphere-packing bound suggestmificeant improvement over the bounds in [45]
and [51], see Section II-D and [54, Section IlI]). In additjghis lower bound is also compared with the 1959
sphere-packing (SP59) bound of Shannon (see Section lle42) for a binary-input AWGN channel where
the transmitted signals are assumed to have equal energy.

« Step 2 A lower bound on the average right degree is calculated fieofem 1 for an arbitrary bipartite graph
which is used to represent a binary linear block code. Naéfthr an LDPC code whose parity-check matrix
is not necessarily full-rank, one can apply this lower bolydreplacing the code rate with the design rate
(see Discussion 2 in Section V). The calculation of thisdowound for a target block error probabilifys
also stays valid if the block length is replaced in (23) with a lower bound (as calculated in the previous
step).

« Step 3:The total number of edges of a bipartite graph is a measurs graphical complexity. For a bipartite
graph which refers to a design rate Bf, the total number of edges is equal|& = (1 — Rq)nar. Replacing
n andagr by the lower bounds calculated in Steps 1 and 2, respectig®lgs a lower bound on the number
of edges.

The resulting lower bound on the total number of edges is gérier every representation of a binary linear
block code by a parity-check matrix and its respective ifgagraph. This bound depends on the code rate (or
design rate), the communication channel, the achievalgeéaaapacity, and the target block error probability. This
lower bound holds for an arbitrary representation of theechd a bipartite graph.

According to the above description of the three steps usedltulate the information-theoretic lower bound on
the graphical complexity, we calculate here two lower ba&uad the graphical complexity:

o LB1: A lower bound which combines a lower bound on the block Ieragiculated via the SP59 bound [44],
and a lower bound on the average right degree which is caééolida Theorem 1 for a target block error
probability Ps and a given code rate (or design rate).

o LB2: A lower bound which combines a lower bound on the block lengriculated via the ISP bound [54,
Section Ill], and the same lower bound on the average rigbtede

We note that Steps 2 and 3 in the above algorithm are commothdocalculation of the LB1 and LB2 bounds,
and the only difference in the calculation of these two bauisdin Step 1 where the SP59 and ISP bounds are
used for the LB1 and LB2 bounds, respectively. The resultmger bound (LB) on the graphical complexity is the
maximal value of the LB1 and LB2 bounds, i.e., E-Bmax(LB1,LB2). We note that the resulting lower bound
on the graphical complexity holds under ML decoding or any-sptimal decoding algorithm.

The above algorithm is applied in Figure 6 to obtain a lowenribon the graphical complexity of an arbitrary
binary linear block code of rate one-half and with a targetcklerror probability ofPs = 10~°. It is assumed
that the code is BPSK modulated, and the transmission tdkes pver a binary-input AWGN channel. The un-
bounded complexity in the limit where the gap to capacityistags is due to the infinite block length which is
required to obtain reliable communications at rates whiehaabitrarily close to capacity. We note that theunded
graphical complexity for the BEC, as demonstrated in [18}],][and [32], is obtained by addressing the graphical
complexity per information bit, and by also allowing morengaicated Tanner graphs which include state nodes
(e.g., punctured bits) in addition to the variable and gasiieck nodes which are used for a representation of these
codes by bipartite graphs.

As shown in Figure 6, the bound LB2 is advantageous over LBlde values of 3> Ly which are close to the
capacity limit; this phenomenon is even more pronouncedchfgher code rates (above one-half bit per channel
use). This observation is partially due to the fact that 8B bound depends on the particular type of modulation
used, in contrast to the SP59 bound which only assumes thahdudulated signals have equal energy but does not
consider the particular modulation used.



I. SASON: ON UNIVERSAL PROPERTIES OF CAPACITY-APPROACHINDPC CODE ENSEMBLES 39

The lower bound on the graphical complexity is compared hveith some efficient LDPC codes (or code
ensembles) as reported in the literature. To this end, vex tefcomputer simulations under BP decoding, and also
to upper bounds on the block error probability under ML deéegdAlthough the number of edges is relevant for
the decoding complexity per iteration under BP decodingiescomparisons with ML decoding provide a better
assessment of the tightness of this information-theotetieer bound. The circled points in Figure 6 are based
on the tangential-sphere upper bo#inehich is applied to the (6,12) regular LDPC code ensembleSaifager
for block lengths of 5040, 10080, 20160 and 40320 bits whdsekberror probability is upper bounded by —>
(see [50, Table II]). The other three points which are shawfigure 6 refer to LDPC code ensembles which are
decoded by a BP decoder. The point marked:-bY refers to a non-punctured protograph LDPC code ensemble
of block length of 7360 bits and a design rate of one-half (€ Fig. 9]). The other two points which are
marked by x’ refer to irregular quasi-cyclic LDPC code ensembles (s8¢ fys. 10 and 11]) where the graphical
complexity is obtained via the degree distributions whioh given in [23, Examples 10 and 11]. To conclude, the
information-theoretic lower bound on the graphical corrjpfebecomes un-bounded as the gap to capacity vanishes
(even under ML decoding). It also behaves in a similar wayhto dircled points in Figure 6 (where these points
refer to the performance of a regular LDPC code ensemblesruvitli decoding). Moreover, the comparison of this
lower bound in Figure 6 with some efficient LDPC code ensemhleder BP decoding (where the corresponding
points are marked by’ and‘x’) indicate the gain that can be potentially obtained by impdodesigns of efficient
LDPC codes and iterative decoding algorithms defined onhgrap

VI. OUTLOOK

This work considers some universal properties of capagiyroaching low-density parity-check (LDPC) code
ensembles whose transmission takes place over memoryilegydinput output-symmetric (MBIOS) channels.
Properties of the degree distributions, graphical conigleand the fundamental cycles of the bipartite graphs are
studied in this paper via the derivation of informationdahatic bounds (see Sections Il and 1V). The applications
of these bounds are exemplified in Section V.

In the following, we gather some interesting open problerhgctv are related to this research work:

« The analysis in this paper relies (in part) on the lower bo(lr8) on the conditional entropy (see [53]). Note
that this bound depends on the right degree distributien, (he degree distribution of the parity-check nodes),
but the dependence on the left degree distribution is ratieak (according to Section II-C.2, this dependence is
made only through the design rate of the LDPC code ensenibigduld be interesting to improve this bound
by also having an explicit dependence on the left degreelalison. This goal can be obtained by improving
the weak link in the derivation of this bound, namely, by teyting the upper bound (14) on the conditional
entropy of the syndrome vector (which is expressed by the sluthe respective conditional entropies of the
components of the syndrome). Note that for the BSC, the bauiftl8) coincides with the bound of Gallager
in [14, Section 3.8] (since the conditioning on the RHS of)(lbdcomes irrelevant for the BSC, due to the
fact that the absolute value of the LLR is a constant for ttianmel). A step towards the improvement of
Gallager's bound for the BSC was done by Wadayama [52] wHezeehtropy of the syndrome vector was
calculated exactly in terms of the coset weight distributid the code (or the average coset weight distribution
of the ensemble). For a general MBIOS channel, the imprownemiethe bound in (18) is an open problem,
and it may provide an explicit dependence of the bound on #ieqg degree distributions for a code which
is represented by a bipartite graph.

« Unlike the information-theoretic bound in (18), the bounmesented in [28] rely on statistical physics, and
therefore do not provide a bound on the conditional entropickvis valid for every binary linear block code
from the considered ensembles. It would be interesting tegme theory that unifies the information-theoretic
and statistical physics approaches, and provides boumadlisth tight on the average and valid for each code.
We note that the bounds in [28] depend on both the left and dgbree distributions for LDPC code ensembles
(though their computation is more complicated than the dagimen in (18)).

« The asymptotic bounds in Corollary 1 address the averaginadity of the fundamental system of cycles for
bipartite graphs representing LDPC code ensembles wherestults are directly linked to the average right
degree of these ensembles. Further study of the possiliddditween the statistical properties of the degree

3For a presentation of the tangential-sphere bound, oflgiigroduced by Poltyrev [33], we refer the reader to [39, 23-32].
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distributions of capacity-approaching LDPC code ensematel some other graphical properties related to the
bipartite graphs of these ensembles is of interest.

« The graphical complexity of capacity-approaching LDPCeds studied in this paper via an information-
theoretic lower bound which relies on both Theorem 1 and phacking bounds (see Section V-D). The
graphical complexity is defined to be the number of edges @nlipartite graphs used to represent these
codes. A recent sphere-packing bound which was introducgsii] is shown to be helpful for the calculation
of the lower bound on the graphical complexity, especiallyew the gap to capacity becomes small (see
the algorithm for the calculation of this bound in SectiorDVand the results shown in Figure 6). Further
tightening of sphere-packing bounds for finite-length sydespecially for codes of short to moderate block
lengths, is of interest and it has the potential of furtheprioving the resulting lower bound on the graphical
complexity. An improvement of the sphere-packing bound®duced in [44] and [54] will also contribute to
the study of the sub-optimality of iteratively decoded codier finite block lengths.

« The derivation of universal bounds on the number of iteretiof code ensembles defined on graphs, measured
in terms of the achievable gap (in rate) to capacity, is obtbtical and practical interest. In a recent work
[42], this issue is addressed for the BEC. It is demonstratgd?] that the number of iterations which is
required for successful message-passing decoding sdaleasa like the inverse of the achievable gap (in
rate) to capacity, provided that the fraction of degree+2alde nodes of these turbo-like code ensembles does
not vanish (hence, the number of iterations becomes unigaliad the gap to capacity vanishes). Note that
Lemma 7 (see p. 24) provides a condition which ensures tleafrtittion of degree-2 variable nodes stays
strictly positive for capacity-achieving LDPC code ensésbA generalization of such a lower bound on the
number of iterations for an arbitrary MBIOS channel is ofeiretst. The matching condition for generalized
extrinsic information transfer (GEXIT) curves serves tmjeature in [26, Section XI] that, also for an arbitrary
MBIOS channel, this number of iterations scales like theeige of the achievable gap to capacity.

« Extension of the results in this paper to channels with mgni@ug., finite-state channels) is of interest. In this
respect, the reader is referred to [17] which considersin&tion-theoretic bounds on the achievable rates of
LDPC code ensembles for a class of finite-state channels.

« Extension of the results in this work to general ensemblesudfi-edge type LDPC codes (see [37, Chapter 7])
is of interest.

APPENDIX |
PROOF OFLEMMA 3

The following proof deviates from the analysis in SectioiCIL, starting from (14).

« In the transition to the last line in (14), the conditionatrepyH(S | Q... ,Qn) is upper bounded by the sum
of the conditional entropies of the(1 — R) independent components of the syndrdsnender the assumption
that the parity-check matrix is full-rank. In the generaseavhere this parity-check matrix is not necessarily
full-rank, the rateR of the code may exceed the design r&ig due to a possible linear dependence of the
rows in this matrix. Therefore, we obtain an upper bound andbnditional entropy by summing over the
n(1 — Rq) components of the syndrome.

« In parallel to (14), we get the inequality

H(®y,... @, |, .., Q,)
n(1—Rq)

<SHM)+ Y H(Sj|,....,0). (93)
j=1

« The entropy of the transmitted codewaXdis equal to the entropy of the indeW of the received vector in
the appropriate coset, regardless of the rankfofHence,H (X) in the second line of (10) can be replaced
by H(M), and we get

H(X|Y) = H(M) +n[H (Y1) — I(X1;Y1)] — H(Y).
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« Combining (11)—(13), (93) and the last equality, we get tequality (note that the entrop§/ (M) cancels

out)
n(1—Rq)

HX|Y)>n(1-C)— > H(S|,....0)
j=1
which is similar to (15) except that the sum on the RHS is okerit(1 — Ry) (possibly linearly-dependent)
components of the syndrome.
From this point, the analysis is similar to Section II-C.lieththen yields an extension of (18) witR replaced
by R4 when the parity-check matrix is not necessarily full-rank.

APPENDIX Il
PROOF OFLEMMA 5

This lemma is proved by expressing the channel capacity asmaegative infinite series which depends on the
sequencd g }>1, and solving an optimization problem for the extreme valokeg; subject to a constraint on the
channel capacity’. To this end, we rely on the equality in (7) for the capacityaof MBIOS channel:

C = /Oooa(l)(l—ke_l)[l—hg(li )} dl

tanh% L

@ [ (3)
@ /O a(l)(1 + e 2122k e

B 1 K [5all 1—|—e_l)tanh2k(i) di
B 2ln222{ ; k(2k — 1)

(b)

(94)

2ln2zkr2k:—1

where equality (a) follows by substituting = ﬁ in (16), and equality (b) follows from (19); this provides an
expression for the channel capacity in terms of the nonthegsequencggy } ;2 , defined in (19). The representation
of the capacity as the infinite series in (94) follows in facnh the result which is obtained via [46, Propositions 3.1-
3.3] by referring to an equi-probable binary input, though derivation here is more direct.

We start with the proof of the upper bound gn as given on the RHS of (53). Since we look for the maximal
value of g; among all MBIOS channels with a given capadity then we need to solve the optimization problem

maximize 91

subject to =C. (95)

21 2 Zk%—l)

Based on Lemma 4, for every MBIOS channgl,> (g;)* for all k € N. Therefore

21n2zk2k—1

2111 2 Z E( 2l<: -1)
1 —
:1_@< o) (96)
where the last equality is based on (42). The equality caimitn (95) and the inequality (96) yield that

1—
() <o

from which the RHS of (53) follows. Note that this upper bowndg, is attained whemy;, = (g;)* for all k € N.
To show this equality, note that for a BSC with crossover philty p, the LLR at the channel outpyt) is
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bimodal and it gets the valuégs = +ln(Tp) andl, = —I; with probabilities1 — p andp, respectively. Eq. (20)

then gives
L
g 2R [tanhzk <§>}
I l
= (1 —p)tan + ptan ——
1 h2k th 1
2 2
L
— h2k 1
tan < 5 >
ell 1 2k
B (ell + 1>

=1-2p%, VkeN (97)

Hence for the BSCg, = (g1)* for all k € N. The upper bound op; on the RHS of (53) is therefore achieved
for a BSC whose crossover probabilityzis= h; (1 — C).

The proof of the lower bound oy relies on (94). Since the sequeng }>1 iS monotonically non-increasing
and non-negative (this property follows directly from (RGhen

c =

21n2zk2k—1

<
- 21n2zk2k—1
= q

where the last equality follows from (47). This lower bournd @ is attained for a BEC (since for a BEC whose
erasure probability i®, (20) implies that the sequendeg;} is constant and; =1 —p = C).

APPENDIX III
PROOF OFLEMMA 7

From the assumption in Lemma 7, the satisfiability of the #amcondition for this capacity-achieving sequence
gives that
lim B(a) A\ pl, (1) =1. (98)

From (75), the fraction of degree-2 variable nodes is given b

AT

I P AV %
2 1
2 [y Am(x)dz

and therefore

lim A( ™)

m—00

@ lim L
m—oo 28 fO
o lim L= fin
meee 28( ) fo pm d
@l-C lim L
2[5(&) m—o0 pm fO pm dl’
where (a) relies on (98) and (99), (b) follows from (3) whetg, designates the design rate of theth LDPC

code ensemble in this sequence, and (c) follows by the asmmmihat the sequence is capacity-achieving. Let
a(Rm) designate the average right degree of the LDPC code ensemfle\,, p,,,). From (5), this implies that

(100)
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(m

ag ) = (fol Pm(x) da:)_l and, from Theorem 1 followed by Discussion 2, the asymptavierage right degree of
the considered capacity-achieving sequence tends totinfir.,

lim al" = oo. (101)

m—00

We evaluate now the expression in (100). To this endplglr) = ", pim)wi_l, and Ietl“z(.m) designate the fraction
of parity-check nodes of degreédor LDPC code ensembl@,,,, A, pi), then

1
e /O pm()da
_ (D)
al™
(i~ 1)pi™
al™
o Ez Z.ngm) —1
al™
(m)
1 S ( T > )
_ YRR
ap” ( =\t
O V|
)" ok
2
Zi 2‘2F2(m) _ a(m) 2 1
_ (\/ o (a=") +1-—. (102)
aR agr

Consider any code from the LDPC code ensentblg, .., p,). Note that the first term in (102) is the square of
the ratio of the standard deviation and the average degrteeqfarity-check nodes for this code. Since we denote
the asymptotic limit of this ratio by (where we assume that it exists and is finite) and also (10ltshthen we
get from (102) that

1
lim !, (1) / pon()dz = K2 4 1. (103)
0

m—00

This completes the proof of the theorem by combining (10Qh y103).

APPENDIX IV
PROOF OFLEMMA 8

Let a denote the symmetrié.-density pdf of the transition probability of an MBIOS channel (see [3The®-
rem 4.26]). LetC' = C(a) and B = B(a) be the corresponding capacity and Bhattacharyya constsgectively.
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From (6), (8) and the symmetry af

C+B-1
:/ a(l)e_é dl —/ a(l)logy(1 + e~ di

= / a(l)e”z dl

—% /: [t gy (1 4+ ) + a(~1) logy(1 + €] ai

= / a(l)e™z dl

—% / a(l) [log2(1 +e Y +elogy (1 + el)] di

= /_OO e 5 a(l)g(l)dl

where the functiory is given by
11 . ]
g)=1-3 [ea logy(1+e D) +eSlogy(1+€)], 1eRr

In order to complete the proof, it suffices to show that thecfiom g is non-negative. The substitution= ﬁ gives

gl)=1- #(ﬁ) where the interva{—oo, +00) for [ is mapped into the interval, 1) for z. The non-negativity
of g follows from the inequalityhs(z) < 24/x(1 — x) which is satisfied fol) < = < 1. The non-negativity of the
function g implies thatC + B > 1.

Note that for a BEC with erasure probability the channel capacity i$ — p bits per channel use, and the
Bhattacharyya constant is equal goHence, the equality’ + B = 1 holds for every BEC, irrespectively of the

channel erasure probability.

APPENDIXV
PROOF OFCOROLLARY 4

A truncation of the power series on the LHS of (42) after itstfterm gives the inequality

1—h2<1_\/ﬂ>> Y 0<u<l.

2 ~2In2’ -

Assigningu = (1 — 2h2_1(a:))2 and rearranging terms gives

h;l(w)zé(l—\/2ln2 (1—x)>, 0<z<1. (104)

Assigning0 < z £ ﬁ <1 in (104) gives
1-C
1
hy <1 -C(1 —E))

> % (1— \/21n2 (ﬁ))

and therefore

1—2h;" (ﬁ) §\/21n2 <15_CC>. (105)
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Substituting (105) in (80) provides the following lower mmlion the average right degree of the ensembles:

1 1-C
In (2 ln21 eC ) ) (106)

In <9_1>
As the average right degree of an LDPC code ensemble is mothes 2 (as otherwise, some bits are forced to
be zeros and can be deleted from all codewords), then itwellioom (106) that

- +
ar—1 > ln(2?12100)]

v

ar

r +

The proof is completed by combining (81) with (107).

APPENDIX VI
PROOF OFPROPOSITION1

When the transmission takes place over a BEC whose erasulvelplity isp, the constant, given in (38) takes

the form
p=—L . (108)
In (1%;;)
The starting point of this proof follows the concept in [3%ample 3.88], and its continuation relies on the analysis
used for the proof of [40, Theorem 2.3]. FoK a < 1, let

M) =1— (1 —2)* = i(—mk“ <z>xk 0<z<1

k=1
palz) = T (109)

Note that all the coefficients in the power series expansfok,care positive for alD < a < 1. Let us now define
the polynomialsx&N) and A&N) whereA&N) (z) is the truncated power series &f (x) aroundx = 0, consisting of
all the terms up to (and including) the tered’ —!, and the polynomial

2 AW @)

AN (z) & 22 22
Ay

(110)
is normalized to satisfy the equalit%fv)(l) = 1. The sequence of right-regular LDPC code ensembles in B8] i
of the form { (nn, A (), pa(x))}, o, Where0 < o < 1 andN € N are arbitrary parameters which need to be
selected properly. Assume that the transmission take® waer a BEC whose erasure probabilitypisBased on

the proof of [40, Theorem 2.3], this sequence achieves aidra¢ — ¢ of the capacity of the BEC with vanishing
bit erasure probability under BP decoding whemnd N are chosen to satisfy

% 1oy (111)
1—(1—¢)(1—p)ka(p) —1
N:maxq - 2 “,{(1—]9) D (112)
where .
ka(p) & (1—p)% (57 (113)

and~ is Euler’s constanty ~ 0.5772). Combining (109) and (110), and using the equality

Nz_:l(_l)k-i-l <Z> —1_ g(;\yf)(_l)Nﬂ

k=1
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gives Nl
/\(N)(:L') _ k:_l (_1)k+1 ((l:)xk ]
C TR ()
Therefore, the fraction of edges adjacent to variable nodeegree two is given by
[0
Ao = . 114
ST .
We now obtain upper and lower bounds ®&n From [40, Eq. (67)] we have that
c¢(a,N) N N1 @ 1
(= <
o < - (—1) N) SNe (115)
where , ,
(o, N) 2 (1— )% e (Frtak) (116)
Substituting (115) in (114) and using (111), we get
[0 o o
<A< —"=—. 117
=M (-7 5T-(-p) » (40
Under the parameter assignments in (111) and (112), thengdees N and o satisfy
__IH(T%E) (118)
o« In N

3
Substituting (118) and (119) into the inequality on the RH$14.7) gives an upper bound ox which takes the
form

A2 <

()

= pln <1—(1—§) kz(l’))

1
S — 120
c3+coln % ( )
wherec;, is the coefficient of the logarithmic growth rate ir) which coincides here with (108), and
In(1-(1-p)k
b o? n(1— (1 —p)ka(p)) (121)

(%)
p
is a constant which only depends on the BEC. We turn now tovelerilower bound or\,, and then examine it in

the limit where the gap to capacity vanishes. From (112), axehhat for small enough values gfthe parameter
N satisfies

N = F —ky(p)(1-p( —s)w

€

< 1— k2(p) (16_ p) (1 — 5) +1. (122)

Substituting (118) and (122) into the inequality on the LHY117), we get
! D

ln(ﬁ) p

> .
_pm<hb@wwafwﬂ 1—c(a,N)(1—p)

B 1 P
eyt ealn (%) +&(e,p) 1= (1 —=p)c(a,N) (123)
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wherec, is the coefficient of the logarithm in the denominator of (&R it coincides with (108) for the BEC;

is given in (121), and ( )
e(1+k2(p) (1-p)
X pl”<1 M=o, >

g(e,p) n (ﬁ)

which therefore implies that fob < p < 1

lin% g(e,p) =0. (124)
E—

Using the lower bound on the paramet€rin (119), in the limit wheres tends to zero, the parametai tends
to infinity (sincel — (1 — p)ka(p) > 0 for all 0 < p < 1 wherek, in introduced in (113)). Also, from (112) and
(118), we get

limoa =0
e—0

which, from (116), yields that
lim c(a, N) =1. (125)

e—0

Substituting (124) and (125) in (123) yields that in the tinvhere the gap to capacity vanishes (i 0), the
upper and lower bounds ok, in (120) and (123) coincide. Specifically, we have shown that

. 1
?_H}é/\QQS) cC In <g> =1.

Therefore, ag — 0, the upper bound ok, = Ay (¢) in Corollary 4 becomes tight for the sequence of right-regul
LDPC code ensembles in [48] with the parameters chosen ih) (afhd (112). We note that the setting of the
parametersV and« in (111) and (112) is identical to [40, p. 1615].

APPENDIX VII
A PROOF OFREMARK 15

We prove in the following the claim in Remark 15 which statkeattadding the constraint that is imposed by
the lower bound on the average right degree (i.e., the lowen® onag = > .2, I';) does not affect the LP1
and LP2 bounds introduced in Section V-C. More explicityy the LP1 bound, we prove that the constraint on
{I';}s>1 which is imposed by (61) implies the lower bound on the avenaght degree as given in (22) and (23).

Proof: Eg. (61) gives the first constraint in the LP1 bound. By stitig = = 1_2915 in (16), we get that the
following equality holds fori > 1 (note that sincé) < g; <1 then0 < x <1 as required in (16)):

o

1-gf 1 gt
1-h = S .
2( 2 > 2In2 & p(2p — 1)

p=

Plugging this equality into the LHS of (61) gives

2In2 £ i p(2p—1)
(i) 1 g P2t

Dy <ﬂ> (126)
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where equality (a) is obtained by interchanging the ordeunfimation, equality (b) follows from Jensen’s inequality,

equality (c) follows from expressing the average right degoy the equalitygr = ), iI';, and equality (d) follows
from (16). Combining (61) with (126) gives that

2R
1-— 912 & C + hg(Pb)
- <
! M( 2 )-1—41—@0
and then some straightforward algebra implies that

1
aR > 1 .
ln <g—1>
This lower bound on the average right degree coincides Wighbbund in (22) and (23) which then completes our

proof for the LP1 bound. The same proof holds for the LP2 bowhde referring to the lower bound given in
(23) and (54). |

APPENDIX VIII
ANALYTICAL SOLUTION OF THELP1 BOUND

The LP1 bound in Section V-C can be equivalently expressdatieasollowing minimization problem:

k
minimize — > p;, k=1,2,...
=1
subject to
o
Y dipi <0
=1 )
a1 1-g? cC+ho(R) |
di = 3 [1_h2< 5 > - 1—(1—5)5] p121
o0
Yopi <1
=1
pi>0, i=12,...

where we negated the objective function and turned the miaation into a minimization, and also the equality
constraintord_,-., p; was turned into an inequality constraint. By introducing tton-negative Lagrange multipliers
w1 andyug, respectively, to the first and second inequality constsaand also introducing the non-negative Lagrange
multiplies {6;} to the non-negativity constraint ofp;}, we get the Lagrangian

L({pi}, p1, p2,{0:})

k 00 00 00
= —Zpi —I—mzdim +#2<ZP¢ - 1> - Zeipi
i1 i=1 i=1 =1

k 0
= Z(—l + pad; + po — 92')/72' + Z (Mldz‘ + p2 — 92')/72'
i=1 i=k+1
— 1. (227)

By alternating again the sign of the objective function, vet the following dual LP problem:

minimize po

subject to
4 mdi+pe—60; =0, i=1,2,....k
md; +p2—0; =0, i=k+1,k+2,...
B, p2 =0
0, >0, i=1,2,...
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Strong duality holds for linear programming provided thiaé tprimal LP or its dual LP are feasible (see [6,
Problem 5.23]). Hence, strong duality holds for the LP1 fgob
Note that the sequendgl;} (see the above primal problem) is positive if and only ¥ &, wherek, denotes
the lower bound on the average right degree as is given in RR2)k < ko, the sequencéd;}¥_; is positive and
monotonic decreasing:
di>doy>....,>dp >0, Vk<kp.

Also d; < 0 for 7 > kg, andlim; .., d; = 0. Let

d* £ min d; (128)
i>1
where the minimum of the sequengé;} is attained for some indek > kj, andd* < 0 (note that except for
the degenerate case where= 0, for which the channel is completely useless, the sequédgeis negative for
i > ko, and it tends asymptotically to zero in the limit where> o).

Let k£ < k. Due to the properties of the sequer{eg} and the non-negativity constraint df;} in the dual LP
problem, the minimization of the objective functigp,) can be simplified. To this end, one can remove all the
equality constraints from the dual LP problem except of th&t fiquality constraint with the index= &, and the
second equality constraint with the indéx> &, for which the sequencéd;} attains its minimal valuéd*). For
these two indices of, the Lagrange multiplierg; in the two equality constraints of the dual LP problem are set
to zero; this setting attains the minimal value of (for the other equality constraints that were removed from t
dual LP problem, the correspondifigs are strictly positive; however, these equality consttaiare redundant for
the minimization ofus in the dual LP). Hence, fok < kg, the dual LP problem is simplified to

minimize po

subject to
—1+ pid 4+ p2 =0
p1d* +p2 =0
p1, p2 = 0

whose solution is
B 1 B d*
'ul_dk—d*’ H2 = dk—d*

and the optimal value of the dual LP is equal%% which is indeed bounded between 0 and 1 (sidtec 0
anddy > 0 for k < ko).
For k > ko, we get the following system of inequalities from the dual fu®blem:

—1 4 prd; + po > 0, fori=1,2,...,k
/lei—l—,ugzo, fOfiZk‘—l—l,k‘—FQ,...

Sinced; < 0, then the optimal solution of the dual LP is obtaineduat= 0 and o2 = 1, which then gives an
optimal value of 1 for the minimization gf..

Remark 17:: Consider again the solution of the LP1 problem in the caseravh < ky. From the solution of
the dual problem, it follows that it is obtained by settingto be zero, except for two indices. To this end,ilet [
be the index for which the sequenéé;} achieves its negative minimal valgée*), and let us choose the values
of p,, andp,; to satisfy the two equalities:

dypr, + dipp =0
pr+pr=1.

Sinced* = d; for somel > ko, then fork < ky and the above selection ¢p; }

i:1pz—pk— dk—d*

which indeed coincides with the solution of the dual prohlem
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A Tightened Version of the LP1 bound for the BEC and its AitalySolution

A tightened version of the LP1 bound for the BEC is obtaineal (64). By substituting the equality (85) into
the LHS of (64) and using the equality = 1 — p for a BEC gives

pz EC+Pb pz
Z _1— (1-¢)C Z

This inequality constraint forms a tightened constrainttfee BEC, as compared to the first inequality constraint
which was formulated in the LP1 problem for a general MBIOSrutel. In order to use the analytical result
derived earlier in this appendix and adapt it to this casefosmulate the tightened version of the LP1 bound for
the BEC as follows:

k
minimize — > p;, k=1,2,...
=1
subject to
o
Yo dipi <0
=1
a1 (i C+h _
di—;(CZ—lf(lT)C), 1—1,2,...
o
>opi <1
=1
pi>0, i=1,2,...

Similarly to the above analysis in this appendix, the newusege{d;} is non-negative if and only if < ky, where
ko denotes the lower bound on the average right degree as ia giv24). Fork < kg, the sequencéd;}’_,

is non-negative and monotonic decreasing; morea¥es; 0 for ¢ > kg, andlim; .., d; = 0. By using the same
notation ofd* in (128), we obtain that the tightened version of the LP1 fkbian the BEC has the same analytical
solution as of the general LP1 bound, except for the changbheobequencéd;} (and its corresponding minima
dr).
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