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Guessing

The problem of guessing discrete random variables has found a variety of
applications in

@ Shannon theory,

@ coding theory,

@ cryptography,

@ searching and sorting algorithms,

etc.

The central object of interest:
The distribution of the number of guesses required to identify a realization
of a random variable, taking values on a finite or countably infinite set.
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Guessing and Ranking functions
@ X is a discrete random variable taking values on a finite or countably
infinite set X = {1,...,|X|}.
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Guessing and Ranking Functions

Guessing and Ranking functions

@ X is a discrete random variable taking values on a finite or countably
infinite set X = {1,...,|X|}.

@ One wishes to guess the value of X by repeatedly asking questions of
the form “Is X equal to  ?" until X is guessed correctly.
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Guessing and Ranking Functions

Guessing and Ranking functions

@ X is a discrete random variable taking values on a finite or countably
infinite set X = {1,...,|X|}.

@ One wishes to guess the value of X by repeatedly asking questions of
the form “Is X equal to = 7" until X is guessed correctly.

@ A guessing function is a 1-to-1 function g: X — X where the number
of guesses is equal to g(z) if X =z € X.
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Guessing and Ranking Functions

Guessing and Ranking functions

@ X is a discrete random variable taking values on a finite or countably
infinite set X = {1,...,|X|}.

@ One wishes to guess the value of X by repeatedly asking questions of
the form “Is X equal to = 7" until X is guessed correctly.

@ A guessing function is a 1-to-1 function g: X — X where the number
of guesses is equal to g(z) if X =z € X.

e For p > 0, E[g”(X)] is minimized by selecting g to be a ranking
function gx, for which gx(x) = k if Px(x) is the k-th largest mass.
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Guessing and Shannon Entropy

Guessing and Shannon Entropy (Massey, ISIT '94)
Average number of successive guesses with an optimal strategy satisfies
Elgx (X)] > 1 exp(H(X)) +1

provided H(X) > 2 bits. It is tight within a factor of % when X is
geometrically distributed.

Guessing and Shannon Entropy (McEliece and Yu, ISIT '95)

If X takes no more than M < oo possible values, then

Blox(0)] < (G357 ) HOO

This upper bound on the number of guesses is tight if and only if X is
equiprobable with Px (z) = - for each z, or if X is deterministic.
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Can we Get Bounds on the p-th Moments (p > 0) by Using a

Generalized Information-Theoretic Measure of Shannon’s Entropy ?
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ON MEASURES OF ENTROPY AND
INFORMATION

ALFRED RENYI




Rényi Entropy

Rényi entropy
Ha(X) = 5 i —log > Pg(x), a€(0,1)U(l,00)
zeA
Hy(X) = H(X), T~ 725 log || Px||a

Ho(X) =minl
(X) = minlog 525

Hy(X) =log|{z € A: Px(z) > 0}

1
>eea PX (@)
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Applications of Rényi Entropy

e Random search (Rényi, 1965).

e Statistical physics (Tsallis, 1988).

o Secret-key generation (Renner-Wolf, 2005).
Data compression (Campbell, 1965).

°
@ Hypothesis testing and coding theorems (Csiszar, 1995).
@ Guessing (Arikan, 1996).
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Guessing and Rényi Entropy

H,(X) and Guessing Moments

Theorem (Arikan '96)

Let X be a discrete random variable taking values on X = {1,..., M}.
Let gx(-) be a ranking function of X. Then, for p > 0,

5 logE[gh(X)] > H 1 (X) —log(1 + log, M),

[E

%log]E[ggf(X)] <H_. (X).

T+
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Guessing and Rényi Entropy

H,(X) and Guessing Moments

Theorem (Arikan '96)

Let X be a discrete random variable taking values on X = {1,..., M}.

Let gx(-) be a ranking function of X. Then, for p > 0,

5 logE[gh(X)] > H 1 (X) —log(1 + log, M),

[E

5 logE[gh(X)] < H 1 (X).

T+p

Arikan's result yields an asymptotically tight error exponent:
| P _
Jim 5 1og Eg5n (X™)] = pH 1 (X), Vp>0

when X1,..., X, areiid. [ X":=(Xyq,...,Xp)].
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Guessing and and Arimoto-Rényi Conditional Entropy

Bounds on Guessing Moments with Side Information

@ Having side information Y = y on X, we refer to the conditional
ranking function gxy (-|y).

° E[ggﬂy(X|Y)] is the p-th moment of the number of guesses required
for correctly identifying the unknown object X on the basis of Y.
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Guessing and and Arimoto-Rényi Conditional Entropy

The Arimoto-Rényi Conditional Entropy

Let Pxy be defined on X x ), where X is a discrete random variable.
The Arimoto-Rényi conditional entropy of order a € [0, o0] of X given YV
is defined as

o If a € (0,1)U(1,00), then

Ho(X|Y) = —— log E (Z P§|Y<x|Y>> a

TeEX

=1, o8 > Py(y) exp < — % HL(X]Y = y)) ;

yey

where the last equality applies if Y is a discrete random variable.
e Continuous extension at a = 0,1, 00 with H;(X|Y) = H(X|Y).
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H,(X|Y) and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets
X ={1,...,M} and Y, respectively. For ally € ), let gxy(-|y) be a
ranking function of X given that Y =y. Then, for p > 0,

% logE[g§(|Y(X|Y)] >H -~ (X]Y) —log(1 + log, M),

1 5 logE[g%y (X[Y)] < H.1 (X|Y)
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Guessing and and Arimoto-Rényi Conditional Entropy

H,(X|Y) and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets
X ={1,...,M} and Y, respectively. For ally € ), let gxy(-|y) be a
ranking function of X given that Y =y. Then, for p > 0,

%logE[ &

Py (XIV)] 2 H_1_(X[Y) — log(1 + log, M),

1 5 logE[g%y (X|Y)] < H.1 (X|Y)

Arikan's result yields an asymptotically tight error exponent:

lim - log IE[

n—oo

Senpyn (XY™ =pH 1 (X|Y)

when (X1,Y1),...,(Xp, Yy) areiiid. [ X" = (Xq,..., Xp)].
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Some Recent Results on Guessing J
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Guessing with Distributed Encoders

Guessing with Distributed Encoders
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Figure: Guessing with distributed encoders f,, and g,,.

Guesser

A. Bracher, A. Lapidoth and C. Pfister,
encoders,” Entropy, March 2019.

“Guessing with distributed
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Guessing with Distributed Encoders

Guessing with Distributed Encoders

Analog of Slepian-Wolf coding (distributed lossless source coding).

@ Two dependent sources generate a pair of sequences
X" = (X1,...,Xn) and Y" := (V1,...,Y})
@ The pairs {(X;,Y;)}, are taken from a finite alphabet &' x ).
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Guessing with Distributed Encoders

Guessing with Distributed Encoders

Analog of Slepian-Wolf coding (distributed lossless source coding).
e Two dependent sources generate a pair of sequences
X" = (X1,...,Xn) and Y" := (V1,...,Y})
@ The pairs {(X;,Y;)}, are taken from a finite alphabet &' x Y.

@ Each of the two sequences is observed by a different encoder, which
produces a rate-limited description to the sequence it observes:

The sequence X™ is described by one of |exp(nRx)| labels.
The sequence Y is described by one of |exp(nRy )| labels.

fa: X" —={1,...,|lexp(nRx)]}, Rx >0,
gn: Y" = {1,...,[exp(nRy)|}, Ry >0.
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Guessing with Distributed Encoders

Guessing with Distributed Encoders

Analog of Slepian-Wolf coding (distributed lossless source coding).

@ Two dependent sources generate a pair of sequences
X" = (X1,...,Xn) and Y" := (V1,...,Y})
@ The pairs {(X;,Y;)}, are taken from a finite alphabet &' x Y.

@ Each of the two sequences is observed by a different encoder, which
produces a rate-limited description to the sequence it observes:

The sequence X™ is described by one of |exp(nRx)| labels.
The sequence Y is described by one of |exp(nRy )| labels.

fa: X" —={1,...,|lexp(nRx)]}, Rx >0,
gn: Y" = {1,...,[exp(nRy)|}, Ry >0.

@ The two rate-limited descriptions are provided to a guessing device,
which produces guesses of the form (z",9") until (2", 9") = (2™, y")

v
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Achievable Rate Pairs

For a fixed p > 0, a rate pair (Rx, Ry) € R% is called achievable if there
exists a sequence of distributed encoders and guessing functions
{fn, gn, Gn} such that the p-th moment of the number of guesses tends

to 1 as we let n tend to infinity.

Tim E[G(X™ Y™ | fa(X™), gn(Y™) "] = 1.
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Guessing with Distributed Encoders

Exact Characterization of the Rate Region

Let {X;,Y;}2°, be i.i.d. according to Pxy. Consider the rate region R(p)
which is defined to be the set of rate tuples (Rx, Ry) such that

Rx > H i (X[Y),

3

Ry > H (Y‘X)

3

Ry + Ry > H 1 (X.Y).

3

Then, all rate pairs in the interior of R(p) are achievable, while those
outside R(p) are not achievable.
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Guessing with Distributed Encoders

An Important Difference From Slepian-Wolf Coding

@ Slepian-Wolf coding allows separate encoding with the same sum-rate
as with joint encoding, H(X,Y).

@ This is not necessarily true in the setting of guessing with distributed
encoders.

@ Specifically, for p > 0, if
Hﬁ(X|Y)+Hﬁ(Y|X)>Hﬁ(X,Y),

then the single-rate constraints on Rx and Ry together impose a
stronger constraint on the sum-rate than the third constraint on
Rx + Ry . It then requires a larger sum-rate than joint encoding.
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Improving Arikan’s Bounds in the Non-Asymptotic Setting

Improving Arikan’s Bounds in the Non-Asymptotic Setting
Result (1.S. & S. Verdd, IEEE T-IT, June 2018)

Theorem

Given a discrete random variable X taking values on a set X, an arbitrary
non-negative function g: X — (0,00), and a scalar p # 0, then

sip =+ [Hﬂ (X) ~log 3 g—%)]

Be(—pAoo)\{0} B | 7 reXx

<3 logE[gp(X)]

i Yy _ -8
= pe(-onp \{O}ﬁ[ X)~log 2,9 (x)]'

reX

v
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Improving Arikan’s Bounds in the Non-Asymptotic Setting

Theorem: Consequence of the Result

Let g: X — X be an arbitrary guessing function. Then, for every p # 0,

1 1
“logE[g?(X)] > sup - [H 5 (X) —loguu(B)]
p Be(-poofoy B L e

M
where up (/) is an upper/ lower bound on )’ n% for 3>0o0r 3 <0,

n=1

respectively.
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Improving Arikan’s Bounds in the Non-Asymptotic Setting

Let g: X — X be an arbitrary guessing function. Then, for every p # 0,
1
~logRE[g”(X)] = sup
P

with

upm(B) =

Theorem: Consequence of the Result

= [H s (X) —loguu(8)]
Be(—poo\{0} B L F¥7
logeM+’y+ﬁ—m g=1,
min{((ﬂ) - (Mz;ri)ll_ﬁ - (Mél)_ﬁ, UM(I)} B>1,
1 1-8 1-8
=5 (M +9)' 7 - ()] 81 <1,
1-8 _
M) Bt

@ v~ 0.5772 is Euler's constant;

(e8]
o ((B)= > n% is Riemann's zeta function for 8 > 1.
n=1
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Improving Arikan’s Bounds in the Non-Asymptotic Setting

Lower Bound: Special Case

Specializing to = 1, and using an upper bound on the harmonic sum:

M
up(1) =Y 2 <1+log, M, M>2,
j=1

we obtain

L JogE[¢”(X)] > H__(X) —log(1 +log, M)

T+p

for p € (—1,00). The latter bound was obtained for p > 0 by Arikan.

Improved Upper Bounds

We also derive improved upper bounds on the guessing moments,
expressed as a function of Rényi entropies of X.
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Improving Arikan’s Bounds in the Non-Asymptotic Setting

Numerical Results

Let X be geometrically distributed restricted to {1,..., M} with the
probability mass function
Px (k) = ke{l,...,M}

where a = 0.9 and M = 32. Table 1 compares E[g3 (X)] to its various
lower and upper bounds (LBs and UBs, respectively).

Table: Comparison of E[g3 (X)] and bounds.

Arikan's | Improved || E[g3(X)] || Improved | Arikan's
LB LB exact value UB uB

268 2,390 2,507 6,374 23,861

v

|. Sason Technion, Haifa October 13-15, 2019 23 /37




Improving Arikan’s Bounds in the Non-Asymptotic Setting

Bounds on Guessing Moments with Side Information

@ Our lower and upper bounds extend to allow side information Y for
guessing the value of X.

@ These bounds tighten the results by Arikan for all p > 0.

@ With side information Y, all bounds stay valid by the replacement of
H,(X) with the Arimoto-Rényi conditional entropy H,(X|Y).

v
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Guessing, Rényi Entropy and Majorization

New Setup

Let
e a>0;

@ X and Y be finite sets of cardinalities
|X|=n, |Y|=m, n>m?>2;
without any loss of generality, let
X=A{1,....n}, Y=A{1,...,m}

P, (n > 2) be the set of probability mass functions (pmf) on X;
X be a RV taking values on X with a pmf Px € Py;
Fn,m be the set of deterministic functions f: X — J;

f € Fum is not one-to-one since m < n.

|. Sason Technion, Haifa October 13-15, 2019 25 /37



Guessing, Rényi Entropy and Majorization

Majorization
Let

@ X be a discrete RV with pmf Px, which takes n possible values, and
assume that
Px(1) > Px(2) > ... > Px(n).

° f € fn,m;
@ Qx be the pmf of f(X); assume that

Qx(1) = Px(2) =2 ... 2 Q@x(m),

Qx(m+1)=...=Qx(n)=0.
Then, Px is majorized by Qx:

k

i=1 i=1
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Guessing, Rényi Entropy and Majorization

Solving the Maximum Rényi Entropy Problem

Ha(Q)

max
QEPm:Px<Q
with X € {1,...,n}, m <n, and a > 0.

Solution: R,,(Px)

o If Px(1) < X, then R,,(Px) is the equiprobable dist. on {1,...,m};
o Otherwise, R (Px) == Qx € Py, with

Px(3), ie{l,...,n"},
Qx (i) = 1 - N .
P
LY Rl ie 4L m)
Jj=n*+1

where n* is the max. integer i s.t. Px (i) > —— Z?:H_l Px(j).
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Guessing, Rényi Entropy and Majorization

Theorem: Guessing Moments

Let
o {X;}¥ | beiid. with X; ~ Py taking values on a set X, |X| = n;

o Y, = f(X;), forevery i € {1,...,k}, where f € F,, p, is a
deterministic function with m < n;

gxre: XF S {1,..nFY gy VP {1, mP)

be, respectively, ranking functions of the random vectors

XF = (X1, X)), YFi= (Y, YR).

Notation
Form € {2,...,n}, let

Xom ~ R (Px).

v
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Guessing, Rényi Entropy and Majorization

Theorem: Guessing Moments (Cont.)

© For every deterministic function f € F,, ,,, and for all p > 0,

1. E[¢h(X")] = plog(1 + kInn)
Elogm > p [HL (X)—H 1 (Xm)} . . :

v
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Guessing, Rényi Entropy and Majorization

Theorem: Guessing Moments (Cont.)

© For every deterministic function f € F,,,,, and for all p > 0,

1 log E [gggk (Xkﬂ

kB E[L,h)] > p|H 2

@ For the deterministic function f* € F, ,,, constructed by Huffman

algorithm, with Y; = f*(X;) for all i € {1,...,k}, we have
I(X; f4(X)) > max I(X; f(X)) — 0.08607 bits,
€ n,m
and, for all p > 0,

E[gggk (Xk)]

1 oe xk (X))
®E[¢%.(YP)]

k

S } _ plog(1+klnn)

1+p 1+p

<p HI(X>—H1(Xm>+U( ! >]+Plog<1+klnm>

14+p k

v

[SEEC] Technion, Haifa October 13-15, 2019

32/37



Guessing, Rényi Entropy and Majorization

Theorem: Guessing Moments (Cont.)

@ For every p > 0, the gap between the universal lower bound and the
upper bound, for f = f*, is at most

1 2plog(1 + k1
pv( >+ plog(1 + klog, n)

1+p k
~ 0.08607 p i O(logk) bits.
1+p k

Letting £ — o0, the gap is less than 0.08607 bits for all p > 0, and
the construction of the function f* € 7, ,,, does not depend on p.
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Guessing, Rényi Entropy and Majorization

Theorem: Guessing Moments (Cont.)

For every p > 0,
all f € Fpm (with Y; = f(X;)), and the upper bound with the
specific function f = f* € F,, ,,, is at most

1 2plog(1 + klog,n)  0.08607 p logk\ .
pv = (@) s
1+p k 1+p k

@ The gap between the universal lower bound on %log , for

while f = f* also almost achieves the maximal mutual information of
I(X; f(X)) up to a difference of 0.08607 bits.

Letting £ — oo, the gap in the normalized ratio of the p-th guessing
moments is less than 0.08607 bits for all p > 0, and the construction
of the function f* € F, ,, does not depend on p.

v
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Guessing, Rényi Entropy and Majorization

The Algorithm Relying on Huffman Coding

@ Start from the PMF Px € P, with Px(1) > ... > Px(n);

@ Merge successively pairs of probability masses by applying the
Huffman algorithm;

© Stop the process in Step 2 when a probability mass function @ € Py,
is obtained (with Q(1) > ... > Q(m));

@ Construct the deterministic function f* € F,, ,, by setting
f*(k) =7 € {1,...,m} for all probability masses Px(k), with
k€ {1,...,n}, being merged in Steps 2-3 into the node of Q(j).
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Guessing, Rényi Entropy and Majorization

Journal Paper

I. S., “Tight bounds on the Rényi entropy via majorization with
applications to guessing and compression,” Entropy, vol. 20, no. 12,
paper 896, pp. 1-25, November 2018.
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Ongoing Research

The topic of guessing from an IT perspective is very active these days.

Ongoing Activity in Guessing Problems

Noisy guesses (N. Merhav, arXiv:1910.00215).

Asymptotic analysis of card guessing with feedback (P. Liu,
arXiv:1908.07718).

A unified framework for problems on guessing, source coding and task
partitioning (A. Kumar et al., arXiv:1907.06889).

Guessing individual sequences using finite-state machines (N. Merhav,
arXiv:1906.10857).

Optimal guessing under non-extensive framework and associated
moment bounds (A. Ghosh, arXiv:1905.07729).

Guessing probability in quantum key distribution (X. Wang et al.,
arXiv:1904.12075).

Guessing random additive noise decoding with soft detection symbol
reliability information (K. Duffey and M. Medard, arXiv:1902.03796).
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