Entropy and Guessing: Old and New Results

Igal Sason (EE Department, Technion)

Workshop on Mathematical Data Science (MDS) 2019

Dürnstein, Austria October 13–15. 2019

Guessing

The problem of guessing discrete random variables has found a variety of applications in

- Shannon theory,
- coding theory,
- cryptography,
- searching and sorting algorithms,

etc.

The central object of interest:

The distribution of the number of guesses required to identify a realization of a random variable, taking values on a finite or countably infinite set.

• X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X} = \{1, \dots, |\mathcal{X}|\}$.

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X} = \{1, \dots, |\mathcal{X}|\}.$
- One wishes to guess the value of X by repeatedly asking questions of the form "Is X equal to x?" until X is guessed correctly.

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X} = \{1,\dots,|\mathcal{X}|\}.$
- One wishes to guess the value of X by repeatedly asking questions of the form "Is X equal to x?" until X is guessed correctly.
- A guessing function is a 1-to-1 function $g \colon \mathcal{X} \to \mathcal{X}$ where the number of guesses is equal to g(x) if $X = x \in \mathcal{X}$.

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X}=\{1,\ldots,|\mathcal{X}|\}.$
- ullet One wishes to guess the value of X by repeatedly asking questions of the form "Is X equal to x?" until X is guessed correctly.
- A guessing function is a 1-to-1 function $g \colon \mathcal{X} \to \mathcal{X}$ where the number of guesses is equal to g(x) if $X = x \in \mathcal{X}$.
- For $\rho > 0$, $\mathbb{E}[g^{\rho}(X)]$ is minimized by selecting g to be a ranking function g_X , for which $g_X(x) = k$ if $P_X(x)$ is the k-th largest mass.

Guessing and Shannon Entropy (Massey, ISIT '94)

Average number of successive guesses with an optimal strategy satisfies

$$\mathbb{E}[g_X(X)] \ge \frac{1}{4} \exp(H(X)) + 1$$

provided $H(X) \geq 2$ bits. It is tight within a factor of $\frac{4}{e}$ when X is geometrically distributed.

Guessing and Shannon Entropy (McEliece and Yu, ISIT '95)

If X takes no more than $M<\infty$ possible values, then

$$\mathbb{E}[g_X(X)] \le \left(\frac{M-1}{2\log M}\right) H(X)$$

This upper bound on the number of guesses is tight if and only if X is equiprobable with $P_X(x) = \frac{1}{M}$ for each x, or if X is deterministic.

I. Sason Technion, Haifa October 13–15, 2019 4/37

Can we Get Bounds on the ρ -th Moments ($\rho > 0$) by Using a Generalized Information-Theoretic Measure of Shannon's Entropy?

I. Sason

1961

ON MEASURES OF ENTROPY AND INFORMATION

ALFRÉD RÉNYI

Rényi entropy

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{A}} P_X^{\alpha}(x), \quad \alpha \in (0,1) \cup (1,\infty)$$

$$H_1(X) = H(X), \qquad \frac{\alpha}{1-\alpha} \log ||P_X||_{\alpha}$$

$$H_{\infty}(X) = \min_{x \in \mathcal{A}} \log \frac{1}{P_X(x)}$$

$$H_0(X) = \log |\{x \in \mathcal{A} : P_X(x) > 0\}|$$

$$H_2(X) = \log \frac{1}{\sum_{x \in \mathcal{A}} P_X^2(x)}$$

Applications of Rényi Entropy

- Random search (Rényi, 1965).
- Statistical physics (Tsallis, 1988).
- Secret-key generation (Renner-Wolf, 2005).
- Data compression (Campbell, 1965).
- Hypothesis testing and coding theorems (Csiszár, 1995).
- Guessing (Arikan, 1996).

$H_{\alpha}(X)$ and Guessing Moments

Theorem (Arikan '96)

Let X be a discrete random variable taking values on $\mathcal{X} = \{1, \dots, M\}$. Let $g_X(\cdot)$ be a ranking function of X. Then, for $\rho > 0$,

$$\frac{1}{\rho} \log \mathbb{E} \big[g_X^{\rho}(X) \big] \ge H_{\frac{1}{1+\rho}}(X) - \log(1 + \log_{\mathrm{e}} M),$$

$$\frac{1}{\rho} \log \mathbb{E} \big[g_X^{\rho}(X) \big] \le H_{\frac{1}{1+\rho}}(X).$$

$H_{\alpha}(X)$ and Guessing Moments

Theorem (Arikan '96)

Let X be a discrete random variable taking values on $\mathcal{X} = \{1, \dots, M\}$. Let $g_X(\cdot)$ be a ranking function of X. Then, for $\rho > 0$,

$$\frac{1}{\rho} \log \mathbb{E} \left[g_X^{\rho}(X) \right] \ge H_{\frac{1}{1+\rho}}(X) - \log(1 + \log_e M),$$

$$\frac{1}{\rho} \log \mathbb{E} \left[g_X^{\rho}(X) \right] \le H_{\frac{1}{1+\rho}}(X).$$

Arikan's result yields an asymptotically tight error exponent:

$$\lim_{n\to\infty} \tfrac{1}{n} \, \log \mathbb{E}\big[g_{X^n}^\rho(X^n)\big] = \rho H_{\frac{1}{1+\rho}}(X), \quad \forall \, \rho > 0$$

when X_1, \ldots, X_n are i.i.d. $[X^n := (X_1, \ldots, X_n)].$

- (ロ) (個) (注) (注) (注) (2)

Bounds on Guessing Moments with Side Information

- Having side information Y=y on X, we refer to the conditional ranking function $g_{X|Y}(\cdot|y)$.
- $\mathbb{E}[g_{X|Y}^{\rho}(X|Y)]$ is the ρ -th moment of the number of guesses required for correctly identifying the unknown object X on the basis of Y.

◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶</

I. Sason Technion, Haifa

• If $\alpha \in (0,1) \cup (1,\infty)$, then

The Arimoto-Rényi Conditional Entropy

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable. The Arimoto-Rényi conditional entropy of order $\alpha \in [0, \infty]$ of X given Y is defined as

 $H_{\alpha}(X|Y) = \frac{\alpha}{1-\alpha} \log \mathbb{E} \left[\left(\sum_{x \in \mathcal{X}} P_{X|Y}^{\alpha}(x|Y) \right)^{\frac{1}{\alpha}} \right]$

$$= \frac{\alpha}{1-\alpha} \log \sum_{y \in \mathcal{Y}} P_Y(y) \exp \left(\frac{1-\alpha}{\alpha} H_\alpha(X|Y=y) \right),$$

where the last equality applies if Y is a discrete random variable.

• Continuous extension at $\alpha = 0, 1, \infty$ with $H_1(X|Y) = H(X|Y)$.

I. Sason

$H_{\alpha}(X|Y)$ and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets $\mathcal{X} = \{1, \dots, M\}$ and \mathcal{Y} , respectively. For all $y \in \mathcal{Y}$, let $g_{X|Y}(\cdot|y)$ be a ranking function of X given that Y = y. Then, for $\rho > 0$,

$$\frac{1}{\rho} \log \mathbb{E} \big[g_{X|Y}^{\rho}(X|Y) \big] \ge H_{\frac{1}{1+\rho}}(X|Y) - \log(1 + \log_{\mathbf{e}} M),$$

$$\tfrac{1}{\rho}\,\log\mathbb{E}\big[g_{X|Y}^\rho(X|Y)\big] \leq H_{\frac{1}{1+\rho}}(X|Y).$$

12 / 37

I. Sason Technic

$H_{\alpha}(X|Y)$ and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets $\mathcal{X} = \{1, \dots, M\}$ and \mathcal{Y} , respectively. For all $y \in \mathcal{Y}$, let $g_{X|Y}(\cdot|y)$ be a ranking function of X given that Y = y. Then, for $\rho > 0$,

$$\frac{1}{\rho} \log \mathbb{E} \left[g_{X|Y}^{\rho}(X|Y) \right] \ge H_{\frac{1}{1+\rho}}(X|Y) - \log(1 + \log_{e} M),$$

$$\frac{1}{\rho} \log \mathbb{E} \left[g_{X|Y}^{\rho}(X|Y) \right] \le H_{\frac{1}{1+\rho}}(X|Y).$$

Arikan's result yields an asymptotically tight error exponent:

$$\lim_{n\to\infty} \tfrac{1}{n} \log \mathbb{E}\big[g_{X^n|Y^n}^\rho(X^n|Y^n)\big] = \rho H_{\frac{1}{1+\rho}}(X|Y)$$

when $(X_1,Y_1),\ldots,(X_n,Y_n)$ are i.i.d. $[X^n:=(X_1,\ldots,X_n)].$

◆ロト ◆問ト ◆ヨト ◆ヨト ヨ めなべ

I. Sason Technion, Haifa October 13–15, 2019 12 / 37

Some Recent Results on Guessing

Figure: Guessing with distributed encoders f_n and g_n .

A. Bracher, A. Lapidoth and C. Pfister, "Guessing with distributed encoders," *Entropy*, March 2019.

Analog of Slepian-Wolf coding (distributed lossless source coding).

- Two dependent sources generate a pair of sequences $X^n := (X_1, \dots, X_n)$ and $Y^n := (Y_1, \dots, Y_n)$
- The pairs $\{(X_i,Y_i)\}_{i=1}^n$ are taken from a finite alphabet $\mathcal{X}\times\mathcal{Y}$.

Analog of Slepian-Wolf coding (distributed lossless source coding).

- Two dependent sources generate a pair of sequences $X^n := (X_1, \dots, X_n)$ and $Y^n := (Y_1, \dots, Y_n)$
- The pairs $\{(X_i, Y_i)\}_{i=1}^n$ are taken from a finite alphabet $\mathcal{X} \times \mathcal{Y}$.
- Each of the two sequences is observed by a different encoder, which produces a rate-limited description to the sequence it observes:
 - The sequence X^n is described by one of $\lfloor \exp(nR_X) \rfloor$ labels.
 - The sequence Y^n is described by one of $\lfloor \exp(nR_Y) \rfloor$ labels.

$$f_n: \mathcal{X}^n \to \{1, \dots, \lfloor \exp(nR_X) \rfloor\}, \quad R_X \ge 0,$$

 $g_n: \mathcal{Y}^n \to \{1, \dots, \lfloor \exp(nR_Y) \rfloor\}, \quad R_Y \ge 0.$

Analog of Slepian-Wolf coding (distributed lossless source coding).

- Two dependent sources generate a pair of sequences $X^n := (X_1, \dots, X_n)$ and $Y^n := (Y_1, \dots, Y_n)$
- The pairs $\{(X_i,Y_i)\}_{i=1}^n$ are taken from a finite alphabet $\mathcal{X}\times\mathcal{Y}$.
- Each of the two sequences is observed by a different encoder, which produces a rate-limited description to the sequence it observes:
 - The sequence X^n is described by one of $|\exp(nR_X)|$ labels.
 - The sequence Y^n is described by one of $|\exp(nR_Y)|$ labels.

$$f_n: \mathcal{X}^n \to \{1, \dots, \lfloor \exp(nR_X) \rfloor\}, \quad R_X \ge 0,$$

 $g_n: \mathcal{Y}^n \to \{1, \dots, \lfloor \exp(nR_Y) \rfloor\}, \quad R_Y \ge 0.$

• The two rate-limited descriptions are provided to a guessing device, which produces guesses of the form (\hat{x}^n, \hat{y}^n) until $(\hat{x}^n, \hat{y}^n) = (x^n, y^n)$.

> 4日本4個本4日本4日本 日 October 13-15, 2019

Achievable Rate Pairs

For a fixed $\rho > 0$, a rate pair $(R_X, R_Y) \in \mathbb{R}^2_+$ is called achievable if there exists a sequence of distributed encoders and guessing functions $\{f_n, g_n, G_n\}$ such that the ρ -th moment of the number of guesses tends to 1 as we let n tend to infinity.

$$\lim_{n \to \infty} \mathbb{E} \left[G_n \left(X^n, Y^n \mid f_n(X^n), g_n(Y^n) \right)^{\rho} \right] = 1.$$

I. Sason Technion, Haifa October 13–15, 2019 16 / 37

Exact Characterization of the Rate Region

Let $\{X_i,Y_i\}_{i=1}^{\infty}$ be i.i.d. according to P_{XY} . Consider the rate region $\mathcal{R}(\rho)$ which is defined to be the set of rate tuples (R_X,R_Y) such that

$$R_X \ge H_{\frac{1}{1+\rho}}(X|Y),$$

$$R_Y \ge H_{\frac{1}{1+\rho}}(Y|X),$$

$$R_X + R_Y \ge H_{\frac{1}{1+\rho}}(X,Y).$$

Then, all rate pairs in the interior of $\mathcal{R}(\rho)$ are achievable, while those outside $\mathcal{R}(\rho)$ are not achievable.

An Important Difference From Slepian-Wolf Coding

- Slepian-Wolf coding allows separate encoding with the same sum-rate as with joint encoding, H(X,Y).
- This is not necessarily true in the setting of guessing with distributed encoders.
- Specifically, for $\rho > 0$, if

$$H_{\frac{1}{1+\rho}}(X|Y) + H_{\frac{1}{1+\rho}}(Y|X) > H_{\frac{1}{1+\rho}}(X,Y),$$

then the single-rate constraints on R_X and R_Y together impose a stronger constraint on the sum-rate than the third constraint on $R_X + R_Y$. It then requires a larger sum-rate than joint encoding.

Improving Arikan's Bounds in the Non-Asymptotic Setting

Result (I.S. & S. Verdú, IEEE T-IT, June 2018)

Theorem

Given a discrete random variable X taking values on a set \mathcal{X} , an arbitrary non-negative function $g\colon \mathcal{X} \to (0,\infty)$, and a scalar $\rho \neq 0$, then

$$\sup_{\beta \in (-\rho, +\infty) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta + \rho}}(X) - \log \sum_{x \in \mathcal{X}} g^{-\beta}(x) \right]$$

$$\leq \frac{1}{\rho} \log \mathbb{E}[g^{\rho}(X)]$$

$$\leq \inf_{\beta \in (-\infty, -\rho) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta + \rho}}(X) - \log \sum_{x \in \mathcal{X}} g^{-\beta}(x) \right].$$

I. Sason Technion, Haifa October 13–15, 2019 19 / 37

Theorem: Consequence of the Result

Let $g \colon \mathcal{X} \to \mathcal{X}$ be an arbitrary guessing function. Then, for every $\rho \neq 0$,

$$\frac{1}{\rho} \log \mathbb{E} \big[g^{\rho}(X) \big] \ge \sup_{\beta \in (-\rho, \infty) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta + \rho}}(X) - \log u_M(\beta) \right]$$

where $u_M(\beta)$ is an upper/ lower bound on $\sum_{n=1}^M \frac{1}{n^{\beta}}$ for $\beta > 0$ or $\beta < 0$, respectively.

4□ > 4□ > 4 = > 4 = > = 90

I. Sason Technion, Haifa October 13–15, 2019 20 / 37

Theorem: Consequence of the Result

Let $g \colon \mathcal{X} \to \mathcal{X}$ be an arbitrary guessing function. Then, for every $\rho \neq 0$,

$$\frac{1}{\rho} \log \mathbb{E} \big[g^{\rho}(X) \big] \ge \sup_{\beta \in (-\rho, \infty) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta + \rho}}(X) - \log u_M(\beta) \right]$$

with

$$u_M(\beta) = \begin{cases} \log_e M + \gamma + \frac{1}{2M} - \frac{5}{6(10M^2 + 1)} & \beta = 1, \\ \min\left\{\zeta(\beta) - \frac{(M+1)^{1-\beta}}{\beta - 1} - \frac{(M+1)^{-\beta}}{2}, u_M(1)\right\} & \beta > 1, \\ 1 + \frac{1}{1-\beta} \left[\left(M + \frac{1}{2}\right)^{1-\beta} - \left(\frac{3}{2}\right)^{1-\beta}\right] & |\beta| < 1, \\ \frac{M^{1-\beta} - 1}{1-\beta} + \frac{1}{2}\left(1 + M^{-\beta}\right) & \beta \leq -1. \end{cases}$$

- $\gamma \approx 0.5772$ is Euler's constant;
- $\zeta(\beta) = \sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ is Riemann's zeta function for $\beta > 1$.

rechnion, Haifa October 13–15, 2019 21 / 37

Lower Bound: Special Case

Specializing to $\beta=1$, and using an upper bound on the harmonic sum:

$$u_M(1) = \sum_{j=1}^{M} \frac{1}{j} \le 1 + \log_e M, \quad M \ge 2,$$

we obtain

$$\frac{1}{\rho} \log \mathbb{E}[g^{\rho}(X)] \ge H_{\frac{1}{1+\rho}}(X) - \log(1 + \log_{e} M)$$

for $\rho \in (-1, \infty)$. The latter bound was obtained for $\rho > 0$ by Arikan.

Improved Upper Bounds

We also derive improved upper bounds on the guessing moments, expressed as a function of Rényi entropies of X.

 I. Sason
 Technion, Haifa
 October 13–15, 2019
 22 / 37

Numerical Results

Let X be geometrically distributed restricted to $\{1, \ldots, M\}$ with the probability mass function

$$P_X(k) = \frac{(1-a) a^{k-1}}{1-a^M}, \quad k \in \{1, \dots, M\}$$

where a=0.9 and M=32. Table 1 compares $\mathbb{E}[q_X^3(X)]$ to its various lower and upper bounds (LBs and UBs, respectively).

Table: Comparison of $\mathbb{E}[g_X^3(X)]$ and bounds.

Arikan's	Improved	$\mathbb{E}[g_X^3(X)]$	Improved	Arikan's
LB	LB	exact value	UB	UB
268	2,390	2,507	6,374	23,861

Bounds on Guessing Moments with Side Information

- Our lower and upper bounds extend to allow side information Y for guessing the value of X.
- These bounds tighten the results by Arikan for all $\rho > 0$.
- With side information Y, all bounds stay valid by the replacement of $H_{\alpha}(X)$ with the Arimoto-Rényi conditional entropy $H_{\alpha}(X|Y)$.

I. Sason Technion, Haifa October 13–15, 2019 24 / 37

New Setup

Let

- \bullet $\alpha > 0$;
- ullet $\mathcal X$ and $\mathcal Y$ be finite sets of cardinalities

$$|\mathcal{X}| = n, \quad |\mathcal{Y}| = m, \quad n > m \ge 2;$$

without any loss of generality, let

$$\mathcal{X} = \{1, \dots, n\}, \quad \mathcal{Y} = \{1, \dots, m\};$$

- \mathcal{P}_n $(n \geq 2)$ be the set of probability mass functions (pmf) on \mathcal{X} ;
- X be a RV taking values on \mathcal{X} with a pmf $P_X \in \mathcal{P}_n$;
- $\mathcal{F}_{n,m}$ be the set of deterministic functions $f \colon \mathcal{X} \to \mathcal{Y}$;
- $f \in \mathcal{F}_{n,m}$ is not one-to-one since m < n.

Majorization

Let

• X be a discrete RV with pmf P_X , which takes n possible values, and assume that

$$P_X(1) \ge P_X(2) \ge \ldots \ge P_X(n)$$
.

- $f \in \mathcal{F}_{n,m}$;
- Q_X be the pmf of f(X); assume that

$$Q_X(1) \ge P_X(2) \ge \dots \ge Q_X(m),$$

 $Q_X(m+1) = \dots = Q_X(n) = 0.$

Then, P_X is majorized by Q_X :

$$P_X \prec Q_X \quad \left(\sum_{i=1}^k P_X(i) \le \sum_{i=1}^k Q_X(i), \ \forall \ k \in \{1, \dots, n\}\right).$$

Solving the Maximum Rényi Entropy Problem

$$\max_{Q \in \mathcal{P}_m: P_X \prec Q} H_{\alpha}(Q)$$

with $X \in \{1, \ldots, n\}$, m < n, and $\alpha > 0$.

Solution: $R_m(P_X)$

- If $P_X(1) < \frac{1}{m}$, then $R_m(P_X)$ is the equiprobable dist. on $\{1, \dots, m\}$;
- Otherwise, $R_m(P_X) := Q_X \in \mathcal{P}_m$ with

$$Q_X(i) = \begin{cases} P_X(i), & i \in \{1, \dots, n^*\}, \\ \frac{1}{m - n^*} \sum_{j=n^*+1}^n P_X(j), & i \in \{n^* + 1, \dots, m\}, \end{cases}$$

where n^* is the max. integer i s.t. $P_X(i) \ge \frac{1}{m-i} \sum_{i=i+1}^n P_X(j)$.

I. Sason

Intuitively

Intuitively

р

Intuitively

p

October 13-15, 2019

Theorem: Guessing Moments

Let

- $\{X_i\}_{i=1}^k$ be i.i.d. with $X_1 \sim P_X$ taking values on a set \mathcal{X} , $|\mathcal{X}| = n$;
- $Y_i = f(X_i)$, for every $i \in \{1, ..., k\}$, where $f \in \mathcal{F}_{n,m}$ is a deterministic function with m < n;

•

$$g_{X^k} \colon \mathcal{X}^k \to \{1, \dots, n^k\}, \quad g_{Y^k} \colon \mathcal{Y}^k \to \{1, \dots, m^k\}$$

be, respectively, ranking functions of the random vectors

$$X^k := (X_1, \dots, X_k), \quad Y^k := (Y_1, \dots, Y_k).$$

Notation

For $m \in \{2, \ldots, n\}$, let

$$\widetilde{X}_m \sim R_m(P_X).$$

4 D > 4 B > 4 B > 4 B > 9 Q Q

1 For every deterministic function $f \in \mathcal{F}_{n,m}$, and for all $\rho > 0$,

$$\frac{1}{k}\log\frac{\mathbb{E}\left[g_{X^k}^{\rho}(X^k)\right]}{\mathbb{E}\left[g_{Y^k}^{\rho}(Y^k)\right]} \ge \rho\left[H_{\frac{1}{1+\rho}}(X) - H_{\frac{1}{1+\rho}}(\widetilde{X}_m)\right] - \frac{\rho\log(1+k\ln n)}{k}.$$

I. Sason Technion, Haifa October 13–15, 2019 32 / 37

① For every deterministic function $f \in \mathcal{F}_{n,m}$, and for all $\rho > 0$,

$$\frac{1}{k}\log\frac{\mathbb{E}\left[g_{X^k}^{\rho}(X^k)\right]}{\mathbb{E}\left[g_{Y^k}^{\rho}(Y^k)\right]} \geq \rho\left[H_{\frac{1}{1+\rho}}(X) - H_{\frac{1}{1+\rho}}(\widetilde{X}_m)\right] - \frac{\rho\log(1+k\ln n)}{k}.$$

② For the deterministic function $f^* \in \mathcal{F}_{n,m}$, constructed by Huffman algorithm, with $Y_i = f^*(X_i)$ for all $i \in \{1, \dots, k\}$, we have

$$I(X; f^*(X)) \ge \max_{f \in \mathcal{F}_{n,m}} I(X; f(X)) - 0.08607 \text{ bits},$$

and, for all $\rho > 0$,

$$\frac{1}{k}\log\frac{\mathbb{E}\big[g_{X^k}^\rho(X^k)\big]}{\mathbb{E}\big[g_{Y^k}^\rho(Y^k)\big]}$$

$$\leq \rho \left[H_{\frac{1}{1+\rho}}(X) - H_{\frac{1}{1+\rho}}(\widetilde{X}_m) + v \left(\frac{1}{1+\rho} \right) \right] + \frac{\rho \log(1+k \ln m)}{k}.$$

9 For every $\rho > 0$, the gap between the universal lower bound and the upper bound, for $f = f^*$, is at most

$$\begin{split} &\rho \, v \left(\frac{1}{1+\rho} \right) + \frac{2\rho \log(1+k\log_{\mathrm{e}} n)}{k} \\ &\approx \frac{0.08607 \, \rho}{1+\rho} + O\!\left(\frac{\log k}{k} \right) \text{ bits.} \end{split}$$

Letting $k \to \infty$, the gap is less than 0.08607 bits for all $\rho > 0$, and the construction of the function $f^* \in \mathcal{F}_{n,m}$ does not depend on ρ .

33 / 37

I. Sason Technion, Haifa October 13–15, 2019

For every $\rho > 0$,

The gap between the universal lower bound on $\frac{1}{k}\log\frac{\mathbb{E}\left[g_{X^k}^{\rho}(X^k)\right]}{\mathbb{E}\left[a^{\rho},(Y^k)\right]}$, for all $f \in \mathcal{F}_{n,m}$ (with $Y_i = f(X_i)$), and the upper bound with the specific function $f = f^* \in \mathcal{F}_{n,m}$, is at most

$$\rho \, v \bigg(\frac{1}{1+\rho} \bigg) + \frac{2\rho \log(1+k\log_{\mathrm{e}} n)}{k} \approx \frac{0.08607 \, \rho}{1+\rho} + O\bigg(\frac{\log k}{k} \bigg) \text{ bits}$$

while $f = f^*$ also almost achieves the maximal mutual information of I(X; f(X)) up to a difference of 0.08607 bits.

Letting $k \to \infty$, the gap in the normalized ratio of the ρ -th guessing moments is less than 0.08607 bits for all $\rho > 0$, and the construction of the function $f^* \in \mathcal{F}_{n,m}$ does not depend on ρ .

> 4 D F 4 M F 4 B F 4 B F B 34 / 37

The Algorithm Relying on Huffman Coding

- Start from the PMF $P_X \in \mathcal{P}_n$ with $P_X(1) \ge \ldots \ge P_X(n)$;
- Merge successively pairs of probability masses by applying the Huffman algorithm;
- **3** Stop the process in Step 2 when a probability mass function $Q \in \mathcal{P}_m$ is obtained (with $Q(1) \geq \ldots \geq Q(m)$);
- Construct the deterministic function $f^* \in \mathcal{F}_{n,m}$ by setting $f^*(k) = j \in \{1, \dots, m\}$ for all probability masses $P_X(k)$, with $k \in \{1, \dots, n\}$, being merged in Steps 2–3 into the node of Q(j).

Journal Paper

I. S., "Tight bounds on the Rényi entropy via majorization with applications to guessing and compression," *Entropy*, vol. 20, no. 12, paper 896, pp. 1–25, November 2018.

Ongoing Activity in Guessing Problems

The topic of guessing from an IT perspective is very active these days.

- Noisy guesses (N. Merhav, arXiv:1910.00215).
- Asymptotic analysis of card guessing with feedback (P. Liu, arXiv:1908.07718).
- A unified framework for problems on guessing, source coding and task partitioning (A. Kumar et al., arXiv:1907.06889).
- Guessing individual sequences using finite-state machines (N. Merhav, arXiv:1906.10857).
- Optimal guessing under non-extensive framework and associated moment bounds (A. Ghosh, arXiv:1905.07729).
- Guessing probability in quantum key distribution (X. Wang et al., arXiv:1904.12075).
- Guessing random additive noise decoding with soft detection symbol reliability information (K. Duffey and M. Medard, arXiv:1902.03796).