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Abstract

The Shannon capacity of graphs, introduced by Claude Shannon in 1956,
equals the maximum transmission rate at which a receiver can accurately
recover information without error, with the communication channel repre-
sented as a graph. In this graph, the vertices represent the input symbols and
any two vertices are adjacent if and only if the corresponding input symbols
can be confused by the channel with some positive probability. This concept
establishes a significant link among zero-error problems in information theory
and graph theory. The calculation of the Shannon capacity of a graph is
notoriously difficult, and only the capacity of a some families of graphs are
known. The computational complexity of the Shannon capacity has extended
the research towards finding computable bounds on the capacity and exploring
its properties.

This thesis studies several research directions concerning the Shannon
capacity of graphs. Building on Schrijver’s recent framework, we establish
sufficient conditions under which the Shannon capacity of a polynomial in
graphs equals the corresponding polynomial of the individual capacities,
thereby simplifying their evaluation. We derive exact values and new bounds
for the Shannon capacity of two families of graphs: the q-Kneser graphs
and the Tadpole graphs. Furthermore, we construct graphs whose Shannon
capacity is never attained by the independence number of any finite power of
these graphs, including a countably infinite family of connected graphs with
this property. We further prove an inequality relating the Shannon capacities
of the strong product of graphs and their disjoint union, leading to streamlined
proofs of known bounds. Motivated by problems in lossless data compression,
we introduce an approach that incorporates computational complexity through
bounds on the chromatic number of small disjunctive powers. These results on
the Shannon capacity of graphs underscore fundamental connections between
graph theory and information theory.
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Chapter 1

Introduction

The Shannon capacity of graphs, introduced by Claude Shannon in [1], equals
the maximum transmission rate at which a receiver can accurately recover
information without error, with the communication channel represented as
a graph. In this graph, the vertices represent the input symbols and any
two vertices are adjacent if and only if the corresponding input symbols can
be confused by the channel with some positive probability. This concept
establishes a significant link among zero-error problems in information theory
and graph theory, prominently featured in multiple surveys [2–6].

The calculation of the Shannon capacity of a graph is notoriously difficult
(see, e.g., [7–10]), and only the capacity of a few families of graphs are known,
like Kneser graphs and self-complementary vertex-transitive graphs [11].
The computational complexity of the Shannon capacity has extended the
research towards finding computable bounds on the capacity and exploring
its properties [11–20].

While investigating the properties of the Shannon capacity, it is worth
keeping in mind the more general concept of the asymptotic spectrum of
graphs, introduced by Zuiddam [19–22], which delineates a space of graph
parameters that remain invariant under graph isomorphisms. This space is
characterized by the following unique properties: additivity under disjoint
union of graphs, multiplicativity under strong product of graphs, normal-
ization for a simple graph with a single vertex, and monotonicity under
graph complement homomorphisms. Building upon Strassen’s theory of the
asymptotic spectra [23], a novel dual characterization of the Shannon capacity
of a graph is derived in [21], expressed as the minimum over the elements
of its asymptotic spectrum. By confirming that various graph invariants,
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including the Lovász ϑ-function [11] and the fractional Haemers bound [13],
are elements of the asymptotic spectrum of a graph (spectral points), it can
be deduced that these elements indeed serve as upper bounds on the Shannon
capacity of a graph. For further exploration, the comprehensive paper by
Wigderson and Zuiddam [22] provides a survey on Strassen’s theory of the
asymptotic spectra and its application areas, including the Shannon capacity
of graphs.

Several properties of the Shannon capacity have been explored, and
many questions are left open. One of the most basic open questions is the
determination of the Shannon capacity of cycle graphs of odd length larger
than 5.

In addition to zero-order error capacity of a graph, using Graph Theory
allows us to investigate many other problems in Information and Communica-
tion Theory, for example, in [32, Section 3.4], Graph Theory is used to explore
a problem in Lossless data compression, using known results regarding the
chromatic number and the disjunctive power of graphs.

This paper studies several research directions regarding the Shannon
capacity of graphs, and it is structured as follows.

• Chapter 2 provides preliminaries that are required for the analysis in
this paper. Its focus is on graph invariants, and classes of graphs that
are used throughout this paper.

• Chapter 3 builds on a recent paper by Schrijver [24], and it explores
conditions under which, for a family of graphs, the Shannon capacity of
any polynomial in these graphs equals the corresponding polynomial
of their individual Shannon capacities. This equivalence can substan-
tially simplify the computation of the Shannon capacity for some of
structured graphs. Two sufficient conditions are presented, followed by
a comparison of their differences and illustrative examples of their use.

• Chapter 4 explores Tadpole graphs. Exact values and bounds on the
capacity of Tadpole graphs are derived, and a direct relation between the
capacity of odd-cycles and the capacity of a countably infinite subfamily
of the Tadpole graphs is proved, providing an important property of
that subfamily that is further discussed in the following section.

• Chapter 5 determines sufficient conditions for the unattainability of
the Shannon capacity by the independence number of any finite strong
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power of a graph. It first presents in an alternative streamlined way an
approach by Guo and Watanabe [10]. It then introduces two other orig-
inal approaches. One of the novelties in this section is the construction
of an infinite family of connected graphs whose capacity is unattainable
by any finite strong power of these graphs.

• Chapter 6 derives the Shannon capacity of the q-Kneser graphs, using a
generalized result of Erdos-Ko-Rado [25], and a result on the spectrum
of the q-Kneser graphs [26]. This broadens the class of graphs for which
the Shannon capacity is explicitly known.

• Chapter 7 introduces a new inequality relating the Shannon capacity of
the strong power of graphs to that of their disjoint union, and it identifies
several conditions under which equality holds. As an illustration of the
applicability of this inequality, this section also presents an alternative
shorter proof of a lower bound for the disjoint union of a graph with its
complement, originally obtained by N. Alon [7], along with analogous
bounds on the Lovász ϑ-function of graphs.

• Chapter 8 explores a problem presented in [32, Section 3.4] regarding
lossless data compression using the chromatic number of the disjunctive
powers of a graph. This section presents the problem and then offers a
new approach to this problem, that takes into account the computation
complexity, and uses finite (small) powers of the disjunctive power, to
provide a tradeoff between the computational complexity and the Data
Compression.

• Chapter 9 provides a summary of this work and also suggests some
directions for further research that are related to the findings in this
thesis.
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Chapter 2

Preliminaries

2.1 Basic definitions and graph families

2.1.1 Terminology
Let G = (V, E) be a graph.

• V = V(G) is the vertex set of G, and E = E(G) is the edge set of G.

• An undirected graph is a graph whose edges are undirected.

• A self-loop is an edge that connects a vertex to itself.

• A simple graph is a graph having no self-loops and no multiple edges
between any pair of vertices.

• A finite graph is a graph with a finite number of vertices.

• The order of a finite graph is the number of its vertices, | V(G)| = n.

• The size of a finite graph is the number of its edges, | E(G)| = m.

• Vertices i, j ∈ V(G) are adjacent if they are the endpoints of an edge in
G; it is denoted by {i, j} ∈ E(G) or i ∼ j.

• An empty graph is a graph without edges, so its size is equal to zero.

• The degree of a vertex v in G is the number of adjacent vertices to v in
G, denoted by dv = dv(G).
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• A graph is regular if all its vertices have an identical degree.

• A d-regular graph is a regular graph whose all vertices have a fixed
degree d.

• A walk in a graph G is a sequence of vertices in G, where every two
consecutive vertices in the sequence are adjacent in G.

• A trail in a graph is a walk with no repeated edges.

• A path in a graph is a walk with no repeated vertices; consequently, a
path has no repeated edges, so every path is a trail but a trail is not
necessarily a path.

• A cycle C in a graph G is obtained by adding an edge to a path P such
that it gives a closed walk.

• The length of a path or a cycle is equal to its number of edges. A
triangle is a cycle of length 3.

• A connected graph is a graph where every two distinct vertices are
connected by a path.

• An r-partite graph is a graph whose vertex set is a disjoint union of r
subsets such that no two vertices in the same subset are adjacent. If
r = 2, then G is a bipartite graph.

• A complete graph on n vertices, denoted by Kn, is a graph whose all n
distinct vertices are pairwise adjacent. Hence, Kn is an (n − 1)-regular
graph of order n.

• A path graph on n vertices is denoted by Pn, and its size is equal to
n − 1.

• A cycle graph on n vertices is called an n-cycle, and it is denoted by Cn

with an integer n ≥ 3. The order and size of Cn are equal to n, and Cn

is a bipartite graph if and only if n ≥ 4 is even.

• A complete r-partite graph, denoted by Kn1,...,nr with n1, . . . nr ∈ N, is an
r-partite graph whose vertex set is partitioned into r disjoint subsets of
cardinalities n1, . . . , nr, such that every two vertices in the same subset
are not adjacent, and every two vertices in distinct subsets are adjacent.
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Throughout this thesis, the graphs under consideration are finite, simple, and
undirected. The standard notation [n] ≜ {1, . . . , n}, for every n ∈ N, is also
used.

Definition 2.1 (Subgraphs and graph connectivity). A graph F is a subgraph
of a graph G, and it is denoted by F ⊆ G, if V(F) ⊆ V(G) and E(F) ⊆ E(G).

• A spanning subgraph of G is obtained by edge deletions from G, while
its vertex set is left unchanged. A spanning tree in G is a spanning
subgraph of G that forms a tree.

• An induced subgraph is obtained by removing vertices from the original
graph, followed by the deletion of their incident edges.

Definition 2.2 (Isomorphic graphs). Graphs G and H are isomorphic if there
exists a bijection f : V(G) → V(H) (i.e., a one-to-one and onto mapping) such
that {i, j} ∈ E(G) if and only if {f(i), f(j)} ∈ E(H). It is denoted by G ∼= H,
and f is said to be an isomorphism from G to H.

Definition 2.3 (Complement and self-complementary graphs). The comple-
ment of a graph G, denoted by G, is a graph whose vertex set is V(G), and its
edge set is the complement set E(G). Every vertex in V(G) is nonadjacent to
itself in G and G, so {i, j} ∈ E(G) if and only if {i, j} /∈ E(G) with i ̸= j. A
graph G is self-complementary if G ∼= G (i.e., G is isomorphic to G).

Example 2.1. It can be verified that P4 and C5 are self-complementary
graphs.

2.1.2 Graph operations
This subsection presents the basic graph operations used throughout this
thesis.

Definition 2.4 (Strong product of graphs). Let G and H be simple graphs.
The strong product G ⊠ H is a graph whose vertices set is V(G) × V(H), and
two distinct vertices (g1, h1), (g2, h2) are adjacent if one of the following three
conditions is satisfied:

1. g1 = g2 and {h1, h2} ∈ E(H),

2. {g1, g2} ∈ E(G) and h1 = h2,

8



3. {g1, g2} ∈ E(G) and {h1, h2} ∈ E(H).

The interested reader is referred to [27] for an extensive textbook on graph
products and their properties.

Define the k-fold strong power of G as

Gk ≜ G ⊠ . . . ⊠ G.︸ ︷︷ ︸
k−1 strong products

(2.1)

Throughout this thesis, we will use another graph operation.

Definition 2.5 (Disjoint union of graphs). Let G and H be two simple graphs.
The disjoint union G + H is a graph whose vertices set is V(G) ∪ V(H), and
the edges set is E(G) ∪ E(H).

Let m ∈ N, throughout this thesis we use the following notation:

mG ≜ G + . . . + G.︸ ︷︷ ︸
m−1 disjoint unions

(2.2)

2.1.3 Basic graph invariants under isomorphism
Definition 2.6 (Independent sets). Let G be a simple graph. Define

• A set I ⊆ V(G) is an independent set in G if every pair of vertices in I
are nonadjacent in G.

• The set I(G) is the set of independent sets in G.

Now we define the independence number of a graph.

Definition 2.7 (Independence number). The independence number of a graph
G, denoted α(G) is the order of a largest independent set in G, i.e.

α(G) ≜ max{| I | : I ∈ I(G)}. (2.3)

Definition 2.8 (Cliques). Let G be a simple graph. Define

• A set C ⊆ V(G) is a clique in G if every pair of vertices in C are adjacent
in G.

• The set C(G) is the set of cliques in G.
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Definition 2.9 (Clique number). The clique number of a graph G, denoted
ω(G) is the order of a largest clique in G, i.e.

ω(G) ≜ max{| C | : C ∈ C(G)}. (2.4)

Definition 2.10 (Chromatic number). The chromatic number of G, denoted
χ(G), is the smallest cardinality of an independent set partition of G.

Definition 2.11 (Clique-cover number). The clique-cover number of G,
denoted σ(G), is the smallest number of cliques needed to cover all the vertices
of G. Hence, σ(G) = χ(G).

We next provide required properties of the independence number of a
graph.

Theorem 2.1. Let G and H be simple graphs. Then,

α(G ⊠ H) ≥ α(G) α(H), (2.5)
α(G + H) = α(G) + α(H). (2.6)

Theorem 2.2. Let G be a simple graph, and let H1 and H2 be induced and
spanning subgraphs of G, respectively. Then

α(H1) ≤ α(G) ≤ α(H2). (2.7)

Furthermore, for every k ∈ N,

α(Hk
1) ≤ α(Gk) ≤ α(Hk

2). (2.8)

2.1.4 Fractional invariants of graphs
To properly define the four basic fractional invariants of a graph, we need to
define the following four sets of functions.

Definition 2.12. Let G be a simple graph. Define the four following sets of
functions:

• Define FI(G) as the set of non-negative functions, f : V(G) → R, such
that for every I ∈ I(G), ∑

v∈I
f(v) ≤ 1. (2.9)
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• Define FC(G) as the set of non-negative functions, f : V(G) → R, such
that for every C ∈ C(G), ∑

v∈C
f(v) ≤ 1. (2.10)

• Define GI(G) as the set of non-negative functions, g : I(G) → R, such
that for every v ∈ V(G), ∑

I∈I(G):v∈I
g(I) ≥ 1. (2.11)

• Define GC(G) as the set of non-negative functions, g : C(G) → R, such
that for every v ∈ V(G), ∑

C∈C(G):v∈C
g(C) ≥ 1. (2.12)

Four basic fractional invariants are next defined by linear programming.

Definition 2.13 (Fractional invariants of graphs). For a simple graph G,

• The fractional independence number of G is

αf(G) = sup
{ ∑

v∈V(G)
f(v) : f ∈ FC(G)

}
. (2.13)

• The fractional clique-cover number of G is

σf(G) = inf
{ ∑

C∈C(G)
g(C) : g ∈ GC(G)

}
. (2.14)

• The fractional clique number of G is

ωf(G) = sup
{ ∑

v∈V(G)
f(v) : f ∈ FI(G)

}
. (2.15)

• The fractional chromatic number of G is

χf(G) = inf
{ ∑

I∈I(G)
g(I) : g ∈ GI(G)

}
. (2.16)
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Using strong duality of linear programming we get the following important
theorem.

Theorem 2.3. Let G be a simple graph. Then

αf(G) = σf(G), (2.17)
χf(G) = ωf(G). (2.18)

So, from now on we will use mostly the fractional independence number
and the fractional chromatic number. And, when we calculate them we will
use both of their equivalent linear programming representations.

Another useful property, that is obvious from Definition 2.13, is provided
next.

Theorem 2.4. For a simple graph G, the following holds:

αf(G) = σf(G) = χf(G) = ωf(G). (2.19)

Finally, some properties of the fractional independence number are pre-
sented.

Theorem 2.5. [28] Let G and H be simple graphs. Then

αf(G ⊠ H) = αf(G) αf(H), (2.20)
α(G ⊠ H) ≤ αf(G) α(H). (2.21)

2.1.5 Graph spectrum
Definition 2.14 (Adjacency matrix). Let G be a simple undirected graph on
n vertices. The adjacency matrix of G, denoted by A = A(G), is an n × n
symmetric matrix A = (Ai,j) where Ai,j = 1 if {i, j} ∈ E(G), and Ai,j = 0
otherwise (so, the entries in the principal diagonal of A are zeros).

Definition 2.15 (Graph spectrum). Let G be a simple undirected graph on n
vertices. The spectrum of G is defined as the multiset of eigenvalues of the
adjacency matrix of G.
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2.1.6 Some structured families of graphs
Vertex- and edge-transitivity, defined as follows, play an important role in
characterizing graphs.

Definition 2.16 (Automorphism). An automorphism of a graph G is an
isomorphism from G to itself.

Definition 2.17 (Vertex-transitivity). A graph G is said to be vertex-transitive
if, for every two vertices i, j ∈ V(G), there is an automorphism f : V(G) →
V(G) such that f(i) = j.

Definition 2.18 (Edge-transitivity). A graph G is edge-transitive if, for
every two edges e1, e2 ∈ E(G), there is an automorphism f : V(G) → V(G)
that maps the endpoints of e1 to the endpoints of e2.

Definition 2.19 (Kneser graphs). Let [n] be the set with natural numbers
from 1 to n, and let 1 ≤ r ≤ n. The Kneser graph K(n, r) is the graph whose
vertex set is composed of the different r-subsets of [n], and every two vertices
u, v are adjacent if and only if the respective r-subsets are disjoint.

Kneser graphs are vertex- and edge-transitive.

Definition 2.20 (Perfect graphs). A graph G is perfect if for every induced
subgraph H of G,

ω(H) = χ(H). (2.22)

Definition 2.21 (Universal graphs). A graph G is universal if for every graph
H,

α(G ⊠ H) = α(G) α(H). (2.23)

Lemma 2.1. If G is a universal graph, then Gk is universal for all k ∈ N.

Proof. This follows easily by Definition 2.21 and mathematical induction
on k.

A corollary by Hales from 1973 regarding the connection between graph
universality and the fractional independence number is presented next.

Theorem 2.6. [28] A graph G is universal if and only if α(G) = αf(G).
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Definition 2.22 (Strongly regular graphs). A graph G is strongly regular
with parameters srg(n, d, λ, µ) if it suffices:

• The order of G is n.

• G is d-regular.

• Every pair of adjacent vertices has exactly λ common neighbors.

• Every pair of distinct, nonadjacent vertices has exactly µ common
neighbors.

Definition 2.23 (Paley graphs). Let q be a prime power, i.e. q = pn where p
is prime and n ∈ N, with q ≡ 1 mod 4. The Paley graph of order q, denoted
P (q), is defined as

• The vertex set of P (q) is Fq = {0, 1, . . . , q − 1}.

• Two vertices a and b are adjacent if and only if a − b ∈ (F×
q )2.

Theorem 2.7. [29] Let G = P (q) be a Paley graph with q ≡ 1 mod 4 a prime
power. Then

• P (q) is a self-complementary graph.

• P (q) is strongly regular with parameters srg(q, q−1
2 , q−5

4 , q−1
4 ).

• P (q) is vertex-transitive.

• P (q) is edge-transitive.

2.2 The Shannon capacity of graphs
The concept of the Shannon capacity of a graph G was introduced by Claude
E. Shannon in [1] to consider the largest information rate that can be achieved
with zero-error communication. A discrete channel consists of

• A finite input set X .

• A (possibly infinite) output set Y .

• A non-empty fan-out set Sx ⊆ Y for every x ∈ X .
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In each channel use, a sender transmits an input x ∈ X and a receiver
receives an arbitrary output in Sx. It is possible to represent a DMC (discrete
memoryless channel) by a confusion graph G, which will be defined as follows

• V(G) = X represents the symbols of the input alphabet to that channel.

• E(G) is the edge set of G, where two distinct vertices in G are adjacent
if the corresponding two input symbols from X are not distinguishable
by the channel, i.e., they can produce an identical output symbol with
some positive probability. Formally,

E(G) =
{

{x, x′} : x, x′ ∈ X , x ̸= x′, Sx ∩ Sx′ ̸= ∅
}

. (2.24)

Thus, the largest number of inputs a channel can communicate without error
in a single use is the independence number α(G).

In the considered setting, the sender and the receiver agree in advance
on an independent set I of a maximum size α(G), the sender transmits only
inputs in I, every received output is in the fan-out set of exactly one input
in I, and the receiver can correctly determine the transmitted input. Next,
consider a transmission of k-length strings over a channel, where the channel
is used k ≥ 1 times, the sender transmits a sequence x1 . . . xk, and the receiver
gets a sequence y1 . . . yk of outputs, where yi ∈ Sxi

for all i ∈ [k]. In this
setup, k uses of the channel are viewed as a single use of a super-channel:

• Its input set is X k, and its output set is Yk.

• The fan-out set of (x1, . . . , xk) ∈ X k is the cartesian product

Sx1 × . . . × Sxk
. (2.25)

Note that two sequences (x1, . . . , xk), (x′
1, . . . , x′

k) ∈ X k are distinguishable
by the channel if and only if there exists i ∈ [k] such that

Sxi
∩ Sx′

i
= ∅. (2.26)

Thus, it is possible to represent the larger channel by the strong powers of
the confusion graph, and the k-th confusion graph is defined as thr k-fold
strong power of G:

Gk ≜ G ⊠ . . . ⊠ G. (2.27)
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Using the k-th confusion graph, the largest amount of information we can
send through the channel with k-uses is the independence number of the k-th
confusion graph, α(Gk). Thus, the maximum information rate per symbol
that is achievable by using input strings of length k is equal to

1
k

log α(Gk) = log k

√
α(Gk), k ∈ N.

And, by omitting the logarithm (as an increasing function) and supremizing
over k, the Shannon capacity is defined as follows.

Definition 2.24 (Shannon capacity). Let G be a simple graph. The Shannon
capacity of G is defined as

Θ(G) ≜ sup
k∈N

k

√
α(Gk) = lim

k→∞
k

√
α(Gk). (2.28)

Remark 2.1. The righthand equality in (2.28) is derived from Theorem 2.1
and Fekete’s Lemma.

Now we provide several basic properties of the Shannon capacity which
will be used throughout this thesis.

Theorem 2.8. Let G be a simple graph and let ℓ ∈ N. Then

Θ(Gℓ) = Θ(G)ℓ. (2.29)

Theorem 2.9. Let G be a simple graph and let m ∈ N, then

Θ(mG) = mΘ(G). (2.30)

Theorem 2.10. Let G1 and G2 be simple graphs. Then

Θ(G1 ⊠ G2) ≥ Θ(G1) Θ(G2). (2.31)

Theorem 2.11 (Shannon’s inequality). [1] Let G1 and G2 be simple graphs.
Then

Θ(G1 + G2) ≥ Θ(G1) + Θ(G2). (2.32)

For an elegant proof of Shannon’s theorem, see [24].
The following theorem is very important and central in this thesis, thus,

its proof is presented as well.
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Theorem 2.12 (Duality theorem). [24] Let G and H be simple graphs. Then

Θ(G + H) = Θ(G) + Θ(H) ⇐⇒ Θ(G ⊠ H) = Θ(G) Θ(H). (2.33)

Proof. By Theorems 2.10 and 2.11, the claim is equivalent to

Θ(G + H) > Θ(G) + Θ(H) ⇐⇒ Θ(G ⊠ H) > Θ(G) Θ(H). (2.34)

We next prove both directions of the equivalence in (2.34).

1. Assume that Θ(G ⊠ H) > Θ(G) Θ(H). By Theorem 2.8,

Θ(G + H)2 = Θ((G + H)2)
= Θ(G2 + 2G ⊠ H + H2),

and by Theorems 2.10 and 2.11,

Θ(G2 + 2G ⊠ H + H2) ≥ Θ(G)2 + 2Θ(G ⊠ H) + Θ(H)2.

Using the above assumption, we get

Θ(G)2 + 2Θ(G ⊠ H) + Θ(H)2 > Θ(G)2 + 2Θ(G) Θ(H) + Θ(H)2

= (Θ(G) + Θ(H))2,

which gives
Θ(G + H) > Θ(G) + Θ(H).

2. Next, assume Θ(G ⊠ H) = Θ(G) Θ(H). Then, for all i, j ∈ N, we get

Θ(Gi ⊠ Hj) Θ(G)j Θ(H)i = Θ(Gi ⊠ Hj) Θ(Gj) Θ(Hi)
≤ Θ(Gi+j ⊠ Hi+j)
= Θ(G ⊠ H)i+j

= Θ(G)i+j Θ(H)i+j,

thus

Θ(Gi ⊠ Hj) ≤ Θ(G)i Θ(H)j. (2.35)
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Using property (2.35), for all k ∈ N, we get

α
(
(G + H)k

)
= α

 k∑
ℓ=0

(
k

ℓ

)
Gℓ ⊠ Hk−ℓ


=

k∑
ℓ=0

(
k

ℓ

)
α(Gℓ ⊠ Hk−ℓ)

≤
k∑

ℓ=0

(
k

ℓ

)
Θ
(
Gℓ ⊠ Hk−ℓ

)

≤
k∑

ℓ=0

(
k

ℓ

)
Θ
(
Gℓ
)

Θ
(
Hk−ℓ

)

=
k∑

ℓ=0

(
k

ℓ

)
Θ(G)ℓ Θ(H)k−ℓ

= (Θ(G) + Θ(H))k .

Finally, letting k → ∞ gives

Θ(G + H) ≤ Θ(G) + Θ(H),

and by Theorem 2.11,

Θ(G + H) = Θ(G) + Θ(H).

Theorem 2.13. Let G be a simple graph, and let H1 and H2 be induced and
spanning subgraphs of G, respectively. Then

Θ(H1) ≤ Θ(G) ≤ Θ(H2). (2.36)

2.3 The Lovász function of graphs
Before we present the Lovász ϑ-function of graphs, we define an orthogonal
representation of a graph [11].

Definition 2.25 (Orthogonal representations). Let G be a simple graph.
An orthogonal representation of G in Rd assigns each vertex i ∈ V(G) to
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a nonzero vector ui ∈ Rd such that, for every distinct nonadjacent vertices
i, j ∈ V(G), the vectors ui, uj are orthogonal. An orthogonal representation is
called an orthonormal representation if all the representing vectors of G have
a unit length.

In an orthogonal representation of a graph G, distinct nonadjacent vertices
are mapped to orthogonal vectors, but adjacent vertices may not be necessarily
mapped to non-orthogonal vectors. If the latter condition also holds, then it
is called a faithful orthogonal representation.

Definition 2.26 (Lovász function). Let G be a simple graph of order n. The
Lovász function of G is defined as

ϑ(G) ≜ min
u,c

max
1≤i≤n

1
(cTui)2 , (2.37)

where the minimum is taken over

• all orthonormal representations {ui : i ∈ V(G)} of G.

• all unit vectors c.

The unit vector c that achieves the minimum is called the handle of the
orthonormal representation.

An orthonormal representation of the pentagon C5, along with its handle
c, is shown in Figure 2.1.

The Lovász ϑ-function can be expressed as a solution of an SDP problem.
To that end, let A = (Ai,j) be the n × n adjacency matrix of G with n ≜
| V(G)|. The Lovász ϑ-function ϑ(G) can be expressed by the following convex
optimization problem:

maximize Tr(B Jn)
subject to

B ⪰ 0,

Tr(B) = 1,

Ai,j = 1 ⇒ Bi,j = 0, i, j ∈ [n].

(2.38)

The SDP formulation in (2.38) yields the existence of an algorithm that
computes ϑ(G), for every graph G, with a precision of r decimal digits, and a
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Figure 2.1: A 5-cycle graph and its orthonormal representation (Lovász
umbrella).

computational complexity that is polynomial in n and r. Thus, the Lovász ϑ-
function can be computed in polynomial time in n, and by [11], it is an upper
bound on the Shannon capacity, whose computation requires the computation
of an infinite series of independence number, which is a known NP-hard
problem.

Adding the inequality constraints Bi,j ≥ 0 for all i, j ∈ [n] to (2.38) yields
the Schrijver ϑ-function of G, denoted ϑ′(G), which therefore yields

ϑ′(G) ≤ ϑ(G). (2.39)

In light of (2.39), one can ask if the Schrijver ϑ-function can serve as a
better upper bound for the Shannon capacity. However, in a recent paper
by I. Sason [30], it was shown that the Schrijver ϑ-function need note be an
upper bound on the Shannon capacity, by providing a graph whose Shannon
capacity is strictly larger than the Schrijver ϑ-function. Lastly, the Schrijver
ϑ-function is an upper bound on the independence number, so it can be used
for constructing better bounds on the independence number.

We next provide an alternative representation of the Lovász ϑ-function of
a graph [11].

Theorem 2.14. [11] Let (v1, · · · , vn) range over all orthonormal representa-
tions of G and d over all unit vectors. Then

ϑ(G) = max
n∑

i=1
(dTvi)2. (2.40)

20



Next, we provide several properties of the Lovász number, regarding graph
operations and subgraphs.

Theorem 2.15. [11] Let G1 and G2 be simple graphs. Then

ϑ(G1 ⊠ G2) = ϑ(G1) ϑ(G2). (2.41)

The following result was first stated and proved by Knuth (Section 18
of [16]). We suggest an alternative elementary proof in Appendix A.

Theorem 2.16. [16] Let G and H be simple graphs. Then

ϑ(G + H) = ϑ(G) + ϑ(H). (2.42)

Theorem 2.17. Let G be a simple graph, and let H1 and H2 be induced and
spanning subgraphs of G, respectively. Then

ϑ(H1) ≤ ϑ(G) ≤ ϑ(H2). (2.43)

Next, we present a few known formulas and bounds on the Lovász function.

Theorem 2.18. [11,31] Let G be a simple graph of order n, then

ϑ(G) ϑ(G) ≥ n, (2.44)

with an equality in (2.44) if G is a vertex-transitive or strongly regular graph.

Theorem 2.19. [11] Let G be a d-regular graph of order n, and let λn be its
smallest eigenvalue. Then

ϑ(G) ≤ − nλn

d − λn

, (2.45)

with an equality in (2.45) if G is an edge-transitive graph.

2.4 Concluding preliminaries
We next provide a useful lower bound for the fractional independence number
and the fractional chromatic number (see [32, Proposition 3.1.1]).
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Theorem 2.20. Let G be a simple graph of order n, then

αf(G) ≥ n

ω(G) ,

χf(G) ≥ n

α(G) .

Both inequalities hold with equality for vertex-transitive graphs.

Theorem 2.21. Let G be a simple graph. Then,

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ αf(G) ≤ χ(G) = σ(G). (2.46)

In continuation to Definition 2.19, we next provide some known invariants
of Kneser graphs.

Theorem 2.22. Let G = K(n, r) be a Kneser graph with n ≥ 2r. The
invariants of G are

α(G) =
(

n − 1
r − 1

)
,

ω(G) =
⌊

n

r

⌋
,

Θ(G) =
(

n − 1
r − 1

)
,

ϑ(G) =
(

n − 1
r − 1

)
,

ϑ(G) = n

r
,

αf(G) =

(
n
r

)
⌊n

r
⌋
,

χf(G) = n

r
,

χ(G) = n − 2r + 2,

σ(G) =

(

n
r

)
⌊

n
r

⌋
.

Proof. See [11, Theorem 13], [33] and Theorem 2.20.
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Theorem 2.23. Let ℓ ≥ 1. Then the path graph Pℓ is a universal graph with
parameters

α(Pℓ) = Θ(Pℓ) = ϑ(Pℓ) = αf(Pℓ) = σ(Pℓ) =
⌈

ℓ

2

⌉
. (2.47)

Theorem 2.24. Let k ≥ 4. Then the cycle graph Ck has
• If k is an even number, then Ck is a universal graph with

α(Ck) = Θ(Ck) = ϑ(Ck) = k

2 .

• If k ≥ 5 is an odd number, then

α(Ck) =
⌊

k

2

⌋
; ϑ(Ck) = k

1 + sec π
k

.

Lemma 2.2. If G is a universal graph, then Θ(G) = α(G).
Proof. If G is a universal graph, then by Theorems 2.6 and 2.21,

Θ(G) = α(G).

Remark 2.2. The converse of Lemma 2.2 is in general false, see Example 2.2.
Corollary 2.1. Let G = K(n, r) be a Kneser graph with n ≥ 2r, then G is
universal if and only if r|n.
Proof. By Theorem 2.22,

αf(G) =

(
n
r

)
⌊n

r
⌋
.

For G to be a universal graph, the equality α(G) = αf(G) has to hold (see
Theorem 2.6), thus, G is universal if and only if:(

n − 1
r − 1

)
=

(
n
r

)
⌊n

r
⌋
,

which holds if and only if r|n, as required.
Example 2.2. The Petersen graph G = K(5, 2) has α(G) = Θ(G) but is not
universal.
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Chapter 3

The Shannon capacity of
polynomials of graphs

Shannon conjectured that for any two graphs G and H, the capacity of their
disjoint union is equal to the sum of their individual capacities [1]. This
conjecture was later disproved by Alon [7], who showed that if G is the Schläfli
graph, then

Θ(G) + Θ(G) ≤ 10 < 2
√

27 ≤ Θ(G + G).
In this section, we provide sufficient conditions on a sequence of graphs, such
that the capacity of their disjoint union is equal to the sum of their individual
capacities. The results of this section rely on a recent result by Schrijver [24].
Due to its importance, it is provided with a proof in the preliminaries (see
Theorem 2.12), stating that for any two simple graphs G and H,

Θ(G ⊠ H) = Θ(G) Θ(H) ⇐⇒ Θ(G + H) = Θ(G) + Θ(H).
This result was independently proved by Wigderson and Zuiddam [22], with
credit to Holzman for personal communications.

Define the set N[x1, . . . , xℓ] to be the set of all nonzero polynomials of
variables x1, . . . , xℓ with nonnegative integral coefficients. A polynomial of
graphs, p(G1, . . . , Gℓ), is defined such that the plus operation of graphs stands
for their disjoint union and a product of graphs stands for their strong product.

In this section, we derive sufficient conditions for a sequence of graphs
G1, . . . , Gℓ to satisfy the property that, for every polynomial p ∈ N[x1, . . . , xℓ],
the following equality holds:

Θ(p(G1, G2, . . . , Gℓ)) = p(Θ(G1), Θ(G2), . . . , Θ(Gℓ)). (3.1)
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By a corollary of the duality theorem (Theorem 2.12), which was proven by
Schrijver [24, Theorem 3], the following surprising result holds.

Lemma 3.1. Let G1, G2, . . . , Gℓ be a sequence of simple graphs. Then, equality
(3.1) holds for every p ∈ N[x1, . . . , xℓ] if and only if

Θ(G1 + G2 + . . . + Gℓ) = Θ(G1) + Θ(G2) + . . . + Θ(Gℓ). (3.2)

By Lemma 3.1, we focus on finding sufficient conditions for the satisfiability
of (3.2). In this section, we present two main results that provide such
sufficient conditions, discuss the differences between them, and illustrate their
application. We start by providing the following result.

Theorem 3.1. Let G1, . . . , Gℓ be simple graphs, with ℓ ∈ N. Then for every
p ∈ N[x1, . . . , xℓ],

p(Θ(G1), . . . , Θ(Gℓ)) ≤ Θ(p(G1, . . . , Gℓ)) ≤ p(ϑ(G1), . . . , ϑ(Gℓ)). (3.3)

Proof. By Theorems 2.10 and 2.11,

p(Θ(G1), . . . , Θ(Gℓ)) ≤ Θ(p(G1, . . . , Gℓ)),

and by Theorems 2.15 and 2.16,

Θ(p(G1, . . . , Gℓ)) ≤ ϑ(p(G1, . . . , Gℓ))
= p(ϑ(G1), . . . , ϑ(Gℓ)).

Corollary 3.1. Let G1, . . . , Gℓ be simple graphs, with ℓ ∈ N. If Θ(Gi) = ϑ(Gi)
for every i ∈ [ℓ], then

Θ(p(G1, . . . , Gℓ)) = p(ϑ(G1), . . . , ϑ(Gℓ)) (3.4)

for every p ∈ N[x1, . . . , xℓ].

Proof. By assumption, it follows that

p(Θ(G1), . . . , Θ(Gℓ)) = p(ϑ(G1), . . . , ϑ(Gℓ)).

Thus, by Theorem 3.1, equality (3.4) holds.
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We next provide our first sufficient condition.

Theorem 3.2. Let G1, . . . , Gℓ be simple graphs, with ℓ ∈ N. If Θ(Gi) = ϑ(Gi)
for every i ∈ [ℓ], then equality (3.1) holds for every p ∈ N[x1, . . . , xℓ].

Proof. By the assumption and Theorem 2.16,

ϑ(G1 + . . . + Gℓ) = ϑ(G1) + . . . + ϑ(Gℓ)
= Θ(G1) + . . . + Θ(Gℓ)
≤ Θ(G1 + . . . + Gℓ)
≤ ϑ(G1 + . . . + Gℓ),

which gives

Θ(G1 + G2 + . . . + Gℓ) = Θ(G1) + Θ(G2) + . . . + Θ(Gℓ).

Thus, by Lemma 3.1, equality (3.1) holds for every p ∈ N[x1, . . . , xℓ].

Example 3.1. If G1, . . . , Gℓ are all Kneser graphs or self-complementary
vertex-transitive graphs, then by Theorem 3.2, equality (3.1) holds for every
polynomial p ∈ N[x1, . . . , xℓ]. In particular, if Gi = K(ni, ri) (with ni ≥ 2ri)
for every i ∈ [ℓ], then

Θ(K(n1, r1) + . . . + K(nℓ, rℓ)) =
(

n1 − 1
r1 − 1

)
+ . . . +

(
nℓ − 1
rℓ − 1

)
.

Similarly, if Gi is a self-complementary and vertex-transitive graph for every
i ∈ [ℓ], then by [34, Theorem 3.26]

Θ(G1 + . . . + Gℓ) = √
n1 + . . . + √

nℓ,

where ni is the order of Gi.

Next we give second sufficient conditions for equality (3.1) to hold.

Lemma 3.2. Let G1 and G2 be simple graphs. If Θ(G1) = αf(G1), then

Θ(G1 + G2) = Θ(G1) + Θ(G2). (3.5)
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Proof. By Theorem 2.10,

Θ(G1) Θ(G2) ≤ Θ(G1 ⊠ G2), (3.6)

and by Theorem 2.5,

Θ(G1 ⊠ G2) = lim
k→∞

k

√
α((G1 ⊠ G2)k) (3.7)

≤ lim
k→∞

k
√

αf(Gk
1)α(Gk

2) (3.8)

= αf(G1) Θ(G2), (3.9)

Combining inequalities (3.6) and (3.7) gives

Θ(G1) Θ(G2) ≤ Θ(G1 ⊠ G2)
≤ αf(G1) Θ(G2).

Hence, by the assumption,

Θ(G1) Θ(G2) = Θ(G1 ⊠ G2),

and equality (3.5) follows from Theorem 2.12.

Theorem 3.3. Let G1, G2, . . . , Gℓ be simple graphs. If Θ(Gi) = αf(Gi) for (at
least) ℓ−1 of these graphs, then equality (3.1) holds for every p ∈ N[x1, . . . , xℓ].

Proof. Without loss of generality, assume Θ(Gi) = αf(Gi) for every i ∈ [ℓ − 1].
By a recursive application of Lemma 3.2,

Θ
(

ℓ∑
i=1

Gi

)
= Θ(G1) + Θ

(
ℓ∑

i=2
Gi

)
= . . . =

ℓ∑
i=1

Θ(Gi).

Thus, by Lemma 3.1, equality (3.1) holds for every p ∈ N[x1, . . . , xℓ].

It is worth noting that our sufficient conditions for equality (3.1) to hold
are less restrictive than those hinted in Shannon’s paper [1], which are next
presented. The following theorem is derived directly from Lemma 3.2 and
the sandwich theorem. We provide the original proof in Appendix B.

Theorem 3.4. Let G1 and G2 be simple graphs with α(G1) = χ(G1). Then

Θ(G1 + G2) = Θ(G1) + Θ(G2).
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Remark 3.1. The sufficient condition in Theorem 3.4 is more restrictive
than the one in Lemma 3.2. This holds since by Theorem 2.21,

α(G) ≤ Θ(G) ≤ αf(G) ≤ χ(G).

The next example suggests a family of graphs for which Θ(G) = αf(G) <
χ(G) holds for every graph G in that family, thus showing the possible
applicability of Lemma 3.2 in cases where the conditions in Theorem 3.4 are
not satisfied.

Example 3.2. Let G = K(n, r) be the complement of a Kneser graph where
n > 2r, r > 1, and r|n. It is claimed that the graph G satisfies

Θ(G) = αf(G) < χ(G).

Indeed, the invariants of the Kneser graph and its complement are known,
and by Theorem 2.22

α(G) = ω(K(n, r)) = n

r

αf(G) = n

r
χ(G) = χ(K(n, r)) = n − 2r + 2,

so since the independence number and the fractional independence number
are identical and equal to n

r
then Θ(G) = n

r
. Hence, by the assumption that

n > 2r, it follows that

Θ(G) = αf(G) = n

r
< n − 2r + 2 = χ(G).

Remark 3.2. The sufficient conditions provided by Theorems 3.2 and 3.3
do not supersede each other (see Examples 3.3 and 3.4). More explicitly, for
every graph G,

Θ(G) ≤ ϑ(G) ≤ αf(G),

so the condition Θ(G) = αf(G) is less restrictive than the condition Θ(G) =
ϑ(G). Consequently, Theorem 3.3 imposes a stronger condition than the one
in Theorem 3.2 on ℓ − 1 of the graphs, while no condition is imposed on the
ℓ-th graph. The following examples clarify the issue.
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Example 3.3. Let G1, . . . , Gℓ be Kneser graphs, where

Gi = K(ni, ri) (ni ≥ 2ri).

For these graphs we have

α(Gi) = Θ(Gi) = ϑ(Gi) =
(

ni − 1
ri − 1

)
, ∀i ∈ [ℓ].

On the other hand, by Theorem 2.22,

αf(Gi) =

(
ni

ri

)
⌊ni

ri
⌋
. (3.10)

If ri ∤ ni, then it follows that

αf(Gi) >

(
ni

ri

)
ni

ri

=
(

ni − 1
ri − 1

)
= Θ(Gi), (3.11)

so, if ri ∤ ni, then αf(Gi) > Θ(Gi).
Let the parameters n1, . . . , nℓ , r1, . . . , rℓ be selected such that ri ∤ ni for at

least two of the graphs {Gi}ℓ
i=1, we have αf(Gi) > Θ(Gi), which then violates

the satisfiability of the sufficient conditions in Theorem 3.3. Hence, in that
case

Θ(G1 + . . . + Gℓ) =
ℓ∑

i=1

(
ni − 1
ri − 1

)

by Theorem 3.2, whereas this equality is not implied by Theorem 3.3.

Example 3.4. If Gi is a perfect graph for every i ∈ [ℓ − 1] and Gℓ is the
complement of the Schläfli graph, then we have:

• Θ(G) = αf(G) for every i ∈ [ℓ − 1].

• Θ(Gℓ) < ϑ(Gℓ) (By [14]).

Thus, the sufficient conditions of Theorem 3.3 hold, whereas the sufficient
conditions of Theorem 3.2 do not hold.
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Chapter 4

The Shannon capacity of
Tadpole graphs

The present section explores Tadpole graphs, where exact values and bounds
on their Shannon capacity are derived.

Definition 4.1 (Tadpole graphs). Let k, ℓ ∈ N with k ≥ 3 and ℓ ≥ 1. The
graph T(k, ℓ), called the Tadpole graph of order (k, ℓ), is obtained by taking a
cycle Ck of order k and a path Pℓ of order ℓ, and then joining one pendant
vertex of Pℓ (i.e., one of its two vertices of degree 1) to a vertex of Ck by an
edge. For completeness, if ℓ = 0, the Tadpole graph is defined trivially as a
cycle graph of order k, T(k, 0) = Ck.

Figure 4.1: The Tadpole graph T(5, 6).

Every Tadpole graph is a connected graph with

| V(T(k, ℓ))| = | E(T(k, ℓ))| = k + ℓ.

The Tadpole graph T(k, ℓ) with ℓ ≥ 1 is irregular since it has one vertex
of degree 3, k + ℓ − 2 vertices of degree 2, and one vertex of degree 1 (see
Figure 4.1).
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The motivation to explore the Tadpole graphs comes from their similarity
to the cycle graph, as graphs and as their equivalent DMCs, which is shown
in Figure 4.2.

Figure 4.2: The DMCs of T(k, ℓ) (Left plot) and Ck+ℓ (Right plot).

Lemma 4.1. Let k ≥ 3 and ℓ ≥ 0. The independence number of the Tadpole
graph T(k, ℓ) is given by

α(T(k, ℓ)) =
⌊

k

2

⌋
+
⌈

ℓ

2

⌉
. (4.1)

Proof. The independence number of Ck is
⌊

k
2

⌋
, and the independence number

of Pℓ is
⌈

ℓ
2

⌉
. One can select a maximal independent set by excluding the

vertex of Ck that is adjacent to the vertex of Pℓ, which gives (4.1).
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Lemma 4.2. Let k ≥ 3 and ℓ ≥ 0.

1. If one of the following two conditions holds:

• k = 3 or k ≥ 4 is even,
• k ≥ 5 is odd and ℓ ≥ 1 is odd,

then

ϑ(T(k, ℓ)) =
⌊

k

2

⌋
+
⌈

ℓ

2

⌉
.

2. If k ≥ 5 is odd and ℓ ≥ 0 is even, then

ϑ(T(k, ℓ)) = k

1 + sec π
k

+ ℓ

2 .

Proof. First, if k = 3 then the cycle C3 is a clique of order 3, and since the
clique-cover number of Pℓ is

⌈
ℓ
2

⌉
then

σ(T(3, ℓ)) = 1 +
⌈

ℓ

2

⌉
.

By Lemma 4.1 and Theorem 2.21, a lower bound and an upper bound on
ϑ(T(k, ℓ)) coincide, which gives

ϑ(T(3, ℓ)) = 1 +
⌈

ℓ

2

⌉
.

Next, if k > 3, then the clique number of T(k, ℓ) is 2 (since there are no
triangles), thus, every clique in T(k, ℓ) is either an edge or a single vertex. In
this case, if k is even, it is possible to cover the cycle Ck by k

2 edges (cliques)
and the path can be covered by

⌈
ℓ
2

⌉
edges, and thus σ(T(k, ℓ)) = k

2 +
⌈

ℓ
2

⌉
.

And, if k is odd and ℓ is odd, then one can cover T(k, ℓ) by k+ℓ
2 edges (by

covering Ck by k−1
2 edges, excluding the vertex of Ck that is adjacent to a

pendant vertex of Pℓ, and then covering the remaining vertices of T(k, ℓ) by
ℓ+1

2 edges). Overall, in both instances we got

σ(T(k, ℓ)) =
⌊

k

2

⌋
+
⌈

ℓ

2

⌉
,
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which gives (by using again the sandwich theorem in (2.46) and Lemma 4.1),

ϑ(T(k, ℓ)) =
⌊

k

2

⌋
+
⌈

ℓ

2

⌉
.

Finally, assume that k ≥ 5 is odd and ℓ ≥ 2 is even (if ℓ = 0 then T(k, 0) = Ck

and the result follows from Theorem 2.24). By deleting the edge that connects
the cycle Ck with the path Pℓ, it follows that Ck + Pℓ is a spanning subgraph
of T(k, ℓ). On the other hand, by deleting the leftmost vertex of Pℓ (i.e., the
vertex that is of distance 1 from the cycle Ck), and the two edges that are
incident to it in T(k, ℓ), it follows that Ck + Pℓ−1 is an induced subgraph of
T(k, ℓ). Hence, by Theorem 2.17,

ϑ(Ck + Pℓ−1) ≤ ϑ(T(k, ℓ))
≤ ϑ(Ck + Pℓ).

Furthermore, by Theorems 2.23 and 2.24,

ϑ(Ck + Pℓ−1) = k

1 + sec π
k

+ ℓ

2
= ϑ(Ck + Pℓ).

Thus,

ϑ(T(k, ℓ)) = k

1 + sec π
k

+ ℓ

2 .

Theorem 4.1. Let k ≥ 3 and ℓ ≥ 0 be integers.

1. If one of the following two conditions holds:

• k = 3 or k ≥ 4 is even,
• k ≥ 5 is odd and ℓ ≥ 1 is odd,

then

Θ(T(k, ℓ)) =
⌊

k

2

⌋
+
⌈

ℓ

2

⌉
. (4.2)
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2. If k ≥ 5 is odd and ℓ ≥ 0 is even, then

Θ(T(k, ℓ)) = Θ(Ck) + ℓ

2 . (4.3)

Proof. First, if k = 3 or k ≥ 4 is even, or k ≥ 5 is odd and ℓ ≥ 1 is odd, then
by Lemmas 4.1 and 4.2,

Θ(T(k, ℓ)) =
⌊

k

2

⌋
+
⌈

ℓ

2

⌉
.

Second, if k ≥ 5 is odd and ℓ ≥ 0 is even, then by using the same subgraphs
of T(k, ℓ) from the proof of Lemma 4.2, and by Theorem 2.13,

Θ(Ck + Pℓ−1) ≤ Θ(T(k, ℓ)) ≤ Θ(Ck + Pℓ).

Furthermore, path graphs are universal, then, by Theorem 3.3,

Θ(Ck + Pℓ−1) = Θ(Ck) + Θ(Pℓ−1)

= Θ(Ck) + ℓ

2
= Θ(Ck + Pℓ).

Hence,

Θ(T(k, ℓ)) = Θ(Ck) + ℓ

2 .

Corollary 4.1. Let ℓ ≥ 0 be an even number and let k ≥ 5 be an odd number.

1. If k = 5, then

Θ(T(5, ℓ)) =
√

5 + ℓ

2 . (4.4)

2. If k ≥ 7, then

k + ℓ − 1
2 ≤ Θ(T(k, ℓ)) ≤ k

1 + sec π
k

+ ℓ

2 . (4.5)
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Proof. If k = 5, then Θ(C5) =
√

5 [11], and by Theorem 4.1,

Θ(T(5, ℓ)) = Θ(C5) + ℓ

2
=

√
5 + ℓ

2 .

If k ≥ 7, then by Theorem 2.24,
k − 1

2 = α(Ck)

≤ Θ(Ck)

≤ ϑ(Ck) = k

1 + sec π
k

.

Thus, by Theorem 4.1,
k + ℓ − 1

2 ≤ Θ(T(k, ℓ))

≤ k

1 + sec π
k

+ ℓ

2 .

Example 4.1. Let G1 = T(5, 6), then by Corollary 4.1,

Θ(T(5, 6)) = 3 +
√

5 = 5.23607 . . . (4.6)

For comparison, using the SageMath software [35] gives the values√
α(G1 ⊠ G1) =

√
26 = 5.09902,

3
√

α(G1 ⊠ G1 ⊠ G1) = 3
√

136 = 5.14256.

Let G2 = T(7, 6), then by Corollary 4.1 and the lower bound [36]

Θ(C7) ≥ 5
√

α(C5
7) ≥ 5

√
367,

which yields

6.2578659 . . . = 5
√

367 + 3 ≤ Θ(C7) + 3
= Θ(T(7, 6))

≤ 7
1 + sec π

7
+ 3 = 6.3176672.
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The above lower bound on Θ(T(7, 6)) improves the previous lower bound in
the leftmost term of (4.5), thus closing the gap between the upper and lower
bounds from 0.3176 to 0.0598.

The last example shows that the lower bound in Corollary 4.1 can be
improved. The following result gives an improved lower bound.

Theorem 4.2. If k ≥ 5 is odd and ℓ ≥ 0 is even, then√√√√(k − 1
2

)2

+
⌊

k − 1
4

⌋
+ ℓ

2 ≤ Θ(T(k, ℓ)) ≤ k

1 + sec π
k

+ ℓ

2 . (4.7)

Proof. The upper bound was proved in Corollary 4.1. We next prove the
improved lower bound. By Hales’ paper [28, Theorem 7.1], if k ≥ 3 is odd,
then

α(C2
k) =

(
k − 1

2

)2

+
⌊

k − 1
4

⌋
,

which implies that

Θ(Ck) ≥
√

α(C2
k)

=

√√√√(k − 1
2

)2

+
⌊

k − 1
4

⌋
.

Thus, by combining the last inequality with Theorem 4.1, it follows that

Θ(T(k, ℓ)) = Θ(Ck) + ℓ

2

≥

√√√√(k − 1
2

)2

+
⌊

k − 1
4

⌋
+ ℓ

2 .

The gap between the upper and lower bounds on Θ(T(k, ℓ)) for k ≥ 7 odd
and ℓ ≥ 0 even satisfies,(

k

1 + sec π
k

+ ℓ

2

)
−


√√√√(k − 1

2

)2

+
⌊

k − 1
4

⌋
+ ℓ

2


<

k + ℓ

2 − k + ℓ − 1
2 = 1

2 . (4.8)
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Remark 4.1. Theorem 4.2 gives an improved lower bound that is based on a
lower bound of the capacity of odd cycles that was constructed by Hales (see
[28]). Since hales’ result, better lower bounds for odd cycles were constructed,
and can be used to improve the lower bound in special cases. For better lower
bounds on higher powers of odd cycles see [37,38]. The next theorem shows an
improvement to the bound in (4.7), for special cases using a result from [37].

Theorem 4.3. Let n, d ∈ N, let ℓ ≥ 0 be an even number, and define

k = n2d + 2d−1 + 1.

Then,

d

√√√√nkd−1 +
(

k − 1
2

)
kd−2 + ℓ

2 ≤ Θ(T(k, ℓ)). (4.9)

Proof. By Theorem 4.1,

Θ(T(k, ℓ)) = ℓ

2 + Θ(Ck). (4.10)

And, by [37, Theorem 1.4],

Θ(Ck) ≥ d
√

α(Cd
k)

≥ d

√√√√nkd−1 +
(

k − 1
2

)
kd−2. (4.11)

Finally, combining (4.10) and (4.11) gives (4.9).

Remark 4.2. In Theorem 4.3 a bound from [37, Theorem 1.4] was used. It
is worth noting that in his paper, Bohman conjectured that the lower bound
was the exact value of the independence number (see [37, Conjecture 1.5]). In
a later paper by Bohman, Holzman and Natarajan [38], a countably infinite
subset of these values was confirmed, and by substituting d = 3, which gives
k = 8n + 5, it was proven that if k = 8n + 5 is a prime number, then the
lower bound was the exact value of the independence number, i.e.

α(C3
8n+5) = 1

2(8n + 5)
[
(2n + 1)(8n + 5) − 1

]
. (4.12)
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Chapter 5

When the graph capacity is not
attained by the independence
number of any finite power?

In Section 4, we proved that if k = 3, or if k ≥ 4 is even, or if k ≥ 5 and
ℓ ≥ 1 are odd, then the capacity of the Tadpole graph T(k, ℓ) coincides
with its independence number. Additional families of graphs also share this
property; for example, by [11], the capacities of all Kneser graphs are equal
to their independence numbers. It is, however, well known that not all graphs
posses this property; e.g., Θ(C5) =

√
α(C2

5) =
√

5 and α(C5) = 2. The
property that the Shannon capacity coincides with the square root of the
independence number of the second (strong) power of the graph was proved,
more generally for all self-complementary vertex transitive graphs [11] and
all self-complementary strongly regular graphs [34], provided that the order
of the graph is not a square of an integer. Families of graphs whose capacity
is attained at a finite power that is strictly larger than 2 are yet to be found.
In this section, we explore sufficient conditions on a graph G that makes its
Shannon capacity be unattainable by the independence number of any finite
power of G, i.e., we explore the conditions on G to have:

Θ(G) > k

√
α(Gk) ∀ k ∈ N. (5.1)

For example, the graph G = C5 +K1 satisfies (5.1) (see Example 5.1).
This problem was explored by Guo and Watanabe [10], and a family of

disconnected graphs that satisfies (5.1) was constructed. In this section, we
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start by presenting the method from [10], and then we provide two original
approaches. The first original approach relies on a Dedekind’s lemma in
number theory (1858), and it uses a similar concept of proof to the one
in Example 5.1. The second original approach uses the result from [10] to
construct a countably infinite family of connected graphs whose capacity is
strictly larger than the independence number of any finite (strong) power of
the graph.

The following example provides a disconnected graph whose capacity is
not attained at any finite power, the proof of this example uses an important
concept that is later used in our first original approach. This example was
shown by A. Wigderson and J. Zuiddam [22].

Example 5.1. Let G = C5 + K1. We have C5 ⊠ K1 ∼= C5, so

Θ(C5 ⊠ K1) = Θ(C5) = Θ(C5) Θ(K1).

Consequently, by Theorem 2.12,

Θ(G) = Θ(C5) + Θ(K1) =
√

5 + 1,

and, for every k ∈ N,

Θ(G)k =
(√

5 + 1
)k

=
k∑

i=0

(
k

i

)
5 i

2

=
∑

0≤ℓ≤⌊ k
2 ⌋

(
k

2ℓ

)
5ℓ +

∑
0≤ℓ≤⌊ k−1

2 ⌋

(
k

2ℓ + 1

)
5ℓ+ 1

2

= ck + dk

√
5 /∈ N,

where

ck =

⌊
k
2

⌋
∑
ℓ=0

(
k

2ℓ

)
5ℓ ∈ N

dk =

⌊
k−1

2

⌋
∑
ℓ=0

(
k

2ℓ + 1

)
5ℓ ∈ N.
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It therefore follows that, for all k ∈ N,

Θ(G)k ̸= α(Gk)

since the independence number is an integer. Consequently, (5.1) holds.

We next consider three approaches for the construction of families of
graphs whose Shannon capacities satisfies the condition in (5.1). The first
approach is due to Guo and Watanabe [10] with a simplified proof (the
original proof from [10] is provided in Appendix C), and the second and third
approaches of constructing such graph families are original.

5.1 First approach
Theorem 5.1. [10] Let G be a universal graph (see Definition 2.21), and
let H satisfy the inequality Θ(H) > α(H). Then, the Shannon capacity of
K ≜ G + H is not attained at any finite power of K.

Proof. Let k ∈ N. By the universality of G,

α((G + H)k) =
k∑

i=0

(
k

i

)
α(Gi ⊠ Hk−i)

=
k∑

i=0

(
k

i

)
α(G)i α(Hk−i)

=
k∑

i=0

(
k

i

)
Θ(G)iα(Hk−i), (5.2)

where the last equality holds by Lemma 2.2. Next, by the assumption that
Θ(H) > α(H) and since Θ(Hm) = Θ(H)m ≥ α(H)m for all m ∈ N with strict
inequality if m = 1 (by assumption), it follows that for all k ∈ N

k∑
i=0

(
k

i

)
Θ(G)iα(Hk−i) <

k∑
i=0

(
k

i

)
Θ(G)iΘ(H)k−i

= (Θ(G) + Θ(H))k. (5.3)

Finally, by Shannon’s inequality (see Theorem 2.11),

Θ(G) + Θ(H) ≤ Θ(G + H). (5.4)
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Combining (5.2)–(5.4) and raising both sides of the resulting inequality to
the power of 1

k
gives

k

√
α((G + H)k) < Θ(G + H),

thus confirming the satisfiability of the condition in (5.1).

Corollary 5.1. [10] Let G be a universal graph, and let K = G + C2k+1 with
k ≥ 2 be the disjoint union of a universal graph and an odd cycle of length at
least 5. Then, Θ(K) is not attained at any finite (strong) power of K.

Proof. This follows from Theorem 5.1 by showing that Θ(C2k+1) > α(C2k+1).
For an odd cycle graph of length 2k + 1, α(C2k+1) = k. By [28, Theorem 7.1],
for every j, k ∈ N such that 2 ≤ j ≤ k

α(C2j+1 ⊠C2k+1) = jk +
⌊

j

2

⌋
,

⇒α(C2
2k+1) = k2 +

⌊
k

2

⌋
> k2 = α(C2k+1)2,

⇒Θ(C2k+1) ≥
√

α(C2
2k+1) > α(C2k+1).

Remark 5.1. This applies in particular to K1 + C5 since K1 is universal.

5.2 Second approach
The next approach relies on a lemma in number theory from 1858 by Dedekind.
This lemma is provided as follows, whose simple and elegant proof from [39,
p. 309] is presented here for completeness.

Lemma 5.1. If the square-root of a natural number is rational, then it must
be an integer; equivalently, the square-root of a natural number is either an
integer or an irrational number.

Proof. Let m ∈ N be a natural number such that
√

m ∈ Q. Let n0 ∈ N be
the smallest natural number such that n0

√
m ∈ N. If

√
m /∈ N, then there

exists ℓ ∈ N such that 0 <
√

m − ℓ < 1. Setting n1 = n0(
√

m − ℓ), we get
n1 ∈ N and 0 < n1 < n0. Also n1

√
m = n0m − ℓ(n0

√
m) ∈ N. This leads to

a contradiction to the choice of n0.
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Next, we show the main result of this subsection.

Theorem 5.2. Let r ≥ 2, and let G1, G2, . . . , Gr be graphs such that, for every
ℓ ∈ [r],

1. The graph Gℓ is either a Kneser graph or self-complementary strongly
regular or self-complementary vertex-transitive.

2. There exists a single ℓ0 ∈ [r] such that Gℓ0 is self-complementary vertex-
transitive or self-complementary strongly regular on nℓ0 vertices, where
nℓ0 is not a square of an integer.

Let p ∈ N[x1, . . . , xr] be a polynomial whose nonzero coefficients are natural
numbers such that

1. There exists a monomial in p(x1, . . . , xr) whose degree in xℓ0 is odd.

2. The variable xℓ0 doesn’t occur in (at least) one of the monomials in
p(x1, . . . , xr).

Let G = p(G1, . . . , Gr). Then, the Shannon capacity Θ(G) is not attained at
any finite strong power of G (i.e., condition (5.1) holds).

Proof. For all ℓ ∈ [r], Θ(Gℓ) = ϑ(Gℓ) (this follows from the assumptions on
Gℓ). Thus, by Corollary 3.1

Θ(G) = p(ϑ(G1, . . . , ϑ(Gr)).

Furthermore, if Gℓ is a Kneser graph, then ϑ(Gℓ) =
(

nℓ−1
rℓ−1

)
∈ N (by [11,

Theorem 13]), and if G is self-complementary and vertex-transitive or self-
complementary and strongly regular then ϑ(Gℓ) = √

nℓ (by [34, Theorem 3.26]).
So, for every ℓ ̸= ℓ0, ϑ(Gℓ) ∈ N by assumption. And, by assumption,
ϑ(Gℓ0) /∈ N. Next, by the assumptions of the theorem, there exists a monomial
in p, whose degree in xℓ0 is odd, and there exists a monomial in p where the
variable xℓ0 does not occur. Thus, there exists a, b ∈ N such that

p(ϑ(G1, . . . , ϑ(Gr)) = a
√

nℓ0 + b.

Similarly to the concept of proof in Example 5.1, for every k ∈ N, there exists
ck, dk ∈ N such that

p(ϑ(G1, . . . , ϑ(Gr))k = ck
√

nℓ0 + dk.
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Since √
nℓ0 /∈ N (by assumption), √

nℓ0 /∈ Q by Lemma 5.1, which implies
that

Θ(G)k /∈ N.

Hence, for every k ∈ N,

Θ(G) > k

√
α(Gk),

so the capacity of G is unattainable by any finite strong power of G.

Corollary 5.2. Let r ≥ 2, and let G1, G2, . . . , Gr be graphs such that, for
every ℓ ∈ [r],

1. The graph Gℓ is self-complementary on nℓ vertices, and it is either
strongly regular or vertex-transitive.

2. There exists a single ℓ0 ∈ [r] such that nℓ0 is not a square of an integer.

Then, the Shannon capacity of the disjoint union of these graphs is not attained
at any finite strong power.

Proof. The result is achieved by applying Theorem 5.2 to the linear polynomial

p(x1, . . . , xr) =
r∑

j=1
xj.

Example 5.2. The special case of G = C5 + K1 (presented earlier) is obtained
by selecting in the previous corollary

• G1 = C5, which is a self-complementary and vertex-transitive graph.

• G2 = K1, which is a Kneser graph.

• r = 2.

Hence, the Shannon capacity of G is not attained at any finite power of G.

Next we show another example, this time using Paley graphs.
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Example 5.3. Let q1, . . . , qℓ be integer powers of prime numbers, pi ≡
1 mod 4 for every i ∈ [ℓ], where only one of the qi’s is an odd power of
the prime pi. Define Gi = P (qi) (where P (q) is the Paley graph of order q)
for every i ∈ [ℓ]. Then, the Shannon capacity of the disjoint union of these
graphs,

G = G1 + G2 + . . . + Gℓ

is not attained at any finite power of G. This follows from Corollary 5.2,
as the Paley graphs are self-complementary and strongly regular, and the
restrictions on q1, . . . , qℓ guaranty that the conditions of Corollary 5.2 hold.

5.3 Third approach
In the present last approach, we build a family of connected graphs, whose
capacity is not attained at any of their finite powers. In particular, we prove
that an infinite family of Tadpole graphs is not attained at a finite power.

Theorem 5.3. Let H be a graph with α(H) < Θ(H), let ℓ ≥ 2 be an even
number, and let v ∈ V(H) be an arbitrary vertex in H. Define the graph G
as the disjoint union of H and Pℓ with an extra edge between v and one of
the two endpoints of Pℓ. Then, the capacity of G is unattainable by any of its
finite strong powers.

Proof. Since H + Pℓ−1 is an induced subgraph of G, and H + Pℓ is a spanning
subgraph of G, it follows that

Θ(H + Pℓ−1) ≤ Θ(G) ≤ Θ(H + Pℓ). (5.5)

Path graphs are universal, and for an even ℓ ≥ 2, the capacities of Pℓ−1 and
Pℓ coincide (see Theorem 2.23). The latter holds because path graphs are
bipartite and therefore perfect, so their Shannon capacities coincide with
their independence numbers, and also α(Pℓ−1) = ℓ

2 = α(Pℓ) if ℓ ≥ 2 is even.
by universality of path graphs and since the independence number of Pℓ and
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Pℓ−1 coincide for an even ℓ ≥ 2 (see Theorem 2.23), for every k ∈ N,

α((H + Pℓ−1)k) =
k∑

i=0

(
k

i

)
α(Hi ⊠ Pk−i

ℓ−1)

=
k∑

i=0

(
k

i

)
α(Hi) α(Pℓ−1)k−i

=
k∑

i=0

(
k

i

)
α(Hi) α(Pℓ)k−i

= α
(
(H + Pℓ)k

)
. (5.6)

Consequently, by raising both sides of (5.6) to the power 1
k
, and letting

k → ∞, it follows that Θ(H + Pℓ−1) = Θ(H + Pℓ). Combining the last equality
with (5.5), hence gives

Θ(G) = Θ(H + Pℓ). (5.7)
By the same argument that yields (5.5), for all k ∈ N, (H + Pℓ−1)k is an
induced subgraph of Gk, and (H + Pℓ)k is a spanning subgraph of Gk, so

α((H + Pℓ−1)k) ≤ α(Gk) ≤ α((H + Pℓ)k). (5.8)
Thus, by combining (5.6) and (5.8), it follows that for every k ∈ N

α(Gk) = α
(
(H + Pℓ)k

)
. (5.9)

Finally, by Theorem 5.1 and equalities (5.7) and (5.9), for every k ∈ N,

Θ(G)k = Θ(H + Pℓ)k > α
(
(H + Pℓ)k

)
= α(Gk), (5.10)

so G is not attained at any of its finite strong powers.
Corollary 5.3. Let k ≥ 5 be an odd number, and let ℓ ≥ 2 be an even number.
Then, the Shannon capacity of the Tadpole graph T(k, ℓ) is unattainable by
any of its strong powers.
Proof. This follows directly from Theorem 5.3 and Definition 4.1, by selecting
H = Ck for an odd k ≥ 5. In the latter case, α(Ck) < ΘCk as required by
Theorem 5.3.
Remark 5.2. Corollary 5.3 provides a countably infinite set of connected
graphs whose Shannon capacities are unattainable by any of its strong powers.
This is the first infinite family of connected graphs with that property. All
previous constructions with that property were disconnected graphs.
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Chapter 6

The Shannon capacity of
q-Kneser graphs

In this section we show the exact value of the Shannon capacity of a new
family of graphs, containing the Kneser graphs.

Definition 6.1. Let n, k ∈ N with k ≤ n, let p be a prime, let q = pm with
m ∈ N, and let Fq be the Galois field of order q. The Gaussian coefficient,

denoted by
[

n
k

]
q
, is given by

[
n
k

]
q

= (qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1) . (6.1)

The Gaussian coefficient can be given the following interpretation. Let
V be an n-dimensional vector space over Fq. The number of k-dimensional

distinct subspaces that V possesses is equal to
[

n
k

]
q
. We therefore define[ 0

0

]
q
≜ 1.

Passing to a continuous variable q and letting q tend to 1 gives

lim
q→1

[
n
k

]
q

= n

k
· n − 1

k − 1 · · · n − (k − 1)
k − (k − 1)

=
(

n

k

)
, (6.2)

thus converging to the binomial coefficient.
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Definition 6.2 (q-Kneser graphs). Let V (n, q) be the n-dimensional vector
space over the finite field Fq, where q is a prime power. The q-Kneser graph
Kq(n, k) is defined as follows:

• The vertices of Kq(n, k) are defined as the k-dimensional subspaces of
V (n, q).

• Two vertices are adjacent if their intersection contains only the zero
vector.

Some of the properties of the q-Kneser graphs are next presented (see [44,
Proposition 3.4]).

Theorem 6.1. Let G = Kq(n, k) be a q-Kneser graph with n ≥ 2k and q a
prime power. Then

• Kq(n, k) is of order

| V(Kq(n, k))| =
[

n
k

]
q
. (6.3)

• Kq(n, k) is of size

| E(Kq(n, k))| = 1
2qk2

[
n − k

k

]
q

[
n
k

]
q
. (6.4)

• Kq(n, k) is qk2
[

n − k
k

]
q
-regular.

• Kq(n, k) is vertex-transitive.

• Kq(n, k) is edge-transitive.

We next calculate the Shannon capacity of Kq(n, k) in an analogous way to
the calculation of the Shannon capacity of the Kneser graph K(n, k) by Lovász
(see [11, Theorem 13]). To that end, we derive the independence number and
Lovász ϑ-function of a q-Kneser graph, and show that they coincide, thus
leading to the determination of the capacity of the graph.

Lemma 6.1. [25] Let G = Kq(n, k) be a q-Kneser graph with n ≥ 2k, and let
q be a prime power. Then,

α(Kq(n, k)) =
[

n − 1
k − 1

]
q
. (6.5)
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Proof. By the version of the Erdös-Ko-Rado Theorem for finite vector spaces
(see [25, Theorem 9.8.1]), we get

α(Kq(n, k)) ≤
[

n − 1
k − 1

]
q
.

Moreover, we can construct a family of k-subspaces of V (n, q) containing
a fixed 1-dimensional subspace of V (n, q). This family of subspaces has[

n − 1
k − 1

]
q

subspaces (see Definition 6.1 and [25, Theorem 9.8.1]), and it is an

independent set in Kq(n, k), thus

α(Kq(n, k)) ≥
[

n − 1
k − 1

]
q
,

which proves equality (6.5).

Lemma 6.2. Let G = Kq(n, k) be a q-Kneser graph with n ≥ 2k and q a
prime power. Then

ϑ(Kq(n, k)) =
[

n − 1
k − 1

]
q
. (6.6)

Proof. By Theorem 2.19 and since the q-Kneser graphs are edge-transitive
(see Theorem 6.1),

ϑ(Kq(n, k)) = −| V(Kq(n, k))| λmin

λmax − λmin
, (6.7)

where λmax and λmin are the largest and smallest eigenvalues of the adjacency
matrix of Kq(n, k). By [26, Theorem 2], these eigenvalues are given by

λmax = qk2
[

n − k
k

]
q

(6.8)

λmin = −qk2−k
[

n − k − 1
k − 1

]
q
. (6.9)
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Substituting (6.3), (6.8), and (6.9) into (6.7) gives

ϑ(Kq(n, k)) =

[
n
k

]
q

· qk2−k

[
n − k − 1

k − 1

]
q

qk2
[

n − k
k

]
q

+ qk2−k

[
n − k − 1

k − 1

]
q

=

[
n
k

]
q

·
[

n − k − 1
k − 1

]
q

qk

[
n − k

k

]
q

+
[

n − k − 1
k − 1

]
q

. (6.10)

This expression can be simplified, based on the following identity:[
m
r

]
q

= qm − 1
qr − 1

[
m − 1
r − 1

]
q
, (6.11)

where using (6.11) with m = n − k and r = k simplifies the denominator of
(6.10) to

qk
[

n − k
k

]
q

+
[

n − k − 1
k − 1

]
q

= qk · qn−k − 1
qk − 1 ·

[
n − k − 1

k − 1

]
q

+
[

n − k − 1
k − 1

]
q

= qn − 1
qk − 1 ·

[
n − k − 1

k − 1

]
q
. (6.12)

Finally, combining (6.10) and (6.12) gives the simplified form

ϑ(Kq(n, k)) =
[

n
k

]
q

· qk − 1
qn − 1

=
[

n − 1
k − 1

]
q
.

Due to the coincidence of the independence number and the Lovász ϑ-
function in Lemmata 6.1 and 6.2, their joint value is also equal to the Shannon
capacity of the graph. This gives the following closed-form expression for the
Shannon capacity of q-Kneser graphs.
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Theorem 6.2. The Shannon capacity of the q-Kneser graph, Kq(n, k), with
n ≥ 2k and q a prime power, is given by

Θ(Kq(n, k)) =
[

n − 1
k − 1

]
q
. (6.13)
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Chapter 7

A new inequality for the
capacity of graphs

The following result provides a relation between the Shannon capacity of
any strong product of graphs, and the capacity of the disjoint union of the
component graphs. If these component graphs are connected, then their
strong product is a connected graph on a number of vertices that is equal
to the product of the number of vertices in each component graph, whereas
the disjoint union of these component graphs is a disconnected graph on a
number of vertices that is equal to the sum of the orders of the component
graphs (the latter order is typically much smaller than the former). The
motivation of our inequality is due to the following result:

Theorem 7.1 (Unique Prime Factorization for Connected Graphs). Every
connected graph has a unique prime factor decomposition with respect to the
strong product.

• The proof of this theorem was introduced by Dorfler and Imrich (1970),
and Mckenzie (1971). See section 7.3 in the comprehensive book on
graph products [27] (Theorem 7.14).

• In a paper by Feigenbaum and Schaffer [40], a polynomial-time algorithm
was introduced for finding that unique prime factorization (with respect
to strong products).

We next provide and prove the main result of this section.
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Theorem 7.2. Let G1, G2, . . . , Gℓ be simple graphs, then

Θ(G1 ⊠ . . . ⊠ Gℓ) ≤
(

Θ(G1 + . . . + Gℓ)
ℓ

)ℓ

. (7.1)

Furthermore, if Θ(Gi) = ϑ(Gi) for every i ∈ [ℓ], then inequality (7.1) holds
with equality if and only if

Θ(G1) = Θ(G2) = . . . = Θ(Gℓ). (7.2)
In particular, if for every i ∈ [ℓ], one of the following statements hold:

• Gi is a perfect graph,

• Gi = K(n, r) for some n, r ∈ N with n ≥ 2r,

• Gi = Kq(n, r) for a prime factor q and some n, r ∈ N with n ≥ 2r,

• Gi is vertex-transitive and self-complementary,

• Gi is strongly regular and self-complementary,
then inequality (7.1) holds with equality if and only if the condition in (7.2)
is satisfied.
Proof. Let k ∈ N. By (2.29),

Θ(G1 + . . . + Gℓ)ℓk

= Θ((G1 + . . . + Gℓ)ℓk)

= Θ
 ∑

k1,...,kℓ: k1+...+kℓ=ℓk

(
ℓk

k1, . . . , kℓ

)
Gk1

1 ⊠ . . . ⊠ Gkℓ
ℓ

 . (7.3)

By (2.29)–(2.31),

Θ
 ∑

k1,...,kℓ: k1+...+kℓ=ℓk

(
ℓk

k1, . . . , kℓ

)
Gk1

1 ⊠ . . . ⊠ Gkℓ
ℓ


≥

∑
k1,...,kℓ: k1+...+kℓ=ℓk

(
ℓk

k1, . . . , kℓ

)
Θ
(
Gk1

1 ⊠ . . . ⊠ Gkℓ
ℓ

)

≥
(

ℓk

k, . . . , k

)
Θ
(
Gk

1 ⊠ . . . ⊠ Gk
ℓ

)

=
(

ℓk

k, . . . , k

)
Θ
(
G1 ⊠ . . . ⊠ Gℓ

)k
, (7.4)
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thus, by combining (7.3) and (7.4), it follows that(
ℓk

k, . . . , k

)
Θ(G1 ⊠ . . . ⊠ Gℓ)k ≤ Θ(G1 + . . . + Gℓ)ℓk.

Raising both sides of the inequality to the power of 1
k
, and letting k tend to

infinity gives

Θ(G1 ⊠ . . . ⊠ Gℓ) ≤
(

Θ(G1 + . . . + Gℓ)
ℓ

)ℓ

, (7.5)

which holds by the equality

lim
k→∞

k

√√√√( ℓk

k, . . . , k

)
= ℓℓ, ∀ ℓ ∈ N. (7.6)

If Θ(Gi) = ϑ(Gi) for every i = 1, . . . , ℓ, then by Theorem 3.2,

Θ(G1 + . . . + Gℓ) = Θ(G1) + . . . + Θ(Gℓ). (7.7)

By (7.7), inequality (7.1) is equivalent to

ℓ

√
Θ(G1) . . . Θ(Gℓ) ≤ Θ(G1) + . . . + Θ(Gℓ)

ℓ
, (7.8)

and, by the conditions for equality in the AM-GM inequality, equality holds
in (7.8) if and only if (7.2) holds. Finally, all the graphs that are listed in this
theorem (Theorem 7.2) satisfy the equality Θ(Gi) = ϑ(Gi) for i ∈ [ℓ]. Thus,
if Gi is one of these graphs for each i ∈ [ℓ], then inequality (7.1) holds with
equality if and only if the condition in (7.2) is satisfied.

Corollary 7.1. Let G be a graph on n vertices. Then,

Θ(G + G) ≥ 2
√

n, (7.9)

with equality in (7.9) if the graph G is either self-complementary and vertex-
transitive, or self-complementary and strongly regular, or either a conference
graph, a Latin square graph or their complements.
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Proof. By Theorem 7.2,

Θ(G + G) ≥ 2
√

Θ(G ⊠ G). (7.10)

Next, choosing the ”diagonal” vertices of G ⊠ G gives an independent set of
size n in G ⊠ G. Thus,

Θ(G ⊠ G) ≥ α(G ⊠ G) ≥ n. (7.11)

Using (7.10) and (7.11) gives

Θ(G + G) ≥ 2
√

n.

Furthermore, let G be either (1) self-complementary and vertex-transitive or
(2) strongly regular or (3) a conference graph, (4) a Latin square graph or (5)
any one of the complements of the graphs in (1)–(4). Then, by Theorem 7.2
and [34, Theorems 3.23, 3.26 and 3.28], inequalities (7.10) and (7.11) hold
with equality, thus inequality (7.9) holds with equality.

Remark 7.1. Inequality (7.9), together with a subset of the sufficient condi-
tions for its equality in Corollary 7.1, were proved by N. Alon in [7, Theorem
2.1]. Our proof is more simple, relying on a different approach, and the origi-
nal proof in [7] is also presented in Appendix D. In [7, Theorem 2.1], Alon
showed that inequality (7.9) holds with equality if G is self-complementary
and vertex-transitive; some additional alternative sufficient conditions are
provided in Corollary 7.1.

By (7.1), some additional inequalities are derived in the next two corollar-
ies.

Corollary 7.2. Let G1, . . . , Gℓ be simple graphs, and let m1, . . . , mℓ ∈ N, and
let m = ℓ

√
m1 . . . mℓ, then

Θ(G1 ⊠ . . . ⊠ Gℓ) ≤ (mℓ)−ℓ Θ(m1G1 + . . . + mℓGℓ)ℓ. (7.12)

Proof. By (2.30), Inequality (7.12) is equivalent to

Θ(m1G1 ⊠ . . . ⊠ mℓGℓ) ≤ ℓ−ℓ Θ(m1G1 + . . . + mℓGℓ)ℓ.

Thus, by Theorem 7.2, Inequality (7.12) holds.
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Corollary 7.3. Let G1, . . . , Gℓ be simple graphs, with some ℓ ∈ N, and let
α = (α1, . . . , αℓ) be a probability vector with αj ∈ Q for all j ∈ [ℓ]. Let

K(α) = {k ∈ N : kαj ∈ N, ∀j ∈ [ℓ]}.

Then, for all k ∈ K(α),

Θ(Gα1k
1 ⊠ . . . ⊠ Gαℓk

ℓ ) ≤ exp (−kH(α)) Θ(G1 + . . . + Gℓ)k, (7.13)

where the entropy function H is given by

H(α) ≜ −
ℓ∑

j=1
αj log αj.

Proof. Let
A = lcm(α1k, . . . , αℓk).

Next, for every 1 ≤ j ≤ ℓ, define

nj = A

αjk
, (7.14)

aj =
j∑

i=1
αik, (7.15)

and for every i, 1 ≤ i ≤ k, let j be the index that has aj−1 + 1 ≤ i ≤ aj, and
define

mi = nj.

Now, by Corollary 7.2 (Note that there are k graphs in the capacity)

Θ
(
Gα1k

1 ⊠ . . . ⊠ Gαℓk
ℓ

)
≤ (mk)−k Θ (m1G1 + . . . + ma1G1 + ma1+1G2 + . . . + mkGℓ)k

= (mk)−k Θ
(
(m1 + . . . + ma1)G1 + . . . + (maℓ−1+1 + . . . + mk)Gℓ

)k

= (mk)−k Θ(n1α1kG1 + . . . + nℓαℓkGℓ)k,
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where

m = k
√

m1 . . . mk

= k
√

nα1k
1 . . . nαℓk

ℓ

= k

√√√√( A

α1k

)α1k

. . .
(

A

αℓk

)αℓk

= A

k

(
ℓ∏

i=1
ααik

i

)− 1
k

.

By (7.14) and (2.30)

Θ(n1α1kG1 + . . . + nℓαℓkGℓ)k = Θ(AG1 + . . . + AGℓ)k

= Ak Θ(G1 + . . . + Gℓ)k.

Finally, we have

Θ(Gα1k
1 ⊠ . . . ⊠ Gαℓk

ℓ ) ≤ (mk)−kAk Θ(G1 + . . . + Gℓ)k

=

A

(
ℓ∏

i=1
ααik

i

)− 1
k


−k

Ak Θ(G1 + . . . + Gℓ)k

=
(

ℓ∏
i=1

ααik
i

)
Θ(G1 + . . . + Gℓ)k

= exp (−kH(α)) Θ(G1 + . . . + Gℓ)k.

Remark 7.2. Let αj = pj

qj
with (pj, qj) = 1 for all j ∈ [ℓ]. Then,

K(α) = lcm(q1, . . . , qℓ)N.

This is true because if we choose k that is not a multiple of lcm(q1, . . . , qℓ)
then there exists i ∈ [ℓ] such that αi /∈ N.

In analogy to Corollary 7.1, we next derive upper and lower bounds on
ϑ(G + G).
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Theorem 7.3. For every simple graph G on n vertices

ϑ(G + G) ≥ 2
√

n + (ϑ(G) −
√

n)2

ϑ(G) . (7.16)

and for every d-regular graph with spectrum λ1 ≥ λ2 ≥ . . . ≥ λn,

2 + n − d − 1
1 + λ2

− d

λn

≤ ϑ(G + G) ≤ n(1 + λ2)
n − d + λ2

− nλn

d − λn

. (7.17)

Furthermore, the following holds:

1. If G is vertex-transitive or strongly regular, then inequality (7.16) holds
with equality.

2. If both G and G are edge-transitive, or if G is strongly regular, then the
right inequality in (7.17) holds with equality.

3. If G is strongly regular, then the left inequality in (7.17) holds with
equality.

Proof. Using Theorems 2.16 and 2.18, we get

ϑ(G + G) = ϑ(G) + ϑ(G)

≥ ϑ(G) + n

ϑ(G)

= 2
√

n + (ϑ(G) −
√

n)2

ϑ(G) . (7.18)

In addition, by Theorem 2.18, inequality (7.18) holds with equality if G is
vertex-transitive or strongly regular. Furthermore, if G is a d-regular graph,
then by [31, Proposiotion 1],

ϑ(G + G) = ϑ(G) + ϑ(G)

≤ n(1 + λ2)
n − d + λ2

− nλn

d − λn

, (7.19)

and,

ϑ(G + G) = ϑ(G) + ϑ(G)

≥ 2 + n − d − 1
1 + λ2

− d

λn

, (7.20)
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which proves (7.17). Finally, by [31, Proposition 1], if both G and G are
edge-transitive, or if G is strongly regular, then the right inequality in (7.19)
holds with equality, and if G is strongly regular, then the left inequality in
(7.19) holds with equality.
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Chapter 8

On disjunctive graph products
and lossless compression

In the following chapter, we address a problem in lossless data compression
that can be approached through graph theory, specifically by analyzing the
chromatic number of disjunctive powers of graphs. We begin by defining the
disjunctive product and outlining its main properties. Next, we present the
problem together with the solution proposed in [32, Section 3.4], followed by a
brief discussion of the classes of graphs to which this solution applies. We then
introduce a new approach that accounts for the computational complexity of
obtaining the optimal solution. Finally, we provide a specialized analysis of
Kneser graphs in the context of this problem.

8.1 The disjunctive product
Definition 8.1. Let G and H be simple graphs. The disjunctive product
G ∗ H is a graph whose vertex set is V(G) × V(H), and two distinct vertices
(g1, h1), (g2, h2) are adjacent in G ∗ H if {g1, g2} ∈ E(G) or {h1, h2} ∈ E(H).

Define the k-fold disjunctive power of G as

G∗k ≜ G ∗ . . . ∗ G︸ ︷︷ ︸
k−1 disjunctive products

. (8.1)

Next, we bring a few results regarding the disjunctive product of graphs
from [32, Section 3.4].
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Theorem 8.1. Let G and H be simple graphs, their disjunctive product G ∗ H
satisfies

Imax(G ∗ H) = Imax(G) × Imax(H), (8.2)
α(G ∗ H) = α(G) α(H), (8.3)
χf(G ∗ H) = χf(G) χf(H), (8.4)
χf(G) χ(H) ≤ χ(G ∗ H) ≤ χ(G) χ(H). (8.5)

Furthermore, the following limit exists and it satisfies

inf
k∈N

k

√
χ(G∗k) = lim

k→∞
k

√
χ(G∗k) = χf(G). (8.6)

Corollary 8.1. Let G1, . . . , Gk be simple graphs, then

χf(G1 ∗ · · · ∗ Gk) =
k∏

ℓ=1
χf(Gℓ), (8.7)

χ(G1 ∗ · · · ∗ Gk) ≤
k∏

ℓ=1
χ(Gℓ). (8.8)

Proof. A recursive use of (8.4) gives (8.7), and a recursive use of (8.5) gives
(8.8).

Finally, we prove lower and upper bounds on the chromatic number of
the disjunctive product of a series of graphs.

Theorem 8.2. Let G1, . . . , Gk be a sequence of graphs. Then, for all k ∈ N,

max
ℓ∈[k]

χ(Gℓ)
χf(Gℓ)

·
k∏

ℓ=1
χf(Gℓ) ≤ χ(G1 ∗ · · · ∗ Gk) (8.9)

≤
k∏

ℓ=1
χf(Gℓ) ·

(
1 +

k∑
ℓ=1

ln α(Gℓ)
)

. (8.10)

Specifically, for every graph G,

χf(G)k−1 χ(G) ≤ χ(G∗k) ≤ χf(G)k
(
1 + k ln α(G)

)
, ∀k ∈ N. (8.11)

Proof. In light of the leftmost inequality in (8.5), we get

max{χf(G1) χ(G2), χ(G1) χf(G2)} ≤ χ(G1 ∗ G2)
≤ χ(G1) χ(G2).
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Then, by induction on k, we get inequality (8.9):

max
ℓ∈[k]

χ(Gℓ)
χf(Gℓ)

·
k∏

ℓ=1
χf(Gℓ) ≤ χ(G1 ∗ · · · ∗ Gk).

In light of the inequality by Lovász (1975) [43], setting the graph G to be the
k-fold disjunctive product Hk = G1 ∗ . . . ∗ Gk gives

χ(Hk) ≤ χf(Hk)(1 + ln α(Hk)). (8.12)

And, from (8.3),

α(Hk) =
k∏

ℓ=1
α(Gℓ). (8.13)

Combining (8.7), (8.12) and (8.13) gives inequality (8.10).

8.2 A problem in lossless data compression
with side information

We show an applications of the results presented above, and our contribution
to the area.

To present the problem of lossless data compression with side information,
we start with a story from [32, Section 3.4].

Alice and Bob teach at a school with n students. Each time at recess,
exactly 2r of these students form two teams of equal size to play a game of
Capture the Flag. Bob is on duty for the first half of the recess, so he knows
the students in each team. However, he goes for lunch before recess is over.
Alice is the gym teacher, and later that day she learns which team won. Alice
knows the composition of the winning team. Bob knows, on the other hand,
the students in both teams but he does not know which team won the game.

Question: what is the shortest message (minimum number of bits) that
Alice should send to Bob to tell him the winning team?

To answer this question we first properly formulate the story. Alice and
Bob share a graph G that is constructed as follows:

1. The n students at school are labeled by 1, . . . , n;
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2. The vertices of the graph represent the
(

n
r

)
possible teams of all the

r-element subsets of [n].

3. Two vertices are adjacent if they represent disjoint teams, so the two
endpoints of an edge in G represent teams that may play together.

The construction of G yields that G = K(n, r) is a Kneser graph with n, r ∈ N
and n ≥ 2r.

Alice knows the vertex v ∈ V(G), but she does not know the edge e ∈ E(G)
whose endpoints refer to the two teams that played the game. Bob, on the
other hand, knows the edge e but he does not know which of its endpoints v
represents the winning team.

Under this graph-theoretic formulation, we ask what is the minimum
number of bits that Alice should send to Bob to tell him the vertex v?

Alice may take the simplest approach of communicating to Bob the label
(number) of her vertex v. It requires ⌈log2 | V(G)|⌉ bits. This does not take,
however, the side information that is available to Bob where he knows the
edge e in G.

In the book (see [32, Section 3.4]), an optimal solution is presented.

Proposition 8.1. The minimum required number of bits to let Bob determine
the vertex v is ⌈log2 χ(G)⌉.

Proof. [32, Section 3.4] First, Alice and Bob can precolor the vertices of the
Kneser graph G = K(n, r) using χ(G) = n − 2r + 2 colors. When Alice wants
to inform Bob about the vertex v that she knows, she only needs to tell him
the color of that vertex. This is sufficient for Bob to recover the vertex v
since the edge e is known to Bob, and only one of its two endpoints can be
assigned that given color.

If fewer than ⌈log2 χ(G)⌉ bits are communicated from Alice to Bob, then
there is a pair of adjacent vertices having the same representation of bits.
Thus, if Bob holds that edge, he won’t be able to decide to which vertex Alice
refers. Hence, the minimum required number of bits to let Bob determine the
vertex v is indeed ⌈log2 χ(G)⌉.

Example 8.1. Let n = 250 and r = 100. The simplest approach, where
Alice sends the label of the vertex v, requires

⌈
log2

(
n
r

)⌉
= 239 bits, while

the optimal approach only requires ⌈log2(n − 2r + 2)⌉ = 6 bits, which is a
significant improvement.
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Next, suppose that Alice knows a list of vertices v1, . . . , vk for some k ∈ N,
and Bob knows a list of edges e1, . . . , ek with vi ∈ ei for all i ∈ [k]. If Alice
wishes to communicate her entire list of vertices to Bob, she can do so in k
separate messages, for a total of k⌈log2 χ(G)⌉ bits.

This poses another question: Is it possible for Alice to communicate her
entire list of vertices to Bob with a smaller number of bits by a use of a single
message (instead of k separate messages for each vertex)?

To answer this question, we make the following observation. Given a
list of edges, (e1, . . . , ek), that Bob has, the list of vertices that Alice has,
(v1, . . . , vk), can only be composed of the endpoints of (e1, . . . , ek), which
correspond to 2k optional list of vertices. If (v1, . . . , vk) and (v′

1, . . . , v′
k) are

two such different vertices, then {vi, v′
i} = ei ∈ E(G) or vi = v′

i for every
i ∈ [k]. Hence, the 2k lists of vertices that Alice may hold form a clique in the
k-fold strong power graph Gk. Thus, by precoloring the k-fold strong power
of G and sharing it by Alice and Bob, it suffices for Alice to send the color of
her vertex (list) to Bob. This will enable him to determine the vertex that
Alice holds.

Using the strong power of G allows the reduction of required bits in a
single message to Bob once every k days from k⌈log2 χ(G)⌉ to ⌈log2 χ(Gk)⌉
(To that end, Alice collects the list (v1, . . . , vk) that is a vertex of Gk, and
a vertex precoloring of the power graph Gk is shared by Alice and Bob as
common information). However, since Gk is a spanning subgraph of G∗k,
then the 2k possible vertices that Alice may hold also form a clique in the
k-fold disjunctive power of G, and the precoloring of G∗k can be the common
information between Alice and Bob.

Even though the disjunctive power of G offers a sub-optimal solution
compared to the strong product of G, because

⌈log2 χ(Gk)⌉ ≤ ⌈log2 χ(G∗k)⌉, (8.14)

in this analysis, we chose to use the G∗k as an approximation, because the
disjunctive product has important tensorization properties, as can be seen
in theorems 8.1 and 8.2. Thus, we use the disjunctive power of G and the
required bits in a single message to Bob once every k days is ⌈log2 χ(G∗k)⌉.

In addition, by letting k tend to infinity, the number of required bits per
game is reduced from ⌈log2 χ(G)⌉ to

lim
k→∞

⌈log2 χ(G∗k)⌉
k

= log2 χf(G). (8.15)
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Example 8.2. For G = K(n, r), the amount of transmitted information per
game is reduced from ⌈log2(n − 2r + 2)⌉ to log2

n
r

bits.
For example, for n = 250 and r = 100, the amount of information per

game is reduced from 6 to 1.322 bits for k = 1 and k → ∞, respectively.

Remark 8.1. In (8.15), it was shown that asymptotically, using of the dis-
junctive power graph G∗k as the shared graph between Alice and Bob results
in the value log2 χf(G) as the minimal number of bits required for the trans-
mission. Specifically, for G = K(n, r) (n ≥ 2r > 1), the required number of
bits is log2

n
r

(as seen in Example 8.2).
If the strong power of G = K(n, r) is used instead, then by Theorem 2.21,

and since Gk is a spanning subgraph of G∗k,

⌈log2 χf(Gk)⌉
k

≤ ⌈log2 χ(Gk)⌉
k

(8.16)

≤ ⌈log2 χ(G∗k)⌉
k

.

Kneser graphs are vertex-transitive, and the strong power of a vertex-transitive
graph is also vertex transitive. So, by Theorem 2.20,

χf(Gk) = | V(G)|k
α(Gk) , (8.17)

which gives,

lim
k→∞

⌈log2 χf(Gk)⌉
k

= lim
k→∞

log2
k

√
χf(Gk)

= lim
k→∞

log2
k

√√√√ | V(G)|k
α(Gk)

= log2
| V(G)|
Θ(G) = log2

n

r
. (8.18)

Thus, combining (8.15), (8.16) and (8.18) gives

lim
k→∞

⌈log2 χ(Gk)⌉
k

= log2
n

r
. (8.19)

Hence, if G is a Kneser graph, both the disjunctive power and the strong power
result in the same asymptotic solution.
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8.3 Graphs classification
Example 8.2 shows that Kneser graphs offer a significant gain in the reduction
of the minimum amount of information bits per game that Alice needs to
transmit to Bob by letting her communicate a list of vertices in a single
message, while taking advantage of the fact that Bob knows a list of edges
where each vertex in Alice’s list is an endpoint of the corresponding edge in
Bob’s list.

This raises the question for which graphs such a reduction in the amount
of delivered information per vertex is achievable?

We consider the family of vertex-transitive graphs, which includes the
Kneser graphs.

Theorem 8.3. Let G be a vertex-transitive graph. Then, by the proposed
approach, there is no reduction in the amount of information (in bits) for
the transmission of a list of vertices if and only if the vertex set of G can be
partitioned into equal-sized color classes of size α(G).

Proof. By the assumption that G is vertex-transitive

χf(G) = | V(G)|
α(G) ≤ χ(G),

with equality if and only if χ(G) α(G) = | V(G)|. This is equivalent to the
condition that the vertex set V(G) can be partitioned into equal-sized color
classes (independent sets) of cardinality α(G).

8.4 Finite-length analysis
The approach presented so far to minimize the required amount of bits,
allowed k to tend to infinity, but this adds a different problem, which is the
computational complexity involved in the precoloring of G∗k. The information
of the coloring of G∗k needs to be stored jointly by Alice and Bob, which
complexity-wise, is impractical for large k (let alone k → ∞).

We next provide a refined analysis, which is valid for all k ∈ N, enabling
to study the reduction in the required number of bits as a function of k,
especially for (small) values of k for which the computational complexity at
the preprocessing stage of precoloring G∗k is still feasible.
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Theorem 8.4. Let

Rk(G) ≜ ⌈log2 χ(G∗k)⌉
k

, k ∈ N (8.20)

be the number of information bits per game, for a list of k games. Then,

log2 χf(G) + 1
k

log2

(
χ(G)
χf(G)

)
≤ Rk(G) (8.21)

≤ log2 χf(G) + log2(1 + k ln α(G)) + 1
k

, (8.22)

for every k ∈ N.

Proof. This follows from the upper and lower bounds on χ(G∗k), with k ∈ N,
as they are given in Theorem 8.2.

Corollary 8.2. If χ(G) > χf(G), then

log2 χf(G) + O
(1

k

)
≤ Rk(G) ≤ log2 χf(G) + O

( log(k)
k

)
. (8.23)

The following is a specialized analysis for Kneser graphs.

Example 8.3. Let G = K(n, r) be a Kneser graph with n ≥ 2r, and let Rk(G)
be defined as in Theorem 8.4. Then

log2

(
n

r

)
+

log2

(
r
(

1 − 2(r−1)
n

))
k

≤ Rk(G) (8.24)

≤ log2

(
n

r

)
+ 1

k
log2

(
knHb

(
r

n

)
+ k

2 ln
(

r

2πn(n − r)

)
+ 1

)
+ 1

k
,

for all k ∈ N, where Hb : [0, 1] → [0, ln 2] is the binary entropy function on
base e, i.e.,

Hb(x) =
−x ln x − (1 − x) ln(1 − x), 0 < x < 1,

0, x ∈ {0, 1}.
(8.25)
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We now prove these bounds. For all r, n ∈ N such that r < n,√
n

8r(n − r) exp
(

nHb

(
r

n

))
≤
(

n

r

)

≤
√

n

2πr(n − r) exp
(

nHb

(
r

n

))
.

The independence number of Kneser graphs is

α(G) =
(

n − 1
r − 1

)
= r

n

(
n

r

)
.

Thus, there exists c ≜ cn,r ∈ (1
8 , 1

2π
) such that

ln α(G) = nHb

(
r

n

)
+ 1

2 ln
(

cr

n(n − r)

)
. (8.26)

Furthermore, by Theorem 2.22,

χ(G) = n − 2r + 2, χf(G) = n

r
. (8.27)

Combining (8.11), (8.26) and (8.27) implies that, for all k ∈ N,
(

n

r

)k

r
(

1 − 2(r − 1)
n

)
≤ χ(G∗k) (8.28)

≤
(

n

r

)k
[
knHb

(
r

n

)
+ k

2 ln
(

r

2πn(n − r)

)
+ 1

]
.

These exponential bounds (in k) quantify the convergence rate of the sequence
{ k

√
χ(G∗k)}∞

k=1 to its asymptotic limit, χf(G) = n
r
, as we let k tend to infinity.

Finally, substituting (8.28) in Rk(G) ≜ ⌈log2 χ(G∗k)⌉
k

gives (8.24).
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Chapter 9

Summary and outlook

9.1 Summary
In this thesis, we study several research directions on the Shannon capacity of
graphs. We establish sufficient conditions under which the Shannon capacity of
a polynomial of graphs equals the corresponding polynomial of the individual
capacities, thereby simplifying their evaluation. Exact values and new bounds
are derived for two graph families: the q-Kneser graphs and the Tadpole graphs.
We also construct graph families whose Shannon capacity is not attained by
the independence number of any finite power, including a countably infinite
family of connected graphs with this property. Furthermore, we prove an
inequality relating the Shannon capacities of the strong product of graphs
and their disjoint union, which yields streamlined proofs of known bounds.

In Chapter 3, we present two sufficient conditions on a sequence of graphs
under which, for every polynomial in these graphs, the Shannon capacity of
the polynomial equals the polynomial of the individual capacities. Building
on Schrijver’s recent result [24], we show that these conditions apply to all
graph polynomials.

In Chapter 4, we study the Shannon capacity of Tadpole graphs. In
Theorem 4.1, we determine the exact capacity in some cases and prove that,
in the remaining cases, it equals the capacity of an odd cycle plus a natural
number. This provides a formula that connects the capacity of Tadpole graphs
to that of odd cycles, enabling sharper bounds by leveraging known results
for the latter.

In Chapter 5, we address the attainability of the Shannon capacity, ex-
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tending the work of Guo and Watanabe (1990). We construct two families of
graphs whose Shannon capacity is not realized by the independence number
of any finite strong power. In particular, we provide a countably infinite
family of connected graphs with this property, which is the first known family
of its kind.

In Chapter 6, we determine the exact Shannon capacity of q-Kneser graphs,
using both a generalized Erdős–Ko–Rado theorem for finite vector spaces [25]
and the known spectrum of q-Kneser graphs [26]. This yields a new class of
graphs with explicitly determined capacity.

In Chapter 7, we prove an inequality between the Shannon capacity of
the strong product of a sequence of graphs and the capacity of their disjoint
union. This result enables a simpler proof of a lower bound for the capacity
of the disjoint union of a graph and its complement, originally established by
N. Alon (1998).

In Chapter 8, we propose a new approach to a problem in communication
theory concerning lossless data compression, discussed in [32, Section 3.4].
Our method trades a slight loss in accuracy for a substantial reduction in
computational complexity compared to the original solution, which relied on
an infeasible precoloring step.

Finally, Chapter 9.2 suggests directions for further research that naturally
build on the results of this thesis.

In summary, this thesis provides:

1. Sufficient conditions ensuring that the Shannon capacity of any graph
polynomial equals the polynomial of the individual capacities.

2. Exact values and bounds for Tadpole graphs, including a formula linking
a subfamily of them to odd cycles.

3. Two families of graphs—one infinite and connected—whose capacity is
not attained by any finite power.

4. The exact capacity of q-Kneser graphs.

5. An inequality between the capacities of graph products and disjoint
unions, yielding a simplified proof of a result of Alon.

6. Finite-length analysis of a graph-theoretic approach for solving a prob-
lem in lossless compression with side information. The novelty in the
finite-length analysis is that it provides a quantitative tradeoff between
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the computational complexity in the lossless compression scheme and
the associated compression rate.

7. An outlook with several promising directions for further research directly
related to these findings.

9.2 Outlook
This section suggests some potential directions for further research that are
related to the findings in this thesis.

1. In Theorem 5.2, a construction of graphs was provided whose Shannon
capacity is not attained by the independence number of any of their
finite strong powers. The proof relied on Dedekind’s lemma from number
theory (see Lemma 5.1), showing that the capacity of this construction
equals a value whose finite powers are not natural numbers, and hence
cannot correspond to the finite root of an independence number. This
method of proof also applies to rational numbers that are not integers,
since none of their finite powers are natural numbers either. This raises
an interesting question: Does there exist a graph whose Shannon capacity
is a rational number that is not an integer?. At present, no such graphs
are known. However, if the answer is positive, it would immediately
follow that these graphs also possess the property of having a Shannon
capacity that is not attained by the independence number of any of
their finite strong powers (thus potentially leading to a fourth approach
in Section 5).

2. It was proved in [17] that if the Shannon capacity of a graph is attained at
some finite power, then the Shannon capacity of its Mycielskian is strictly
larger than that of the original graph. In view of the constructions
presented in Section 5, which yield graph families whose Shannon
capacity is not attained at any finite power, it would be interesting to
determine whether this property also holds in such cases. If it does
not, the graph constructions from Section 5 could provide potential
candidates for a counterexample.

3. By combining Theorems 2.5 and 2.6, the equality α(G⊠H) = α(G) α(H)
holds for every simple graph H if α(G) = αf(G). Moreover, by Theo-
rem 2.12 and Lemma 3.2, if Θ(G) = αf(G), then Θ(G ⊠ H) = Θ(G) Θ(H)
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holds for all H. From these results, a natural question arises: Is it true
that the equality Θ(G ⊠ H) = Θ(G) Θ(H) holds for all H if and only if
Θ(G) = αf(G)?. This question was already discussed to some extent
in [45], where it was shown that

sup
H

Θ(G ⊠ H)
Θ(H) ≤ αf(G), (9.1)

while raising the question about the possible gap between the left and
right hand sides of (9.1).
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Appendix A

An original proof of
Theorem 2.16

Theorem A.1. [16] Let G and H be simple graphs. Then

ϑ(G + H) = ϑ(G) + ϑ(H). (A.1)

Proof. By Theorem 2.14, let (u1, . . . , un) be an orthonormal representation
of G and let c be a unit vector such that

ϑ(G) =
n∑

i=1
(cTui)2. (A.2)

Likewise, let (v1, . . . , vr) be an orthonormal representation of H and let d be
a unit vector such that

ϑ(H) =
r∑

i=1
(dTvi)2. (A.3)

Assume without loss of generality that the dimensions of ui, c, vj and d are
m (if the dimensions are distinct, the vectors of the lower dimension can be
padded by zeros). Next, let A as an orthogonal matrix of order m × m such
that:

Ad = c. (A.4)

Such a matrix A on the left-hand side of (A.4), satisfying ATA = In, exists
(e.g., the householder matrix defined as A = In −2(c−d)(c−d)T

∥c−d∥2 provided that
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c ̸= d, and A = In if c = d). Let w = (w1, . . . , wr) be defined as wi = Avi

for every i ∈ [r]. Since the pairwise inner products are preserved under an
orthogonal (orthonormal) transformation and (v1, . . . , vr) is an orthonormal
representation of H, so is (w1, . . . , wr). Likewise, we get

r∑
i=1

(cTwi)2 =
r∑

i=1
((Ad)T(Avi))2 =

r∑
i=1

(dTvi)2 = ϑ(H). (A.5)

Next, the representation (x1, . . . , xn+r) = (u1, . . . , un, w1, . . . , wr) is an or-
thonormal representation of G + H (since there are no additional nonadjacen-
cies in the graph G + H in comparison to the disjoint union of the pairs of
nonadjacent vertices in G and H). Hence, by Theorem 2.14, the equality

ϑ(G) + ϑ(H) =
n∑

i=1
(cTui)2 +

r∑
i=1

(cTwi)2 =
n+r∑
i=1

(cTxi)2, (A.6)

yields the inequality

ϑ(G) + ϑ(H) ≤ ϑ(G + H). (A.7)

Next, by Theorem 2.14, let (u1, . . . , un, v1, . . . , vr) be an orthonormal repre-
sentation of G + H, where the vectors (u1, . . . , un) correspond to the vertices
of G and the vectors (v1, . . . , vr) correspond to the vertices of H, and let c be
a unit vector such that

ϑ(G + H) =
n∑

i=1
(cTui)2 +

r∑
i=1

(cTvi)2. (A.8)

By definition, since (u1, . . . , un, v1, . . . , vr) is an orthonormal representation
of G + H, it follows that if i and j are nonadjacent vertices in G, then they
are nonadjacent in G + H and thus, uT

i uj = 0. Hence, (u1, . . . , un) is an
orthonormal representation of G. Similarly, it follows that (v1, . . . , vr) is an
orthonormal representation of H. Thus, by Theorem 2.14,

ϑ(G + H) =
n∑

i=1
(cTui)2 +

r∑
i=1

(cTvi)2 ≤ ϑ(G) + ϑ(H). (A.9)

Combining inequalities (A.7) and (A.9) gives the equality in (2.42).
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Appendix B

The original proof of
Theorem 3.4

Theorem 3.4 is a direct corollary of [1, Theorem 4]. To show this, we define
an adjacency-reducing mapping.

Definition B.1. Let G be a simple graph, and let f : V(G) → U be a mapping
from the vertices of G to a subset A of V(G). f is called an adjacency-reducing
mapping if for every nonadjacent vertices u, v ∈ V(G), the vertices f(u) and
f(v) are nonadjacent as well.

Proof. Let U = {u1, u2, . . . , uk} be a maximal independent set of vertices in G1.
By assumption, V(G1) can be partitioned into k cliques. Let C = {C1, . . . , Ck}
be such cliques. Obviously every ui, uj ∈ U cannot be in the same clique,
because they are nonadjacent. So, every clique in C contains exactly one
vertex from U . For simplicity, assume that U and C are ordered in a way
that every j ∈ [k] has uj ∈ Cj. Next, define the mapping f : V(G1) → U
as follows. Let v ∈ V(G1) be a vertex, and let Cj be the clique that has
v ∈ Cj, then f(v) = uj. If v1 and v2 are nonadjacent, then they belong to
different cliques in C. Thus f(v1) and f(v2) are mapped to different vertices
in U . Since U is an independent set, f(v1) and f(v2) are nonadjacent. Thus,
f is an adjacency-reducing mapping of G1 into U . Then, by [1, Theorem 4],
equality (3.5) holds.
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Appendix C

The original proof of
Theorem 5.1

Theorem C.1. [10] Let G be a universal graph, and let H satisfy Θ(H) > α(H).
The Shannon capacity of K ≜ G + H is not attained at any finite power of K.

Proof. Let G be a universal graph and let k ∈ N. Then, since G is universal,

α(K2k) =
2k∑

ℓ=0

(
2k

ℓ

)
α(G2k−ℓ) α(Hℓ)

=
2k∑

ℓ=0

∑
0≤i,j≤k;i+j=ℓ

(
k

i

)(
k

j

)
α(G2k−(i+j)) α(Hi+j)

=
2k∑

ℓ=0

∑
0≤i,j≤k;i+j=ℓ

(
k

i

)(
k

j

)
α(G)2k−(i+j)α(Hi+j)

=
k∑

i=0

k∑
j=0

(
k

i

)(
k

j

)
α(G)2k−i−jα(Hi+j).

Similarly,

α(Kk)2 =
(

k∑
i=0

(
k

i

)
α(G)k−iα(Hi)

)2

=
k∑

i=0

k∑
j=0

(
k

i

)(
k

j

)
α(G)2k−i−jα(Hi) α(Gj).
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Subtracting both equalities gives

α(K2k) − α(Kk)2 =
k∑

i=0

k∑
j=0

((
k

i

)(
k

j

)
α(G)2k−i−j

(
α(Hi+j) − α(Hi) α(Gj)

))
.

Since by assumption Θ(H) > α(H), there exists i0, j0 ∈ N such that

α(Hi+j) − α(Hi) α(Gj) > 0.

Otherwise, for all m ∈ N, α(Hm) = α(H)m, so Θ(H) = α(H) in contradiction
to our assumption. Hence α(K2k) > α(Kk)2 for all k ≥ max{i0, j0}.

Suppose by contradiction that Θ(K) = k0
√

α(Kk0) for some k0 ≥ max{i0, j0}.
Then α(K2k0) > α(Kk0)2, which gives

Θ(K) ≥ 2k0
√

α(K2k0) > k0
√

α(Kk0) = Θ(K),

thus leading to a contradiction. Hence, it is not attained for any k ≥
max{i0, j0}.

Note that if we assume that Θ(K) = k

√
α(Kk) for some k < max{i0, j0},

then for every n ∈ N

Θ(G) ≥ nk

√
α(Knk) ≥ k

√
α(Kk) = Θ(G),

and then, using the same argument for nk ≥ max{i0, j0}, we get a contradic-
tion. Hence, the Shannon capacity of K is not attained for any k ∈ N.
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Appendix D

The original proof of Inequality
(7.9)

Theorem D.1. [7] Let G be a simple graph with n vertices. Then

Θ(G + G) ≥ 2
√

n. (D.1)

In addition, inequality (D.1) holds with equality if G is self-complementary
and vertex-transitive.

Proof. Let A ∪ B = {a1, . . . , an, b1, . . . , bn} be the vertex set of G + G, where
A represents the vertices of G and B represents the matching vertices of
G. Thus, if {ai, aj} ∈ E(G), then {bi, bj} /∈ E(G). Next, we construct an
independent set in the graph (G + G)2k for every k, and we use that set to
bound the capacity of G+G. For every k, define the set S as the set of vectors
v = (v1, v2, . . . , v2k) that follows the following two rules:

• |{i : vi ∈ A}| = |{j : vj ∈ B}|,

• For every 1 ≤ i ≤ k, if in v, ar is the i-th coordinate from the left that
belongs to A, and bs is the i-th coordinate from the left that belongs to
B, then r = s.

Now we prove that S is an independent set in (G + G)2k. Let u and v be two
distinct vectors from S, we consider two cases:

Case 1, if there is an index t that has ut ∈ A and vt ∈ B then obviously
the two vertices u and v are not adjacent in (G + G)2k.
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Case 2, if there isn’t such an index, then there are two indices 1 ≤ i, j ≤ k,
and two indices r, s between 1 and 2k that have ur = ai, us = bi, and vr = aj ,
vs = bj. Since {ai, aj} is an edge in G if and only if {bi, bj} is not an edge
in G, then the vertices u and v are not adjacent in (G + G)2k. Hence, S is
an independent set in (G + G)2k. Next, the size(cardinality) of S is

(
2k
k

)
nk,

because there are
(

2k
k

)
ways to choose the locations of the coordinates from

A and that dictates the location of the coordinates from B as well, and, for
every coordinate there are n options to choose from, which gives |S| =

(
2k
k

)
nk.

Finally, we get

α((G + G)2k) ≥ |S| =
(

2k

k

)
nk,

which gives

Θ(G + G) ≥ lim
k→∞

2k
√

α((G + G)2k) ≥ lim
k→∞

2k

√√√√(2k

k

)
nk = 2

√
n.

In addition, from [11, Theorem 12], inequality (D.1) indeed holds with equality
when G is a self-complementary and vertex-transitive graph.
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Eds.), Bolyai Soc. Math. Stud., Springer, Budapest, Hungary, 28 (2019),
1–16.

[4] M. Jurkiewicz, A survey on known values and bounds on the Shannon
capacity, in Selected Topics in Modern Mathematics - Edition 2014, eds.
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 מכון טכנולוגי לישראל   –הוגש לסנט הטכניון 

 2025 אוקטובר          חיפה         ותשפ"  חשוון 

 

 



 

 

 בפקולטה להנדסת חשמל ומחשבים המחקר נעשה 

 בהנחיית פרופ' יגאל ששון 

 

מחבר חיבור זה מצהיר כי המחקר, כולל איסוף הנתונים, עיבודם והצגתם, התייחסות והשוואה לחקרים  

קודמים וכו', נעשה כולו בצורה ישרה, כמצופה ממחקר מדעי המבוצע לפי אמות המידה האתיות של  

פי אותן  העולם האקדמי. כמו כן, הדיווח על המחקר ותוצאותיו בחיבור זה נעשה בצורה ישרה ומלאה, ל

 אמות מידה. 

 

 

 הכרת תודה 

למדתי ממנו   , פרופ' יגאל ששון, על הנחייתו ותמיכתו הצמודה לכל אורך הדרך.תודה רבה למנחה שלי

  רביםמרתקים ועל הכתיבה האקדמית, ובזכותו נחשפתי לתחומים הרבה מאוד על עולם המחקר 

  רון הולצמן ופרופ' יובל קסוטוותורת האינפורמציה. בנוסף, אני רוצה להודות לפרופ'  קומבינטוריקהב

אני רוצה להודות למשפחתי על    ולבסוף, .ביסודיות עברו על המחקר שליו  שהיו בועדת הבחינה שלי

 המחקר. תמיכתם בי לאורך  

 

 

 

 

 

 אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי 



I 

 תקציר 

(  C. Shannonבמאמר פורץ הדרך של שאנון )לראשונה   רהוגד (Shannon capacity) קיבול שאנון של גרפים

והוא שווה לקצב האינפורמציה הגדול ביותר שניתן לשלוח    מוגדר על גרף שמייצג ערוץ,זה  ערך    ,1956שנת  ב

בניגוד לקיבול הקלאסי, שמאפשר    לשחזר את ההודעה במוצא ללא שגיאה.  מאפשר ש  באופןדרך הערוץ,  

על מנת  שגיאה קטנה ששואפת לאפס עם גודל ההודעה, קיבול שאנון של גרף דורש תקשורת ללא שגיאה.  

חסר דיסקרטי  ערוץ  לכל  הגדיר  הגרפים, שאנון  תורת  לבין  ערוץ  של  קיבול  בין  )-לקשור   discreteזיכרון 

memoryless channel( גרף בלבול )confusion graph  ,שהצמתים שלו הם סימבולי הכניסה של הערוץ ,)

בגרף צמתים  שלהם  הבלבול  ושני  המתאימים  הסימבולים  אם  ורק  אם  בקשת  יכולים    בערוץ  מחוברים 

ניתן להגדיר גרף  -להוביל לאותו פלט במוצא הערוץ בהסתברות חיובית. לכל ערוץ דיסקרטי חסר זיכרון, 

מאפשר לנו לחשב את הקיבול  דבר שבלבול מתאים, וזה מספק קשר חשוב בין בעיית הקיבול לתורת הגרפים,  

 של תורת הגרפים. בעזרת סט הכלים הרחב 

נמצאו רק משפחות אחדות של גרפים  של גרף מהווה בעייה קשה מאוד, ונכון להיום,  הקיבול שאנון    חישוב 

ידוע שלהם  )שהקיבול  קנסר  גרפי  כמו   ,Kneser graphs  או  )( מושלמים  הסיבה  (.  perfect graphsגרפים 

סדרה אינסופית של מספרי יציבות  שחישוב הקיבול היא משימה כל כך קשה היא שהקיבול מוגדר כגבול של  

(independence numbersשל גרפים בעלי גודל עולה אקספוננציאלית )  בשביל לחשב מספר יציבות צריך .

, כלומר,  NP-hardזאת בעיה  שבגרף,  הגדולה ביותר    (independent set)  למצוא את הקבוצה הבלתי תלויה

אז בשביל לחשב את הקיבול של גרף, צריך    שפתרונה דורש מספר פעולות אקספוננציאלי לפי גודל הגרף.

שדורשות   בעיות  של  אינסופית  סדרה  שגדל לפתור  הגרף  בגודל  כתלות  אקספוננציאלי  פעולות    מספר 

שלא ניתן לפתור עם  עם הסדרה. לכן, מבחינת סיבוכיות החישוב של הקיבול, זאת בעיה    אקספוננציאלית

או   פשוטים  ניסו  אלגוריתמים  רבים  חוקרים  לכן,  אותו  מחשבים.  ולחשב  הקיבול,  עבור  חסמים  למצוא 

 בעזרתם.

(  fractional independence numberנלי )ו הפרקטיאשמספר היציבות  , הוכח  1956במאמר של שאנון משנת  

בעזרת החסם העליון הזה ומספר היציבות שמהווה חסם תחתון לקיבול,  מהווה חסם עליון עבור הקיבול, ו

במאמר  לאחר מכן,  שאנון הוכיח שלכל גרף במשפחת הגרפים המושלמים, הקיבול שווה למספר היציבות.  

)דרך  הפורץ   גרפים, והוכח  1979משנת    (Lovaszשל לובאס  שהפונקצייה  , הוגדרה הפונקציית לובאס של 

הזאת מהווה חסם עליון לקיבול שאנון, ועוד יותר מזה, הוכח שהיא בהכרח קטנה או שווה למספר היציבות  



II 

פונקציית לובאס  של  ולכן היא מהווה חסם עליון טוב יותר עבור הקיבול. היתרון הכי גדול    הפרקטיאונלי,

הגרף, בגודל  כתלות  פולינומיאלי  בזמן  אותה  שניתן לחשב  היא  גרפים,  שניתן    של  חסם  לנו  דבר שמספק 

באופן כללי, נמצאו חסמים על בניות מסוימות של גרפים,    בנוסף לחסמים על הקיבול  קיבול.הלחישוב על  

( של גרף עם  disjoint unionהמופרד )  ( מצא חסם התלוי בגודל בגרף, על האיחוד N. Alonלון )א  לדוגמה,

בין בעיות נוספות בתקשורת לבין  בנוסף לקיבול שאנון, ניתן לקשור    .1998משנת    במאמר  משלים שלוגרף הה

 . יבוד מידעאה ללא  נוגעת בדחיסנוספות לקיבול, ש  בבעיהבחיבור זה נעסוק   ,בעיות בתורת הגרפים

בתקשורת   ה בין בעי ףבקשר נוס חיבור זה עוסק במגוון בעיות הנוגעות בקיבול שאנון של גרפים ותכונותיו, ו

בפולינומים של גרפים, ונמצא תנאים מספיקים על סדרה של גרפים,  לבין תורת הגרפים. ראשית, נעסוק  

של סדרת הגרפים שווה לפולינום של הקיבולים של הגרפים בהתאם, דבר    עבורם הקיבול של כל פולינום

של   יותר  פשוט  גרפי    בניותשמאפשר חישוב  גרפים,  של  נעסוק במשפחה חדשה  שנית,  גרפים.  של  גדולות 

( עבור    (, Tadpole graphsטאדפול  חסמים  ונמצא  מסוימים,  במקרים  שלהם  המדויק  הקיבול  את  נמצא 

משפחה של גרפי טאדפול לבין  -, בנוסף, נוכיח נוסחה הקושרת בין הקיבול של תתהקיבול במקרים אחרים

נבנה שתי משפחות רחבות חדשות של גרפים, שהקיבול  זוגי. לאחר מכן,  -גרפי לולאה מסדר איהקיבול של  

הסופיות שלהם,    (strong powers)  מספר היציבות של אף אחד מהחזקות החזקותידי    שלהם לא מתקבל על

קשירים המקיימים תכונה זו, שלמיטב ידיעתנו, זאת המשפחה    ובתוך זה, נמצא משפחה אינסופית של גרפים

, ובכך  q-Kneserם  בנוסף, נמצא את הקיבול המדויק של משפחת הגרפי  הראשונה מהסוג הזה שנמצאה.

( strong product)מכפלה חזקה  שוויון בין  -אי  וכיחהגרפים שקיבולם ידוע. לאחר מכן נ צת  קבונרחיב את  

יותר לחסם תחתון ידוע של    הפשוט  השל סדרת גרפים ובין האיחוד המופרד שלהם, שבעזרתו ניתן הוכח 

ונציג גישה  יבוד מידע,  אנתמקד בבעייה בתקשורת הנוגעת בדחיסה ללא    לבסוף,קיבול של גרפים מובנים.  

 . אלגוריתם הפענוחחדשה לפתרונה בעזרת תורת הגרפים, המתחשבת בסיבוכיות החישוב של 
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