SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY OMPRIL 23, 2008. REVISED OCTOBER 30, 2008. 1

Performance Bounds for Non-Binary Linear Block
Codes over Memoryless Symmetric Channels

Eran Hof Igal Sason Shlomo Shamai

Department of Electrical Engineering
Technion — Israel Institute of Technology
Haifa 32000, Israel
E-mails: {hof@tx, sason@ee, sshlomo@#echnion.ac.il

Abstract

The performance of non-binary linear block codes is studiethis paper via the derivation of new upper
bounds on the block error probability under ML decoding. Ttamsmission of these codes is assumed to take place
over a memoryless and symmetric channel. The new boundshvelrte based on the Gallager bounds and their
variations, are applied to the Gallager ensembles of noarpiand regular low-density parity-check (LDPC) codes.
These upper bounds are also compared with sphere-packireg liounds. This study indicates that the new upper
bounds are useful for the performance evaluation of codedmanication systems which incorporate non-binary
coding techniques.
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Block codes, linear codes, low-density parity-check (LDDRGdes, ML decoding, non-binary codes, sphere-
packing bounds.

. INTRODUCTION

The performance of coded communication systems is usuadlyzed via bounds on the decoding error proba-
bility. These bounds are of interest since the performamedyais of coded communication systems rarely admits
exact expressions. Modern coding schemes (e.g., codegdelimgraphs) perform reliably at rates which are close
to the channel capacity, whereas union bounds are uselessdes of moderate to large block lengths at rates above
the channel cut-off rate. The limitation of the union bouhdrefore motivates the introduction of some improved
bounding techniques which can be also efficiently calcdlatdthough the performance analysis of specific codes
is in general prohibitively complex, this kind of analyss tractable for various code ensembles for which the
derivation of some of their basic features (e.g., the avedigtance spectrum) lends itself to analysis. For a tutoria
on the performance analysis of binary linear block codessumdaximum-likelihood (ML) decoding, the reader
is referred to [1] and references therein, whereas this woflicused on the performance analysis of non-binary
linear block codes.

The 1965 Gallager bound [2] is one of the well-known upperrasuon the decoding error probability of
ensembles of fully random block codes, and it is informativall rates below the channel capacity limit. Emerging
from this bounding technique, the bounds of Duman and Sdsetla [3] and [4]) possess the pleasing feature that
they are amenable to analysis for codes or ensembles fohvitéc (average) distance spectra are available.

The bounds of Duman and Salehi, in particular its secondiorer&alled hereafter the ‘DS2 bound’), are
generalized in [1], [5] and [6] for various memoryless conmication systems. Moreover, this bound facilitates
the derivation of a large class of previously reported bsufmd their Chernoff versions), as shown in [1] and [5].
Gallager-based bounds for binary linear block codes whosenwnication takes place over fading channels are
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provided in [7], [8] and [9]. The Shulman and Feder bound (BE®] forms an extension of the 1965 Gallager
bound which can be also applied to structured codes or erdesnfin adaptation of the SFB to non-binary linear
block codes was reported in [11] for the case of coding wittaedom coset mechanism (see, e.g., [11]-[14]),
and for the case of transmission over modulo-additive nofsnnels (see [15]). Generalization of Gallager-type
bounds, among them the DS2 bound, for the case of binaryrlileak codes whose transmission take places over
parallel channels are provided in [16] and [17].

The 1959 sphere-packing (SP59) bound of Shannon [18] is arldund on the decoding error probability of
block codes whose transmission takes place over the aglditiite Gaussian noise (AWGN) channel with equal-
energy signaling. The 1967 sphere-packing bound of Shaahah [19], forms an alternative lower bound on the
decoding error probability of block codes which applies igctete memoryless channels. An overview on classical
sphere-packing bounds is provided in [1, Chapter 5]. An oupd sphere-packing (ISP) bound, which holds for
all memoryless symmetric channels, was recently derivg@1h by improving the bounds in [19] and [20].

Low-density parity-check (LDPC) codes were proposed byldgal in his seminal work [22]. The performance
analysis of the binary LDPC ensembles in [22] is carried urtde assumption that the channel is memoryless
binary-input output-symmetric (MBIOS). In contrast to thaary case, the performance analysis of non-binary
LDPC code ensembles in [22] is carried under a symmetry gssomwhich is tailored to the specific bounding
technique introduced in [22]. The asymptotic error perfance of several non-binary LDPC structures is studied
in [11] under ML decoding. Their asymptotic performance emiterative decoding is studied in [12], and further
bounds on the thresholds of non-binary LDPC code ensembdestadied in [23] and [24]. It is assumed in [11]
that the transmission takes place over channels with a rancliset mechanism which enables to dismiss the
channel symmetry condition required in [22]. The decodingreprobability of various non-binary LDPC code
constructions was studied empirically in the literaturey,. e25]. Except for non-binary LDPC codes, turbo codes
were also considered for high spectral efficiency schemess €sg., [26]-[30] and references therein).

The drawback of the union bound motivates the study in thjgepavhich is focused on the derivation of upper
bounds on the ML decoding error probability of (ensemblgsnain-binary linear block codes over memoryless
symmetric channels. Our definition of symmetry for chanmgt®se input is non-binary generalizes the common
definition of MBIOS channels. Under these symmetry requéets, we prove that the conditional error probability
under ML decoding is independent of the transmitted coddw®his result is in agreement with [34] and [35]
which prove the same result under linear-programming degod

The general concept used in this paper is based on a padrigi@f the original ensemble into two subsets
of codebooks according to their minimal Hamming distanaa. the set of codebooks whose minimal distances
are below a certain value (which is later determined in otdeachieve a tight bound), a simple union bound is
used which only depends on their distance properties. Athiscomplementary set of codebooks (whose minimal
Hamming distance is larger than the above value), a Galgperbound on the decoding error probability is used;
the latter bound depends both on the distance propertidseoéisemble and the communication channel, and it
relies on a generalization of the DS2 bound to non-binargdinblock code ensembles.

The upper bounds on the error performance derived in thismame applied to non-binary regular LDPC code
ensembles of Gallager [22], and their error performancéuidiad for various communication channel models. The
exact complete composition spectra for these LDPC codengries are also provided (instead of the upper bound
in [22]), and this exact analysis forms a generalizationhaf &nalysis in [31] and [32]. In addition, the derived
upper bounds are compared with sphere-packing lower boomdkse decoding error probability.

This paper is structured as follows: the symmetry requirgmend the message independence proposition
are provided in Section Il. The proposed bounding approadntroduced in Section lll, and these bounds are
exemplified for the Gallager LDPC code ensembles overagy symmetric and AWGN channels. Variations of
these bounds are also derived and exemplified in Sectiond¥ufty-interleaved fading channels with perfect CSI
at the receiver. Section V concludes our discussion. Varteahnical details are relegated to the appendices.

Il. CHANNEL SYMMETRY AND MESSAGEINDEPENDENCE

Let X = {zo,x1,...,24—1} be a given alphabet with cardinality We assume an addition operatiof)(over
the alphabett for which {X’, +} forms an Abelian group. Let, = 0 be the additive identity of this group. In
addition, let) be a given discrete (or continuous) alphabet. We assume aorylmss channel, and denote the
channel transition probability (or probability densitgspectively) function by(y|x), wherex € X andy € ).
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Definition 1 (Channel symmetry). A memoryless channel which is characterized by a transiobability p, an
input-alphabett’ and a discrete output alphaltis symmetric if there exists a functiory : ) x X — ) which
satisfies the following properties:

1) For everyz € &, the function7 (-, z) : Y — Y is bijective.

2) For everyz;,z2 € X andy € ), the following equality holds:

p(ylz1) = p(T (y, v2 — x1)|32). 1)

Remark 1. For channels whose output alphabet is continuous, an additrequirement on the mappingis that
its Jacobian is equal to 1In this case, the condition in (1) implies that

/ p(yler) dy = / (T (g, 72 — 1) [2) dy.

Example 1(MBIOS channels). For the particular case of channels with a binary-input aligt, and whose output
alphabet) is the set of real numbers, setting
oy ifz=0

Ty, @) = { —y fzx=1
then Definition 1 coincides with the standard definition of @& channels. The meaning of the functi@nis
better understood via the setting of MBIOS channels. Riefgrio (1), the transition probability given a channel
input 21 is equal to the transition probability given another inputwhere the sign of the output is changed if the
two binary inputs are different.

Example 2(Random coset mechanism followed by an arbitrary channel)In [11], [13] and [14], the transmission

of block codes takes place over an arbitrary memorylessrefidallowed by a random coset mechanism. That is,
instead of transmitting the coded messagé¢he vectorx + v is transmitted where is a random vector, called the
coset, known to both the transmitter and the receiver, aadatidition is carried out symbol-wise. When coding
schemes with a random coset mechanism are applied to amagrbihemoryless channel, the symmetry of the
equivalent channel is guaranteed. To see this, considerhiealent channel that includes the addition of the coset
symbols followed by the original channel, and whose obgsEma are pairqy,v), wherewv is the random coset
symbol added to the transmitted coded symbol, and the (original) channel output. Assuming a memoryless
channel, the symmetry is guaranteed by setting

T((y,v),z) =(y,v—2x), ye€), z,vek

where X and) are the input and output alphabets, respectively. NotiaeZhis now defined ove() x X') x &,
where) x X forms the output alphabet of the equivalent channel.

Based on Definition 1, we get the following lemma:

Lemma 1. let x1, x9, z3 be arbitrary symbols int’, and letp be a transition probability law of a memoryless
symmetric channel. Then,

p(T(T(y, 1), T2) |x3> =p(T (y, 21 + z2)|z3) )
where7 is the mapping satisfying the symmetry properties in DéfinitlL.

Proof: See Appendix A. |

For MBIOS channels, the capacity is attained with a unifonput distribution. In addition, random coding with a
uniform (and memoryless) distribution attains the optirmamdom-coding error exponent provided by Gallager (see
[2], [13], [33]). The following lemma generalizes theseuks for the case of discrete, memoryless, and symmetric
channels according to Definition 1 (a similar result follofes the case of memoryless symmetric channels with a
continuous output-alphabets).

It is possible to use a generalized definition for both digcand continuous output alphabets using the notion of ynftanctions as
done for example in [21, Section IlI-A].
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Lemma 2. Let @ be a probability function over the input alphal?ét and letp be a transition probability function
of a discrete symmetric and memoryless channel. Then, thaahinformation(Q), between the channel input
(with an input probability distributior)) and the channel output, given by

p(y|r)
=2_2_ Q@p(yl)n <2M Q(w’)p(y!w’)>

yeY zeX
and the Gallager functiofy(p, Q) [13], defined by

1+p
Eo(p,Q) 2 —In (> (Z Q(@)p(y|) 1+ﬂ> , p=0

yeY \zeX

are maximized (for every > 0) by a uniform distribution.

Proof: The proof follows trivially by applying [33, Theorems 3.2823.2.3] to the case at hand. |

Lemma 2 is also valid for symmetric DMCs in the sense definedGhilager in [13, p. 94] (as shown in the
following definition):

Definition 2 (Gallager’s definition for symmetric DMC [13]). A DMC is defined to be symmetric if the set
of outputs can be partitioned into subsets in such a way tragdch subset the matrix of transition probabilities
(using inputs as rows and outputs of the subset as colummsjheaproperty that each row is a permutation of
each other row and each column (if more than 1) is a permutaticcach other column.

Consider linear block codes over the non-binary alphahe$pecifically, letG be ak x n matrix with components
over the alphabe®’. Then, the linear block code with a generator matdx denoted byC = {xm};{jzl where
Xm = (Tm,15- -+, Tm,n), IS the set of aly® linear combinations of the rows &. The conditional error probability
of the m-th message is given according to

Py = > plylxm)

yEAS,

whereA,,, forms the decision region for the-th codeword, and the superscript ‘c’ stands for the complamary
set. The decision region of the-th codeword under ML decoding gets the form

Ay = {y : p(y‘xm) > p(yyxm’)a vom' # m}

and ties are resolved randomly with equal probability. Alvkelown result for binary linear block codes operating
over MBIOS channels is that their error probability under Mécoding is independent of the actual transmitted
codeword. This result enables a great simplification to ther @erformance analysis by assuming that the all-zero
codeword, designated by, is transmitted. The following proposition is a generdii@a of this result for linear
block codes communicated over memoryless and symmetritnetiwhose input alphabet is discrete (for the case
of linear-programming decoding, see [34]):

Proposition 1 (Independence of the Conditional Error Probability on the Transmitted Codeword for all
Memoryless Symmetric Channels).Let C be a linear block code whose transmission takes place ovexnaom
ryless and symmetric channel according to Definition 1. Thia block error probability under ML decoding is
independent of the transmitted codeword.

Proof: See Appendix B. [ |

The proof for the message independence property remaiis eaén if the channel transition probability is
different for each transmission. This enables the analpsection IV of g-ary PSK systems whose transmission
takes place over fading channels with perfect CSI at thestrétter. In addition, note that in contrast to Lemma 2,
Proposition 1 does not necessarily hold for symmetric DMG&simaDefinition 2. This is demonstrated in the
following counter-example:
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Example 3 (Channel symmetry according to Definition 2 doesn’t imply synmetry according to Definition 1).
Consider a DMC with the integer ring4 (with arithmetic operations moduldy as common input and output
alphabets, and with the following transition probabilityatmix:

0.20 024 0.30 0.26

P p] | 030 020 026 0.24
] 0.24 026 0.20 0.30

0.26 0.30 0.24 0.20

In this matrix, the elemenp; ; (wherei,j € {1,...,4}) refers to the transition probability when the channel
input is equal toi — 1 and the output is equal t9 — 1. The memoryless channel which correspondsPtas
symmetric according to Definition 2 (notice that each row aollimn is a permutation of another row or column,
respectively). However, if the linear block codl@0, 13,22, 31} is transmitted over the considered channel, then the
resulting conditional error probabilities under ML deaugliare(0.7540, 0.7210, 0.5424 and0.7210, respectively,
and they therefore depend on the transmitted codeword. dw #tis, we first need to determine the ML decoding
regions for the considered code and channel. This is acdsimepl by evaluating the conditional probabilities of
each possible output pair given each possible transmiteéword (e.g.p(03|31) = 0.26 - 0.24 = 0.0624). The
decoding region for the all-zero codewdid is the set{22, 23,32} (note that the ‘00’ vector is not included in the
decision region of this codeword, and on the other hand, #dwtov ‘22’ which forms a codeword is included in
the decision region of the all-zero codeword). The condélaerror probability given that the all-zero codeword is
transmitted is therefore equal to- p(22]00) — p(23|00) — p(32/00) = 1—0.302 —0.30-0.26 — 0.26 - 0.30 = 0.7540.

The rest of the conditional error probabilities are sinjlagvaluated. Hence, due to Proposition 1, this channel is
not symmetric according to Definition 1 although it is symneeaiccording to Definition 2.

I1l. GALLAGER BOUNDS FORMEMORYLESS SYMMETRIC CHANNELS AND SOME APPLICATIONS

A. The D2 bound

LetC be an(n, k) linear block code defined over the input-alphalvewith cardinalityq. Consider the conditional
error probability under ML decoding given that theth message is transmitted, denotedy,,. The DS2 bound
on the conditional error probability (see [1], [3], [4] an®]) gets the form

1—p
Py < | Y Gry)palylxm)
yeEY™
()|
n Xm/
2 X G i (2555 @
vt Pn(Y[Xm

where ) is a discrete output-alphabet;” (y) is an arbitrary non-negative function ¢f € ", and0 < p <1
and )\ > 0 are arbitrary real-valued parameters. Hgpéy|x) designates the transition probability of the channel
wherex € C is the transmitted codeword agde )" is the received vector. Notice that the bound in (3) holds for
an arbitrary channel regardless of its input alphabet.

Consider now the class of memoryless symmetric channetsamiinput-alphabet’. According to Proposition 1,
Py, is independent of the transmitted messageWe further assume that? (y) is expressed in the following
product form:

n

Go(y) =T o)

i=1

whereg : Y — R, is an arbitrary non-negative function which is defined over set). The following bound
on the decoding error probability is obtained for a discatgput alphabet (a similar proposition can be stated for
channels with a continuous output alphabet):
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Proposition 2. Consider arin, k) linear block cod& whose transmission takes place over a memoryless symmetric
channel. Assume that the channel input and output alphabets and), respectively, and let be the transition
probability of the channel. Then the block error probapibf the codeC under ML decodingFe, satisfies

n(1—p) p

P < (D g(y)p(ylo) > HZ *p(y10)' " p(yl i) @)

yey m/#£0i=1yeYy

whereg : Y — R, is an arbitrary non-negative real functioh,> 0, and0 < p < 1 are arbitrary real-valued
parameters.

Proof: See Appendix C. |

B. Performance evaluation of ensembles of linear block codes

Definition 3 (Composition of a vector). Let ¢ be a vector whose components are symbols in an alphaledtsize
g. Let us assume without loss of generality tiéat= {0,...,q — 1}. The composition ok, denoted byt = t(c),
is a vectort = (to,t1,...,t;—1) Wheret, (for z € X) counts the number of symbols inthat are equal ta.

The following lemma considers the error probability unddr Mecoding of an ensemble of linear block codes.

Lemma 3. Let £ be an ensemble of linear block codes with block lengtfand letd,,;, be the random variable
designating the minimum Hamming distance of a randomlycsetecodebook from this ensemble. Assume that
there exist non-negative numbels, ande,,, such that

> E[|Ct]] < en (5)

{teH: n—to<D,}

whereE[|C¢| | denotes the expected number of codeword§ inith compositiont, and denotes the entire set
of compositions except for the one of the all-zero codew®dtn, the block error probability under ML decoding
satisfies

Ps < Pr( error| duyin > Dy) + €. (6)

Proof:
P, = Pr(error| dmin > Dy)Pr(dmin > Dy) + Pr( error | dyin < Dy,) Pr(dmin < Dy,)
< Pr( error| dmin > Dy) + Pr(dmin < Dy,).

Let C be a codebook, chosen uniformly at random from the code drseimand letwy(c) denote the Hamming
weight of a codeword: € C. Then, the union bound gives that

Pr(dmin < Dn) < > Pr(c € )
{c#0: wn(c)<D,}

= > Y E[lfeecy]

{teH: n—tc<D,} {c: t(c)=t}

= > E[G]] (7)

{teH: n—to<D,}

where 1¢.ccy denotes the indicator of the evefit € C}, and the last equality follows by converting the inner
summation to an expectation. |

Later in this section, we obtain upper bounds for the firahten the RHS of (6). These bounds are expressed
in terms of the composition spectrum of the considered coderable, and they serve to find a suitable tradeoff
between the parametefy, ande, introduced in Lemma 3. More explicitly, since these two paegers are related,
one wishes to increase the paramelgr while maintaining small values of,,. The continuation to this section
relies on Lemma 3 for the derivation of some bounds, and elisntpeir use to regular LDPC code ensembles.

The following theorem provides an upper bound on the degpdimor probability for ensembles of linear block
codes whose transmission takes place over memoryless gyimcteannels.
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Theorem 1. Under the assumptions and notation in Proposition 2 and L&®@nthe block error probability under
ML decoding satisfies

<Zg p(y]0) )n(l_p)< > E[C | duin > Dy H(S)\7p(x))tf>p—|—en 8)

yey teH: n—to>D,, zeX
where
1-1 _
sxo(@) £ gy)' p(y)0) pyle)t, zeX ©)
yeY

andE[ IC¢| | dimin > Dn] denotes the conditional expected number of codewords wbasgosition is equal te
(where the expectation is with respect to the choice of tlteebookC from the ensembl€) under the requirement
that the minimal Hamming weight of the randomly selectedetmbk is larger tharD,,.

Proof: From Proposition 2 and (9), we get the following upper boangdin the first summand in (6):

Pr( error | duyin > Dy,)
n(1—p)

< | 2 9ww(ylo) E [(Z > Hsm(ci))

yey teH ceCy i=1

dmin > Dn]

where(; is the set of all codewords in a codebo©kvhose composition is. Notice that the double summations
on the RHS of the last inequality, over compositianand codewords € Ct, is equivalent to a single summation
over all the non-zero codewords. Using Jensen’s inequaity”] < (E[X])p for 0 < p <1, then

Pr( error | dyin > Dy,)

n(1—p)
< | D2 awp(yl0)
yey
p
. (Z E [Z H (S)\’p(x))tx ‘ dmin > Dn]>
teH CECt rEX
n(1-p)
= | g(w)pylo)
yey
P
tm
.(Z E|[ci| ( duin > Da| [T (s20(@)) ) . (10)
teH reX
For all codewords whose compositidrsatisfiesn —ty < D,,, their Hamming weight is not larger than,,. Hence
E[[Ce| | dumin > Da| =0, VEeH: n—ty<D, (11)
and the bound in (8) follows from Lemma 3, and (10) and (11). |

The following theorem is a particularization of Theorem 1:

Theorem 2. Under the assumptions and notation in Proposition 2 and La&@ythe block error probability satisfies

aq(C,Dn)

e N (12)
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wheren and R are the block length and code rate (measureg-amy symbols per channel use), respectively, and

E(R) = max (Ey(p) — pR)

0<p<1
1 1+p
Eo(p) & —log, | > (— Zp(ylx)m>
yey q TeEX
(C D N E [‘Ct‘ dmin > Dn} (13)
aq(C, D) = P =R ()
Proof: See Appendix D. |

A similar theorem can be stated for memoryless symmetriiiblis with continuous-output alphabets, where
sums are replaced by integrals.

The bound in Theorem 2 is based on two summands. The first isdaptation of the SFB to non-binary
linear block codes which applies to the codebooks whosenmimi distance exceeds an arbitrary threshblgd
The second term relates to the probability that a randombcted codebook from the ensemble has a minimum
Hamming distance which does not exceeg. As a result, the second term on the RHS of (12) does not depend
on the communication channel, but only on the code ensenmuettee arbitrary threshold,,. This partitioning
differs from [11] and [37] where no such separation of coaddsos used. The SFB in [11] and [37] is combined
with a union bound which corresponds to all pairwise erravbpbilities of relevant codewords and it depends
on the communication channel. Following Example 2, the SkBLL] can be considered as a particular case of
Theorem 2 (the same goes for [15] where the considered meadliditive noise channel is also symmetric according
to Definition 1).

In general, the conditional expectation of the composispactrum given that the minimum Hamming distance
exceeds a certain positive threshdly, (i.e., E[|Ct|\dmin > Dn]) is not available. Nevertheless, it is possible to
use the inequality

£[c]

v

E[yct\ | duin > Dn] Pr(dmin > D)

V

E[|Ct| | duin. > Dn] (1 en). (14)

where the LHS of this inequality requires the knowledge @f éxpectation of the complete composition spectrum
E[\Ct]]. Applying (14) to the RHS of (8), gives a looser version of thmunds in Theorem 1 and 2 but is more
amenable to analysis. The inequality in (14) is valid whepuegation of codebooks is considered. The expurgated
ensemble is constructed by removing all codebooks whosémain Hamming distance is not larger thdn,.
Since all the codebooks in the expurgated ensemble have imunmdistance greater thai,,, then the additive
terme¢,, on the RHS of (8) vanishes.

Consider an ensemble of linear block codes, and choose @aokiédrom this ensemble uniformly at random.
We assume that the probability that a vector is a codeworgldgphends on its Hamming weight (so all vectors of a
fixed composition are codewords with equal probability).aAsesult, the expected complete composition spectrum
E|Ct| satisfies

n
eflca] = Ptn - o)} (15)
where P(l) denotes the probability that a word whose Hamming weighlt, #rms a codeword in a randomly

selected codebook from the ensemble. Assuming (15), theatian of o, in Theorem 2 is considerably reduced.
In the following, we introduce an improvement over the boimdheorem 2:

Theorem 3. Under the assumptions and notation in Proposition 2 and L&@nfor ensembles satisfying (15), the
block error probability satisfies

P
Po < A(p)"( )< > il (7)3(0)”10(/))1) + €n (16)

— €
D,<I<n n
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where0 < p < 1, ¢, is defined in (6), and

1 ) 1+p
Alp) & ) (— Zp(ylx)m>
yey q TEX
1 e
Blp) = > (— Zp(ylx)m> (— Zp(ylx)m>
yey q T€EX q zeX
Clp) = qAlp) — B(p).
Proof: See Appendix E. |

Remark 2. For the particular case of binary linear block codes, thendgerovided in Theorem 3 does not require
the symmetry assumption on the considered ensemble inkdb}his case, the same derivation holds while setting

P(l) é E[(’rl(;)l‘ ]

WhereE[ \Cl\] denotes the expected number of codewords whose Hammindniieig

, Dp<l<n

C. Performance of non-binary regular LDPC ensembles

The non-binary(c, d)-regular LDPC code ensemble, proposed by Gallager in [22,5Ghis considered with
the ¢g-ary symmetric channel and the AWGN channel with-ary PSK modulation (both channels are symmetric
according to Definition 1). The Gallager ensemble is defirgagia sparse parity-check matrix with binary elements.
This matrix is regular, having ones in each column andlones in each row. The LDPC ensemble is constructed
as follows:

1) Divide the parity check matrix inte sub-matrices.

2) Fill the first sub-matrix with ones in a descending order.

3) All other sub-matrices are chosen as random permutatibtie first sub-matrix.

4) Parity-check equations are evaluated using a mogadthmetics.

The following lemma is provided in [22] which implies an updeound on the complete composition spectrum
satisfying the condition in (15):

Lemma 4. Consider the regular non-binary LDPC ensemble of Galldgetrx be a vector of weight > 0. The
probability P(l) that the vecto is a codeword of a codebook which is selected uniformly atioam from the
ensemble, is upper bounded by

exp (% (uq(s) — spig(s) + (d —1)In q) )
P() < - l (17)
(D@—-1)
where J
sy (4 (@=De) +(g-1) (1 —e)?
fq(s) = In d
q
ands is a real number given by the solution of the following eqoati
n
ZHg(s) =1. (18)
Note, that the bound in (17) is valid for ail not only for the one satisfying (18) which yields the minimu
bound in (17). Using the change of variables= In H%q‘i_“l)u —ﬁ < wu < 1, in (18), results in the following

polynomial equation:

wq

(——1)ud+ud_1+u+ -
n

n(q—1)
For ¢ > 2, this equation has a single root in the inter\{alq%l, 1] (the details concerning the evaluation of the
RHS of (17) for the binary case are provided in [8]).

-1=0.




10 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORYON APRIL 23, 2008. REVISED OCTOBER 30, 2008.

In the following, we obtain the exact composition spectruitihe regular LDPC code ensembles of Gallager.
This derivation serves to improve the tightness of the bsuod the error probability. The provided analysis
generalize [31] to non-binary codes. The exact enumerdtiothe binary case is already available in [32], as an
intermediate result, although its main interest is in asgtipanalysis (This analysis can be traced even to Gallager

[2])-

Lemma 5. Under the assumptions and notation in Lemma 4, the probal#iljl) satisfies

A ‘
Plh=——1, 2<1< 19
" ((7)((1—1)l> =ten (19)
where
Soaxt 2 (ax)e (20)
2<i<n

d
A(x) & 1+$Z<(q—l)l+(q—l)(—l)l) (‘;)Xl. (21)

=2
Proof: See Appendix F. [ |

As suggested in [31], the numerical evaluation of the expbire(20) is carried out, in all the examples studied
in this paper, via the binary method (see [40, p. 441]). Thishod makes the evaluation of the high-order powers
of a polynomial relatively easy to compute.

The 1961 Gallager-Fano bound (see [1], [22]) and Lemma 4yirapl exponential bound (in terms of the block
length) on the decoding error probability for the expurdat®PC code ensemble. This expurgation removes all
the codebooks whose minimal Hamming distance is below aioetfireshold which scales linearly with the block
length. This result is elaborated for the binary case byeaviiind Burshtein [37]).

The following examples consider the Gallager ensemblesoofhinary and (8, 16) regular LDPC codes where
these ensembles are expurgated by removing all the codeldulse minimum distance is not greater than a certain
parameterD,,. The examples study upper bounds on the decoding error Ipiitp@f these expurgated ensembles
via the use of the upper bounds in Theorems 2 and 3. The exatasition spectrum of the non-expurgated LDPC
code ensemble is evaluated via Lemma 5, and then upper bauntdle composition spectrum of the expurgated
ensembles are calculated via (14).

Example 4 (¢g-ary symmetric channels). Bounds on the block error probability for some expurgated’CDcode
ensembles are presented in Figure 1 when the transmisdies pdace over g-ary symmetric channel and ML
decoding is performed. The performance bounds introducehi$ paper are compared with the union bound, and
we also exemplify the uselessness of the union bound beyendrossover probability which corresponds to the
cutoff rate. More specifically, for g-ary symmetric channel, the cutoff rate is given by

Ro=1—2logq<\/1—p+\/p(q—1))

so the crossover probability which follows by setting théuesof R, to the code rate (which is one-half symbol per
channel use in Fig. 1) is equal to= 0.0670 andp = 0.0739 for quaternary and octal input alphabets, respectively.
The union bound shown in the upper plot of Fig. 1 (see ploti{a¥) a sharp decline around the crossover probability
which corresponds to the cutoff rate of th@ry symmetric channel (i.e., aroupd= 0.0670 for ¢ = 4). Plot (a) also
exemplifies the potential application of the proposed bsundassess the performance of efficient code ensembles
which perform reliably at rates exceeding the cutoff ratethaf channel. Fig. 1(b) is focused on the improved
bounds in Theorems 2 and 3, applied to the Gallaget6) regular and expurgated LDPC code ensemble with a
quaternary alphabet and block lengthsrof 1008 and 10080 symbols. The ensemble spectrum is upper bounded
via Lemma 4, and in addition it is exactly evaluated using brearb; both options are applied in this example so
that the improvement provided by the exact calculation ef tbmposition spectrum is exemplified in this figure.
The various choices of the paramefey, and the resulting,,, which serves as an upper bound on the fraction of
codebooks whose minimum distance is not larger thgn are detailed in Table I(a). Since Theorem 3 is tighter
than Theorem 2, then the minimal valuedf, for which Theorem 2 is useful is larger than the correspapdadue




E. HOFET AL.: PERFORMANCE BOUNDS FOR NON-BINARY LINEAR BLOCK CODES OVERIEMORYLESS SYMMETRIC CHANNELS 11

10 I
-8 -n=1008, Th. 2
LI || -=n=1008 Th 3
10t 7 ||---n=10080, Th. 2 E
I " ||——n=10080,Th.3 | ¢
= & ) !
'E 2 capacity threshold d
E 10 ¢+ o 1|~ ® n=1008, union 3
o 0 <--n =10080, union
A -3 o —=— cutoff rate |
5 10 N
-
5 o
€107 o :
?3 o
_ o /
10° | :
4
o " |
10_6 o, " | | [ | Ll
0.06 0.08 0.1 0.12 0.14 o0.16
crossover probability
(@g=4
10° 10°
-8-n=1008, Th. 2 -8-n=1008, Th. 2
| —=—n=1008,Th.3 _,f|—=—n=1008Th.3
10 "¢ - - —n=10080, Th. 2 k| 10 "4 - - -n=10080, Th. 2 k|
e ——n=10080, Th. 3 = ——n =10080, Th. 3
= 5]~ 2-n=1008, Th. 2, exact = |~ 2-n=1008, Th. 2, exact
<10 E 210 “H i
E —2—n =1008, Th. 3, exact | E —&—n = 1008, Th. 3, exact
o - ©-n=10080, Th. 2, exact ° - ©-n=10080, Th. 2, exact a
3 1073 —=—n =10080, Th. 3, exact ] 3 1073l —=—n=10080, Th. 3, exact 1
I —— capacity threshold o —— capacity threshold
3 3
2107 . €107 - .
= / S
= ? =
-5 ! -5 o
10 ¢ ! 3 10 ¢ A 3
4 I
T o !
_ / / b _ / !
106 . . Ll . il . 106 | LA L
0.06 0.08 0.1 012 0.14 0.16 0.18 0.1 0.15 0.2 0.25
crossover probability crossover probability
(b) g =4 ()g=38

Fig. 1: Upper bounds on the block error probability of the Gallafgri6) regular and non-binary LDPC code ensembles with quaternary
and octal input alphabets. The transmission takes plageaoy@ry symmetric channel whekge= 4 in plots (a) & (b) andg = 8 in plot (c).
This figure refers to expurgated ensembles whose blockHeraye1008 and 10,080 symbols.

which is calculated in conjunction with Theorem 3. Moreouwee considered bounds are further improved when
the upper bound for the composition spectrum in Lemma 4 itaceg with the exact calculation in Lemma 5.
The inferiority of the SFB in (12) is further pronounced fagher alphabets, as exemplified for octal signaling in
Figure 1(c) (where the details with regard to the choice®gpfande, values are given in Table I(b)).

Example 5 (AWGN channels with a g-ary PSK modulation). Upper bounds on the block error probability for
for some expurgated LDPC code ensembles are depicted imeFywhen the transmission takes place over the
AWGN channel with ag-ary PSK modulation. The alphabet size of these code enssnidy = 4,8, 16, and 32,
and the examined parametdps, of the expurgation are given in Table Il. It is evident thag BFB in Theorem 2
deteriorates as compared to the bound in Theorem 3. Thisgalet#n is more dominant by increasing the alphabet
sizegq. It is interesting to compare the studied bounds to the ubmmd which, for large block lengths, diverges
at the cutoff rate of the communication channel. For alphabedinalities ofg = 4 and ¢ = 8, the cutoff rate
corresponds tq’% ratios of 2.46 dB and 5.05 dB, respectively, which exemglify superiority of both derivations
over the union bound. However, for alphabet cardinalitieg & 16 andq = 32, the SFB deteriorates considerably
comparing to the bound provided in Theorem 3 and to the un@mmad which is depicted in Figure 2 and (d) (the
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TABLE |: Parameters for Example 4

| Performance bound Block lengthn (symbols)| D, [ e, (Lemma 4)] e, (Lemma 5)|

Theorem 2 1008 173 0.1 10~ 11
Theorem 3 1008 99 1077 10~
Theorem 2 10008 1834 0.11 1017
Theorem 3 10008 600 10=7 10717

(a) Quaternary alphabey & 4).

[ Performance bound Block lengthrn (symbols)[ D, [ e. (Lemma 4)[ e, (Lemma 5)|

Theorem 2 1008 191 107° 107
Theorem 3 1008 119 107° 10711
Theorem 2 10080 1951 1079 1020
Theorem 3 10080 887 1079 10720
(b) Octal alphabety = 8).
0 0
10 : : : 10 . ‘ ‘
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107 . |-© -n=10080, Th.2 10} 5 -5 -n=10080,Th.2 |
o, | —e—n=10080, Th. 3 o, 9 —e—n=10080, Th. 3
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<10 ¢ <10 ¢ 19 . E
< 2 o 3
B 8 \
= 10 8 = 10 8 © W E
g g | :
5 5 b
3 10_4’ 4 10_4, \ a ]
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. . s 5 4
107} ~ 107} g \ .
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E,/Ny [dB] E,/Ny [dB]
(@g=4 (b)g=38
10° : :
% \ 6 R [ 2 n=1008 Th.2
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(c)g=16 (d) ¢ =32

Fig. 2: Upper bounds on the block error probability under ML decgdifi the (8, 16)-regular LDPC ensembles of Gallager with alphabet
size ofq = 4, 8, 16, and 32, whose transmission takes place over an AWGN channel wittaey PSK modulation. This figure depicts the
upper bounds on the block error probability for the expedansemble with block lengths 008 and 10, 080 symbols.
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Fig. 3: The term% log,, a4(C, D») in (12) for the regular (8,16) LDPC ensemble of Gallager [2Rpicted for alphabet sizes gf= 4,
8, 16, and 32, and block lengths nf= 512, 1008, and 10080 symbols.

TABLE II: D,, values for Example 5
[ Performance bound Block lengthn (symbols)[ D, (¢=4) [ Dn (¢=8) [ Dn (¢=16) [ D» (¢=32) |

Theorem 2 1008 186 191 191 191
Theorem 3 1008 38 34 15 12

Theorem 2 10080 1851 1951 1951 1951
Theorem 3 10080 282 216 132 102

SNR values which correspond to the cutoff rateder 16 and 32 are equal to 7.57 dB and 10.31 dB, respectively).
The reason for the deterioration of the SFB for large valueg i3 explained when looking into the rate term

%logqa(C,Dn). This term corresponds to the difference between the spactrf the considered ensemble and

the multinomial spectrum of the fully random code ensemblés difference between the two composition spectra

is depicted in Figure 3 as a function Q;LL for alphabet sizes of = 4, 8, 16, and 32, and for block lengths of

n = 512, 1008, and 10080 symbols. From Figure 3, this term is moraquroced by increasing the value @f

On the other hand, the bound in Theorem 3 does not exhibit datdrioration.

Remark 3. Divsalar's bound [6], [36] is widely used when assessingdher performance of binary turbo-like
code ensembles over the binary-input AWGN channel (see iapter 3.2.4] and references therein). This is due
to the fact that the bound is given in a closed form, and itswtation does not involve any numerical integrations
and parameter optimizations. The basic concept the boubhdsed on is the following:

Pr(error) < Pr(errory € R) +Pr(y € R)

wherey is the received vector, and the regi@nis the n-dimensional sphere which is centered at a point along the
line connecting the origin to the all-zero codeword, and seéhtadius is optimized analytically in order to get the
tightest bound within its form. This technique was generliby the authors to the non-binary setup by examining
various regions in the complex observation space. In centmthe binary case, not all the parameters could be
optimized analytically. Moreover, the resulting boundsrevaot satisfactory as compared to the bounds presented
in Example 5, and are therefore omitted.

Example 6 (A Comparison to lower bounds on the decoding error probabilty). The upper bound in Theorem 3
is compared in Figure 4 to the SP59 lower bound of Shannon H&] the ISP lower bound in [21]. The regular
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Fig. 4: A Comparison between the upper bound in Theorem 3 and the SR$ISP lower bounds on the decoding error probability
for octal alphabet block codes whose transmission takemaer an AWGN channel witR-ary PSK modulation. This figure depicts the

upper and lower bounds on the block error probability forckltengths of1008 and 10,080 symbols. The upper bounds are provided for
expurgated8, 16) and (8, 32) regular LDPC code ensembles.

LDPC code ensembles of Gallager are considered with ogthlabkt cardinality and block lengths of 1008 and
10080 symbols, and the performance is studied over the AWi&Nmel with an 8-ary PSK modulation. In Fig. 4(a),
the upper bound in Theorem 3 is depicted for the Gallage6§8dgular and expurgated LDPC code ensemble with
octal alphabet (the bound is evaluated with the same paeass in Table I1). In addition, the ultimate performance
of a rate 0.5 code is assessed via the SP59 and the ISP lowsddon the decoding error probability. For a block
length of 1008 symbols, a negligible difference exists leetwthe two considered lower bounds, and both of these
bounds are about 0.5 dB away from the upper bound in Theoreon 8lifrange of interest. For the larger block
length of 10080 symbols, the gain of the ISP bound is aboui @R as compared to the SP59 bound, and it is
about 0.2 dB away from the upper bound (see Fig. 4(a)). Thepaoson between the upper and lower bounds
is further studied in Fig. 4(b) for the Gallager (8,32) reguand expurgated LDPC code ensembles with block
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lengths of 1024 and 10080 symbols and octal alphabet. Thigrdeste for these ensembles is 0.75 symbols per
channel use. The upper bound in Theorem 3 is depicted Wjth= 25 and 95, respective to the studied block
lengths. The ISP bound maintains its close proximity with tipper bound. The SP59 bound on the other hand
deteriorates considerably for this case, and it is lesgrimidive than the capacity limit for both considered block
lengths (see Fig. 4(b)).

IV. GALLAGER-TYPE BOUNDS FOR FULL¥INTERLEAVED FADING CHANNELS WITH PREFECTCSI AT THE
RECEIVER

In the section, the error probability of a linear block catlss considered under ML decoding when transmission
takes place over a fully-interleaved fading channel anéepeCSl is available at the receiver. The fading is assumed
to be a continuous random variable (a similar framework issfide for the discrete case). Ldtdenote the set of
possible fading samples, apdy, a|x) denote the conditional joint pdf of the received sequenee (y1,...,y,) €
Y™ and the fading samples= (a4,...,a,) € A" given that the transmitted codewordsisc C. Due to an ideal
symbol interleaving, the channel is memoryless and aceglyi

y,a]x Hp yz‘xuaz az)

where p(y|z,a) is the single-letter conditional pdf of the channel, and) is the pdf of a fading sample. The
following definition of symmetry is a generalization to thaeopresented in Definition 1. This generalization is
obtained by directly applying Definition 1 to a channel whafservations are the pair of the considered channel
output and the fading sample.

Definition 4. Consider the fully-interleaved fading channel with an inplphabett, and perfect CSl at the receiver.
The channel, which is characterized by a transition jadé symmetric if for everyu € A, there exists a function
7, : Y x X — Y which satisfies the following properties:

1) For everyz € X, the functionZ,(-,x) : ) — ) is bijective and with a Jacobian 1.

2) For everyzi,xo € X, the following equality holds:

p(yler, a) = p(Taly, 22 — 21)|22, ). (22)

Notice that this definition of symmetry is a weaker notion pamed to a one where there exists a function
7T :)Y x X — Y meeting the condition in (22) for every fading sample A. Nevertheless, this weaker notion
is sufficient in order to prove that for the case at hand, thedétoding error probability does not depend on the
actual transmitted message. This is clearly expected $hafmition 4 is a direct application of Definition 1 for
the case at hand. The conditional decoding error probgalidit the m-th message under ML decoding as is given

by
Py = / / Py, alxm) dy da = / p(a) / p(y |, &) dy da (23)
aJyeAg, (a) a yEAS, (a)

whereA,,(a) C Y™ is the decision region under ML decoding given that the segeef fading samples is € A™.
The proof of the independence of the decoding error proipaloih the transmitted codeword follows by showing
that the inner integral in (23) is independent of the tratteimessage: (this is accomplished for every sequence
of fading sample sequeneein the same way as of the proof in Appendix B).

Theorem 4. Under the assumptions and notation in Lemma 3, considerdhe where transmission takes place
over a symmetric, fully-interleaved fading channel withfpet CSI at the receiver. Let the channel input and output
alphabets bet and ), respectively, and let be the transition pdf of the channel. Then, the block errobpbility
under ML decoding satisfies

P < Z ( > [\cty ‘ din > Dn]

teH,;: n—to>D,

1*>‘ij tr pj
(/ Vi(y,a ”ﬂp (y,al0) #s p(y,a!w)kfdyda> ) + € (24)

reX
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where{Hj};.’:1 with an arbitraryJ > 1 forms a partition of the set of compositions (except for time ovhich

corresponds to the all-zero codeword).fesubsetsE ||C| \ dmin > D, | denotes the expectation of the complete
composition spectrum under the assumption that, > D,, the functionsy; : Y x A — R are arbitrary non-
negative tilting probability measures, afdk p; <1 and\; > 0.

Proof: See Appendix G. |
Consider an ensemble which satisfies the symmetry proper($5), and let us choos¢ = n and’H; = {t :
n —top = j}. By using calculus of variations, the optimum tilting meeesu); for D,, < j < n, are given by

X\ Pi
,al|T /
¥;(y,a) = ajop(y,al0) <1+ Zagx<y7’)> > , A >0,0<p; <1

reEX* y’ a\O)

where the parameters; ,, € X'* are given by

N 2 ¥i(y,a I_P_fp(y,a\O)P_f dy da

aj,:t 1-X; 1-Xjpj
(1 =5 Y sex- JS ¥i(y.a ”Jp(y,a\o) i ply,alz)t dy da

anda; o are determined such thaz;- are probability measures. The numerical evaluations df dotinds result in a
tedious numerical process. It is therefore of interest &kder probability tilting measures for which the integaati

in (24) has a closed form expression. Exponential upper éd®wm the ML decoding error probability of binary
linear block codes that operate over the binary-input fultgrleaved Rician fading channel with perfect CSI at the
receiver were derived in [9]. These bounds are reasonaiiiy ith a certain portion of the rate region exceeding the
cutoff rate, and do not require numerical integrations ivwd in the evaluation of the optimal DS2-based bound.
In the following example, the technique in [9] is generaliznd applied to non-binary linear block codes whose
transmission takes place over a fully-interleaved Riceudtirfg channel with g-ary PSK modulation.

Example 7 (A fully-interleaved Rician fading channel with PSK modulation). Consider the class of fully-

interleaved Rician fading channels with an additive whiteu€sian noise. A codeword = (z1,...,x,) with a
block lengthn and codeword symbols over the alphaBét= {0,1,...,q — 1} is transmitted over a discrete-time
memoryless channel. The received sequenee(yy,...,y,) € C" satisfies

2F 2
yk:AM/—SeXp (ﬂmk>—|—Nk, k=1,...,n. (25)
No q

Here A, is a Rician random variable with a parametéy and Ny, = N}, + jN!, where N and N\ are statistically
independent Gaussian random variables with a zero mean amit avariance. The non-negative real-valued
parameterk designates the power ratio between the direct and the ddfypaths,Ny/2 is the two sided power
density spectrum of the additive white Gaussian noise, Bné the energy per transmitted coded symbol. The
symmetry of the considered channel is guaranteed by/#twy PSK modulation and the AWGN noise. Following
[9], a sub-optimal DS2 bound is suggested for the case at.anthis end, the exponential tilting measure

oy - _ av?azEs
or &XP < 2 Ny p(a)

2 02 s ’
Iy p(a) exp ( %) da

where, forl < j < J, v; anda; are non-negative real-valued parameters, ants a complex-valued parameter.
Substituting the exponential tilting measupg into (24) provides an upper bound on the error probabilitychhs
expressed in a closed form (see Appendix H). The performahdtee (8,16) regular non-binary LDPC ensemble
of Gallager [22] with block lengths of = 1008 andn = 10080 symbols is provided in Figure 5 using the bound
in Theorem 4, in addition to the union bound. The bound in (B4gvaluated with/ = 6 and the partitioning of
the set of compositions is done according to their Hammingyie where the boundaries of this partitioning are
set to Hamming weights of 350, 425, 500, 575, and 600 for akblength of 1008 symbols (the corresponding
boundaries for a block length of 10080 symbols are set to 38280, 5000, 5750, and 6000). The performance
bounds refer to a quaternary input-alphafpet 4 and a fully-interleaved Rayleigh fading channel (see F{@))5

2F.
Y — auy NS

1/}]' (y7 a) =

yeC, a>0 (26)
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Fig. 5: Upper bounds on the block error probability under ML decgdfor the (8, 16)-regular LDPC ensemble of Gallager, whose
transmission takes place over a fully-interleaved Riciairfg channel withy-ary PSK modulation and perfect CSI at the receiver. Both
plots refer to the non-expurgated ensemble, and the peafuzenof an expurgated ensemble with = 100 is also presented in plot (a) for
comparison.
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Fig. 6: Upper bounds on the block error probability under ML decgdior the (8, 16)-regular LDPC ensemble of Gallager with octal
alphabet and a block length of 1008 symbols. The transnmigsikes place over a fully-interleaved Rayleigh fading ctehnvith 8-ary PSK

modulation, perfect CSI and maximal ratio combining (MRCE)tee receiver. The figure depicts the performance for MR@rdity with
L =1to L =4 antennas at the receiver.

and for octal input-alphabet= 8 and a Rician fading channel withi' = 2 (see Fig. 5(b)). In both plots the non-
expurgated ensemble is considered, while in plot (a) theopeaance for an expurgated ensemble widh) = 100
(with a corresponding,, = 10~° in Theorem 4) is also presented for a block length of 1008 sysalin both plots,
the union bound diverges bellow the cutoff rate which cqroesls toEs/N, thresholds of 5.1 dB and 7.18 dB
respectively (the capacity corresponds to thresholds&8 &iB and 4.21 dB, respectively). Although the bound in
Theorem 4 is not informative (for the considered example}aiphe ultimate channel capacity, it is for a block
length of 1008 symbols 0.9 dB and 1 dB better than the uniomtéd@ui Fig. 5(a) and 1.2 dB and 1.3 dB in Fig. 5(b)
at block error probabilities o10~%, and 10~#, respectively (for a block length of 10080 symbols the boimd

Theorem 4 is better than the union bound by 1.5 dB and 1.8 dBgdaternary and octal alphabets, respectively,
at the considered block error probabilities).

Example 8 (A fully-interleaved Rayleigh fading channel with PSK modulation and maximal ratio combining).
Consider the class of fully-interleaved Rayleigh fadingamhels with maximal ratio combining (MRC) space

diversity of orderL. The receiver sequence is as in (25) where the fading samplesare distributed according
to the following pdf:

2LLa?l=1 exp (—La2)
= > 0. 27

Note that% in (25) refers to the stage after the MRC module. A closedthfexpression for the upper bound
on the block error rate, based on Theorem 4 and an expondiiired measure is suggested (see Appendix I).
Consider the (8,16) regular and non-binary LDPC code enkeoflGallager [22] with octal alphabet and a block
length of 1008 symbols. Upper bounds on the decoding errmatyility of this ensemble with various diversity
ordersL are shown in Figure 6. The bound provided in Theorem 4 is coetpwith the union bound for MRC
diversity with L = 1 to 4 antennas. Both bounds coincide in the error floor regibithvis considerably low for
the considered ensemble. The union bound is informative below the cutoff rate, which corresponds g/ Ny

of 8.51, 6.76, 6.18, and 5.90 dB fdr = 1,2,3 and 4 receiving antennas. The bound provided in Theorem 4 is
not informative up to the ultimate channel capacity (whichresponds tdZs/ N, of 4.94, 4.00, 3.68, and 3.30 dB,
respectively). Nevertheless, the bound in Theorem 4 ofatpas the union bound by 1.33 dB at a block error rate
of 10~* when there is a single antenna at the receiver, and by 1.02dB £ 4 receiving antennas.
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Fig. 7: A comparison between the DS2 and union upper bounds on tlei blwor probability under ML decoding for th@, 16)-regular
LDPC ensemble of Gallager (see Example 7). The transmigsies place over fully-interleaved Rayleigh fading chawi¢h a QPSK
modulation and perfect CSI at the receiver. The ISP lowembswon the decoding error probability are shown for bloclgths of 1008
and 10080 symbols. The capacity limit for infinite block lémgs also presented as a reference.

Example 9 (A comparison of upper and lower bounds).The DS2 upper bound in Theorem 4 is compared in this
example to an improved sphere-packing (ISP) lower boundherultimate error performance of finite-length codes
(see [21]). The bounds are compared for block codes whossniasion takes place over the fully interleaved
Rayleigh fading channels with a quadrature-phase shyfinke(QPSK) modulation and perfect CSI at the receiver.
The DS2 bound is evaluated with the sub-optimal exponetiltilg measure in (26) for the (8,16) regular LDPC
code ensembles of Gallager with block lengths of 1008 an@BA®&ymbols. The bounds are plotted in Figure 7
jointly with union bounds as a reference. The ultimate epenformance using a rate—0.5 code with the considered
block lengths is evaluated using the ISP lower bound [21}.tRe two block lengths considered in this example,
the ISP bound is more informative than the capacity thresfimi decoding error probabilities below)—2. For

a block length of 1008 symbols, the gap between the ISP lowandb and the sub-optimal DS2 upper bound is
about 2.0 dB for a block error rate ah~—*. For a block length of 10080 symbols, this gap is reduced b
1.5 dB. Note that the use of the upper bound in Theorem 4 clib&=8 dB gap between the union upper bound
and the respective ISP lower bound to only 1.5 dB while rafgrto a block length of 10080 symbols and a block
error probability of 10~

V. SUMMARY AND CONCLUSIONS

This paper considers the performance of non-binary lindackbcodes whose transmission takes place over
memoryless symmetric channels. To this end, upper boundseodecoding error probability are derived for finite-
length codes. The general bounding approach is based onitioparg of the original ensemble into two subsets of
codebooks, according to their minimal Hamming distances pérformance of the set of codebooks with a relatively
low minimum Hamming distance is assessed via a simple unamd which only depends on the considered
ensemble, whereas the other set is evaluated using thedseemsion of the Duman and Salehi (DS2) bound (See
Section IlI-A). As a particular case of this bounding tecjug, an adaptation of the Shulman-Feder bound (SFB)
(see [10]) is provided for non-binary linear block codeseTatter approach which is related to the adaptation of the
SFB to the non-binary setting is similar to the work of Berama&and Burshtein [11] for a different setting of coding
with a random coset mechanism. Under a symmetry propertiigobhsemble, the resulting bound is considerably
simplified and even tightened. This simplifying assumptiohich holds in particular for the considered non-binary
low-density parity-check (LDPC) ensembles, yields a bowhdse summations are over the Hamming weights of
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the non-zero codewords rather than their compositions Teeerem 3). The tightness of the bounds presented in
this paper is exemplified for the non-binary regular LDPCeenisles of Gallager [22] where transmission takes
place over the-ary symmetric channel and the AWGN channel wit-ary PSK modulation. The bound provided
in Theorem 3 is attractive and show meaningful results upé¢ouitimate capacity limit. In addition, it outperforms
the adaptation of the SFB in Theorem 2 for the non-binaryrgetvhich is even pronounced as the cardinality of
the code alphabet is increased.

The weakness of the union bound is exemplified in this paperegular LDPC code ensembles, showing the
necessity in the replacement of the union bound with somedugal upper bounds on the decoding error probability.
On the other hand, the bound provided in Theorem 3 is mosicéitte and shows meaningful results at a significant
portion of the rate region between the cutoff rate and thienate channel capacity. The upper bound in Theorem 3
is compared to two lower bounds on the ultimate error peréoroe of finite-length block codes (which hold for
general block codes, either linear or non-linear): The 198@ere-packing (SP59) lower bound of Shannon [18],
and the lower bound derived in [21]. These comparisons shoexamples that recent sphere-packing bounds form
a useful analytical tool for finite-length block codes.
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APPENDIXA
PROOF OFLEMMA 1

Let x1, 29,23 € X, p be the transition probability of the channel, ahdbe the mapping as in Lemma 1. Then,
by settingz £ 3 — x4, it follows from (1) that for ally’ € Y

p('x) = p(T (Y, x2)|a2 + ).
As a particular case, foy' = 7 (y,x1) wherey € ), we have

p(’]'(y,xl)\x) = p(T(T(y,wl),xg) |xo + x) (28)
Using (1) (repeatedly twice) on the LHS of (28) it follows tha
p(T(y,xl)\x) =pylz —z1) = p(T(y,xg —x+ xl)\xg). (29)

which then yields from (28) and (29), jointly with the eqylics — x = x5, that
P(T(y,@1 +w2)lws) = p(T (T(y,21),2)Jos)

which coincides with (2).

APPENDIX B
PROOF OFPROPOSITION1

The following proof holds for channels with a discrete-autt@lphabet, and the generalization of the proof
to continuous-output alphabet channels is trivial. ebe the symmetric transition probability function of the
considered channel, arffd be its corresponding function according to Definition 1. Thaditional error probability

of the m-th messagex,, = (Tm,1,Tm,2,---,Tmn), Under ML decoding is given by
Py = Y [[r@wilema)= > 11 11 »pwilo
yeAe, i=1 yeAS, xeX {i: z,,,, =1}

= > II II o720

yeAsn zEX {Z xrn,i:x}
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wherey = (y1,...,y,), and

AS, = { Zln( yz‘xmz>207 forsomem’;«ém}

yz|$m 2)

i
= {y: Z Z In <p(y"|x )> > 0, for somem’ #m

T
{2/ €X: @'#a} (i 2 = 2 =0} p(yilz)

.
— y: E E In <M) > 07 for somem’ 7§ m
{z,2'€X: z'#x} {z: -'Em/,i:xlywm,i:m}

Using the change of variables

zZi = T(yly _:L'm,i)y 1 S 1 S n

Pe|m = Z Hp(zlyo)

zeAe, =1

it follows that

where

=t
o

I

N

¢ : Z Z In <p(T(Z;E:' |B)x/)’0)> > 0, for somem’ # m

{za'€X: z'#a} {z Ty l-_x’,:cm,i::c}

— {z: Z Z In <w> >0, for somem’ #m

10
dex {z xm,i—xmzwizé} p(ZZ| )

Since the cod€ is a linear space, then for every two codewosds # x,, in C, there exists a third non-zero
codewordx; in C wherex; = x,,, — X,,. Hence, for everyn = 1,2,..., M and for everyz € A¢,, there exists
somel € {1,2,..., M} for which

5, I ()
S€X {ir —a;,=6} ¢
Denote byx; € C the all-zero codeword, then it follows that
Ao —RS m=1,2,....4"
which concludes the proof.

APPENDIXC
PROOF OFPROPOSITION2

Since the channel is symmetric, we have from PropositiondL(8hthat

1—p
Pe = Pe\Og ZGO pnY!O
yEY"
P
0 Py |Xm) A
> G “palyl0) Ton(y]0) : (30)
m'#£0yeyr nlY
Next, settingGY (y) as in (4), for memoryless channels we have
1-p p
- P(Yil T 1) A
Pe < Z Hg(yz)p(yz|0) : Z Z HQ yz ¥i|0) W (31)
yeYni=1 m'#£0yeYn i=1 PlY;

which concludes the proof by replacing the sum of producth Wie corresponding product of sums.
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APPENDIXD

PROOF OFTHEOREM 2
From (8)

Pr( error| duyin > Dp)
n(1—p)
< < g(y)p(y|0)> g "R
yey

e [lce

dmin > Dn] n
'<t€7-{: nz—:to>Dn ¢ (=R (3) <t> 1
n(1-p)
< | ) 9w)pyl0) g PR
yey
E |:|Ct| dmin > Dn] g
' teH:r2§§>Dn q—n(l—R) (2)

(.2, (M)

where the last transition holds sin®€, z;y; < max; z; ), y; if {z;} and {y;} are non-negative sequences. Let
x* £ x\ {0}, from the definition ofa, in (13) we get

Pr( error | dyin > Dy,)

n(1—p)
< g iR (%(C’Dn)y (Z g(y)p(yO))

yey

{ 3 (Do > (1 )

R
I=D,+1 to Aty 1=l 1AL ey

)
(Sk,p(x))tI]

n(1—p)
=g =R (aq(Can)>p (Z g(y)p(yO))

yey

n l
12 (eior (5 )]
I=D,+1 TeEX*
n(1—p)
< g iR (%(C’Dn)y (Z g(y)p(yO))

yey

S (e (£ ) |

n(1-p) np
< g m-R) <aq(C,Dn)>p (Z g(y)p(yO)) <Z SA,p($)> : (32)

yey zeX

Next, setting

P
9(y) = G ZMW)*P) p0) T, A=—— (33)
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it follows that

p
3 9wplo) =3 (g Zp(ymr%) p(yl0) ™. (34)

yey yey rzeX

In addition, plugging (33) in (9), we get

p—1
Sxp(® Z( > plyla) w) p(y|0) = p(ylz) e

yey TeEX

which then implies from (34) that

P
Y sael@)=a) < > plyle) 1+P> p(yl0)™

reEX yey zeEX
=q>_ 9(y)p(y|0). (35)
yey
From (32) and (35), it follows that
P
Pr( eror | dyin > Dp) < ¢"°F <aq(C,Dn)) (Z g(y)p(yO)) . (36)
yey

To complete the proof, we need the following lemma:

Lemma 6. Setting g(y) as in (33), the following equality follows foll &:

> 9w) pylo) =) {( > plylz) 1+P>£p-< > plyla)'” +>] (37)

yeY yeY reX reX

Proof: Since the channel is symmetric, then there exists a fundipas in Definition 1, satisfying (1) and
(2). As a result, setting(y) as in (33) we have

> g(y)p(y|0)
yey
p 13
- (( S bl ) p<y|o>—m) p(510)
yey TeX
&p
sl ( S o)™ )
yey zeEX
()1 &p
a
LS S w0 ( 5 plylo)? )
xEXyE)i zeX
o) ép
045 S otrin ) (4 o)
:(:EXyE)i zeX
ép
C _1
01 5 5 ey (—Zp<cr<yx—x'>\x>l+p>
chXyEJJ quX

where in (a) an additional variable is added, (b) is basedlynafnd (c) follows since

p(T(T(y, '), —2")|x) = p(y|z) (38)
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for all z,2/ € X andy € Y. Next, using the closure of the (finite) input alphabet, ltdes that

> 9(y)*p(yl0)

yey
1 3 1 &
Q25NN ) (— p(T(T(y, '),z + 2 —x>|w+w>w>
q r'eEX Yy ey q zeX
© . 1 ép
o Z > oyl T (— p(y’|w+w)m>
gc reXyey q reX
&p
_e (1 1
=~ Z S p(y)a) (— p(y'\x”w)
r'eX yey q z’eX

&p
=, [( > p)a’)'” m>-<1 Zp(y'w)ﬁ) ]
y'ey r'eX qm”eX

where (a) follows from (1) and (b) follows from (2) and (38)tb with ;1 = z andz, = x + 2/. This concludes
the proof.

[ |
From (36) and Lemma 6 (with = 1 in (37)), we get after an optimization over(where0 < p < 1):
—nE, logg aq(C,Dn)
Pr( error | dwin > D) < ¢ 8 (R+ " > (39)
Finally, the proof of Theorem 2 follows from Lemma 3 and (39).
APPENDIX E
PROOF OFTHEOREM 3
Under the conditions in Theorem 3, we get from (8), (14), atf) ¢hat
Pr( error | dyin > Dy,)
n(1—p) P )
n—to) (n to
< Zg(y)p(y!O) ) [ Z ﬁ(t >(3/\,p(0))
yey n—to>D,, " 0
p
n — to te
() M ]
ti+...+tg_1=n—to TEX*
n—1 n o
- (Sawwom) [ > A1) a0 ( > sm:c)) ]
yeY n—to>D,, no \0 zEX*
whereX* £ X\ {0}. Next, setting\ andg(y) as defined in (33), then it follows from (35) that
n(1—p)
Pr( error | dmin > Dy) < Zg(y)p(y!())
yey
n—toq P
P(n—tp) (n
. [ Z e <t0> $x,p(0 (qz p(y|0) — s,\,p(0)> ] : (40)
n—to>D, yey

The proof is completed by applying Lemma 6 in (40) with= 1 for Zyeyg(y)p(yw), and with¢ =1 — % for
53,0(0) = Xyey 9)' 7 p(y]0).
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APPENDIX F
PROOF OFLEMMA 5
Denote bya,- (1) the number of choices dfnon-zero elements ifl,...,q — 1} whose summation modulg
equalsz* (wherez* € {0,...,q — 1}). Note that thesé elements should not necessarily be distinct. Then, for
1 <1 <d, there are(‘li)ax*(l) vectorsx = (z1,...,xq), wWhose Hamming weight i§ and which satisfy
x1+ -+ x4 =2" mod q. (41)

The sequencefu,- (1)} satisfy the following system of recursive equations:

q—1
ax*(l) :Za(ﬂc*—x)mod q(l_ 1)7 z* =0,1,...,¢—-1 (42)
=1
with the initial conditionsag (1) = 0, anda, (1) = 1 for x € {1,...,q— 1}. Using a vector notation, the equations
in (42) are written as
ao(l) 0o 1 -~ 1 1 ag(l—1)
al( ) 1 0 1 s 1 al( - 1)
1 - 1 0 1
aq_l(l) 1 e 1 0 axq aq_l(l - 1)

whose solution fof > 1 is given by

ao(l)

o
—
—_
—_
o

a1(1) 1 1 -1 1
: = | : : (43)
1 1 0 1
ag-1(1) 1 o) \1/) .,

In proving the considered lemma, the main ingredient is ialitg the number of vectors satisfying the parity-
check equation
21+ -+ 294 =0mod gq. (44)

Accordingly, only the sequende(/)} is of interest. To obtain a closed form expression for thigusece, consider
the following difference equation: l
w = (g = 1) (w-1+ (=1)")
{ w =0 . (45)
It can be verified by induction that the elements on the diagohthe ¢ x ¢ matrix on the RHS of (43), raised to
the (I — 1)-th power, are identical and equal tg_,, where the sequendgy } is the solution of (45). Moreover,
all other elements outside the diagonal, are equal 1 + (—1). As a result, it follows from (43) that

ao() = (¢ = 1) (wr + (<1)') , 1= 1, ag(1) = 0.
which implies from (45) that(I) = w; for I > 1. Solving the difference equation in (45), gives

Y/ Y1)
woit) = @1 +<j neEy oy

Hence, the enumerator for the number of vectoatisfying the parity-check equation in (44), is given 4% X)

in (21). As a result, the enumerator of the first sub-matrixha considered ensemble is given in (20) (this is

similar to the idea provided in [31] for the binary case).dHy (19) is established in [22] which concludes the

proof of Lemma 5.

Remark 4. The weight enumerator of the single parity-check (SPC) dadespecified in (41)) can be alternatively
derived via Mac Williams’ Theorem for non-binary linear blocodes (see [41, Theorem 4.6]). Since the dual of a
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SPC code is a repetition code, then the above result foll@sgye Note however that the Mac Williams’ theorem
applies to the case whergis an integral power of a prime number (which forms a necgsaad sufficient
condition for the existence of a Galois field of sigewhich is not required in this lemma. Since a repetition code
is a maximum distance separable (MDS) code then variousepiiep hold in fact over alphabets of arbitrary size
(see [42)).

APPENDIX G
PROOF OFTHEOREM 4

Using the DS2 bound for the case at hand, it follows that
P( error |dwin > D)

—E p(y,al0) dy da( Ao > Dn]

//(y a):p(y,alx)>p(y,a|0) for somex#0cC

Pi
>\’.
p(y,alx)\ ™
<E // p(y,a0)Y [ Y Z( y7a‘0> dyda‘dmin>Dn
j=1 \teH,; xeC;
-y E[// bi(y,a)
=1 y:a
1—X;ip; P
YD wi(y.a) mp(y,al0) 7 ply,alx) | dy da‘ imin > Dn] (46)
teH; xeCy

where the statistical expectation is taken over all the bodks whose Hamming minimum distance is larger than
D,,. From (46), using Jensen’s inequality we have

P( error |dwin > D)

Pi
1-X,

J 05
33D / bi(y,a) 7 p(y,al0) 7 ply.alx) | dydal duw > Dy

7=1 teH,; xeCy
Settingvy;(y,a) = [, ¥j(vi, a;), since the channel is memoryless we have
P( error |dpin > Dy)

1Py

teH; xeC ¥ VYR

doledl I

teH; TEX (

n Pj
1 1-X2jPji

TT s (ir i)™ 7 plys, ail0) ™5 plys, ailw:) dy; da; ‘ dmin > Dp
=1

M-

<
Il
A

2

1-Xjprj

t'lv
Yi(y,a a)' PJp(y,aIO) 7 p(y,alz)™ dy da> ‘ dmin > Dy,

I
'M“

<
Il
—

\

y,a

The proof is concluded by using Jensen’s inequality (fordtadistical expectation) and Lemma 3.

APPENDIXH
A CLOSED-FORM EXPRESSION FOR THE INTEGRAL INTHEOREM 4 WHEN APPLIED TOEXAMPLE 7

Similarly to [9], we will pursue a closed-form expressiondxamining an exponential tilting probability measure
1 as in (26). Note that the joint pdf(y, a|z) to receive the noisy observatione C with a fading sample: > 0,
given that the transmitted symbol ise X, is given according to

p(y,alz) = % exp <—%|y — a,u(x)|2> p(a),

where

pla) = 2(1 —i—K)aexp(—(l + K)a? — K)Io <2a\/m> , a>0,
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is the pdf of the Rician fading samptec A with a parameteis, andy(z) £ ,/2]\’,55 exp (2;” ;n) is theg-ary PSK
modulation mapping applied in the considered scheme. litiadd:); in (26) is easily verified to be a probability
measure. Assuming that+ K + 5 > 0 (which is the case since > 0), the denominator of) as in (26) equals

/°° (a) ex ( M)m—&ex <_ﬁ7K>
, D@eEp No 1t K+ P\ U1y K1 8)

Straightforward (though tedious) calculations show tlatdveryx € X

/ U(y,a)" v p(y, al0) 7 ply,alz)* dyda
a=0 JyeC

1

11
p 1+ K < BK ) ? 1+ K < Yo KK >
= eXp | 77— 5 ——exp| —————
I1—a(l-p)\a(l+ K+ p) 1+ K+ 1+ K+, 1+ K+,

a av?Fs
No

A _l . pEs
L 5<1 p> 1 —all— )N
Es o, 1)\ 1
—i—NO(a\u] <1 p>+p>'

APPENDIX |
A CLOSED-FORM EXPRESSION FOR THE INTEGRAL INTHEOREM 4 WHEN APPLIED TOEXAMPLE 8
The following exponential tilting measure is applied:

L 2

ap(a) B |2FE a 2Es

pr— 1 _— —— — —_—
vy a) = — ( TV ) Pl

wherey is complex-valuedg, o, 5 > 0, are real-valued parameters,s a complex-valued parameter, ap@) is
the pdf of the fading, given in (27). The integral in (24) witie proposed tilting measure in (47) is calculated via
straightforward calculus, and it is obtained that for every X

/ ¢<y,a>1—5p<y,a|o>’7”p<y,a|xﬁdy da
a=0 JyeC

=2 5\/*
1—a(1—
1\ [2Es 1\ alu[’Es B
<L+ﬁ<1 p> N0+<1 p> No ' oNg
. 2\ —L
u<1—1>+1_>\p—|—)\exp<2mx>' ) .
p p q
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