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Abstract

The performance of non-binary linear block codes is studiedin this paper via the derivation of new upper
bounds on the block error probability under ML decoding. Thetransmission of these codes is assumed to take place
over a memoryless and symmetric channel. The new bounds, which are based on the Gallager bounds and their
variations, are applied to the Gallager ensembles of non-binary and regular low-density parity-check (LDPC) codes.
These upper bounds are also compared with sphere-packing lower bounds. This study indicates that the new upper
bounds are useful for the performance evaluation of coded communication systems which incorporate non-binary
coding techniques.
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I. INTRODUCTION

The performance of coded communication systems is usually analyzed via bounds on the decoding error proba-
bility. These bounds are of interest since the performance analysis of coded communication systems rarely admits
exact expressions. Modern coding schemes (e.g., codes defined on graphs) perform reliably at rates which are close
to the channel capacity, whereas union bounds are useless for codes of moderate to large block lengths at rates above
the channel cut-off rate. The limitation of the union bound therefore motivates the introduction of some improved
bounding techniques which can be also efficiently calculated. Although the performance analysis of specific codes
is in general prohibitively complex, this kind of analysis is tractable for various code ensembles for which the
derivation of some of their basic features (e.g., the average distance spectrum) lends itself to analysis. For a tutorial
on the performance analysis of binary linear block codes under maximum-likelihood (ML) decoding, the reader
is referred to [1] and references therein, whereas this workis focused on the performance analysis of non-binary
linear block codes.

The 1965 Gallager bound [2] is one of the well-known upper bounds on the decoding error probability of
ensembles of fully random block codes, and it is informativeat all rates below the channel capacity limit. Emerging
from this bounding technique, the bounds of Duman and Salehi(see [3] and [4]) possess the pleasing feature that
they are amenable to analysis for codes or ensembles for which the (average) distance spectra are available.

The bounds of Duman and Salehi, in particular its second version (called hereafter the ‘DS2 bound’), are
generalized in [1], [5] and [6] for various memoryless communication systems. Moreover, this bound facilitates
the derivation of a large class of previously reported bounds (or their Chernoff versions), as shown in [1] and [5].
Gallager-based bounds for binary linear block codes whose communication takes place over fading channels are

This work was presented in part at the 2008 IEEE Information Theory Workshop (ITW 2008) which took place on May 5–9, 2008, in
Porto, Portugal. This research work was supported by the Israel Science Foundation (grant no. 1070/07), and by the European Commission
in the framework of the FP7 Network of Excellence in WirelessCommunications NEWCOM++.

Igal Sason is the corresponding author (E-mail: sason@ee.technion.ac.il).



2 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY ON APRIL 23, 2008. REVISED OCTOBER 30, 2008.

provided in [7], [8] and [9]. The Shulman and Feder bound (SFB) [10] forms an extension of the 1965 Gallager
bound which can be also applied to structured codes or ensembles. An adaptation of the SFB to non-binary linear
block codes was reported in [11] for the case of coding with a random coset mechanism (see, e.g., [11]–[14]),
and for the case of transmission over modulo-additive noisechannels (see [15]). Generalization of Gallager-type
bounds, among them the DS2 bound, for the case of binary linear block codes whose transmission take places over
parallel channels are provided in [16] and [17].

The 1959 sphere-packing (SP59) bound of Shannon [18] is a lower bound on the decoding error probability of
block codes whose transmission takes place over the additive white Gaussian noise (AWGN) channel with equal-
energy signaling. The 1967 sphere-packing bound of Shannonet al. [19], forms an alternative lower bound on the
decoding error probability of block codes which applies to discrete memoryless channels. An overview on classical
sphere-packing bounds is provided in [1, Chapter 5]. An improved sphere-packing (ISP) bound, which holds for
all memoryless symmetric channels, was recently derived in[21] by improving the bounds in [19] and [20].

Low-density parity-check (LDPC) codes were proposed by Gallager in his seminal work [22]. The performance
analysis of the binary LDPC ensembles in [22] is carried under the assumption that the channel is memoryless
binary-input output-symmetric (MBIOS). In contrast to thebinary case, the performance analysis of non-binary
LDPC code ensembles in [22] is carried under a symmetry assumption which is tailored to the specific bounding
technique introduced in [22]. The asymptotic error performance of several non-binary LDPC structures is studied
in [11] under ML decoding. Their asymptotic performance under iterative decoding is studied in [12], and further
bounds on the thresholds of non-binary LDPC code ensembles are studied in [23] and [24]. It is assumed in [11]
that the transmission takes place over channels with a random coset mechanism which enables to dismiss the
channel symmetry condition required in [22]. The decoding error probability of various non-binary LDPC code
constructions was studied empirically in the literature, e.g., [25]. Except for non-binary LDPC codes, turbo codes
were also considered for high spectral efficiency schemes (see e.g., [26]-[30] and references therein).

The drawback of the union bound motivates the study in this paper which is focused on the derivation of upper
bounds on the ML decoding error probability of (ensembles of) non-binary linear block codes over memoryless
symmetric channels. Our definition of symmetry for channelswhose input is non-binary generalizes the common
definition of MBIOS channels. Under these symmetry requirements, we prove that the conditional error probability
under ML decoding is independent of the transmitted codeword. This result is in agreement with [34] and [35]
which prove the same result under linear-programming decoding.

The general concept used in this paper is based on a partitioning of the original ensemble into two subsets
of codebooks according to their minimal Hamming distance. For the set of codebooks whose minimal distances
are below a certain value (which is later determined in orderto achieve a tight bound), a simple union bound is
used which only depends on their distance properties. As forthe complementary set of codebooks (whose minimal
Hamming distance is larger than the above value), a Gallager-type bound on the decoding error probability is used;
the latter bound depends both on the distance properties of the ensemble and the communication channel, and it
relies on a generalization of the DS2 bound to non-binary linear block code ensembles.

The upper bounds on the error performance derived in this paper are applied to non-binary regular LDPC code
ensembles of Gallager [22], and their error performance is studied for various communication channel models. The
exact complete composition spectra for these LDPC code ensembles are also provided (instead of the upper bound
in [22]), and this exact analysis forms a generalization of the analysis in [31] and [32]. In addition, the derived
upper bounds are compared with sphere-packing lower boundson the decoding error probability.

This paper is structured as follows: the symmetry requirements and the message independence proposition
are provided in Section II. The proposed bounding approach is introduced in Section III, and these bounds are
exemplified for the Gallager LDPC code ensembles over aq-ary symmetric and AWGN channels. Variations of
these bounds are also derived and exemplified in Section IV for fully-interleaved fading channels with perfect CSI
at the receiver. Section V concludes our discussion. Various technical details are relegated to the appendices.

II. CHANNEL SYMMETRY AND MESSAGEINDEPENDENCE

Let X = {x0, x1, . . . , xq−1} be a given alphabet with cardinalityq. We assume an addition operation (+) over
the alphabetX for which {X ,+} forms an Abelian group. Letx0 = 0 be the additive identity of this group. In
addition, letY be a given discrete (or continuous) alphabet. We assume a memoryless channel, and denote the
channel transition probability (or probability density, respectively) function byp(y|x), wherex ∈ X andy ∈ Y.
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Definition 1 (Channel symmetry). A memoryless channel which is characterized by a transitionprobability p, an
input-alphabetX and a discrete output alphabetY is symmetric if there exists a functionT : Y × X → Y which
satisfies the following properties:

1) For everyx ∈ X , the functionT (·, x) : Y → Y is bijective.
2) For everyx1, x2 ∈ X andy ∈ Y, the following equality holds:

p(y|x1) = p(T (y, x2 − x1)|x2). (1)

Remark 1. For channels whose output alphabet is continuous, an additional requirement on the mappingT is that
its Jacobian is equal to 1.1 In this case, the condition in (1) implies that

∫

p(y|x1) dy =

∫

p(T (y, x2 − x1)|x2) dy.

Example 1 (MBIOS channels). For the particular case of channels with a binary-input alphabet, and whose output
alphabetY is the set of real numbers, setting

T (y, x) =

{

y if x = 0
−y if x = 1

then Definition 1 coincides with the standard definition of MBIOS channels. The meaning of the functionT is
better understood via the setting of MBIOS channels. Referring to (1), the transition probability given a channel
input x1 is equal to the transition probability given another inputx2 where the sign of the output is changed if the
two binary inputs are different.

Example 2(Random coset mechanism followed by an arbitrary channel).In [11], [13] and [14], the transmission
of block codes takes place over an arbitrary memoryless channel followed by a random coset mechanism. That is,
instead of transmitting the coded messagex, the vectorx+v is transmitted wherev is a random vector, called the
coset, known to both the transmitter and the receiver, and the addition is carried out symbol-wise. When coding
schemes with a random coset mechanism are applied to an arbitrary memoryless channel, the symmetry of the
equivalent channel is guaranteed. To see this, consider theequivalent channel that includes the addition of the coset
symbols followed by the original channel, and whose observations are pairs(y, v), wherev is the random coset
symbol added to the transmitted coded symbol, andy is the (original) channel output. Assuming a memoryless
channel, the symmetry is guaranteed by setting

T ((y, v), x) = (y, v − x), y ∈ Y, x, v ∈ X

whereX andY are the input and output alphabets, respectively. Notice that T is now defined over(Y × X )×X ,
whereY × X forms the output alphabet of the equivalent channel.

Based on Definition 1, we get the following lemma:

Lemma 1. let x1, x2, x3 be arbitrary symbols inX , and letp be a transition probability law of a memoryless
symmetric channel. Then,

p
(

T
(

T (y, x1), x2

)

|x3

)

= p
(

T (y, x1 + x2)|x3

)

(2)

whereT is the mapping satisfying the symmetry properties in Definition 1.

Proof: See Appendix A.

For MBIOS channels, the capacity is attained with a uniform input distribution. In addition, random coding with a
uniform (and memoryless) distribution attains the optimumrandom-coding error exponent provided by Gallager (see
[2], [13], [33]). The following lemma generalizes these results for the case of discrete, memoryless, and symmetric
channels according to Definition 1 (a similar result followsfor the case of memoryless symmetric channels with a
continuous output-alphabets).

1It is possible to use a generalized definition for both discrete and continuous output alphabets using the notion of unitary functions as
done for example in [21, Section III-A].
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Lemma 2. Let Q be a probability function over the input alphabetX , and letp be a transition probability function
of a discrete symmetric and memoryless channel. Then, the mutual informationI(Q), between the channel input
(with an input probability distributionQ) and the channel output, given by

I(Q) =
∑

y∈Y

∑

x∈X

Q(x)p(y|x) ln

(

p(y|x)
∑

x′∈X Q(x′)p(y|x′)

)

and the Gallager functionE0(ρ,Q) [13], defined by

E0(ρ,Q) , − ln





∑

y∈Y

(

∑

x∈X

Q(x)p(y|x)
1

1+ρ

)1+ρ


 , ρ ≥ 0

are maximized (for everyρ ≥ 0) by a uniform distribution.

Proof: The proof follows trivially by applying [33, Theorems 3.2.2& 3.2.3] to the case at hand.

Lemma 2 is also valid for symmetric DMCs in the sense defined byGallager in [13, p. 94] (as shown in the
following definition):

Definition 2 (Gallager’s definition for symmetric DMC [13]). A DMC is defined to be symmetric if the set
of outputs can be partitioned into subsets in such a way that for each subset the matrix of transition probabilities
(using inputs as rows and outputs of the subset as columns) has the property that each row is a permutation of
each other row and each column (if more than 1) is a permutation of each other column.

Consider linear block codes over the non-binary alphabetX . Specifically, letG be ak×n matrix with components
over the alphabetX . Then, the linear block code with a generator matrixG, denoted byC = {xm}qk

m=1 where
xm = (xm,1, . . . , xm,n), is the set of allqk linear combinations of the rows ofG. The conditional error probability
of them-th message is given according to

Pe|m =
∑

y∈Λc
m

p(y|xm)

whereΛm forms the decision region for them-th codeword, and the superscript ‘c’ stands for the complementary
set. The decision region of them-th codeword under ML decoding gets the form

Λm =
{

y : p(y|xm) > p(y|xm′), ∀ m′ 6= m
}

and ties are resolved randomly with equal probability. A well-known result for binary linear block codes operating
over MBIOS channels is that their error probability under MLdecoding is independent of the actual transmitted
codeword. This result enables a great simplification to the error performance analysis by assuming that the all-zero
codeword, designated by0, is transmitted. The following proposition is a generalization of this result for linear
block codes communicated over memoryless and symmetric channels whose input alphabet is discrete (for the case
of linear-programming decoding, see [34]):

Proposition 1 (Independence of the Conditional Error Probability on the Transmitted Codeword for all
Memoryless Symmetric Channels).Let C be a linear block code whose transmission takes place over a memo-
ryless and symmetric channel according to Definition 1. Then, the block error probability under ML decoding is
independent of the transmitted codeword.

Proof: See Appendix B.

The proof for the message independence property remains valid even if the channel transition probability is
different for each transmission. This enables the analysisin Section IV of q-ary PSK systems whose transmission
takes place over fading channels with perfect CSI at the transmitter. In addition, note that in contrast to Lemma 2,
Proposition 1 does not necessarily hold for symmetric DMCs as in Definition 2. This is demonstrated in the
following counter-example:



E. HOF ET AL.: PERFORMANCE BOUNDS FOR NON-BINARY LINEAR BLOCK CODES OVERMEMORYLESS SYMMETRIC CHANNELS 5

Example 3 (Channel symmetry according to Definition 2 doesn’t imply symmetry according to Definition 1).
Consider a DMC with the integer ringZ4 (with arithmetic operations modulo-4) as common input and output
alphabets, and with the following transition probability matrix:

P = [pi,j] =









0.20 0.24 0.30 0.26
0.30 0.20 0.26 0.24
0.24 0.26 0.20 0.30
0.26 0.30 0.24 0.20









.

In this matrix, the elementpi,j (where i, j ∈ {1, . . . , 4}) refers to the transition probability when the channel
input is equal toi − 1 and the output is equal toj − 1. The memoryless channel which corresponds toP is
symmetric according to Definition 2 (notice that each row andcolumn is a permutation of another row or column,
respectively). However, if the linear block code{00, 13, 22, 31} is transmitted over the considered channel, then the
resulting conditional error probabilities under ML decoding are0.7540, 0.7210, 0.5424 and 0.7210, respectively,
and they therefore depend on the transmitted codeword. To show this, we first need to determine the ML decoding
regions for the considered code and channel. This is accomplished by evaluating the conditional probabilities of
each possible output pair given each possible transmitted codeword (e.g.,p(03|31) = 0.26 · 0.24 = 0.0624). The
decoding region for the all-zero codeword00 is the set{22, 23, 32} (note that the ‘00’ vector is not included in the
decision region of this codeword, and on the other hand, the vector ‘22’ which forms a codeword is included in
the decision region of the all-zero codeword). The conditional error probability given that the all-zero codeword is
transmitted is therefore equal to1−p(22|00)−p(23|00)−p(32|00) = 1−0.302 −0.30 ·0.26−0.26 ·0.30 = 0.7540.
The rest of the conditional error probabilities are similarly evaluated. Hence, due to Proposition 1, this channel is
not symmetric according to Definition 1 although it is symmetric according to Definition 2.

III. G ALLAGER BOUNDS FORMEMORYLESSSYMMETRIC CHANNELS AND SOME APPLICATIONS

A. The DS2 bound

Let C be an(n, k) linear block code defined over the input-alphabetX with cardinalityq. Consider the conditional
error probability under ML decoding given that them-th message is transmitted, denoted byPe|m. The DS2 bound
on the conditional error probability (see [1], [3], [4] and [5]) gets the form

Pe|m ≤





∑

y∈Yn

Gm
n (y)pn(y|xm)





1−ρ

·







∑

m′ 6=m

∑

y∈Yn

Gm
n (y)1−

1

ρ pn(y|xm)

(

pn(y|xm′ )

pn(y|xm)

)λ







ρ

(3)

whereY is a discrete output-alphabet,Gm
n (y) is an arbitrary non-negative function ofy ∈ Yn, and0 ≤ ρ ≤ 1

andλ ≥ 0 are arbitrary real-valued parameters. Herepn(y|x) designates the transition probability of the channel
wherex ∈ C is the transmitted codeword andy ∈ Yn is the received vector. Notice that the bound in (3) holds for
an arbitrary channel regardless of its input alphabet.

Consider now the class of memoryless symmetric channels with an input-alphabetX . According to Proposition 1,
Pe|m is independent of the transmitted messagem. We further assume thatG0

n(y) is expressed in the following
product form:

G0
n(y) =

n
∏

i=1

g(yi)

whereg : Y → R+ is an arbitrary non-negative function which is defined over the setY. The following bound
on the decoding error probability is obtained for a discreteoutput alphabet (a similar proposition can be stated for
channels with a continuous output alphabet):
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Proposition 2. Consider an(n, k) linear block codeC whose transmission takes place over a memoryless symmetric
channel. Assume that the channel input and output alphabetsareX andY, respectively, and letp be the transition
probability of the channel. Then the block error probability of the codeC under ML decoding,Pe, satisfies

Pe ≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)




∑

m′ 6=0

n
∏

i=1

∑

y∈Y

g(y)1−
1

ρ p(y|0)1−λp(y|xm′,i)
λ







ρ

(4)

whereg : Y → R+ is an arbitrary non-negative real function,λ ≥ 0, and 0 ≤ ρ ≤ 1 are arbitrary real-valued
parameters.

Proof: See Appendix C.

B. Performance evaluation of ensembles of linear block codes

Definition 3 (Composition of a vector).Let c be a vector whose components are symbols in an alphabetX of size
q. Let us assume without loss of generality thatX = {0, . . . , q − 1}. The composition ofc, denoted byt = t(c),
is a vectort = (t0, t1, . . . , tq−1) wheretx (for x ∈ X ) counts the number of symbols inc that are equal tox.

The following lemma considers the error probability under ML decoding of an ensemble of linear block codes.

Lemma 3. Let E be an ensemble of linear block codes with block lengthn, and letdmin be the random variable
designating the minimum Hamming distance of a randomly selected codebookC from this ensemble. Assume that
there exist non-negative numbersDn andεn, such that

∑

{t∈H: n−t0≤Dn}

E
[

|Ct|
]

≤ εn (5)

whereE
[

|Ct|
]

denotes the expected number of codewords inC with compositiont, andH denotes the entire set
of compositions except for the one of the all-zero codeword.Then, the block error probability under ML decoding
satisfies

Pe ≤ Pr( error | dmin > Dn) + εn. (6)

Proof:

Pe = Pr( error | dmin > Dn) Pr(dmin > Dn) + Pr( error | dmin ≤ Dn) Pr(dmin ≤ Dn)

≤ Pr( error | dmin > Dn) + Pr(dmin ≤ Dn).

Let C be a codebook, chosen uniformly at random from the code ensemble E , and letwH(c) denote the Hamming
weight of a codewordc ∈ C. Then, the union bound gives that

Pr(dmin ≤ Dn) ≤
∑

{c6=0: wH(c)≤Dn}

Pr(c ∈ C)

=
∑

{t∈H: n−t0≤Dn}

∑

{c: t(c)=t}

E
[

1{c∈C}
]

=
∑

{t∈H: n−t0≤Dn}

E
[

|Ct|
]

(7)

where1{c∈C} denotes the indicator of the event{c ∈ C}, and the last equality follows by converting the inner
summation to an expectation.

Later in this section, we obtain upper bounds for the first term on the RHS of (6). These bounds are expressed
in terms of the composition spectrum of the considered code ensemble, and they serve to find a suitable tradeoff
between the parametersDn andεn introduced in Lemma 3. More explicitly, since these two parameters are related,
one wishes to increase the parameterDn while maintaining small values ofεn. The continuation to this section
relies on Lemma 3 for the derivation of some bounds, and exemplify their use to regular LDPC code ensembles.

The following theorem provides an upper bound on the decoding error probability for ensembles of linear block
codes whose transmission takes place over memoryless symmetric channels.
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Theorem 1. Under the assumptions and notation in Proposition 2 and Lemma 3, the block error probability under
ML decoding satisfies

Pe ≤

(

∑

y∈Y

g(y)p(y|0)

)n(1−ρ)(
∑

t∈H: n−t0>Dn

E

[

|Ct|
∣

∣ dmin > Dn

]

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

+ εn (8)

where

sλ,ρ(x) ,
∑

y∈Y

g(y)1−
1

ρ p(y|0)1−λp(y|x)λ, x ∈ X (9)

andE
[

|Ct| | dmin > Dn

]

denotes the conditional expected number of codewords whosecomposition is equal tot
(where the expectation is with respect to the choice of the codebookC from the ensembleE) under the requirement
that the minimal Hamming weight of the randomly selected codebook is larger thanDn.

Proof: From Proposition 2 and (9), we get the following upper bounding on the first summand in (6):

Pr( error | dmin > Dn)

≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

E

[(

∑

t∈H

∑

c∈Ct

n
∏

i=1

sλ,ρ(ci)

)ρ ∣
∣

∣

∣

∣

dmin > Dn

]

whereCt is the set of all codewords in a codebookC whose composition ist. Notice that the double summations
on the RHS of the last inequality, over compositionst and codewordsc ∈ Ct, is equivalent to a single summation
over all the non-zero codewords. Using Jensen’s inequality, E[Xρ] ≤

(

E[X]
)ρ

for 0 ≤ ρ ≤ 1, then

Pr( error | dmin > Dn)

≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·

(

∑

t∈H

E

[

∑

c∈Ct

∏

x∈X

(

sλ,ρ(x)
)tx

∣

∣

∣

∣

dmin > Dn

])ρ

=





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·

(

∑

t∈H

E

[

∣

∣Ct

∣

∣

∣

∣

∣
dmin > Dn

]

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

. (10)

For all codewords whose compositiont satisfiesn− t0 ≤ Dn, their Hamming weight is not larger thanDn. Hence

E

[

∣

∣Ct

∣

∣

∣

∣

∣
dmin > Dn

]

= 0, ∀ t ∈ H : n− t0 ≤ Dn (11)

and the bound in (8) follows from Lemma 3, and (10) and (11).

The following theorem is a particularization of Theorem 1:

Theorem 2. Under the assumptions and notation in Proposition 2 and Lemma 3, the block error probability satisfies

Pe ≤ q
−nEr

(

R+
logq αq(C,Dn)

n

)

+ εn (12)
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wheren andR are the block length and code rate (measured inq-ary symbols per channel use), respectively, and

Er(R) , max
0≤ρ≤1

(E0(ρ) − ρR)

E0(ρ) , − logq





∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)1+ρ




αq(C,Dn) , max
{t∈H: n−t0>Dn}







E

[

∣

∣Ct

∣

∣

∣

∣

∣ dmin > Dn

]

q−n(1−R)
(

n
t

)







. (13)

Proof: See Appendix D.

A similar theorem can be stated for memoryless symmetric channels with continuous-output alphabets, where
sums are replaced by integrals.

The bound in Theorem 2 is based on two summands. The first is an adaptation of the SFB to non-binary
linear block codes which applies to the codebooks whose minimum distance exceeds an arbitrary thresholdDn.
The second term relates to the probability that a randomly selected codebook from the ensemble has a minimum
Hamming distance which does not exceedDn. As a result, the second term on the RHS of (12) does not depend
on the communication channel, but only on the code ensemble and the arbitrary thresholdDn. This partitioning
differs from [11] and [37] where no such separation of codebooks is used. The SFB in [11] and [37] is combined
with a union bound which corresponds to all pairwise error probabilities of relevant codewords and it depends
on the communication channel. Following Example 2, the SFB in [11] can be considered as a particular case of
Theorem 2 (the same goes for [15] where the considered modulo-additive noise channel is also symmetric according
to Definition 1).

In general, the conditional expectation of the compositionspectrum given that the minimum Hamming distance
exceeds a certain positive thresholdDn (i.e., E

[

|Ct|
∣

∣dmin > Dn

]

) is not available. Nevertheless, it is possible to
use the inequality

E

[

|Ct|
]

≥ E

[

|Ct| | dmin > Dn

]

Pr(dmin > Dn)

≥ E

[

|Ct| | dmin > Dn

]

(1 − εn). (14)

where the LHS of this inequality requires the knowledge of the expectation of the complete composition spectrum
E
[

|Ct|
]

. Applying (14) to the RHS of (8), gives a looser version of thebounds in Theorem 1 and 2 but is more
amenable to analysis. The inequality in (14) is valid when expurgation of codebooks is considered. The expurgated
ensemble is constructed by removing all codebooks whose minimum Hamming distance is not larger thanDn.
Since all the codebooks in the expurgated ensemble have a minimum distance greater thanDn, then the additive
term εn on the RHS of (8) vanishes.

Consider an ensemble of linear block codes, and choose a codebook from this ensemble uniformly at random.
We assume that the probability that a vector is a codeword only depends on its Hamming weight (so all vectors of a
fixed composition are codewords with equal probability). Asa result, the expected complete composition spectrum
E |Ct| satisfies

E

[

|Ct|
]

= P (n− t0)

(

n

t

)

(15)

whereP (l) denotes the probability that a word whose Hamming weight isl, forms a codeword in a randomly
selected codebook from the ensemble. Assuming (15), the evaluation ofαq in Theorem 2 is considerably reduced.

In the following, we introduce an improvement over the boundin Theorem 2:

Theorem 3. Under the assumptions and notation in Proposition 2 and Lemma 3, for ensembles satisfying (15), the
block error probability satisfies

Pe ≤ A(ρ)n(1−ρ)





∑

Dn<l≤n

P (l)

1 − εn

(

n

l

)

B(ρ)n−lC(ρ)l





ρ

+ εn (16)
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where0 ≤ ρ ≤ 1, εn is defined in (6), and

A(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)1+ρ

B(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ−1(

1

q

∑

x∈X

p(y|x)
2

1+ρ

)

C(ρ) , qA(ρ) −B(ρ).

Proof: See Appendix E.

Remark 2. For the particular case of binary linear block codes, the bound provided in Theorem 3 does not require
the symmetry assumption on the considered ensemble in (15).For this case, the same derivation holds while setting

P (l) ,
E
[

|Cl|
]

(

n
l

) , Dn < l ≤ n

whereE
[

|Cl|
]

denotes the expected number of codewords whose Hamming weight is l.

C. Performance of non-binary regular LDPC ensembles

The non-binary(c, d)-regular LDPC code ensemble, proposed by Gallager in [22, Ch. 5], is considered with
the q-ary symmetric channel and the AWGN channel with aq-ary PSK modulation (both channels are symmetric
according to Definition 1). The Gallager ensemble is defined using a sparse parity-check matrix with binary elements.
This matrix is regular, havingc ones in each column andd ones in each row. The LDPC ensemble is constructed
as follows:

1) Divide the parity check matrix intoc sub-matrices.
2) Fill the first sub-matrix with ones in a descending order.
3) All other sub-matrices are chosen as random permutationsof the first sub-matrix.
4) Parity-check equations are evaluated using a modulo-q arithmetics.

The following lemma is provided in [22] which implies an upper bound on the complete composition spectrum
satisfying the condition in (15):

Lemma 4. Consider the regular non-binary LDPC ensemble of Gallager.Let x be a vector of weightl > 0. The
probability P (l) that the vectorx is a codeword of a codebook which is selected uniformly at random from the
ensemble, is upper bounded by

P (l) ≤





exp
(

n
d

(

µq(s) − sµ′q(s) + (d− 1) ln q
)

)

(

n
l

)

(q − 1)l





c

(17)

where

µq(s) , ln

(

(

1 + (q − 1)es
)d

+ (q − 1) (1 − es)d

qd

)

ands is a real number given by the solution of the following equation
n

d
µ′q(s) = l. (18)

Note, that the bound in (17) is valid for alls, not only for the one satisfying (18) which yields the minimum
bound in (17). Using the change of variabless = ln 1−u

1+(q−1)u , − 1
q−1 ≤ u ≤ 1, in (18), results in the following

polynomial equation:
(wq

n
− 1
)

ud + ud−1 + u+
wq

n(q − 1)
− 1 = 0.

For q > 2, this equation has a single root in the interval
[

− 1
q−1 , 1

]

(the details concerning the evaluation of the
RHS of (17) for the binary case are provided in [8]).



10 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORYON APRIL 23, 2008. REVISED OCTOBER 30, 2008.

In the following, we obtain the exact composition spectrum of the regular LDPC code ensembles of Gallager.
This derivation serves to improve the tightness of the bounds on the error probability. The provided analysis
generalize [31] to non-binary codes. The exact enumerationfor the binary case is already available in [32], as an
intermediate result, although its main interest is in asymptotic analysis (This analysis can be traced even to Gallager
[2]).

Lemma 5. Under the assumptions and notation in Lemma 4, the probability P (l) satisfies

P (l) =

(

Al
(

n
l

)

(q − 1)l

)c

, 2 ≤ l ≤ n (19)

where
∑

2≤l≤n

AlX
l ,

(

A∗(X)
) n

d (20)

A∗(X) , 1 +
1

q

d
∑

l=2

(

(q − 1)l + (q − 1)(−1)l
)

(

d

l

)

X l. (21)

Proof: See Appendix F.

As suggested in [31], the numerical evaluation of the exponent in (20) is carried out, in all the examples studied
in this paper, via the binary method (see [40, p. 441]). This method makes the evaluation of the high-order powers
of a polynomial relatively easy to compute.

The 1961 Gallager-Fano bound (see [1], [22]) and Lemma 4 imply an exponential bound (in terms of the block
length) on the decoding error probability for the expurgated LDPC code ensemble. This expurgation removes all
the codebooks whose minimal Hamming distance is below a certain threshold which scales linearly with the block
length. This result is elaborated for the binary case by Miller and Burshtein [37]).

The following examples consider the Gallager ensembles of non-binary and (8, 16) regular LDPC codes where
these ensembles are expurgated by removing all the codebooks whose minimum distance is not greater than a certain
parameterDn. The examples study upper bounds on the decoding error probability of these expurgated ensembles
via the use of the upper bounds in Theorems 2 and 3. The exact composition spectrum of the non-expurgated LDPC
code ensemble is evaluated via Lemma 5, and then upper boundson the composition spectrum of the expurgated
ensembles are calculated via (14).

Example 4 (q-ary symmetric channels).Bounds on the block error probability for some expurgated LDPC code
ensembles are presented in Figure 1 when the transmission takes place over aq-ary symmetric channel and ML
decoding is performed. The performance bounds introduced in this paper are compared with the union bound, and
we also exemplify the uselessness of the union bound beyond the crossover probability which corresponds to the
cutoff rate. More specifically, for aq-ary symmetric channel, the cutoff rate is given by

R0 = 1 − 2 logq

(

√

1 − p+
√

p(q − 1)
)

so the crossover probability which follows by setting the value ofR0 to the code rate (which is one-half symbol per
channel use in Fig. 1) is equal top = 0.0670 andp = 0.0739 for quaternary and octal input alphabets, respectively.
The union bound shown in the upper plot of Fig. 1 (see plot (a))has a sharp decline around the crossover probability
which corresponds to the cutoff rate of theq-ary symmetric channel (i.e., aroundp = 0.0670 for q = 4). Plot (a) also
exemplifies the potential application of the proposed bounds to assess the performance of efficient code ensembles
which perform reliably at rates exceeding the cutoff rate ofthe channel. Fig. 1(b) is focused on the improved
bounds in Theorems 2 and 3, applied to the Gallager(8, 16) regular and expurgated LDPC code ensemble with a
quaternary alphabet and block lengths ofn = 1008 and 10080 symbols. The ensemble spectrum is upper bounded
via Lemma 4, and in addition it is exactly evaluated using Lemma 5; both options are applied in this example so
that the improvement provided by the exact calculation of the composition spectrum is exemplified in this figure.
The various choices of the parameterDn and the resultingεn, which serves as an upper bound on the fraction of
codebooks whose minimum distance is not larger thanDn, are detailed in Table I(a). Since Theorem 3 is tighter
than Theorem 2, then the minimal value ofDn for which Theorem 2 is useful is larger than the corresponding value
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Fig. 1: Upper bounds on the block error probability of the Gallager(8, 16) regular and non-binary LDPC code ensembles with quaternary
and octal input alphabets. The transmission takes place over a q-ary symmetric channel whereq = 4 in plots (a) & (b) andq = 8 in plot (c).
This figure refers to expurgated ensembles whose block lengths are1008 and10, 080 symbols.

which is calculated in conjunction with Theorem 3. Moreover, the considered bounds are further improved when
the upper bound for the composition spectrum in Lemma 4 is replaced with the exact calculation in Lemma 5.
The inferiority of the SFB in (12) is further pronounced for higher alphabets, as exemplified for octal signaling in
Figure 1(c) (where the details with regard to the choices ofDn andεn values are given in Table I(b)).

Example 5 (AWGN channels with a q-ary PSK modulation). Upper bounds on the block error probability for
for some expurgated LDPC code ensembles are depicted in Figure 2 when the transmission takes place over the
AWGN channel with aq-ary PSK modulation. The alphabet size of these code ensembles isq = 4, 8, 16, and 32,
and the examined parametersDn of the expurgation are given in Table II. It is evident that the SFB in Theorem 2
deteriorates as compared to the bound in Theorem 3. This deterioration is more dominant by increasing the alphabet
sizeq. It is interesting to compare the studied bounds to the unionbound which, for large block lengths, diverges
at the cutoff rate of the communication channel. For alphabet cardinalities ofq = 4 and q = 8, the cutoff rate
corresponds toEs

N0
ratios of 2.46 dB and 5.05 dB, respectively, which exemplifythe superiority of both derivations

over the union bound. However, for alphabet cardinalities of q = 16 andq = 32, the SFB deteriorates considerably
comparing to the bound provided in Theorem 3 and to the union bound which is depicted in Figure 2 and (d) (the
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TABLE I: Parameters for Example 4

Performance bound Block lengthn (symbols) Dn εn (Lemma 4) εn (Lemma 5)

Theorem 2 1008 173 0.1 10−11

Theorem 3 1008 99 10−4 10−11

Theorem 2 10008 1834 0.11 10−17

Theorem 3 10008 600 10−7 10−17

(a) Quaternary alphabet (q = 4).

Performance bound Block lengthn (symbols) Dn εn (Lemma 4) εn (Lemma 5)

Theorem 2 1008 191 10−5 10−14

Theorem 3 1008 119 10−5 10−14

Theorem 2 10080 1951 10−9 10−20

Theorem 3 10080 887 10−9 10−20

(b) Octal alphabet (q = 8).
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Fig. 2: Upper bounds on the block error probability under ML decoding of the(8, 16)-regular LDPC ensembles of Gallager with alphabet
size ofq = 4, 8, 16, and32, whose transmission takes place over an AWGN channel with aq-ary PSK modulation. This figure depicts the
upper bounds on the block error probability for the expurgated ensemble with block lengths of1008 and10, 080 symbols.
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Fig. 3: The term 1

n
log

q
αq(C, Dn) in (12) for the regular (8,16) LDPC ensemble of Gallager [22], depicted for alphabet sizes ofq = 4,

8, 16, and 32, and block lengths ofn = 512, 1008, and 10080 symbols.

TABLE II: Dn values for Example 5
Performance bound Block lengthn (symbols) Dn (q=4) Dn (q=8) Dn (q=16) Dn (q=32)

Theorem 2 1008 186 191 191 191
Theorem 3 1008 38 34 15 12
Theorem 2 10080 1851 1951 1951 1951
Theorem 3 10080 282 216 132 102

SNR values which correspond to the cutoff rate forq = 16 and 32 are equal to 7.57 dB and 10.31 dB, respectively).
The reason for the deterioration of the SFB for large values of q is explained when looking into the rate term

1
n

logq α (C,Dn). This term corresponds to the difference between the spectrum of the considered ensemble and
the multinomial spectrum of the fully random code ensemble.This difference between the two composition spectra
is depicted in Figure 3 as a function ofDn

n
for alphabet sizes ofq = 4, 8, 16, and 32, and for block lengths of

n = 512, 1008, and 10080 symbols. From Figure 3, this term is more pronounced by increasing the value ofq.
On the other hand, the bound in Theorem 3 does not exhibit suchdeterioration.

Remark 3. Divsalar’s bound [6], [36] is widely used when assessing theerror performance of binary turbo-like
code ensembles over the binary-input AWGN channel (see [1, Chapter 3.2.4] and references therein). This is due
to the fact that the bound is given in a closed form, and its calculation does not involve any numerical integrations
and parameter optimizations. The basic concept the bound isbased on is the following:

Pr(error) ≤ Pr(error,y ∈ R) + Pr(y 6∈ R)

wherey is the received vector, and the regionR is then-dimensional sphere which is centered at a point along the
line connecting the origin to the all-zero codeword, and whose radius is optimized analytically in order to get the
tightest bound within its form. This technique was generalized by the authors to the non-binary setup by examining
various regions in the complex observation space. In contrast to the binary case, not all the parameters could be
optimized analytically. Moreover, the resulting bounds were not satisfactory as compared to the bounds presented
in Example 5, and are therefore omitted.

Example 6 (A Comparison to lower bounds on the decoding error probability). The upper bound in Theorem 3
is compared in Figure 4 to the SP59 lower bound of Shannon [18], and the ISP lower bound in [21]. The regular
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Fig. 4: A Comparison between the upper bound in Theorem 3 and the SP59and ISP lower bounds on the decoding error probability
for octal alphabet block codes whose transmission takes place over an AWGN channel with8-ary PSK modulation. This figure depicts the
upper and lower bounds on the block error probability for block lengths of1008 and10, 080 symbols. The upper bounds are provided for
expurgated(8, 16) and (8, 32) regular LDPC code ensembles.

LDPC code ensembles of Gallager are considered with octal alphabet cardinality and block lengths of 1008 and
10080 symbols, and the performance is studied over the AWGN channel with an 8-ary PSK modulation. In Fig. 4(a),
the upper bound in Theorem 3 is depicted for the Gallager (8,16) regular and expurgated LDPC code ensemble with
octal alphabet (the bound is evaluated with the same parameters as in Table II). In addition, the ultimate performance
of a rate 0.5 code is assessed via the SP59 and the ISP lower bounds on the decoding error probability. For a block
length of 1008 symbols, a negligible difference exists between the two considered lower bounds, and both of these
bounds are about 0.5 dB away from the upper bound in Theorem 3 for all range of interest. For the larger block
length of 10080 symbols, the gain of the ISP bound is about 0.25 dB as compared to the SP59 bound, and it is
about 0.2 dB away from the upper bound (see Fig. 4(a)). The comparison between the upper and lower bounds
is further studied in Fig. 4(b) for the Gallager (8,32) regular and expurgated LDPC code ensembles with block
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lengths of 1024 and 10080 symbols and octal alphabet. The design rate for these ensembles is 0.75 symbols per
channel use. The upper bound in Theorem 3 is depicted withDn = 25 and 95, respective to the studied block
lengths. The ISP bound maintains its close proximity with the upper bound. The SP59 bound on the other hand
deteriorates considerably for this case, and it is less informative than the capacity limit for both considered block
lengths (see Fig. 4(b)).

IV. GALLAGER-TYPE BOUNDS FOR FULLY-INTERLEAVED FADING CHANNELS WITH PREFECTCSI AT THE

RECEIVER

In the section, the error probability of a linear block codeC is considered under ML decoding when transmission
takes place over a fully-interleaved fading channel and perfect CSI is available at the receiver. The fading is assumed
to be a continuous random variable (a similar framework is possible for the discrete case). LetA denote the set of
possible fading samples, andp(y,a|x) denote the conditional joint pdf of the received sequencey = (y1, . . . , yn) ∈
Yn and the fading samplesa = (a1, . . . , an) ∈ An given that the transmitted codeword isx ∈ C. Due to an ideal
symbol interleaving, the channel is memoryless and accordingly

p(y,a|x) =
n
∏

i=1

p(yi|xi, ai)p(ai)

wherep(y|x, a) is the single-letter conditional pdf of the channel, andp(a) is the pdf of a fading sample. The
following definition of symmetry is a generalization to the one presented in Definition 1. This generalization is
obtained by directly applying Definition 1 to a channel whoseobservations are the pair of the considered channel
output and the fading sample.

Definition 4. Consider the fully-interleaved fading channel with an input-alphabetX , and perfect CSI at the receiver.
The channel, which is characterized by a transition pdfp, is symmetric if for everya ∈ A, there exists a function
Ta : Y × X → Y which satisfies the following properties:

1) For everyx ∈ X , the functionTa(·, x) : Y → Y is bijective and with a Jacobian 1.
2) For everyx1, x2 ∈ X , the following equality holds:

p(y|x1, a) = p(Ta(y, x2 − x1)|x2, a). (22)

Notice that this definition of symmetry is a weaker notion compared to a one where there exists a function
T : Y × X → Y meeting the condition in (22) for every fading samplea ∈ A. Nevertheless, this weaker notion
is sufficient in order to prove that for the case at hand, the MLdecoding error probability does not depend on the
actual transmitted message. This is clearly expected sinceDefinition 4 is a direct application of Definition 1 for
the case at hand. The conditional decoding error probability for them-th message under ML decoding as is given
by

Pe|m =

∫

a

∫

y∈Λc
m(a)

p(y,a|xm) dy da =

∫

a

p(a)

∫

y∈Λc
m(a)

p(y|xm,a) dy da (23)

whereΛm(a) ⊆ Yn is the decision region under ML decoding given that the sequence of fading samples isa ∈ An.
The proof of the independence of the decoding error probability on the transmitted codeword follows by showing
that the inner integral in (23) is independent of the transmitted messagem (this is accomplished for every sequence
of fading sample sequencea in the same way as of the proof in Appendix B).

Theorem 4. Under the assumptions and notation in Lemma 3, consider the case where transmission takes place
over a symmetric, fully-interleaved fading channel with perfect CSI at the receiver. Let the channel input and output
alphabets beX andY, respectively, and letp be the transition pdf of the channel. Then, the block error probability
under ML decoding satisfies

Pe ≤
J
∑

j=1

(

∑

t∈Hj : n−t0>Dn

E

[

|Ct|
∣

∣

∣
dmin > Dn

]

∏

x∈X

(
∫∫

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λj ρj

ρj p(y, a|x)λj dy da

)tx

)ρj

+ εn (24)
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where{Hj}
J
j=1 with an arbitraryJ ≥ 1 forms a partition of the set of compositions (except for the one which

corresponds to the all-zero codeword) toJ subsets,E
[

|Ct|
∣

∣ dmin > Dn

]

denotes the expectation of the complete
composition spectrum under the assumption thatdmin > Dn, the functionsψj : Y × A → R are arbitrary non-
negative tilting probability measures, and0 ≤ ρj ≤ 1 andλj ≥ 0.

Proof: See Appendix G.
Consider an ensemble which satisfies the symmetry property in (15), and let us chooseJ = n andHj = {t :

n− t0 = j}. By using calculus of variations, the optimum tilting measuresψj for Dn < j ≤ n, are given by

ψj(y, a) = αj,0 p(y, a|0)

(

1 +
∑

x∈X∗

αj,x

(

p(y, a|x)

p(y, a|0)

)λj

)ρj

, λj ≥ 0, 0 ≤ ρj ≤ 1

where the parametersαj,x, x ∈ X ∗ are given by

αj,x ,

j
n

∫∫

ψj(y, a)
1− 1

ρj p(y, a|0)
1

ρj dy da

(1 − j
n
)
∑

x∈X ∗

∫∫

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λj ρj

ρj p(y, a|x)λj dy da

andαj,0 are determined such thatψj are probability measures. The numerical evaluations of such bounds result in a
tedious numerical process. It is therefore of interest to seek for probability tilting measures for which the integration
in (24) has a closed form expression. Exponential upper bounds on the ML decoding error probability of binary
linear block codes that operate over the binary-input fully-interleaved Rician fading channel with perfect CSI at the
receiver were derived in [9]. These bounds are reasonably tight in a certain portion of the rate region exceeding the
cutoff rate, and do not require numerical integrations involved in the evaluation of the optimal DS2-based bound.
In the following example, the technique in [9] is generalized and applied to non-binary linear block codes whose
transmission takes place over a fully-interleaved Rician fading channel with aq-ary PSK modulation.

Example 7 (A fully-interleaved Rician fading channel with PSK modulation). Consider the class of fully-
interleaved Rician fading channels with an additive white Gaussian noise. A codewordx = (x1, . . . , xn) with a
block lengthn and codeword symbols over the alphabetX = {0, 1, . . . , q − 1} is transmitted over a discrete-time
memoryless channel. The received sequencey = (y1, . . . , yn) ∈ C

n satisfies

yk = Ak

√

2Es

N0
exp

(

2πi

q
xk

)

+Nk, k = 1, . . . , n. (25)

HereAk is a Rician random variable with a parameterK, andNk = N r
k + jN i

k, whereN r
k andN i

k are statistically
independent Gaussian random variables with a zero mean and aunit variance. The non-negative real-valued
parameterK designates the power ratio between the direct and the diffused paths,N0/2 is the two sided power
density spectrum of the additive white Gaussian noise, andEs is the energy per transmitted coded symbol. The
symmetry of the considered channel is guaranteed by theq-ary PSK modulation and the AWGN noise. Following
[9], a sub-optimal DS2 bound is suggested for the case at hand. To this end, the exponential tilting measure

ψj(y, a) =

αj

2π
exp

(

−αj

2

∣

∣

∣y − auj

√

2Es
N0

∣

∣

∣

2

−
αv2

j a2Es

N0

)

p(a)

∫∞
0 p(a) exp

(

−
αv2

j a2Es

N0

)

da
, y ∈ C, a ≥ 0 (26)

where, for1 ≤ j ≤ J , vj andαj are non-negative real-valued parameters, anduj is a complex-valued parameter.
Substituting the exponential tilting measureψj into (24) provides an upper bound on the error probability which is
expressed in a closed form (see Appendix H). The performanceof the (8,16) regular non-binary LDPC ensemble
of Gallager [22] with block lengths ofn = 1008 andn = 10080 symbols is provided in Figure 5 using the bound
in Theorem 4, in addition to the union bound. The bound in (24)is evaluated withJ = 6 and the partitioning of
the set of compositions is done according to their Hamming weights where the boundaries of this partitioning are
set to Hamming weights of 350, 425, 500, 575, and 600 for a block length of 1008 symbols (the corresponding
boundaries for a block length of 10080 symbols are set to 3500, 4250, 5000, 5750, and 6000). The performance
bounds refer to a quaternary input-alphabetq = 4 and a fully-interleaved Rayleigh fading channel (see Fig. 5(a)),
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Fig. 5: Upper bounds on the block error probability under ML decoding for the (8, 16)-regular LDPC ensemble of Gallager, whose
transmission takes place over a fully-interleaved Rician fading channel withq-ary PSK modulation and perfect CSI at the receiver. Both
plots refer to the non-expurgated ensemble, and the performance of an expurgated ensemble withDn = 100 is also presented in plot (a) for
comparison.
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Fig. 6: Upper bounds on the block error probability under ML decoding for the (8, 16)-regular LDPC ensemble of Gallager with octal
alphabet and a block length of 1008 symbols. The transmission takes place over a fully-interleaved Rayleigh fading channel with 8-ary PSK
modulation, perfect CSI and maximal ratio combining (MRC) at the receiver. The figure depicts the performance for MRC diversity with
L = 1 to L = 4 antennas at the receiver.

and for octal input-alphabetq = 8 and a Rician fading channel withK = 2 (see Fig. 5(b)). In both plots the non-
expurgated ensemble is considered, while in plot (a) the performance for an expurgated ensemble withDn = 100
(with a correspondingεn = 10−5 in Theorem 4) is also presented for a block length of 1008 symbols. In both plots,
the union bound diverges bellow the cutoff rate which corresponds toEs/N0 thresholds of 5.1 dB and 7.18 dB
respectively (the capacity corresponds to thresholds of 1.86 dB and 4.21 dB, respectively). Although the bound in
Theorem 4 is not informative (for the considered example) upto the ultimate channel capacity, it is for a block
length of 1008 symbols 0.9 dB and 1 dB better than the union bound in Fig. 5(a) and 1.2 dB and 1.3 dB in Fig. 5(b)
at block error probabilities of10−6, and 10−4, respectively (for a block length of 10080 symbols the boundin
Theorem 4 is better than the union bound by 1.5 dB and 1.8 dB, for quaternary and octal alphabets, respectively,
at the considered block error probabilities).

Example 8(A fully-interleaved Rayleigh fading channel with PSK modulation and maximal ratio combining).
Consider the class of fully-interleaved Rayleigh fading channels with maximal ratio combining (MRC) space
diversity of orderL. The receiver sequence is as in (25) where the fading samples, Ak, are distributed according
to the following pdf:

p(a) =
2LLa2L−1 exp

(

−La2
)

(L− 1)!
, a ≥ 0. (27)

Note that Es
N0

in (25) refers to the stage after the MRC module. A closed-form expression for the upper bound
on the block error rate, based on Theorem 4 and an exponentialtilting measure is suggested (see Appendix I).
Consider the (8,16) regular and non-binary LDPC code ensemble of Gallager [22] with octal alphabet and a block
length of 1008 symbols. Upper bounds on the decoding error probability of this ensemble with various diversity
ordersL are shown in Figure 6. The bound provided in Theorem 4 is compared with the union bound for MRC
diversity with L = 1 to 4 antennas. Both bounds coincide in the error floor region which is considerably low for
the considered ensemble. The union bound is informative only below the cutoff rate, which corresponds toEs/N0

of 8.51, 6.76, 6.18, and 5.90 dB forL = 1, 2, 3 and 4 receiving antennas. The bound provided in Theorem 4 is
not informative up to the ultimate channel capacity (which corresponds toEs/N0 of 4.94, 4.00, 3.68, and 3.30 dB,
respectively). Nevertheless, the bound in Theorem 4 outperforms the union bound by 1.33 dB at a block error rate
of 10−4 when there is a single antenna at the receiver, and by 1.02 dB for L = 4 receiving antennas.
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Fig. 7: A comparison between the DS2 and union upper bounds on the block error probability under ML decoding for the(8, 16)-regular
LDPC ensemble of Gallager (see Example 7). The transmissiontakes place over fully-interleaved Rayleigh fading channel with a QPSK
modulation and perfect CSI at the receiver. The ISP lower bounds on the decoding error probability are shown for block lengths of 1008
and 10080 symbols. The capacity limit for infinite block length is also presented as a reference.

Example 9 (A comparison of upper and lower bounds).The DS2 upper bound in Theorem 4 is compared in this
example to an improved sphere-packing (ISP) lower bound on the ultimate error performance of finite-length codes
(see [21]). The bounds are compared for block codes whose transmission takes place over the fully interleaved
Rayleigh fading channels with a quadrature-phase shift-keying (QPSK) modulation and perfect CSI at the receiver.
The DS2 bound is evaluated with the sub-optimal exponentialtilting measure in (26) for the (8,16) regular LDPC
code ensembles of Gallager with block lengths of 1008 and 10080 symbols. The bounds are plotted in Figure 7
jointly with union bounds as a reference. The ultimate errorperformance using a rate–0.5 code with the considered
block lengths is evaluated using the ISP lower bound [21]. For the two block lengths considered in this example,
the ISP bound is more informative than the capacity threshold for decoding error probabilities below10−2. For
a block length of 1008 symbols, the gap between the ISP lower bound and the sub-optimal DS2 upper bound is
about 2.0 dB for a block error rate of10−4. For a block length of 10080 symbols, this gap is reduced to about
1.5 dB. Note that the use of the upper bound in Theorem 4 closesthe 3 dB gap between the union upper bound
and the respective ISP lower bound to only 1.5 dB while referring to a block length of 10080 symbols and a block
error probability of10−4.

V. SUMMARY AND CONCLUSIONS

This paper considers the performance of non-binary linear block codes whose transmission takes place over
memoryless symmetric channels. To this end, upper bounds onthe decoding error probability are derived for finite-
length codes. The general bounding approach is based on a partitioning of the original ensemble into two subsets of
codebooks, according to their minimal Hamming distance: The performance of the set of codebooks with a relatively
low minimum Hamming distance is assessed via a simple union bound which only depends on the considered
ensemble, whereas the other set is evaluated using the second version of the Duman and Salehi (DS2) bound (See
Section III-A). As a particular case of this bounding technique, an adaptation of the Shulman-Feder bound (SFB)
(see [10]) is provided for non-binary linear block codes. The latter approach which is related to the adaptation of the
SFB to the non-binary setting is similar to the work of Bennatan and Burshtein [11] for a different setting of coding
with a random coset mechanism. Under a symmetry property of the ensemble, the resulting bound is considerably
simplified and even tightened. This simplifying assumption, which holds in particular for the considered non-binary
low-density parity-check (LDPC) ensembles, yields a boundwhose summations are over the Hamming weights of
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the non-zero codewords rather than their compositions (seeTheorem 3). The tightness of the bounds presented in
this paper is exemplified for the non-binary regular LDPC ensembles of Gallager [22] where transmission takes
place over theq-ary symmetric channel and the AWGN channel with aq-ary PSK modulation. The bound provided
in Theorem 3 is attractive and show meaningful results up to the ultimate capacity limit. In addition, it outperforms
the adaptation of the SFB in Theorem 2 for the non-binary setting which is even pronounced as the cardinality of
the code alphabet is increased.

The weakness of the union bound is exemplified in this paper for regular LDPC code ensembles, showing the
necessity in the replacement of the union bound with some improved upper bounds on the decoding error probability.
On the other hand, the bound provided in Theorem 3 is most attractive and shows meaningful results at a significant
portion of the rate region between the cutoff rate and the ultimate channel capacity. The upper bound in Theorem 3
is compared to two lower bounds on the ultimate error performance of finite-length block codes (which hold for
general block codes, either linear or non-linear): The 1959sphere-packing (SP59) lower bound of Shannon [18],
and the lower bound derived in [21]. These comparisons show by examples that recent sphere-packing bounds form
a useful analytical tool for finite-length block codes.
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APPENDIX A
PROOF OFLEMMA 1

Let x1, x2, x3 ∈ X , p be the transition probability of the channel, andT be the mapping as in Lemma 1. Then,
by settingx , x3 − x2, it follows from (1) that for ally′ ∈ Y

p(y′|x) = p
(

T (y′, x2)|x2 + x
)

.

As a particular case, fory′ = T (y, x1) wherey ∈ Y, we have

p
(

T (y, x1)|x
)

= p
(

T
(

T (y, x1), x2

)

|x2 + x
)

. (28)

Using (1) (repeatedly twice) on the LHS of (28) it follows that

p
(

T (y, x1)|x
)

= p(y|x− x1) = p
(

T (y, x3 − x+ x1)|x3

)

. (29)

which then yields from (28) and (29), jointly with the equality x3 − x = x2, that

p(T (y, x1 + x2)|x3) = p
(

T
(

T (y, x1), x2

)

|x3

)

which coincides with (2).

APPENDIX B
PROOF OFPROPOSITION1

The following proof holds for channels with a discrete-output alphabet, and the generalization of the proof
to continuous-output alphabet channels is trivial. Letp be the symmetric transition probability function of the
considered channel, andT be its corresponding function according to Definition 1. Theconditional error probability
of them-th message,xm = (xm,1, xm,2, . . . , xm,n), under ML decoding is given by

Pe|m =
∑

y∈Λc
m

n
∏

i=1

p (yi|xm,i) =
∑

y∈Λc
m

∏

x∈X

∏

{i: xm,i=x}

p(yi|x)

=
∑

y∈Λc
m

∏

x∈X

∏

{i: xm,i=x}

p(T (yi,−x) |0)
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wherey = (y1, . . . , yn), and

Λc
m =

{

y :
n
∑

i=1

ln

(

p(yi|xm′,i)

p(yi|xm,i)

)

≥ 0, for somem′ 6= m

}

=











y :
∑

{x,x′∈X : x′ 6=x}

∑

{i: xm′,i=x′,xm,i=x}

ln

(

p(yi|x
′)

p(yi|x)

)

≥ 0, for somem′ 6= m











=











y :
∑

{x,x′∈X : x′ 6=x}

∑

{i: xm′,i=x′,xm,i=x}

ln

(

p(T (yi,−x
′)|0)

p(T (yi,−x)|0)

)

≥ 0, for somem′ 6= m











.

Using the change of variables
zi = T (yi,−xm,i), 1 ≤ i ≤ n

it follows that

Pe|m =
∑

z∈Λ̃c
m

n
∏

i=1

p(zi|0)

where

Λ̃c
m =











z :
∑

{x,x′∈X : x′ 6=x}

∑

{i: xm′,i=x′,xm,i=x}

ln

(

p(T (zi, x− x′)|0)

p(zi|0)

)

≥ 0, for somem′ 6= m











=











z :
∑

δ∈X

∑

{i: xm,i−xm′,i=δ}

ln

(

p(T (zi, δ)|0)

p(zi|0)

)

≥ 0, for somem′ 6= m











.

Since the codeC is a linear space, then for every two codewordsxm′ 6= xm in C, there exists a third non-zero
codewordxl in C wherexl = xm′ − xm. Hence, for everym = 1, 2, . . . ,M and for everyz ∈ Λ̃c

m, there exists
somel ∈ {1, 2, . . . ,M} for which

∑

δ∈X

∑

{i: −xl,i=δ}

ln

(

p(T (zi, δ)|0)

p(zi|0)

)

≥ 0.

Denote byx1 ∈ C the all-zero codeword, then it follows that

Λ̃c
m = Λ̃c

1, m = 1, 2, . . . , qk

which concludes the proof.

APPENDIX C
PROOF OFPROPOSITION2

Since the channel is symmetric, we have from Proposition 1 and (3) that

Pe = Pe|0 ≤





∑

y∈Yn

G0
n(y)pn(y|0)





1−ρ

·







∑

m′ 6=0

∑

y∈Yn

G0
n(y)1−

1

ρ pn(y|0)

(

pn(y|xm′ )

pn(y|0)

)λ







ρ

. (30)

Next, settingG0
n(y) as in (4), for memoryless channels we have

Pe ≤





∑

y∈Yn

n
∏

i=1

g(yi)p(yi|0)





1−ρ

·







∑

m′ 6=0

∑

y∈Yn

n
∏

i=1

g(yi)
1− 1

ρ p(yi|0)

(

p(yi|xm′,i)

p(yi|0)

)λ







ρ

(31)

which concludes the proof by replacing the sum of products with the corresponding product of sums.
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APPENDIX D
PROOF OFTHEOREM 2

From (8)

Pr( error | dmin > Dn)

≤

(

∑

y∈Y

g(y)p(y|0)

)n(1−ρ)

q−nρ(1−R)

·

(

∑

t∈H: n−t0>Dn

E

[

∣

∣Ct

∣

∣

∣

∣

∣ dmin > Dn

]

q−n(1−R)
(

n
t

)

(

n

t

)

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

q−nρ(1−R)

·



 max
t∈H: n−t0>Dn







E

[

∣

∣Ct

∣

∣

∣

∣

∣
dmin > Dn

]

q−n(1−R)
(

n
t

)











ρ

·

(

∑

t∈H: n−t0>Dn

(

n

t

)

∏

x∈X

(

sλ,ρ(x)
)tx

)ρ

where the last transition holds since
∑

i xiyi ≤ maxi xi

∑

i yi if {xi} and {yi} are non-negative sequences. Let
X ∗ , X \ {0}, from the definition ofαq in (13) we get

Pr( error | dmin > Dn)

≤ q−nρ(1−R)
(

αq(C,Dn)
)ρ





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·





n
∑

l=Dn+1

(

n

l

)

(

sλ,ρ(0)
)n−l

∑

t1+...+tq−1=l

(

l

t1, . . . , tq−1

)

∏

x∈X ∗

(

sλ,ρ(x)
)tx





ρ

= q−nρ(1−R)
(

αq(C,Dn)
)ρ





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·





n
∑

l=Dn+1

(

n

l

)

(

sλ,ρ(0)
)n−l

(

∑

x∈X ∗

sλ,ρ(x)

)l




ρ

≤ q−nρ(1−R)
(

αq(C,Dn)
)ρ





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·





n
∑

l=0

(

n

l

)

(

sλ,ρ(0)
)n−l

(

∑

x∈X ∗

sλ,ρ(x)

)l




ρ

≤ q−nρ(1−R)
(

αq(C,Dn)
)ρ





∑

y∈Y

g(y)p(y|0)





n(1−ρ)
(

∑

x∈X

sλ,ρ(x)

)nρ

. (32)

Next, setting

g(y) =

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ

p(y|0)−
ρ

1+ρ , λ =
1

1 + ρ
(33)
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it follows that
∑

y∈Y

g(y)p(y|0) =
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ

p(y|0)
1

1+ρ . (34)

In addition, plugging (33) in (9), we get

sλ,ρ(x) =
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ−1

p(y|0)
1

1+ρ p(y|x)
1

1+ρ

which then implies from (34) that

∑

x∈X

sλ,ρ(x) = q
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ

p(y|0)
1

1+ρ

= q
∑

y∈Y

g(y)p(y|0). (35)

From (32) and (35), it follows that

Pr( error | dmin > Dn) ≤ qnρR
(

αq(C,Dn)
)ρ





∑

y∈Y

g(y)p(y|0)





n

. (36)

To complete the proof, we need the following lemma:

Lemma 6. Setting g(y) as in (33), the following equality follows for all ξ:

∑

y∈Y

g(y)ξp(y|0) =
∑

y∈Y





(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ξρ

·

(

1

q

∑

x∈X

p(y|x)1−
ξρ

1+ρ

)



 . (37)

Proof: Since the channel is symmetric, then there exists a functionT , as in Definition 1, satisfying (1) and
(2). As a result, settingg(y) as in (33) we have

∑

y∈Y

g(y)ξp(y|0)

=
∑

y∈Y

((

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ

p(y|0)−
ρ

1+ρ

)ξ

p(y|0)

=
∑

y∈Y

p(y|0)1−
ξρ

1+ρ

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ξρ

(a)
=

1

q

∑

x′∈X

∑

y∈Y

p(y|0)1−
ξρ

1+ρ

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ξρ

(b)
=

1

q

∑

x′∈X

∑

y∈Y

p(T (y, x′)|x′)1−
ξρ

1+ρ

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ξρ

(c)
=

1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1−
ξρ

1+ρ

(

1

q

∑

x∈X

p(T (y′,−x′)|x)
1

1+ρ

)ξρ

where in (a) an additional variable is added, (b) is based on (1), and (c) follows since

p(T (T (y, x′),−x′)|x) = p(y|x) (38)
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for all x, x′ ∈ X andy ∈ Y. Next, using the closure of the (finite) input alphabet, it follows that
∑

y∈Y

g(y)ξp(y|0)

(a)
=

1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1−
ξρ

1+ρ

(

1

q

∑

x∈X

p(T (T (y′,−x′), x+ x′ − x)|x+ x′)
1

1+ρ

)ξρ

(b)
=

1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1−
ξρ

1+ρ

(

1

q

∑

x∈X

p(y′|x+ x′)
1

1+ρ

)ξρ

=
1

q

∑

x′∈X

∑

y′∈Y

p(y′|x′)1−
ξρ

1+ρ

(

1

q

∑

x′′∈X

p(y′|x′′)
1

1+ρ

)ξρ

=
∑

y′∈Y





(

1

q

∑

x′∈X

p(y′|x′)1−
ξρ

1+ρ

)

·

(

1

q

∑

x′′∈X

p(y′|x′′)
1

1+ρ

)ξρ




where (a) follows from (1) and (b) follows from (2) and (38), both with x1 = x andx2 = x+ x′. This concludes
the proof.

From (36) and Lemma 6 (withξ = 1 in (37)), we get after an optimization overρ (where0 ≤ ρ ≤ 1):

Pr( error | dmin > Dn) ≤ q
−nEr

(

R+
logq αq(C,Dn)

n

)

. (39)

Finally, the proof of Theorem 2 follows from Lemma 3 and (39).

APPENDIX E
PROOF OFTHEOREM 3

Under the conditions in Theorem 3, we get from (8), (14), and (15) that

Pr( error | dmin > Dn)

≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·

[

∑

n−t0>Dn

P (n− t0)

1 − εn

(

n

t0

)

(

sλ,ρ(0)
)t0

∑

t1+...+tq−1=n−t0

(

n− t0
t1, . . . , tq−1

)

∏

x∈X ∗

(

sλ,ρ(x)
)tx

]ρ

=





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·

[

∑

n−t0>Dn

P (n − t0)

1 − εn

(

n

t0

)

(

sλ,ρ(0)
)t0

(

∑

x∈X ∗

sλ,ρ(x)

)n−t0]ρ

whereX ∗ , X \ {0}. Next, settingλ andg(y) as defined in (33), then it follows from (35) that

Pr( error | dmin > Dn) ≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)

·





∑

n−t0>Dn

P (n− t0)

1 − εn

(

n

t0

)

(

sλ,ρ(0)
)t0



q
∑

y∈Y

g(y)p(y|0) − sλ,ρ(0)





n−t0




ρ

. (40)

The proof is completed by applying Lemma 6 in (40) withξ = 1 for
∑

y∈Y g(y)p(y|0), and with ξ = 1 − 1
ρ

for

sλ,ρ(0) =
∑

y∈Y g(y)
1− 1

ρ p(y|0).
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APPENDIX F
PROOF OFLEMMA 5

Denote byax∗(l) the number of choices ofl non-zero elements in{1, . . . , q − 1} whose summation moduloq
equalsx∗ (wherex∗ ∈ {0, . . . , q − 1}). Note that thesel elements should not necessarily be distinct. Then, for
1 ≤ l ≤ d, there are

(

d
l

)

ax∗(l) vectorsx = (x1, . . . , xd), whose Hamming weight isl, and which satisfy

x1 + · · · + xd = x∗ mod q. (41)

The sequences{ax∗(l)} satisfy the following system of recursive equations:

ax∗(l) =

q−1
∑

x=1

a(x∗−x)mod q(l − 1), x∗ = 0, 1, . . . , q − 1 (42)

with the initial conditionsa0 (1) = 0, andax (1) = 1 for x ∈ {1, . . . , q− 1}. Using a vector notation, the equations
in (42) are written as















a0(l)
a1(l)

...

aq−1(l)















=















0 1 · · · 1 1
1 0 1 · · · 1
...

. . .
1 · · · 1 0 1
1 · · · 1 0















q×q















a0(l − 1)
a1(l − 1)

...

aq−1(l − 1)















whose solution forl ≥ 1 is given by














a0(l)
a1(l)

...

aq−1(l)















=















0 1 · · · 1 1
1 0 1 · · · 1
...

. . .
1 · · · 1 0 1
1 · · · 1 0















l−1

q×q















0
1
...

1















q×1

. (43)

In proving the considered lemma, the main ingredient is obtaining the number of vectorsx satisfying the parity-
check equation

x1 + · · · + xd = 0 mod q. (44)

Accordingly, only the sequence{a0(l)} is of interest. To obtain a closed form expression for this sequence, consider
the following difference equation:

{

ul = (q − 1)
(

ul−1 + (−1)l
)

u1 = 0
. (45)

It can be verified by induction that the elements on the diagonal of theq× q matrix on the RHS of (43), raised to
the (l − 1)-th power, are identical and equal toul−1, where the sequence{ul} is the solution of (45). Moreover,
all other elements outside the diagonal, are equal toul−1 + (−1)l. As a result, it follows from (43) that

a0(l) = (q − 1)
(

ul−1 + (−1)l
)

, l ≥ 1, a0(1) = 0.

which implies from (45) thata0(l) = ul for l ≥ 1. Solving the difference equation in (45), gives

a0(l) =
(q − 1)l + (q − 1)(−1)l

q
, l ≥ 1.

Hence, the enumerator for the number of vectorsx satisfying the parity-check equation in (44), is given byA∗(X)
in (21). As a result, the enumerator of the first sub-matrix inthe considered ensemble is given in (20) (this is
similar to the idea provided in [31] for the binary case). Finally, (19) is established in [22] which concludes the
proof of Lemma 5.

Remark 4. The weight enumerator of the single parity-check (SPC) code(as specified in (41)) can be alternatively
derived via Mac Williams’ Theorem for non-binary linear block codes (see [41, Theorem 4.6]). Since the dual of a
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SPC code is a repetition code, then the above result follows easily. Note however that the Mac Williams’ theorem
applies to the case whereq is an integral power of a prime number (which forms a necessary and sufficient
condition for the existence of a Galois field of sizeq) which is not required in this lemma. Since a repetition code
is a maximum distance separable (MDS) code then various properties hold in fact over alphabets of arbitrary size
(see [42]).

APPENDIX G
PROOF OFTHEOREM 4

Using the DS2 bound for the case at hand, it follows that

P ( error |dmin > Dn)

= E

[

∫∫

(y,a):p(y,a|x)≥p(y,a|0) for somex 6=0∈C
p(y,a|0) dy da

∣

∣

∣
dmin > Dn

]

≤ E





∫∫

y,a

p(y,a|0)

J
∑

j=1





∑

t∈Hj

∑

x∈Ct

(

p(y,a|x)

p(y,a|0)

)λj





ρj

dy da
∣

∣

∣ dmin > Dn





=
J
∑

j=1

E

[

∫∫

y,a

ψj(y,a)





∑

t∈Hj

∑

x∈Ct

ψj(y,a)
− 1

ρj p(y,a|0)
1−λj ρj

ρj p(y,a|x)λj





ρj

dy da
∣

∣

∣ dmin > Dn

]

(46)

where the statistical expectation is taken over all the codebooks whose Hamming minimum distance is larger than
Dn. From (46), using Jensen’s inequality we have

P ( error |dmin > Dn)

≤

J
∑

j=1

E









∑

t∈Hj

∑

x∈Ct

∫∫

y,a

ψj(y,a)
1− 1

ρj p(y,a|0)
1−λj ρj

ρj p(y,a|x)λj





ρj

dy da
∣

∣

∣ dmin > Dn



 .

Settingψj(y,a) =
∏

i ψj(yi, ai), since the channel is memoryless we have

P ( error |dmin > Dn)

≤
J
∑

j=1

E









∑

t∈Hj

∑

x∈Ct

∫∫

y,a

n
∏

i=1

ψj(yi, ai)
− 1

ρj p(yi, ai|0)
1−λj ρj

ρj p(yi, ai|xi)
λj dyi dai





ρj

∣

∣

∣
dmin > Dn





=

J
∑

j=1

E









∑

t∈Hj

|Ct|
∏

x∈X

(∫∫

y,a

ψj(y, a)
1− 1

ρj p(y, a|0)
1−λj ρj

ρj p(y, a|x)λj dy da

)tx





ρj
∣

∣

∣ dmin > Dn



 .

The proof is concluded by using Jensen’s inequality (for thestatistical expectation) and Lemma 3.

APPENDIX H
A CLOSED-FORM EXPRESSION FOR THE INTEGRAL INTHEOREM 4 WHEN APPLIED TOEXAMPLE 7

Similarly to [9], we will pursue a closed-form expression byexamining an exponential tilting probability measure
ψ as in (26). Note that the joint pdfp(y, a|x) to receive the noisy observationy ∈ C with a fading samplea ≥ 0,
given that the transmitted symbol isx ∈ X , is given according to

p(y, a|x) =
1

2π
exp

(

−
1

2

∣

∣y − aµ(x)
∣

∣

2
)

p(a),

where
p(a) = 2(1 +K)a exp

(

−(1 +K)a2 −K
)

I0

(

2a
√

K(K + 1)
)

, a ≥ 0,
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is the pdf of the Rician fading samplea ∈ A with a parameterK, andµ(x) ,

√

2Es
N0

exp
(

2πi
q
x
)

is theq-ary PSK
modulation mapping applied in the considered scheme. In addition, ψj in (26) is easily verified to be a probability
measure. Assuming that1 +K + β > 0 (which is the case sinceα ≥ 0), the denominator ofψ as in (26) equals

∫ ∞

0
p(a) exp

(

−
αv2a2Es

N0

)

da =
1 +K

1 +K + β
exp

(

−
βK

1 +K + β

)

.

Straightforward (though tedious) calculations show that for everyx ∈ X
∫ ∞

a=0

∫

y∈C

ψ(y, a)1−
1

ρ p(y, a|0)
1−λρ

ρ p(y, a|x)λ dy da

=
ρ

1 − α(1 − ρ)

(

1 +K

α(1 +K + β)
exp

(

−
βK

1 +K + β

)

)
1

ρ
−1

1 +K

1 +K + γx
exp

(

−
γxK

1 +K + γx

)

where

β ,
αv2Es

N0

γx , β

(

1 −
1

ρ

)

−
ρEs

(

1 − α(1 − ρ)
)

N0

∣

∣

∣

∣

αu

(

1 −
1

ρ

)

+
1 − λρ

ρ
+ λe

2πi

q
x

∣

∣

∣

∣

2

+
Es

N0

(

α |u|2
(

1 −
1

ρ

)

+
1

ρ

)

.

APPENDIX I
A CLOSED-FORM EXPRESSION FOR THE INTEGRAL INTHEOREM 4 WHEN APPLIED TOEXAMPLE 8

The following exponential tilting measure is applied:

ψ(y, a) =
αp(a)

2π

(

1 +
β

L

√

2Es

N0

)L

exp



−
α

2

∣

∣

∣

∣

∣

y − a

√

2Es

N0
u

∣

∣

∣

∣

∣

2

− βa2

√

2Es

N0



 (47)

wherey is complex-valued,a, α, β ≥ 0, are real-valued parameters,u is a complex-valued parameter, andp(a) is
the pdf of the fading, given in (27). The integral in (24) withthe proposed tilting measure in (47) is calculated via
straightforward calculus, and it is obtained that for everyx ∈ X

∫ ∞

a=0

∫

y∈C

ψ(y, a)1−
1

ρ p(y, a|0)
1−λρ

ρ p(y, a|x)λ dy da

=
ρα1− 1

ρLL

1 − α (1 − ρ)

(

1 +
β

L

√

2Es

N0

)L
(

1− 1

ρ

)

(

L+ β

(

1 −
1

ρ

)
√

2Es

N0
+

(

1 −
1

ρ

)

α
∣

∣u
∣

∣

2
Es

N0
+

Es

ρN0

−
ρEs

N0 (1 − α (1 − ρ))

∣

∣

∣

∣

αu

(

1 −
1

ρ

)

+
1 − λρ

ρ
+ λ exp

(

2πix

q

)∣

∣

∣

∣

2
)−L

.
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