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Abstract

The paper introduces ensembles of systematic accum@péat-accumulate (ARA) codes which asymptotically achiev
capacity on the binary erasure channel (BEC) wittunded complexityper information bit, of encoding and decoding. It
also introduces symmetry properties which play a centdal irothe construction of new capacity-achieving ensemfileshe
BEC. The results here improve on the tradeoff between pedoce and complexity provided by previous constructions of
capacity-achieving ensembles of codes defined on graplessiperiority of ARA codes with moderate to large block Iéngt
is exemplified by computer simulations which compare theifgrmance with those of previously reported capacityi@géhg
ensembles of LDPC and IRA codes. The ARA codes also have tentate of being systematic.

Index Terms

Binary erasure channel (BEC), capacity, complexity, degfistribution (d.d.), density evolution (DE), iterativeabding,
irregular repeat-accumulate (IRA) codes, low-densityitpaotheck (LDPC) codes, systematic codes.

. INTRODUCTION

Error-correcting codes which employ iterative decodingogthms now represent the state of the art in low-
complexity coding techniques. There is already a large ctidle of iteratively decodable codes including low-
density parity-check (LDPC), turbo, repeat-accumulate anodlyct codes; all of them demonstrate a rather small
gap (in rate) to capacity with feasible complexity [1].

The study of capacity-achieving (c.a.) sequences of LDPC céafethe binary erasure channel (BEC) was
initiated by Luby et al. [2] and Shokrollahi [3]. They show thats possible to closely approach the capacity of an
erasure channel with a simple iterative procedure whosepltaxity is linear in the block length of the code [2],
[3]. Following these works, Oswald and Shokrollahi preseérite[4] a systematic study of c.a. sequences of LDPC
codes for the BEC. Jin et al. introduced irregular repeatdmedate (IRA) codes and presented a c.a. sequence of
systematic IRA (SIRA) codes for the BEC [5]. A sequence of c.&/AStodes for the BEC with lower encoding
and decoding complexities was introduced in [6, Theorem H#]ofAthe aforementioned codes have one drawback
in common: their decoding complexity scales like the loglad tnverse of the gap (in rate) to capacity [3], [4],
[6], [7], [8], [9]; hence, under iterative message-passitegoding, these codes hauabounded complexitgper
information bit) as the gap to capacity vanishes.

In [10], the authors presented for the first time two sequemdemnsembles of non-systematic IRA (NSIRA)
codes which asymptotically (i.e., as their block lengthdteto infinity) achieve capacity on the BEC witlounded
complexityper information bit. This new result is achieved by punctgrbits and thereby introducing state nodes
in the Tanner graph representing the codes. We note that & Gemplexity, these codes will eventually (for large
enough block length) outperform any code proposed so fareder, the speed of convergence happens to be quite
slow and, for small to moderate block lengths, the code®dhired in [10] are not record breaking.
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In this paper, we are interested in the construction andyaisabf c.a. codes for the BEC with bounded complexity
that also perform well at moderate block lengths. We alsolavalso like these codes to be systematic and to have
reasonably low error floors. To this end, we make use of a newngiaoding scheme, called “Accumulate-Repeat-
Accumulate” (ARA) codes, which was recently introduced Hybasfar et al. [11]. These codes are systematic and
have both outstanding performance, as exemplified in [11], [[L3], and a simple linear-time encoding. After
presenting an appropriate ensemble of irregular ARA codesconstruct a number of c.a. degree distributions.
Simulations show that some of these ensembles perform queow the BEC at moderate block lengths. We
therefore expect that irregular ARA codes, optimized fonegal channels, also perform well at moderate block
lengths (as is partially supported by some simulation tesal[11]). This issue is regarded as a topic for further
research, while this paper is focused on the BEC. Through@up#per, we consider the encoding and decoding
complexity per information bit

Along the way, we study symmetry properties of c.a. sequefmethe BEC and discover a new code structure
which we call “Accumulate-LDPC” (ALDPC) codes. We show that clegree distributions for this structure can be
easily constructed based on the results of [10, Theorems Th#j fact and structure was proposed independently
by Hsu and Anastasopoulos [14].

The paper is organized as follows: Section Il introduces ARAes) describes their encoding and decoding, and
their density evolution analysis for the BEC. Section |l attuces symmetry properties that play a central role
in the construction of c.a. sequences of ensembles for the. BlECtion IV serves as a preparatory step towards
the construction of explicit c.a. sequences of ARA codestlier BEC, where their complexity of encoding and
decoding stays bounded as the gap to capacity vanishesois®cfiresents explicit constructions of c.a. sequences
of bit-regular and check-regular ARA codes with bounded plaexity. Section VI focuses on the construction of
c.a. ensembles of ARA, NSIRA and ALDPC codes (with bounded cexily) based on the ensembles of self-
matched LDPC codes introduced in the section. Computer siiongafor the BEC are presented in Section VII,
and the superiority of self-matched ARA codes with modetatéarge block length is exemplified by comparing
their performance with those of previously reported c.@eembles of LDPC and IRA codes from [3], [10]. Finally,
Section VIII concludes our discussion.

I[l. ACCUMULATE-REPEATACCUMULATE CODES

In this section, we present our ensemble of ARA codes. Demsiblution (DE) analysis of this ensemble is
presented in the second part of this section using two éiffieapproaches which lead to the same “DE fixed point
equation”; this equation characterizes the fixed points ef itarative message-passing decoder. The connection
between these two approaches is used later in this papeat®® Stme symmetry properties which serve as an
analytical tool for designing various c.a. ensembles fer BEC (e.g., ARA, IRA and ALDPC codes).

A. Description of ARA Codes
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Accumulate Irr. Repeat |—| Irr. SPC (@) | Accumulate R'(1)
Encoder Encoder Encoder Encoder

Fig. 1. Block diagram for the systematic ARA ensemble (lrr.” and 'SBtand for 'irregular’ and ’single-parity check’, respectively, and
1T stands for a bit interleaver.)

ARA codes can be viewed either as interleaved serially deneéed codes (i.e., turbo-like codes) or as sparse-
graph codes (i.e., LDPC-like codes). From an encoding pointesf\it is more natural to view them as interleaved
serially concatenated codes (see Fig. 1) where the encodinggs is described in Section II-B.

Since the decoding algorithm of ARA codes is simply beliefgagation on the appropriate Tanner graph (see
Fig. 2), this leads one to view them as sparse-graph codes drolecoding point of view. Treating these codes
as sparse-graph codes also allows one to build large codé&svisying” together many copies of a single small
protograph[15], [16]. In general, this approach leads to very good sodéh computationally efficient decoders.



In this work, we consider the ensemble of irregular ARA coddsich is the natural generalization of the IRA
codes from [5]. The ensemble of irregular ARA codes differghtly from those proposed in [11], [12], [13]. For
this ensemble, we find that DE for the BEC can be computed in d¢lésen and that algebraic methods can be
used to construct c.a. sequences.
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Fig. 2. Tanner graph for the ARA ensemble.

B. Encoding of ARA Codes

We describe here briefly the encoding process of the ARA cadé&sgi 1. The encoding of ARA codes is done
as follows: first, the information bits are accumulated (idifferentially encoded), and then the bits are repeated a
varying number of times (by an irregular repetition codel amterleaved. The interleaved bits are partitioned into
disjoint sets (whose size is not fixed in general), and thetypafi each set of bits is computed. Finally, the bits
are accumulated for the second time. A codeword of systendd®iA codes is composed of the information bits
and the parity bits at the output of the second accumulator.

Some slight modifications are used later for our simulatiors these details are explained in Section VII. In
this section, all references to the decoding graph shoulhken to imply Fig. 2, and all sums are assumed to be
modulo-2.

We will refer to the three layers of bit nodes in the decodimgph as systematic bits, punctured bits, and
parity bits (the parity bits are named as “code bits” in Fig. Rgferring to the Tanner graph of ARA codes, we
designate the systematic bits from left to right (ay, us, . .., ux). The same convention is used for the punctured
bits (v1,va,...,v;) and the parity bitgz1, 22, ..., z,—k).

From the upper part of the graph, it follows thgt= w; +v;_; for j € {2,...,k} andv; = ;. This yields that

j
vi=> u  §=1,2..k 1)
=1

Letd(i) be the degree of theth “parity-check 2” node where the degree is w.r.t. the sdg®necting the “punctured
bit” nodes and the “parity-check 2" nodes, a(d, j) be the index of the punctured bit attached to fkié edge of
the i-th “parity-check 2” node. All the connections between tipairictured bit” nodes and “parity-check 2" nodes
are described by these two sequences. Let the sequences, ..., w,_) be defined by

wzézvc(z,]) i:1,2,...,n—k.



This can be thought as the sum of the punctured bits which ameeabed to the-th “parity-check 2” node. From
the lower part of the graph we have = z;_; + w; (wherewy = 0), and this gives

J
zj:Zwi i=12,...,n—k. 2)
i=1

From Fig. 2 and equations (1) and (2), one can see that an ARA isditle serial concatenation of four simple
codes. The first is an accumulate code (upper part of the grphsecond is an interleaved irregular repetition
code, the third is an irregular single parity-check (SPC) qedsch is an irregular code due to the varying degrees
of the “parity-check 2" nodes), and finally the fourth is a set@ccumulate code (lower part of the graph).

C. Density Evolution of Systematic ARA Ensembles

We consider here the asymptotic analysis of ensembles of AB¥es under the assumption that the codes are
transmitted over a BEC and decoded with an iterative messagging decoder. Based on the density evolution
(DE) equations, derived in terms of the degree distributminthese ensembles, we consider the fixed points of the
decoding process. In the following, we present two diffeérgmproaches for the DE analysis of ARA codes for the
BEC which, as expected, provide equivalent results. Whigecitncept of the first approach is standard, the second
one is helpful in establishing symmetry properties of creseenbles for the BEC; these symmetries are discussed
later in Section Ill.

1) Density Evolution via Message Passingn irregular ensemble of ARA codes is defined by its degree
distribution (d.d.). Nodes in the decoding graph will beereéd to by the names given in Fig. 2. LB{z) =
>, Liz" be a power series whet; denotes the fraction of “punctured bit” nodes with degre8imilarly, let
R(z) = Y32, Rz be a power series whet®; denotes the fraction of “parity-check 2” nodes with degiebr
both cases, the degree refers only to the edges connecérfguhctured bit” nodes to the “parity-check 2” nodes.
Similarly, let A(z) = 322, \iz*~! and p(z) = Y22, p;z'~! form the d.d. pair from the edge perspective where
A; and p; designate the fraction of the edges which are connectedunctpred bit” nodes and “parity-check 2"
nodes with degreé- respectively. We also assume that the permutation in Fig. dhosen uniformly at random
from the set of all permutations. The pair of degree distidng of an ARA ensemble is given [y, p).

It is easy to show the following connections between the plaits w.r.t. the nodes and the edges in the graph:

_ R

o) =Ty @) = T 3)
or equivalently, sincd.(0) = R(0) = 0, then
2 = Jo A@) dt 2= Iy p(t) dt
L) = JoA@) dt’ Riw) = IO @

The design raték of the ensemble of ARA codes (see Fig. 1) is computed by expeise block length: as the
sum of k systematic bits andZ’(1)/R/(1) parity bits which then yields

1
AR )

R =

A random code is chosen from the ensemble and a random caodiesveransmitted over a BEC with erasure
probability p. The asymptotic performance of the iterative messageipgasicoder (as the block length of the
code tends to infinity) is analyzed by tracking the averagetifva of erasure messages which are passed in the
graph of Fig. 2 during thé" iteration. The technique was introduced in [17] and is knowrdansity evolution
(DE). The main assumption of density evolution is that the mgss passed on the edges of the Tanner graph are
statistically independent. This assumption is justified by fidct that, for randomly chosen codes, the fraction of
bits involved in finite-length cycles vanishes as the blogigte tends to infinity.

A single decoding iteration consists of six smaller stepscivtare performed on the Tanner graph of Fig. 2.
Messages are first passed downward from the “systematic dit&s through each layer to the “code bit” nodes.
Then, messages are passed back upwards from the “code bis ibcbugh each layer to the “systematic bit”
nodes. Letl designate the iteration number. Referring to Fig. Z,zléé)t and :rgl) designate the probabilities of an
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erasure message from the “parity-check 1” nodes to the ‘tpued bit” nodes and vice-versa, Ieﬁ” and xff)

be the probabilities of an erasure message from the “puedthit” nodes to the “parity-check 2" nodes and vice
versa, and finally, Ieﬁcg) and xél) be the probabilities of an erasure message from the “pahigek 2" nodes to
“code bit” nodes and vice versa.

From the Tanner graph of ARA codes in Fig. 2, we see that an cugoiessage from a “parity-check 1” node
to a “punctured bit” node is an erasure if either the incomingssage through the other edge (which connects
a “punctured bit” node to the same “parity-check 1" node) risesasure or the message received from the BEC
for the systematic bit (which is connected to the same “pantiteck 1" node) is an erasure. Using the statistical
independence assumption, this yields the recursive emuati

) =1-(1—p) (1=al"M).

It is also clear from Fig. 2 that an outgoing message from a ¢purrd bit” node to a “parity-check 2” node is an
erasure if and only if all the incoming messages passed ghrthe other edges connected to this bit are erasures.
The update rule of the iterative message-passing decoddreoBEC therefore implies that

) = ()" M),

From the graph in Fig. 2, we obtain in a similar manner the falhgcDE equations of the iterative message-passing
decoder:

e = 1 (12l > (1-p)
) = ()" M)
o) = 1-R(1-2) (1-afY) [=1,2,...
$§l) _ pxéz)
xfll) = 1- (1 — xél))z p(l — mgl))
o = of) (o)
A fixed point is implied by
llirélox(l)A:vi 1=0,1,...,5.

Now, we can solve for the fixed point by substitutimg into x3, and then substituting the result iniq which
gives the fixed point equation

1—p 2
=1- 1- . 6
o=t (T ) A ©
Likewise, puttingz, into x5 gives the fixed point equation
s — P L(@4)

1—(1—p) L(z4)
and plugging this intacy gives

wo=1-(—-a5)(1-p)=1— (1 —pp)L(fm)' X

Finally, Egs. (6), (7) and the equalityy = z2\(z4) give the following implicit equation for; £ x:
2
P2 A <1 — (#&’_@) p(1 — :c))
1 2 2
[1 -(1-pL <1 - (ﬁ(fﬂ)) p(1— x))]

This equation provides the fixed points of the iterative mesgassing decoder.

= . (8)
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Fig. 3. Graph reduction operation applied to parity-check nodes (left)oitmodes (right).

2) Density Evolution via Graph Reductioffor ensembles of ARA codes whose transmission takes plareaov
BEC, the DE fixed point equation (8) can be also derived usigiggph reductiorapproach. This approach introduces
two new operations on the Tanner graph which remove nodesdgeés while preserving the information in the
graph.

We start by noting that any “code bit” node whose value is mased by the BEC can be removed from the graph
by absorbing its value into its two “parity-check 2" nodes e other hand, when the value of a “code bit” node
is erased, one can merge the two “parity-check 2" nodes wdnielconnected to it (by summing the equations) and
then remove the “code bit” node from the graph. This mergingmaf “parity-check 2” nodes causes their degrees
to be summed and is shown on the left in Figure 3. Now, we congide degree distribution (d.d.) of a single
“parity-check 2" node in the reduced graph. This can be vigadlas working from left to right in the graph, and
assuming the value of the previous “code bit” node was kndiine. probability that there are erasures before the
next observed “code bit” is given yF (1 —p). The graph reduction associated with this event causes treakof
k + 1 “parity-check 2" nodes to be summed. The generating fundtorthis sum ofk + 1 random variables, each
chosen independently from the d.&(z), is given by R(x)**!. Therefore, the new d.d. of the “parity-check 2”
nodes after the graph reduction is given by

YRR w1 (1 —p)R(z)
R(x) ’;Op (1-p)R(z) TR (9

A similar graph reduction can be also performed on the “syat&e bit” nodes in Fig. 2. Since degree-1 bit
nodes (e.g., the “systematic bit” nodes in Fig. 2) only previthannel information, erasures make them worthless.
So they can be removed along with their parity-checks (e, parity-check 1” nodes in Fig. 2) without affecting
the decoder. On the other hand, whenever the value of a fegsite bit” node is observed (assume the value
is zero w.0.l.0.9.), it can be removed leaving a degree-&ypelneck. Of course, degree-2 parity-checks imply
equality and allow the connected “punctured bit" nodes tommrged (effectively summing their degrees). This
operation is shown on the right in Figure 3. The symmetry betwgraph reduction on the information bits and
the parity checks will become important later. Now, we cdasithe d.d. of a single “punctured bit” node in the
reduced graph. This can be seen as working from left to rigkitténgraph, and assuming the value of the previous
“systematic bit” node was erased. The probability of the ewemere the values of “systematic bit” nodes are
observed and the value of the next “systematic bit” nodeaseat by the channel is given By — p)*p. The graph
reduction associated with this event causes the degreks-af “punctured bit” nodes (from the d.d.(x)) to be
summed. Hence, the new d.d. of the “punctured bit” nodes gftgph reduction is given by

o0

T(2) — VT ()R pL(z)
L( )—kzoa PPl = T (10)

After the graph reduction, we are left with a standard LDPC owitle new edge-perspective degree distributions
given by

5 L'(z) p*A(z)

AMx) = = = 11

) () (1-1-p)L(x)’ )
~/x —0)20(z

o) = Ri(z)  (1-p)°p(x) (12)

R(1)  (1-pR(x)*

After the aforementioned graph reduction, all the “systiéerzt” nodes and “code bit” nodes are removed. Therefore
the residual LDPC code effectively sees a BEC whose erasuralgtitpis 1, and the DE fixed point equation is



given by

A1 -p(1 —2)) == (13)
Based on (11) and (12), the last equation is equivalent to (8) B
Remark 1 (The notation of tilted degree distribution$he tilted degree distributions and p which are given
in (11) and (12), respectively, depend on the erasure piiitigap of the BEC. For simplicity of notation, we do
not write this dependency explicitly in our notation. Howevin Section Ill, when discussing symmetry properties
and replacing by 1 — p, the erasure probability is written explicitly in thesddad degree distributions.

D. The Stability Condition for ARA Ensembles

Like the NSIRA codes presented in [10], ARA codes have DE fixeditgaat bothr = 0 andx = 1. One can
see this by evaluating (8) at these points while assuminigetheh d.d. functiory satisfiesf(0) = 0 and f(1) = 1.
To get decoding started, the d.d. is perturbed slightly ljiregldegree-1 parity-checks, pilot bits, and/or systemati
bits. For successful completion of decoding, we need the fixgdt atz = 0 to bestable To minimize the number
of extra bits required to get decoding started, it is alsdulider the fixed point (prior to the perturbation) at= 1
to be unstable Althoughz = 1 is not a fixed point after the perturbation, thestability condition helps prevent
the decoder from getting stuck near= 1.

The stability and instability conditions are computed byirigkthe derivative of the LHS of (8) at = 0 and
x = 1. For the fixed point at: = 0 to be stable, we need the derivative to be less than unitytl@adjives

2pR/(1
2o <p’(1)+ R )> <1 (14)
IL—p
Ensembles without degree-2 bits are unconditionally stable= 0.
For the fixed point atr = 1 to be unstable, we need the derivative to be greater thag, @mt this gives

2(1 —p)L'(1
(1—p)*pa <X(1) + H}?“) > 1. (15)
This condition requires the presence of a non-vanishingifna©f degree-2 “parity-check 2" nodes; ensembles not
having this property are unable to immediately create negregel checks and may therefore get stuck shortly
after starting. The instability condition guarantees tluatt,average, more new degree-1 checks are being created
than lost whene is close to 1.

[1l. SYMMETRY PROPERTIES OFCAPACITY-ACHIEVING ENSEMBLES

In this section, we discuss the symmetry between the bit ardicdegree distributions of c.a. ensembles for the
BEC. First, we describe this relationship for LDPC codes, and the extend it to ARA codes. The extension is
based on analyzing the decoding of ARA codes in terms of graghbction and the DE analysis of LDPC codes.

A. Symmetry Properties of Capacity-Achieving LDPC Ensembles

The relationship between the bit d.d. and check d.d. of c.serables of LDPC codes can be expressed in a
number of ways. Starting with the DE fixed point equation

pA1l—p(l—2z)) == (16)

wherep designates the erasure probability of the BEC, we see thkingi®ither the d.d\ or p determines the
other d.d. exactly. In this section, we make this notion {gee@and use it to expose some of the symmetries of c.a.
LDPC codes.

A few definitions are needed to discuss things properly. Ratig the notation in [4], letP be the set of d.d.
functions (i.e., functionsf with non-negative power series expansions around zerohngadtisfy f(0) = 0 and
f(1) = 1); this set is defined by

P2 {f f@) = ek, w € 0.1, fi 20, £(0) =0, f(1) = 1} -
k=1



Let 7 be an operator which transforms invertible functighs[0, 1] — [0, 1] according to the rule
Tf(x) 21— (1-2)

where f~! is the inverse function off. The function7 f is well-defined on|0, 1] for any function f which is
strictly monotonic on this interval, and therefore for amypdtion in?. We will say that two d.d. functiong and
g arematchedf 7 f = ¢ (sinceT?2f = f, the equalityT f = ¢g implies thatZ g = f). Finally, let A be the set of
all functionsf € P such that7 f € P, i.e.,

Aé{f:feP,TfeP}.

The connection with LDPC codes is that finding soghes A is typically the first step towards proving that
(f,7f)is ac.a. d.d. pair. Truncation and normalization issueskwbepend on the erasure probability of the BEC
must also be considered. When= 1, many of these issues disappear, so we denote the set ofaird.vwhich
satisfy (16) by

CLppc £ {(A,p)GPxP\ A(l—p(l—m)):x}

= {Onlrea p=Tr}
The symmetry propertpf c.a. LDPC codes (with rate 0) asserts that

symmetr
(A, p) € CLoec L Symmety, (p, A) € CrLopc- (17)

One can prove this result by transforming (16) whes 1. First, we letz = 1 — p~!(1 — y), which gives

My)=1—-p (1 —y)
Then we rewrite this expression as
p(1=Ay) =1~y
and lety = 1 — z to get
p(1=A1-2)) ==z
Comparing this with the DE fixed point equation (16) wher- 1 shows the symmetry betweenand p.

B. Symmetry Properties of Capacity-Achieving ARA Ensembles

The decoding of an ARA code can be broken into two stages. Thestage transforms the ARA code into
an equivalent LDPC code via graph reduction, and the secoige stecodes the LDPC code. This allows us to
describe the symmetry property of c.a. ARA codes in termshefdymmetry property of c.a. LDPC codes. First,
we introduce notation which allows us to express compabtyetffect of graph reduction on an arbitrary d.d. from
the edge perspective (see (4), (11) and (12)). FarP, let us define

zova (1-p)?f(x)
Jol@) = (1 B pfo“f(t)dt>2' (18)
Jo F(B)dt

This allows the graph reduction of an ARA code to be intergtete a mappin@/ara from an ARA d.d. pair to
an LDPC d.d. pair which can be expressed as

(Ap) === (Xl—p,ﬁp) .

The inverse of the graph reduction mapping is representeddashed arrow because this inverse mapping, while
always well-defined, does not necessarily preserve the gyop€having a non-negative power series expansion
around zero.
Referring to ensembles of ARA codes, the set of d.d. pairghvkatisfy the DE fixed point equation (8) is given
by
Cara(p) 2 { (\p) €P X P | Dy (1= (1 — 1)) == |



where the equivalence to (8) follows from (11), (12) and (18)

The symmetry between the bit and check degree distributibnsaoARA ensembles follows from the symmetry
relationship in (17), and the equivalence between a d.d.(pap) for ARA codes and the d.d. pafi\;_,, p,) for
LDPC codes of zero-rate.

The complete symmetry relationship for c.a. ARA ensembles tive BEC is therefore given in the following
diagram:

ARA symmetry

(A, p) € Cara(p) = » (p,A) € Cara(l —p)

t t

|
| GARA

LDPC symmetry ( ~

ka,ﬁp € CLppc ~ Pps M—p ) € CLopc
(1) )

The inverse of the graph reduction mapping is representetidogdshed arrow because this inverse transformation
is only valid if it is known ahead of time that the power seregansions of\ and p are non-negative. It turns
out that this symmetry is very useful in order to generate dedv pairs which satisfy the DE equality in (13). An
alternative way to show this symmetry explicitly is rewndi (13)

Mp(1 = () =2
and using the symmetry property (17) for LDPC codes to rewtitesi
ﬁp(l — Xl_p<$)) =1—-ux.
From (11) and (12), the expansion of the last equation gives

(1-p)? p<1 — (”A(””))

1-(1-p)L(x))

2
1-pR(1- —PAD >
< P ( (1-(1-p)L())

Since the swappind.(z) < R(z), A(z) < p(x), p < 1 —p, andz < 1 — 2 maps this equation back to (8), then
we can take any d.d. pair\, p) which satisfies (8) fop = p* and swap\ with p (and hencel and R are also
swapped) to get a new d.d. pair which satisfies (19)fer 1 — p* (equations (8) and (19) should be satisfied for
all z € [0, 1], so switching betweem and1 — x has no relevance).

=1-ux. (19)

C. Symmetry Properties of Capacity-Achieving NSIRA Ensembles

We now consider the graph reduction process and symmetrgefies of non-systematic irregular repeat-
accumulate (NSIRA) codes (for preliminary material on NSIRAles, the reader is referred to [10, Section 2]). In
this respect, we introduce a new ensemble of codes which W& caumulate-LDPC” (ALDPC) codes. These codes
are the natural image of NSIRA codes under the symmetry wamsftion. In fact, this ensemble was discovered
by applying the symmetry transformation to previously knowa. code ensembles. Their decoding graph can be
constructed from the ARA decoding graph (see Fig. 2) by rempithe bottom accumulate structure.

Since an NSIRA code has no accumulate structure attached tfpuhetured bit” nodes, the graph reduction
process affects only the d.d. of the “parity-check 2" noddserefore, graph reduction acts as a map@Rgira
from the NSIRA d.d. pair(}, p) to the LDPC d.d. pai)\, p,). This yields that for ensembles of NSIRA codes,
the set of d.d. pairs which satisfy the DE fixed point equat®given by

Cusira(p) 2 { Ap)ePxP| A1-pp(l—12)) =x }

An ALDPC code has no accumulate structure attached to thetypehreck 2” nodes, and therefore the graph
reduction process only affects the d.d. of the “puncturdati tddes. Hence, graph reduction acts as a mapping
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GaLppc from the ALDPC d.d. pair(), p) to the LDPC d.d. pai(Xl,p,p). For ALDPC ensembles, the set of d.d.
pairs which satisfy the DE fixed point equation is thereforegiby

CALDpc(p) £ { ()\,p) ePxP ’ Xl_p(l — p(l — x)) =X }

The symmetry between c.a. ensembles of NSIRA and ALDPC codesttovd8EC follows from the symmetry
relationship in (17), the equivalence between a d.d. Paip) for NSIRA codes and the d.d. pdih, p,,) for LDPC
codes, and the equivalence between a d.d.(pajp) for ALDPC codes and the d.d. pa(ﬁl_p, p) for LDPC codes.

The symmetry relationship between c.a. NSIRA and ALDPC ensarider the BEC is therefore given in the

following diagram:
symmetry

(A, p) € Cnsira(p) = - (p, A) € Cappc(1 —p)

A A
| |

ONSIRA | '| GaLppc

~ LDPC symmetr ~
(A, pp) € CLopc = Y LA (Pp: A) € Cuopc

As before, the inverse of each graph reduction mapping ieesepted by a dashed arrow because this inverse
transformation is only valid if it is known ahead of time thila¢ power series expansions)oandp are non-negative.

D. Connections with Forney’s Transform

In [20], Forney introduces a graph transformation which sntpe factor graph of any group code to the factor
graph of the dual group code. For factor graphs of binanalimedes which only have equality and parity constraints
(i.e., no trellis constraints), this operation is equivaléo swapping equality and parity constraints (e.g., bid an
check nodes). Forney’s approach represents observatiohalbedges, and these remain attached to the original
node even though the nature of that node has changed. Fopkxararney’s transform maps an LDPC code with
parity-check matrixd to a low-density generator-matrix (LDGM) code with generatatrix H and the half-edges
attached to the bit nodes of the LDPC code are attached to titg-paeck nodes of the LDGM code.

Using Forney’s transform, we see that the swapping @nd p described by our symmetry mappings actually
transforms the original ensemble into the dual ensembletieetesign rate of the original ensemble Bethen
the design rate of the dual ensembld is R. This means that if we want to have any chance of achievingciigpa
we must also map the channel erasure probability 1 — p. Therefore, our symmetry relationships show that
ARA, NSIRA, and ALDPC ensembles which are c.a. on BEC under iteratecoding also have dual ensembles
which are c.a. on the BEC under iterative decodirig.light of the area theorem and its relationship to the dual
code [22], this result is not entirely surprising. Still, wadhnot considered the possibility that c.a. ensembles might
automatically define c.a. dual ensembles.

Finally, we note that the basic structure of ARA codes is preskunder Forney’s transform. In particular, this
means that we can construct self-dual ARA codes by choosiagnatrix which defines the connections between
the “punctured bit” nodes and the “parity-check 2” node® (B&. 2) to be symmetric. This property may also be
useful for constructing quantum error-correcting codesedaon classical codes which contain their duals [21].

IV. CAPACITY-ACHIEVING ARA ENSEMBLES FOR THEBEC

This section serves as a preparatory step towards the cotistrof explicit c.a. ARA ensembles for the BEC,
whose decoding complexities stay bounded as the gap to ibapanishes. Later in Section V we will present
explicit constructions of bit-regular and check-regulaRMA ensembles which are based on a similar approach
due to the symmetry properties provided in the previousi@ecBection VI introduces another approach for the
construction of c.a. ensembles of ARA codes with boundedptexity over the BEC. The concepts used for these
constructions are based on the symmetry properties in teeiqus section, and the material presented in this
section.

1To be precise, we actually need to consider sequences of ensemiittsandnc.a. and relate them to sequences of dual ensembles. This
distinction is rather cumbersome and does not cause problems in this case
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A. A Starting Point

Using the tilted degree distributions after graph redurctitven in Section 11-C.2, we apply the DE equation for
LDPC codes (13) to derive c.a. sequences. This property is ¢riovehe following lemma.
Lemma 1:If equality (13) is satisfied for ali: € [0, 1], then the design rate of the corresponding ensemble of
ARA codes is equal to the capacity of the BEC.
Proof: From the condition in (13), it follows that

1-A11—2) = pa). (20)

SinceA(0) = 0, X(1) = 1 and X is a monotonic differentiable function on the interjal 1], then from (20), the
substitutionz = \(u) and integration by parts give

/Olﬁ(x) do = /01(1—X1(1 1)) da

= 1—/01X1(x)dx
= 1/01uX’(u) du

_ o1 [u X(u)]; _ /01 X(u)du]

1
= / A(u)du. (21)
0
From (3), (11), and the equalitigs(0) = 0 and L(1) = 1, we get

1 B 1 pz)\(ﬂi) )
f, N = | (- -pL@) "
B 1 1 pQL/(x) .
B L’(l)/o (1—(1—p)L(m))2d

B 1 1 p2du
Q) /D (1-(1 —p)u)2

P
= T (22)
Similarly, from (3), (12) and the equalitie®(0) = 0 and R(1) = 1, we obtain
1 1— P
p(x) dx = . 23
By combining (21)-(23), we obtain the equality
L'a _ p
R(1) 1-p (@)
and hence, from (5), the design rate of the ensemble of ARA<ds equal ta — p (i.e., the ensemble achieves
the capacity of the BEC). ]

Now, consider the DE fixed point equation (13) (or equivale(®)). Using this equation, we see that the condition
p(0) = 0 (i.e., no degree-1 “parity-check 2" nodes) is necessary sfficient to guarantee that (13) is always
satisfied atr = 1. Likewise, the condition\(0) = 0 (i.e., no degree-1 “punctured-bit” nodes) is necessary and
sufficient to guarantee that (13) is always satisfied at 0. From Lemma 1, we conclude that if there exists a d.d.
pair (A, p) with bounded average degree that satisfies (8), then there.@. &sequence of ARA ensembles with
bounded complexity for the BEC. This conclusion is also basethe truncation discussed in the next section.
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B. Truncating Degree Distributions

After finding a d.d. pair which satisfies the DE equation (8), @able truncation can be used to exhibit a
sequence of ensembles that achieves capacity. Considexdmple, a sequence of d.d. pafis) p(M))1 ey
indexed by the maximum degrééd. Since the effect of each truncation is negligibleMdsgoes to infinity, Lemma
1 shows that the design rate approaches capacity in this abke truncations are chosen properly, then we can
also show that each truncated d.d. pair in the sequence hBg& rixed points forz € (0, 1]. This implies that, for
any ¢ > 0, there exists a block lengthy (6, M) such that the probability of decoding failure is less thafor all
block lengthsn > ny.

Since our DE equations depend on both the edge and node degir@autions, the truncation must be chosen
carefully to simultaneously bound both. For the check dag,want modified degree distributiod® and 5 such
that R(z) > R(z) andj(z) > p(x) for z € [0,1). In particular, we replace large degree checks by degrdetks
and this gives

00 M
plx) = (/01 + Z Pz‘) + Zmlﬁi_l
i=M+1 i=2
. Jo pt)dt
R(zx) = “—=HF—=—.
@ =

This truncation was introduced in [10] and proven to satisky tlesired conditions.

For the bit d.d., we want truncated degree distributibnand A that satisfyL(z) < L(z) and \(z) < A(x) for

€ (0,1]. In this case, we replace large degree bits by pilot bits.,(éhgse bits are forced to zero and known at
the receiver); this gives

5\(33) = Z)\ixi_l

=1

L(z) = Zsz’
=1
We note that this truncation satisfies the desired conditjgadong as’; > 0 for somei > M) because it simply
removes positive terms.

C. Encoding and Decoding Complexity

When transmission takes place over a BEC, the encoding/aeradmplexity under iterative message-passing
decoding is defined to be the average number of edges per fiormbit in the Tanner graph of the code (see
Fig. 2). The motivation for measuring the complexity in thisywsa because the encoder and the iterative decoder
can be both designed to use every edge in the graph exactlynoaédue to the absolute reliability of information
provided by the BEC).

From the Tanner graph of ARA codes in Fig. 2, it can be verified thatencoding complexityxg) and the
decoding complexity yp) are both equal to

2(1 - R)

7 (25)

XE:XD:3+L/(1)+

where R is the design rate of the ensemble.
The complexity of NSIRA codes can also be computed from Fig. Zbgring the accumulate structure for the
systematic bits. This shows that

9
xe=xp =L'(1) + = (26)

Likewise, the complexity of ALDPC codes can be computed from Bidpy ignoring the accumulate structure
for the parity bits. This shows that
O 3+L(1)

Xo=—p (27)
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In general, the encoding complexity of ALDPC codes does notvdioearly with the block length because the
brute-force encoding of an LDPC code is quadratic in the blarigth. We can, however, apply fast encoding
methods for LDPC codes (e.g., [18] and [19]) to ALDPC codes. Thesthads will result in essentially linear-
time encoding algorithms for c.a. ALDPC codes.

D. The Effect of Puncturing

Puncturing is a well-known technique that allows one to defig one code rate and adaptively increase that rate
to match channel conditions. Strictly speaking, we note fhaictured ARA ensembles are no longer systematic
because some information bits may not be transmitted asuét m#sthe puncturing. This technique, however, can
be used to extend the range for which certain d.d. pairs are c.a. with bounded compyexit

For example, consider any code construction which is pigvala. with bounded complexity fop > py (e.g.,
the check-regular ARA ensemble which will be introduced ict®® V). This construction can be made to achieve
capacity for0 < p < 1 by simply puncturing bits at random before transmissioa.,(iall bits have the same
puncturing rate). Letv be the fraction of bits transmitted, then the effective erasate of the channel is given by
peff = 1 — (1 — p). Picking < 1 — py guarantees thaier > po and that the ensemble achieves capacity. This
operation does increase the complexity by a factoﬁ dfecause the punctured bits must be retained as part of the
decoding graph. We apply this method in some computer stioukto increase the code rate of a particularly
good ensemble of rat§ codes.

Codes with two classes of bits (e.g., ARA codes) may alsofiidrmm asymmetric puncturing of the two classes.
For example, puncturing all of the systematic bits of an ARAl& converts that code into a NSIRA code [10]. So
we find that sending a fraction of the systematic bits of an ARA code gives a smooth transitietween ARA
codes and NSIRA codes for € [0, 1].

V. BIT AND CHECK REGULAR CAPACITY-ACHIEVING ENSEMBLES WITH BOUNDED COMPLEXITY

This section gives explicit constructions of c.a. ARA enskrslfor the BEC, which are either bit-regular or
check-regular. As will be observed, these ensembles ppésemded complexity (per information bit) as the gap
to capacity vanishes.

The symmetry property in Section IlI-B allows one for exammgelesign an ensemble of high-rate ARA codes,
and get automatically (by switching between the pair of dedtistributions) a new ensemble of ARA codes which
is suited for low-rate applications. We will rely on this syratry property in Section V-B when we transform a
bit-regular ARA ensemble designed for a BEC with erasure gvdity p € (0, p*| into a check-regular ensemble
designed fomp € [1 — p*,1). We also rely on the fact that the method in Section V-A for catimy the function
R given the functionL can be easily inverted using the symmetry property. This s¢laat given an algorithm
to solve for R(z) in terms of L(z) for a certainpy, the inverse algorithm which solvds(x) in terms of R(z) is
exactly the same, except thai is replaced byl — py.

A. Solving forR(x) in terms of L(x)
Given L(x), we start with the calculation ok(z) = igf)) Then A(z) is calculated from (11), an@(z) =
1—A"1(1—z) is calculated from (13). Combining (3) and (12) gives
~ 1 —p)? R (x
Sy = =0 @
R(1) (1 —pR(z))
and by integrating both sides of this equation, we get
T (1-p)? R(z)
t) dt = . 28
JRCLEE e 29
Since R(1) = 1, substitutingz = 1 in the last equality and solving faR’(1) gives

/ 1-p
1) = ———.
W) Jo p(t) dt
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By substituting the last equality in (28), we get

_ (1—p)R(z)
Qz) = 1= pR(z) (29)
where [
Qz) & 4" (30)
fo
Using the fact thay = 1_sz = z= 1+py we solve (29) forR( ) and get
_ Q)
R = 1= p+pQ(z) (1)
Combining (3), (30) and (31) gives
_ R(z)
_ G (32)

(1-p+pQ(x))

As long as we have(1) = 1, then evaluating (32) at = 1 givesp(1) = 1. Therefore, there is no need to truncate
the power series op. As we noted above, a very similar approach can be appliedlt@ $or L(zx) in terms of
R(z); due to the symmetry property, one can simply apply the afpsoeedure to a parity-check d.&(z) with

an erasure probability of — p.

B. Bit and Check Regular Capacity-Achieving ARA Ensembles

The symmetry between bit-regular and check-regular c.eemebkes of ARA codes follows from the symmetry
properties presented in Section 11I-B, so we choose to focus bit-regular ARA ensemble. Let(x) = 2, so
L(z) = 23, and from (11)

2.2
Az) = 5
(1—(1—p)ad)

Based on (13), we get

@) = 1-A(1-2)
2 _ 2
S 2 G (33)
1-01-p-2)?)
This is exactly [10, Eqg. (39)] witlp replaced byl — p and p switched with . Therefore, we obtain from [10,
Theorem 2] that the tilted d.gh has the form

2(1 —p)(1 —xz)? sin(é arcsin ( —W))

ple) =1+ s (34)
(1-p (1 z)?
V3 pt < o >
Following the procedure of Section V-A, starting from (30lves (after some calculus)
- ~ \\3
3(x—1)p(x 1—(1—-p(x
Q) = (@ —Dp(z) (1—p(x)) (35)

p 1—(1-p)(1-pa))’
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where the calculations leading to the expression(joare detailed in Appendix A.1. Substituting in (35) into
(31) gives the following expression of the d.A:

r@ = (- e

- ! : (36)

3(z—1)p(z) p_ 1*(1*%1)) ,
S S ()

where the functiorp is given in (34). It was verified numerically that fer< 0.384, the first 300 coefficients of
the power series expansion of the dilare non-negative; in Appendix C.3.2, we prove thah i 0.26, then R

has indeed a power series expansion ahott0 whose all coefficients are non-negative. According to Lemma 1
(see p. 11), it also holds in general that any d.d. pair satigf(8) has a design rate equal to the capacity of the
BEC. It therefore appears that the d.d. pair above charaeted c.a. ensemble of bit-regular ARA codes over the
BEC,; the capacity of the BEC is achieved with bounded compleiit rates greater thaf.616. We note that
the convergence speed of the degree distribution for thigypdreck nodes is relatively fast. As an example, for
p = 0.3, the fraction of check nodes with degree less than 32 is equal968.

Using the symmetry betweek and p (see Section lll), this also implies that for rates less tha884, the
ensemble of check-regular ARA codes wiitfx) = 2 achieves capacity over the BEC with bounded complexity.
Based on the symmetry property for c.a. ensembles of ARAgatle d.d. for the check-regular ARA ensemble
is obtained from the d.dR for the bit-regular ARA ensemble whenis replaced byl — p. From (36) and the
symmetry property, the d.d. for the check-regular ARA ensemble which correspond&te) = x> has the form

D=

L(x):l% - ! — 37)
p 3(z—DA(z) |, 1— 1—(1—A(r))

e LR
P 1p(1-A(@))

where for this ensemble

N 2p(1 — z)?sin (é arcsin ( —W))
AMz) =1+ 3 . (38)

V3 (1-p)! (— = )

Note that the d.dX in (38) is obtained by replacing by 1 — p in the RHS of (34), which finally gives the d.d.
function introduced in [10, Eq. (15)].

C. Capacity-Achieving ALDPC Ensembles

Using the symmetry relationship between NSIRA and ALDPC ensesrioom Section IlI-C, we find that we
already have from [10, Theorems 1 and 2] two c.a. ensemblesLBPE codes. These ensembles are based on
the bit-regular and check-regular NSIRA ensembles of [10]Js Wmas also observed independently by Hsu and
Anastasopoulos [14].

Using symmetry, the check-regular NSIRA ensemble gives aelgiilar ALDPC ensemble which provably
achieves capacity with bounded complexity fore (0,1). Since d.d. for smalp has long tails, one can also
use random puncturing to increase the effective erasueeafathe channel, and therefore simplify code design.
Similarly, the bit-regular NSIRA ensemble gives a check-tagALDPC ensemble which provably achieves capacity
with bounded complexity fop € [%, 1). In this case, random puncturing can be used to extend tick nzaige to
(0,1).
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The replacement g by 1 — p in [10, Eq. (15)] which corresponds to the right d.d. of theatheegular NSIRA
ensemble, gives the following check d.d. for the bit-reg@laDPC ensemble with left degree of 3

2(1 —p)(1 —xz)? sin(é arcsin ( —W))
5 : (39)
(Lop)(1=x)3 | *
\/§p4 <—ps>

Likewise, the replacement of by 1 — p in [10, Eqg. (10)] which corresponds to the left d.d. of the reigular
NSIRA ensemble, and the substitutigrn= 3 gives the following bit d.d. for the check-regular ALDPC en&den
with right degree of 3

plr) =1+

1-(1—a):

[l—(l—p)(l—Bﬂ:—l—Q[1—(1—:3)3})]2'

It is worth noting that the bit-reqgular ALDPC ensemble has mimn bit degree of 3. Therefore, truncating the
check d.d. to finite maximum check degree makes the ensemblenditionally stable. Recall that the typical
minimum distance of regular LDPC ensembles, with bit degregr@ys linearly with the block length [23]. This
suggests that the minimum distance of this bit-regular ALDRE€eeble might also grow linearly with the block
length. To prove this rigorously, however, one must alsosm®er the effect of the accumulate structure on the
minimum distance.

Az) =

(40)

VI. CAPACITY-ACHIEVING ENSEMBLES WITH BOUNDED COMPLEXITY FROM SELF-MATCHED LDPC
ENSEMBLES

In this section, we introduce another way of constructireg ensembles of ARA codes for the BEC. Rather then
solving for the functionR in terms of the function. (as in Section V-A) or doing the inverse via the symmetry
property, we consider here another natural way of searctuing.a. degree distributions. We start by choosing a
candidate d.d. pai(), p) which satisfies equation (13) and test if it can be used to nartstn ensemble of c.a.
ARA codes. The testing process starts by mapping the tiltéd(pap) back to(), p) via (11) and (12), and then
testing the non-negativity of the resulting power seriggamsions of\ andp.

__ Following the notation in Section IlI-A, it enables one to réa/ (13) asp = 7 A (so the tilted degree distributions
A and p are matched), and gives a compact description of capacitipéing d.d. pairs of LDPC codes. Since
T2f = f for every invertible functionf, we note thatf € A if and only if 7f € A. Based on (13), we obtain
that we need to choose the tilted d.d. so that P and also7 )\ € P, i.e., we need that the d.d. (or p) both
belong to the setd. The reader is referred to [4, Lemma 1] which considers basipesties of the setl and the
transformation? . ~

So far, by choosing\ € A (or p € A), we only know that both tilted d.d. have non-negative poseries
expansions. This property does not ensure that both of tiggnati(i.e., non-tilted) d.dA andp also have non-
negative power series expansions. Calculation @ind p from the tilted d.d.\ andp is not straightforward since
both equations involve the d.d. and R which are the normalized integrals of the unknowmand p. In order to
overcome this difficulty in solving the two integral equatonve suggest calculating the tilted d.d. pair w.r.t. the
nodes of the graph using B

L(z) = 7@ A(D) dt . R(z)= Jo P(1) dt f(t) at.

Jo A(t) dt Jo p(t) dt

The original d.d. pair w.r.t. the nodes (i.e., the original.gair before the graph reduction) can be calculated from
(9) and (10). We obtain that

(41)

_ L(z) _ Ry B@)
p+(1-pL(z)’ 1—p+ pR(x)

and then use the equations in (3) to fif)d p). The critical issue here is to verify whether the functidhsnd R
have non-negative power series expansions.

(42)
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A. Capacity-Achieving ARA Ensembles
It is easy to verify that the function

_ (I-b)x
f(z) = T hr 0<b<1 (43)
belongs to the se#l and also7 f = f; in the case wherd f = f, the functionf is said to be self-matched.
Therefore, based on (13), we examine here whether the chdice= p(z) = (}:sz can be transformed into

an ensemble of ARA codes whose degree distributions havenegative power series expansions. From (41) and

(42), we get
~ ~, . br+In(l—bx)

L) = R(x) = = qaa =) (44)
and from (42), we obtain that
B bx + In(1 — bx)
L) = I =)+ (1 = p) oo + (1 — b)) (45)
R(z) = bx + In(1 — bx) (46)

(1—p)[b+In(1—b)] +p bz +In(1 — bx)]’
Since we started with the functiofin (43) which is self-matched, the resulting functiabhsind R in this approach

are exactly the same, except thand1 —p are switched. In Appendix C.3, it is proved that the degrs&idutions
L and R in (45) and (46), respectively, have non-negative poweeseaxpansion if and only if

1 1
<p<1- :
1 B0 (b4 (1 — b)) 1= B0 (h 4 m(1 - b))

Fortunately, there exists a region @f, p) where this condition is satisfied. For the specification of teigion,
we use the Lambert W-functiol’(z) which is defined implicitly vialV’ (z)e"V(*) = z; this function is real for
T > f%. In the following we introduce and prove the following theor:

Theorem 1 (Ensembles of Self-Matched ARA CodEsg ensemble of self-matched ARA codes, defined by the
pair of degree distribution§L, R) in (45) and (46), achieves the capacity of the BEC for any eeaptobability
p € (0,1). This result is achieved under iterative message-passiogddey withbounded complexity

The tails of the d.d. (i.e., the partial suMs;°, L; and >_:°, R;) decay exponentialljike O(b*) where the
parameteb is given by

(47)

b=W (—e TR 1, (48)
The complexity, per information bit, of encoding and decagdis given by
3— b?
XE= XD = b P (49)

l—p (1=b)[b+In(1-0b)] "

Proof: Referring to the pair of degree distributiohsand R in (45) and (46), respectively, we need to obtain the
necessary and sufficient conditions which ensure that theséunction have non-negative power series expansion
aboutz = 0. For a given value ob in these degree distributions, it is proved in Appendix EBat this property
is satisfied if and only if the inequality in (47) holds.

The encoding and decoding complexities of c.a. ensemblefaéf éodes for the BEC are discussed in Section V-
C. Since our ensemble is c.a., thé&n= 1 — p wherep designates the erasure probability of the BEC, and from
(42) and (44)

D) =pB(1) = P
(1-0)b+1In(1-0)] "
Combining (25) with the last equality provides the expressn (49) for the complexity, per information bit, of
encoding and decoding.

For fixedp € (0,1), the complexity in (49) forms a monotonic increasing fuoetof b (which becomes unbounded
asb — 17). In order to minimize the encoding/decoding complexitg wish to find the smallest value éfin
the interval (0,1) so that the power series expansions about zero of the degebudions L and R are both
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non-negative. For a fixed value gf it is equivalent to solving for the minimal value éfc (0, 1) which satisfies
the condition in (47). This gives the equation

1
1= B8 (p (1 )

= min(p, 1 — p)
)

which can be rewritten as
13+ v61 1+ |1 —2p|

—b—In(1-b) =
n(l—?) 12 1|12y

(50)

by using the equality . )
19 =[5
min(p,1 -p) =5~ |5 P
For a € R, the solution of the equationb — In(1 — b) = a is given byb = W (—e~17%) + 1. To verify this, one
needs to write the equation in the foiiiln—1)e’~! = —e~*~1, and rely on the definition of the Lambert W-function.
Hence, the solution of equation (50) is given by the expogs$or b in (48). Forp € (0,1), the expression fob
in (48) achieves its global minimum at= % and its value is

_ 254+/61

b =W(—e 1 )+1~0.9304.

Eqg. (48) therefore implies that fdr < p < 1, the parameteb ranges in the intervagb*, 1); it achieves the value
b=>b*atp = % and tends to 1 whep approaches zero or unity.
The asymptotic behavior of the two d.d. pairs w.r.t. the naaled the edges is derived in Appendix B.3, and is

given by
4 A O 4 51
Ly, R, =0 —5— |, Pk = —
b (kw(k)) o <1n2<k>> &)
so the tails of the d.d. paitL, R) decay exponentially witlt. ]
1
0.9r
0.8¢
0.7F /
0.61 /// 1
Qo.5< :

04l ]
0.3f \
02}

0.1r
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Fig. 4. Valid values ofp as a function of the parametérin (45) and (46), so that the coefficients in the power series expanaronsd
zero of L(-), R(-), A(-) andp(-) are all non-negative. This region is determined by the inequalities in éit).it is therefore bounded by
the upper and lower curves in this figure.

The region(b, p) characterized by the inequality in (47) is depicted in Figadd we point out that its width
grows asb gets closer to 1. Note that it follows from (47) that in theitiwhereb — 17, the d.d. pairL and R
have non-negative power series expansiondferp < 1. However, from (49), the complexity in the limit where
b — 1~ becomes unbounded.

An efficient algorithm for the calculation of the d.d. pair b5} and (46) w.r.t. the nodes of the graph, and the
d.d. pair(\, p) w.r.t. the edges is given in Appendix B.2.

We believe the performance advantage of this ensemble tiver o.a. ensembles is mainly due to éxponential
decay of the d.d. coefficients, as given in (51). In contrasistrother ensembles in Table VIII have d.d. tails which
decay polynomially.
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1) Numerical ResultsThe encoding and decoding complexity of the self-matched AdR&emble introduced
in this section is shown on the left in Fig. 5. This figure also sh@an the right) the minimal value df such
that the partial sum§_%_, \; and Y%, p; exceed 0.95.
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Fig. 5. Left plot: Encoding/decoding complexity per information bit of tlomgidered ensemble of ARA codes. The complexity is given
in (49) as a function of the erasure probability) of the BEC, and to this end, we choose the paramietrcording to equation (48) for
minimizing the complexity. Right plot: A plot of the minimal value bfas a function of the erasure probabilily) so that the partial sums
Zfzg A and ZLQ p: both exceed 0.95. We choose the paramétaccording to equation (48) which also minimizedor a fixed value

of p.

Both of these sums converge to 1kagoes to infinity, and the convergence time is measured by thamal value
of k¥ where these partial sums exceed a threshold which is closdday., 0.95). We note that, like the complexity,
the convergence time of these partial sums is increasingbwitherefore, the choice we made according to equation
(48) minimizes both quantities simultaneously. Noticet ttee complexity and convergence time are rather small
for 0.35 < p < 0.65. Both of these quantities achieve their minimal valug at % since the value ob required by
(48) is also minimized. We also note that the minimal valué: @6 symmetric aroungh = % (see right plot) while
the complexity is asymmetric (see left plot). The reason fier $ymmetry property aroungd= % in the right plot
of Fig. 5 is because the replacementpdby 1 — p yields the same value @fin (48); actually, the replacement of
p by 1 — p yields the same d.d. pair, except tHa{; };>2 and{p; };>2 are switched (this follows directly from (45)
and (46)).

For p = 0.50 andp = 0.60, the convergence rates of the degree distributions whiet.nbdes and edges of the
graph are shown in Fig. 6. The value of the paramktsidetermined by (48), and the corresponding complexity (pe
information bit) is equal to 8.585 and 13.776, respectivEhe results for a BEC with erasure probability= 0.50
(i.e., a design rate o§) are particularly encouraging. In this case, the encodeggding complexity is equal to
6.585, and the partial su@f:2 A (or equivalently,zfz2 pi) exceeds 0.95 fok > 29. For comparison, consider
the check-regular NSIRA ensemble in [10, Theorem 2] which iregqumore than 300 terms so that the partial
sum ZfZQ A; exceeds 0.95. This significant improvement in the convergeatteeof the degree distributions yields
ensembles whose performance for moderate block lengthspisrisr to previous constructions. The considered
ensemble of self-matched ARA codes has the property that ftesign rate of one-half, = R and X = p, so the
d.d. pairs of the punctured bits and the parity-checks odénc

In Fig. 7, we compare the asymptotic expressions of the dedjetebutions{L;}, {Rr}, { \x}, {px} to their
exact values. There is a good match between the asymptotiexaatl values for moderate to large valuesofThe
best match between the two expressions is obtained whe.50 because this affords the minimal valuebofTo
see this phenomenon exactly, one can look at the error tefrhe @symptotic expressions given in Appendix B.3.

To conclude, we note that the ensemble of self-matched ARFesavithout puncturing, as considered in this
section is well suited for moderate rates while, on the otteard, the ensembles of bit-regular and check-regular
ARA codes are well suited for high and low rates, respegtiviel order to make the ensemble of self-matched
ARA codes suitable for high code rates, we use random pungtgas will be exemplified later, the performance



20

=

o o o

© © ©

X o ®©
: : :

© o o

© © ©

X o ©
: : :

o
©
N

o
o)
©

h — Partial sums of {Li}i <k
0.86f ! - - - Partial sums of {R}.
' __ Partial sums of {A}.

o

0

>
:

Partial sums of the degree distributions up to k
o
[{<}

Partial sums of the degree distributions up to k
o
O

0.84f . i B 0.84f / i<k
Partfal sumsof {L}, _, or{R}_, ! I _ Partial sums of {p} |
0.821 — Partial sums of {A}, | or {p}, ., f 0.82¢ “‘ ==
! /
0.8— . . . . . . . . 0.8" . N . . . . . . .
5 10 15 20 25 30 35 40 45 50 20 40 60 80 100 120 140 160 180 200
degree (k) of punctured bits/ parity—check 2 nodes degree (k) of punctured bits/ parity—check 2 nodes

Fig. 6. The plots refer to the ensemble of self-matched ARA codes withalieopdegree distributions in (45) and (46); these plots show
the partial sum$"* _ L;, 3% R, 3°F A, and3"F_, p; as a function of the integdr. The left plot refers tg = 0.500 andb = 0.9304
(where for this casel; = R; and \; = p; for all i € N), and the right plot refers tp = 0.600 andb = 0.972. The left and right plots
refer to the (encoding and decoding) complexity per information bit whiclder message-passing iterative decoding, is equal to 8.585 and
13.776, respectively.

10 ;

il \ —— ExactA
.% 10 - - - Asymptotic A, ||
=) ~ — Exact Lk
o AS ___ Asymptotic L
ke -2 A k
o 107°F
o
g
107
Q
IS
3
0 107
>
&
g
n 10 F J
2
S
£10°; :
>
0
<

-7

10 L L L L
0 20 40 60 80 100
degree (k)

Fig. 7. A plot comparing the asymptotic versus exact expressions ofl@geee distribution§ L.}, {Rx}, {\x} and {pi} of the self-
matched ARA ensemble, designed for a BEC with erasure probabilify:ef%. The parameteb in the left and right degree distributions
(45) and (46), respectively, is determined by Eq. (48), so its vale=i0.9304.

of these ensembles with puncturing is good also for moddaatek lengths).

2) Not All Self-Matched LDPC Ensembles Give Valid Resdltse starting point in Section VI-A was the choice
of the function f in (43) which belongs to the sé? and which also satisfies the property= 7 f. This choice
simplifies the analysis in Section VI-A by settingdz) = p(z) = f(z). From the symmetry property stated in
Section Ill, we see thaf. and R (and also) and p) have the same form except thatis replaced byl — p.
The functionf in (43) is however not the only function in the sBtwhich satisfies the property = 7 f. In [4,
Appendix V], there is a discussion on the fixed points of therajpe 7. We cite here a necessary condition for
the satisfaction of this property.

Proposition ([4, Appendix V]): If f =7 f for somef € P, then f(x) = t(x) + 1 — x wheret(z) satisfies the
identity

t(x) =2z —1—h(t(x)), x€]0,1] (52)
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and the functiorh satisfies the properties
0<h(t)<1l, h(t)=h(-t),te]|0,1], h(1)=h(-1)=0.

Choosing appropriate functions in (52) may lead to new f@sibf fixed points of the operatdf. For example,
the choiceh(t) = a(1 — t?) gives the function

1 1\? 2z

which indeed belongs to the s’@tand satisfies the properify=7 f for 0 < a < 1 . Using an approach similar to
the one in Section VI-A, we set = p = f, and rely on (41) to calculaté andR These functions are identical
becausef is a fixed point of the operatdf. The choice of the function in (53) gives

I(z) = R(z) = Jo f(2) dt

Jo 1(2) dt
(4o +{ {0+ )= 2] - 0+ 4)°)
- 1_ 2a
2 3

and the candidate d.d. paif, R) is then calculated by using (42). From our numerical expems)d. is likely

to have a non-negative power series expansionpfer [0.85,1) (with o € [0.38,0.5]). As we noted above, the
expressions fol, and R are the same except thats replaced byl — p. Since the interval§).85,1) and (0, 0.15]

do not overlap, we find that both(xz) and R(xz) cannot simultaneously have non-negative power seriesnsiqes
aboutz = 0. This shows that not all self-matched functions give risedioMdegree distributions of ARA ensembles.

B. Capacity-Achieving NSIRA Ensembles

This section is focused on the construction of NSIRA ensenildes LDPC ensembles whose degree distributions
from the edge perspective are matched. We apply here thepbatDE via graph reduction to ensembles of NSIRA
codes. In this case, the graph reduction only applies to paeity-check 2" nodes (see Fig. 2). This is because
the upper part of Fig. 2 does not exist in the Tanner graph of WSiBdes (i.e., the “punctured bit” nodes in
this figure are the “information bit” nodes in the graph of NSIRédes). Based on graph reduction, we obtain
that L = L for ensembles of NSIRA codes, while the functioRsand R satisfy the equality in (42). In a similar
manner, the equality = A holds for NSIRA ensembles while equality (12) is satisfied far tlegree distributions
of the parity-checks from the edge perspective. We noteftbat (12) and (13), the fixed point of the DE equations

for NSIRA ensembles is given by
1—p)%p(1—
a1 G=pi=n))
(1-pR(1—x))

Of course, this equation coincides with the DE fixed point ¢igng 10, Eq. (6)] (withz( replaced byr) derived
previously for NSIRA codes.

For the construction of ensembles of NSIRA codes using LDPCsadi®mse degree distributions from the edge
perspective are both matched to themselves, we rely astmgtaoint on the functionf in (43) which forms a

d.d. which is matched to itself, and sktr) = j(z) = =2 for 0 < b < 1, similarly to Section VI-A. For the

considered ensemble of NSIRA codes, the d.fi:) is then equal td.(z) in (44), i.e.,
_ bz +In(1 — bx)
@) = S ma =)
From this, we see that there are no degree-1 “information rimties, and that the fraction of “information bit”
nodes with degreeéds given by

(54)

bt 1
Lz‘:—*_i, ':2,3,....
i b+ln(l-0)
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The non-negativity of the sequen¢é;} holds whend < b < 1 (sob+In(1 —b) < 0). Therefore, the power series
expansion of the d.dL is always non-negative and there is no requirement on theuergrobabilityp in this
regard. The condition for the d.& to be non-negative is identical to that of the self-matché&d\ codes derived
in Appendix C.3.3 and is given by

1
1— BBl (1 —p)]

By comparing it to the parallel requirement for the ARA enbémas given in (47), one observes that (55) requires
a weaker condition op which is only the upper bound gnin (47). As mentioned above, the d.&.is the same

as for the ARA ensemble in Section VI-A. The encoding and dempdiomplexities of this ensemble are equal
and have the form

p<1-—

(55)

2 v?
= Yp = — . 56
XX = T A—b) b+ 1n(l—b) (56)
This gives an explicit construction of NSIRA ensembles from LDé&des whose degree distributions from the
edge perspective are matched to themselves. In general, avdyfimomputer simulations for finite-length codes

over the BEC that ARA codes have the best performance.

C. Capacity-Achieving ALDPC Ensembles

We now construct ensembles of ALDPC codes using LDPC codes wherged distributions from the edge
perspective are matched. Using the symmetry property leetWSIRA and ALDPC codes, this construction follows
almost trivially from the results of Section VI-B. The symmetransformation acts by switching with p andp
with 1 — p, which gives ( )

bx +1In(1 — bx
R _ =\

@) = S ma =)
From this, we see that there are no degree-1 “parity-checloéd&s and that the fraction of “parity-check 2” nodes
with degreer is given by

(57)

bt 1
Ri=— ———  i=203....
i b+ln(l—-0)
The non-negativity of the sequendé;} follows directly becaus® < b < 1 (sob + In(1 — b) < 0). Since the
R; are non-negative fop € [0, 1], the valid range of for this construction is determined by the non-negativity
of L(x). Similar to the NSIRA ensemble in Section VI-B, the did.is equal to the one in (45) for the ARA
ensemble. From Appendix C.3.3, we see that) will have a non-negative power series expansion if

1

1 — B=V6L [ 4 1n(1 - b)]
Using (27) and (45), the decoding complexity of this enseniblgiven by
3 b?
Xo 2 (59)

T1-p (A-pA-bp+n(T-b)]"
This gives an explicit construction of ALDPC ensembles fromeemtsles of LDPC codes with self-matched
degree distributions. In Section VII, we compare the perforoe of this ensemble with the ensembles of NSIRA
and ARA codes in Sections VI-A and VI-B, respectively. In getewe find that the ARA codes have the best

performance.

VII. COMPUTERSIMULATIONS

The details of our computer simulations are described ingbdion and the results are discussed. In particular,
our main result is that the ARA ensemble of Section VI showsstrdit advantage over all the other c.a. ensembles
we consider. We believe this advantage is largely due to tpereential decay of its d.d. tails.
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A. Encoding Details

We consider here the explicit construction of finite-lengtRAA codes from infinite degree distributions. Liet
be the number of “systematic bit” nodes amd- k& be the number of “parity-check 2” nodes (see Fig. 2 in p. 3). In
the first step, we scale and quantize the degree distributidosa list of integers corresponding to the number of
“punctured bit” nodes and “parity-check 2" nodes of eachrdegAll “parity-check 2" nodes with degree greater
thandg are reduced to degrek;. This truncation has the effect of reducing the number of sdggween “parity-
check 2" nodes and “punctured bit” nodes. All “punctured ibdes with degree greater thalp are converted
into pilot bits. Therefore, the values of these bits are fdrea known value (e.g., zero) at the encoder. This is
done by choosing the value of one of the “systematic bit” isocrefully as described in Section 1I-B. We note
that each pilot bit has the effect of reducing the dimensibthe code by 1.

The main reason for introducing pilot bits is that decodingnzd get started without them (see the DE equations
in Section 1I-C.1). A slight modification of the encoding preseis required for pilot bits, and we describe it
now using the notation from Section II-B. Our goal is to set pluactured bitv; to zero by picking a systematic
bit appropriately. We find that the punctured bit can be set to zero by choosing the systematicubito be
vj_1 = zg;ll u;. Since each pilot bit determines one of the systematic bits,pgrocess reduces the actual number
of information bits by the number of pilot bits.

While long random codes chosen from the ensemble of Sectightéhd to have vanishing bit erasure probability
as the block length goes to infinity, the block erasure prdibalsioes not vanish. This phenomenon is caused by
small weaknesses in the graph, and can be mitigated by udiighaate outer code as a second layer of protection.
In the case of ARA codes, we believe that it is most effectivapply this code to the punctured bits. In particular,
we force the lastn punctured bits to equal random linear combinations of theé firs m punctured bits. This
operation reduces the information content of the coderbits.

Again, we must slightly modify the encoding process to acummiate the outer code. Using the notation of
Section 1I-B, we find that this involves forcing the sequencw satisfy Hv = 0 for somem x k parity-check
matrix H. For our purposes, it suffices to consider matrices of the frm [P I], wherel is them x m identity
and P is anm x (k —m) matrix with entriesP;;. We can require the sequence to satisffifv = 0 by choosing
eachu;, for j e {k—m+1,...,k}, as follows. We choose

k—m
Uj = Vj—1 + Z Pj,ivi
=1
because combining this with (1) shows that

k—m
vj = Z Pj}ivi = Hv =0.
i=1

B. Decoding Details

The simulations essentially use Luby’s decoding algorithinich starts with the full graph and deletes edges
as they become known. This process starts by choosing a degragty-check node and finding the bit node to
which it attaches. This bit node is declared known, and alhefédges which are attached to it are removed from
the graph. Without loss of generality, one can assume tlaaltfrero codeword was transmitted, and the received
bits are erased with probability.

One advantage of Luby’s decoding algorithm for LDPC codes isitteverages over all random graphs without
explicitly constructing each graph. It does this simply bgcking the number of nodes of each degree throughout
the decoding process. For ARA codes, we first use graph redu@dtiom Section II-C.2) to convert the ARA graph
into an LDPC graph. This reduction is not done in the averageesdng instead by explicitly placing erasures
and combining nodes. This step implicitly averages over @knngs of the systematic and parity bits. Next, the
resulting LDPC code is decoded using Luby’s algorithm. This steplicitly averages over all random graphs.
Therefore, this simulation technique averages over theeeARA ensemble. Careful design of the graph can only
improve performance.

If decoding terminates before all bits are known, then tlghhiate outer code is decoded. Assume thhits
remain unknown after iterative decoding finishes. Decodimgauter code is equivalent to solving a setofinear
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equations withl unknowns. Of course, the parity checks leftover from itgeatlecoding can be used to increase
the number of equations (or reduce the number of unknownspatticular, it is easy to use one of the leftover
degree-2 parity-check nodes to reduce the number of unkabymne. Such a parity check implies the equality of
the two unknowns connected to it. This equality allows onedo ®vo columns of the matrix together and reduce
the number of unknowns by one. This process can be continugdyrie must be wary of linear dependencies
among the degree-2 parity-check nodes. Thereforeisithe number of linearly independent degree-2 parity-khec
nodes remaining at the end of iterative decoding, then degad successful if and only if the rank of the new
m x (I —t) matrix isl — ¢t. We note that each entry in the matrix is chosen randomly frorfi0, 1} with equal
probability. Choosing theé® matrix more carefully can only improve performance.

C. Discussion of Results

The results of the computer simulations are discussed inst#tdon. Although all of the ensembles introduced
have been simulated, results are presented mainly for the &Rl IRA ensembles which are constructed from self-
matched LDPC codes. These codes seem to have the best perfermahe waterfall region (probably because
their degree distributions decay exponentially fast). Tésults are compared with simulations of Shokrollahi’s
check-regular ensemble [3].

Figures 8 and 9 compare the self-matched ARA, the self-mdttiRA, and the check-regular LDPC ensembles
at rate%. Figures 8 shows the raw error rates without using a high-water code. Therefore, the error floor is
rather severe because the results are averaged over the emiemble and no attempt was made to avoid small
stopping sets. Figure 9 shows the results when a high-rate oatle is used to mitigate small stopping sets. The
results show that the self-matched ARA ensemble can hamdirasure rate roughly 0.005 larger than the other
ensembles while maintaining the same performance. Thisiggiresent throughout the waterfall region and similar
for block lengths of 8192 and 65536 bits.

Fig. 10 shows how the performance of the self-matched ARArabkevaries with block length. The upper plot
shows the results without a high-rate outer code and onee®that the word erasure probability never goes below
10%. Even with the high-rate outer code, this ensemble hasrd @asure floor due to the fraction of degree-2 bit
nodes. As with stable ensembles of irregular LDPC codes, this ian be made arbitrarily low by expurgating
low weight stopping sets and/or adding a stronger outer.code

For a rateR > % one can either design self-matched ARA codes directly litw tate or, alternatively, by first
designing rate%— self-matched ARA codes and puncturing the code bits up ®RafThe problem with designing
the code directly for ratez is that the parametdr in (45) and (46) must be increased in this case and becomes
very close to 1. This increases the encoding and decoding legitips and the required maximum degree (see
Fig. 5). For example, the raté—ensemble requires only about the 30 first terms of the degstebditions in order
to achieve 99% of the design rate while the refgeensemble requires about the 160 first terms of these degree
distributions. Figure 11 shows the performance of these t@ggth methods for ratrf%. The results are compared
directly in Fig. 12, showing the advantage of the methodoladnere the ensemble is designed for rate one-half
and then punctured to obtain the higher rate. This advantagetbe approach of designing self-matched ARA
codes without puncturing is exemplified in Fig. 11 either if tiRA code is combined with a high-rate outer code
or not.

It can be observed from Fig. 5 that the ensemble of self-mdtétkA codes with the pair of degree distributions
in (45) and (46) is not suitable for designing codes of lovesathe lower the design rate becomes be&a\hrits
per channel use, the complexity of this ensemble increageffisantly (see the left plot of Fig. 5). To this end,
we propose the bit-regular accumulate-LDPC (ALDPC) codes (sedo8eVI-C) as a preferable alternative for
designing codes of low rates. The performance of the bitteeghL DPC ensemble, where the degree of the bit
nodes is set to 3, is shown in Fig. 13. In this figure, the perfogeaof these codes is exemplified for moderate
to large block lengths, showing the significance of a higk-mtter code in reducing the erasure floor.

VIIl. SUMMARY AND CONCLUSIONS

In this section, we provide a table of capacity achieving.jocode constructions for the binary erasure channel
(BEC). With the exception of the low-density parity-check ®0) codes and systematic irregular repeat-accumulate
(SIRA) codes, all of these codes achieve capacity on the BER lwdtinded complexity per information bit. Since



each of the actual c.a. degree distributions has infinite ipwe let M be the truncation depth of the degree

distribution (d.d.) and give the gap to capacity as a fumctd M.

Code Ensembld  Type Range ofp Bit d.d. Check d.d. Gap to Complexity
capacity(¢) ase — 0
LDPC Tornado (0,2) Mz)=—-1In(1-=) | p(z)=ex="D o) (ﬁ) xp =0 <1og é)
1 b1 1 1
LDPC CR+% (0,1) Mz)=1—(1—az)k-1 plx) ==z o <M> xp =0 (log g>
1 1
SIRA [6, Th. 2] (0,1) [6, Eq. (33)] p(z) = ex(@=1) ) (M) Xe=xp =0 <log g)
1 5
NSIRA CR-3 (0,0.95) [10, Eq. (15)] o(z) = 22 o ( 5 ) XE=XD = ——
M2 1-p
2
NSIRA BR-3 (0,4) Az) = 22 [10, Eq. (10)] o (ﬁ) Xe=xo =3+
b]\/[
NSIRA SM Eq. (55 Eq. (54 Eq. (46 — Eq. (56
q. (55) q. (54) q. (46) (MM)) q. (56)
1
ARA CR-3 (0.616,1)F Eq. (37) R(z) = 23 o ( 3 > XE=XD =3+ P
M2 1-p
1 2
ARA BR-3 | (0,0.348) L(z) = 2® Eq. (36) o) ( . ) XE=xp =6+ —2—
M2 1-p
b]W
ARA SM Eq. (47 Eq. (45 Eq. (46 — Eq. (49
. (47) q. (45) . (46) (MM)) q. (49)
; 1 3(1+p)
ALDPC CR-3 (%, 1) Eqg. (40) p(z) = x2 (0] (\/—M> Xp = —— »
ALDPC BR-3 (0.05,1) Mz) = 22 Eq. (39) o < 13 ) XD = 5
M2 1-p
M
ALDPC SM Eq. (58) Eq. (45) Eq. (57) @) (1§7> Eq. (59)
n*(M)
TABLE |
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LIST OF CAPACITY-ACHIEVING (C.A.) ENSEMBLES FOR THEBEC. IN THIS TABLE, 'BR’, '"CR’ AND 'SM’ STAND FOR’BIT-REGULAR’,
"CHECK-REGULAR' AND ' SELFMATCHED DEGREE DISTRIBUTIONS, RESPECTIVELY THE VALID RANGE OF p IS MARKED BY t IF IT

CAN BE EXTENDED TO(0, 1) VIA PUNCTURING. THE PARAMETERD IN THE D.D. PAIRS OF THESM ENSEMBLES IS ALLOWED TO BE IN
THE INTERVAL (0.9304, 1).

Simulation results show that among all these ensembles,elfinatched ARA ensemble, constructed in Sec-
tion VI, has the best performance for moderate to large blecigths (considering rates which are at Ieést
bit per channel use). We believe the performance advanthgleeoself-matched ARA ensemble is mainly due
to the exponentialdecay of the d.d. coefficients. In contrast, most other enkerib Table VIII have d.d. tails
which decay polynomially. For low-rate codes, we propose tihi-regular accumulate-LDPC (ALDPC) ensemble
in Section VI-C as the preferred alternative (see Fig. 13).
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APPENDIXA
DERIVATION OF @) IN (35)

Following the procedure of Section V-A, and starting from)(8dres
Ji () dt

Jo P(t) dt

3

= /0 ’ p(t) dt (A.1)

where the last equality follows from (21) and (22), i.e.,

1~ B 1 _ P _B
/O A(t) dt_/o At dt= s = 5

The substitutiont = p~!(u) and integration by parts gives

/O A de

o)
- /Op U% (7~ (w)) du

Qz) =

Sz p()
o) - [ 5
=xp(xz) — oo — p2(1 _ u)2 U
= =plz) /0 [1 (1—(1—p)(1—u)3)2]d
N P 1 p(z)
=(z—1)p(z) — 31—p)1—(1—p)(1 —u)3lu=o

(o 1)) 4 P L= (= P@)

and the substitution of the last equality in the RHS of (A.heg (35).

APPENDIXB
ON THE POWER SERIES EXPANSION OF(45) AND (46)

From (45), we get

L(z) = 1% - !
P - (1—p) [ba+In(1—ba) ]

p[b+In(1-b)]

1 1
- —— |1-
1—p 1— a(p,b) [bx+1n(1 b@})

R m
= —— ™ (p,b) |b In(1—-20
PO ) [b2+ (1 - ba)]
— 1 bix? b33 bt "
= — 1™ m B.1
1—pm1{( i) | T B 1)
where 1
alpb) & : (B.2)

b+1In(1—0b)
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We note thato(p, b) is positive for0 < b < 1 and0 < p < 1. From equation (B.1), it is easily verified that the

m

minimal degree in the power series expansion[lﬂf +In(1 — bx)} is 2™, so if k < 2m, then the coefficient

of z* is equal to zero. Sincmmandk are integers, then if follows that the coefficient df in the power series
expansion of[bx +In(1 - bx)} vanishes form > L%j + 1. This gives the following equality:

5] i
L = [#ML(z) = 1ip o™ (p.b) - [2#] { [b + (1 — )| "}

m=1

where the infinite sum we had before turned to be a finite sum irlasteequality. Therefore, the power series
expansion obx + In(1 — bx) yields that

%]
1 2 b2l'2 b3I3 b4$4 m
I _ - —_1)™ 1 . m . k o

m=1
_ a(pv b) % (_1)m—1 Oém_l( b) [I‘k] b2.172 + b3$3 i b4$4 m
g 1 — p 2 p7 2 3 4 -
From the last equality, we obtain that
a(p,b) B
Lk = ——— {(_1)771—1 Cm,k 'am_l<p7 b)} ) k= 273747"' (83)
1 —p m=1 7
where N i
Ay il,ig,...,’im — i
Cmk = Z i i m 1,2,...,L2J (B.4)
i1+tio+...+0, =k
il)iQa” . 7im > 2
andN;, 4,4, inthe RHS of (B.4) designates the number of different peations of the sequende, iz, . . ., iy }.

From the duality betwee® and L in our example (see (45) and (46)), then for the calculatibthe coefficient
Ry in the power series expansion &f we only need to replacg in (B.3) by 1 — p, so

L%]
_al-pb)¥F m-1 m-1 B
e = P Z{(_l) Cmyk ~ (1—;0,5)}, k=23,4,.... (B.5)

m=1

~ SinceA(z) = ﬁg) then ), = ka%f)- From (B.2) and (49), we obtain the equalify(1) = (Iff’;‘;%, and then
it follows from (5.33 and the last two equalities that

15)
1—b) kbk2 ZZ

A = (])?2 {(_1)m71 Cmk - O‘mil(p7 b)} ’ k=234,.... (BG)
m=1

From the duality between (45) and (46), then by switchinig (B.6) by 1 — p, we obtain that

15]
1-b) kb2 m— m—
pk:((lzp)g E {(—1) 1Cm,l<:‘04 1(1—1?’5)} ) k=234,... (B.7)

m=1

so (B.6) and (B.7) provide explicit expressions for the tioets of the d.d. pair from the edge perspective.
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A. A Recursion for the Sequenge,, 1.}

We intend to give now an efficient way to calculate the coeffisiep, , wherel < m < L%j (as otherwise,, i
is equal to zero). To this end, we can rewritg, in (B.4) as

1 k
A
= _— == 1 2 PR oy B.8
cm,k . . Z ' ’il’iQ...im7 m ) &y 7L2J ( )
iW+ia+...+4, =k
i17i2a"'7im > 2
where the difference from (B.4) is that now the order of thentein the sequencgiy, is, ..., iy} is relevant, so

effectively every term of the fornﬁ is countedlV;, ;,...;.. times in the sum above. We will show that this
sequence satisfies a simple recursive equation. First, itvialtthat

1
=g k=23 (B.9)

Since we impose the constraiift+ iz + ..., = k on the calculation ot,, , then we can rewrite,, ;, in (B.8)
as

1 1+io+...+im,
kT 2 , iz - im
Zl+22+--'+lm:k
11,12,y iy = 2
1 1 1 1
ok . . Z . (izig...im+i1i3...im+”'+i1i2i3...im1)
21+Z2+---+Zm:k
ilai27'-‘7im22

Symmetry considerations imply that the sum w.r.t. every tamong then terms above are all equal to each other,
so the expression af,, , can be simplified to

m
= — —_—. B.10
Cmk k Z 1213 ... Im ( )
i1+ia+...+i, =k
i1,49,05 .. im > 2
Comparing to (B.8), the last summation is over all the pdssiectors{is, is, ..., iy} (i.e.,i; does not appear in
the term - , but onlyis, i3, ... i, appear there). Sinag > 2 for 1 < j < m, then the sumi + i3+ ..
gets all p033|ble values betweetmn — 1) and k — 2 (where the inequalitR(m — 1) < k — 2 is automatlcally
satisfied because of the assumption that 2m, as otherwise,,, ;, = 0). Since the summations in (B.8) and (B.10)
are taken w.r.t. all possible combinations{af, is, ..., 7, } when the two constraints in (B.10) are satisfied, then
we obtain the following recursive equation:
k2
Cmk = - > emoy (B.11)
j=2(m-1)

The combination of the recursive equation in (B.11) with thidal values in (B.9) gives an efficient way to calculate
the terms of the sequende,, ,}. We implemented this algorithm in software.

B. An Algorithm for Calculating the Degree Distributions in Sec VI-A

We provide here an algorithm to calculate the coefficienthénd.d. pairg L, R) and (), p). This algorithm was
implemented in software.

1. Calculate the sequende,, ;,} with the recursive equation (B.11) and the initial valuegBm9).
Calculatex(p, b) from (B.2).
Calculate{L;} and{\;} from (B.3) and (B.6), respectively.
Calculatex(1 — p, b) from (B.2), and{ Ry} and{px} from (B.5) and (B.7), respectively.

Popn
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C. Asymptotic Expressions for the Degree Distributions intiSed/I-A

We wish to find here asymptotic expressions for the sequeficgs { Ri }, { A} and{px} wherek is sufficiently
large. First we see that it is enough to solve the problem ferséquencé Ly}, since if there exists a sequence of
functions{gx(-,-)} so thatLy ~ gr(p,b) for k > 1, then we obtain from (B.3)—(B.7) that the following asyntjto
expressions are valid for the other degree distributionsnsvh> 1:

(1—b)k (1—b)k
R~ gp(1 —p,b A A : b N (1 —p,b) . B.12
Kk~ gr(1—p,b), k e gk(p,0), P 2= p)? gr(1 —p,b) (B.12)

We shall therefore focus on the derivation of the asymptbé&bavior of the sequencg.,} in the power series
expansion of the functiod(-) in (45). To this end, we rewrité (-) in the form

bx + In(1 — bx)

L@ = i =6+ (1 —p) e + (i — b2
_ 1 (1 B plb+In(1 — b)] >
1—p p[b+1n(l —b)] + (1 — p) [br + In(1 — bz)]
1 (1_ 1 >
l—p 1+ ity - [bx + In(1 — ba)]

1 1
1—
1—p< 1—a(p,b)-[b;r—|—ln(1—b:c)]>
where the function is introduced in (B.2), and is positive for< p < 1 and0 < b < 1. Let us define the function

1 13 — V61
. — <z VI
hlzi¢) 1—clz+In(1—2)]’ O<es 9

~ 0.5766. (B.13)

then
1

=1 — (1 — h(bz; o(p, b))) (B.14)

where the restriction on follows from the restriction or that we obtained earlier so thag is non-negative, and
from the equalityc = «(p, b) which holds by comparing (B.13) and (B.14).
The following equality therefore holds fdr > 2:

bk
Ly = —1=— - hi(@), ¢ a(p.b) (B.15)

L(x)

where {hi(c)}r>0 is the sequence the coefficients in the power series expahsion) = > 3, hi(c)z*. In the
continuation, we will find the asymptotic behavior of the poweries expansion of the functidriz; ¢) in (B.13),
and then use (B.15) to derive the asymptotic behavior of &wriesnce{ L, }, and use (B.12) for the derivation of
the asymptotic behavior of the other degree distributions.

In [24], a class of methods is presented which enables onemslate, on a term-by-term basis, an asymptotic
expression of a function around a dominant singularity @mtoorresponding asymptotic expansion for the Taylor
coefficients of the function. In the continuation of the asyotip analysis, we rely on [24]. The functiol(z; ¢)
has singularities at the points where the following equmeisosatisfied:

1—c(z4+mn(l1-2)) =0.
The closed form solution of the above equatiorris z; o where
H=1+W(—e: ), z=2z

and W denotes the Lambert W-function. Since we require that ¢ < B‘T\/ﬁ ~ 0.5766, thenz; and z; have an
absolute value which is at least equal to 2.074 (we note tetabsolute value of; » is a monotonic decreasing
function of ¢, so it is achieved when gets its maximal value within this interval). The dominamiggilarity of
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the functionh(z; c) is therefore at the point = 1 where the logarithm in (B.13) becomes singular. In the negio
around the dominant singularity at= 1, the functioni(z; c¢) behaves like

Wz ) = o(m—l <1 L Z))

so from [24], the asymptotic behavior of the coefficients ia fower series expansion of this function is

hk:O<kh112(k)>.

A more careful analysis which is based on the singularityyamain [24] shows that

1 1 B 2y 72— 672 1
L k(1 + dln(k))? [ F T 2(1 +dln(k))2] o <kln5(k)> (819

whered £ 1, and~y ~ 0.5772 designates Euler's constant. From (B.15) and (B.16), we iokleit

= ! L 1 %y "
Lk_<1o‘(p”’>)<1p) F (1 dp.n) )’ (1 1+d(p,b)ln(k))+O<kln4(k)> (B.17)

where the transition from (B.16) to (B.17) follows by subgiing ¢ = a(p,b) wherea(-,-) is introduced in (B.2),
and then based on (B.2) and (B.16)

a(p,b) 1—p
d(p,b) = - .
(p.0) 1 — a(p,b) 1—p+plb+1In(1—-0)]
The asymptotic expression for the other degree distribst{or.,{ Ry}, {\x} and{py} follow now immediately

from the asymptotic behavior dfL;} in (B.17) and the transition to the asymptotic behavior @& tther d.d. in
(B.12). The following degree distributions are therefor¢aoied:

1 b¥ 1 9 bk
" (1_04(1—p,b)>10'k.(1—|—d(1—p,b)1n(k))2.<1_1+d(1—r]y37b)ln(k)>+0<khf4<k)>

_ 1-0 . pk—2 ‘ - 2y L
v (1 —alp, b))P2(1 —p) (1 +d(p,b) ln(k))2 <1 1 +d(p,b) ln(k:)> o <1n4(k))

) 1—-b k=2 (1 2y >+O< bk >
(1 —a(l —p, b)) (1-p)% (1 +d(1—p,b) 1n(k))2 L+d(1 —p,b)In(k) (k)
Therefore, the asymptotic behavior of the d.d. pairs whig. nodes and the edges is given by

bk bk
Ly, R, =0 —— ], Moy pp =0 | —— | .
o (kln2<k>> o <1n2(k>>
The parameteb above is chosen according to (48), so it is determined as &ifumof the erasure probability
(p) of the BEC (.9304 < b < 1). The closer is the value qgf to one-half, then the smaller becomes the value
of b, and this accelerates the convergence rate to zero of thepaird above. It is therefore clear from these two
equations that the convergence rate of the d.d. pairs isowvedrwhenp becomes closer to one-half (as is also
shown in Fig. 6).
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APPENDIXC
A GENERALIZATION OF POLYA’S CRITERION TODISCRETEDISTRIBUTIONS AND I TS APPLICATION TO
NON-NEGATIVITY PROOFS
A. Polya’s Criterion

Polya’s criterion [25, p. 509] is a simple condition which igficient to imply that a functiorF'(¢) is the inverse
Fourier transform (i.e., characteristic function) of a nwugative functionf(z). It requires that the functiod” is
real, symmetric, non-negative, and convex non-increasimg), co). This gives a simple method of proving that
some functions are indeed characteristic functions.

Example C.1:Consider the function

Fo(t) =" ae(0,1].
Since there is no closed-form expression for the (scaledjiéowansform
fol) =5 [ Fatye
al\T) = o ) all)€ ’

we cannot verify directly thaf,(¢) is the characteristic function of a random variable (i&.(z) > 0). It is
easy, however, to verify thak,,(¢) satisfies Polya’s criterion forx € (0,1] and this proves thaf,(x) is indeed
non-negative.

B. A Generalization of Polya’s Criterion to Discrete Distuitions

We now generalize Polya’s criterion to discrete distribngi@nd offer an elementary proof which is substantially
different from the standard “tent function” proof outlinéu [25, p. 505].
Definition C.1: A function v(x) hascosine symmetrif

v(z) =72 +z), YzxelR

and
Y(z)=—y(r—x)=—y(n+2) =927 —2) >0, Vzel0,r/2].
Lemma C.1:Let v(x) be a function with cosine symmetry which is non-negative{@r|, and f(x) be a real
and convex function for € [0, 27). Then, the integray’(f’T ~(z) f(z)dz is non-negative.
Proof: First, rewrite the integral as

2w /2
/0 V(@) f(2)de = /0 (@) () + (7 — ) f(7 — ) + (7 + 2) f(m + 2) + 27 — 2)f (2 — 7)) da
/2
- /0 () [f () — flm— ) — flm+ )+ f@n — )] de

w/2
= [ @
whereg(z) £ f(z) — f(rm — x) — f(rm +2) + f(2r — z). Taking the derivative of the function gives

g = flo)+f(r—z)—f(r+z)—f2r—2)
= [f/(x) - f,<7T+37)] + [f/(ﬂ —x)— f'(2r —x)] )

Notice thatg'(z) < 0 for = € [0, 5] because the convexity of on [0,27] implies that f'(z) < f/(x + 7) and
fl(m —x) < f'(2m — z) for z € [0, T]. Finally, we note that the integral is non-negative becawsh #(z) and
g(z) are non-negative for € [0, 3. |

Lemma C.2:Let y(x) be a function with cosine symmetry which is non-negative[@rf], and letF(t) be a
real, symmetric, and convex function foe [0, a]. Then, forz > 0

1 /e [
- /0 F(t)y(tx)dt > — / F(t)y(tz)dt.

T TS| g ]
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Proof: Using Lemma C.1, we find that the integral over each full cycle @f) is non-negative which leaves
only the remaining partial cycle near We show this using, for > 0, the decomposition
1 ra 1 ra 1 |22 ]-1 27 (j+1)
/IWMWMt: / Ftyy(tndt+~ 3 ’
T Jo T T =0 :
I_ﬁJ_l 2 .
1 /a 1 T 2 +u
= — F(t)y(te)dt + — {/ F < > ’y(u)du}

| fa
= /27r 2| F(t)y(tx)dt.

F(t)v(t:v)dt]

T

x

The last step follows from Lemma C.1 using the fact tﬁa(t%j%) is convex foru € [0,2n] if 0 < j < |22 —1.
|
Definition C.2: A function F'(t) : R — R satisfies Polya’s criterion for € [0, ], if and only if it satisfies the
following conditions:
1. F(t) = F(—t), i.e., F' is a symmetric function.

2. F(t) > 0 i.e., F' is non-negative over the intervl, a].
3. F'(t) <0, i.e., F is non-increasing over the intervfl, a].
4. F"(t) > 0, i.e., F is convex over the intervdD, a.

Let P, be the set of functions satisfying Polya’s criterion [0na].

Theorem C.2:Any function F' € P, is the characteristic function of a continuous probabititgtribution, and
any functionF' € P, which is 2r-periodic (i.e.,F(x) = F(x + 2m)) is the characteristic function of a discrete
probability distribution.

Proof: For theF € P, case, we have

flz) = % _OO F(t)e "qt
_ iAWHOmwwﬁ

First, we note thatf(0) > 0 becauseF'(t) > 0. Next, we apply Lemma C.2 to this with(z) = cos(z), which
gives

f(x) > lim ﬁa F(t) cos(tx)dt

a—00 T JLHJ
z Lox

1 im <a o V“D Qﬂmin F (t) cos(tz)

v Lom e | <t<a

2
> lim 2F (27r {MD
a—oo I r L27

where the last step follows since the functibhe P, is non-negative and monotonic non-increasing, so for any

a>0andz >0 (B8 cos(tz)| < F(1) §F<2W gaD , Vte [% L%J ’a] '

X ™ T

AV

If lim,—o0 F'(a) = 0, then we havef(xz) > 0 for z # 0. On the other hand, fim,_.., F'(a) > 0, then f(x) has
a Delta function at: = 0. Subtracting this Delta function returns us to the first cask strows thatf(x) > 0 for
x # 0.
For the2n-periodic F' € P, case, we have
]. & —q
e = o | Flte Rt

1 ™
= /0 F(t) cos(kt)dt.

™

—Tr
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For k = 0, we see that, > 0 by the non-negativity of'(¢) for t € [0, x]. For k£ > 0, we apply Lemma C.2 with
~v(x) = cos(x) to get

1 s
hi > / F(t) cos(kt)dt.

™)
Whenk is even, we havéy, > 0 because the range of integration becomes zero. Whisnodd, we have

w(k—1/2) -

1 k 1
hi > /( N F(t) cos(tk)dt—i—/ F(t) cos(kt)dt

™ ™ w
1 [ -1
= / [F <7T(k) + u) —F(r— u)] cos(ku)du.
™ Jo k
This giveshy, > 0 becauseos(tk) > 0 for ¢t € [0, 7+-] and F(¢) is non-increasing fot € [0, 7]. |

Corollary C.1: Let the functiong : C — C be complex analytic on the open unit dist= {z ¢ <C| lz| < 1},
well-defined and continuous on the bound@#, and real on the subdomail N R. If the function h(z) £
Re {g (¢"") } is convex on[0, 7] and g(0) > 0, then the power series expansiongofbout zero has non-negative
coefficients. Furthermore, lim,_,ox g(1 — x) = 0, then the result holds even 4f has a singularity at = 1.

Proof: Sincey is real onDNR, the power series expansiong@ébout zero has real coefficients, i.g,,€ R for
all n > 0; thereforeg(z*) = g(z)* andh(—=z) = h(z). Next, we note thak is non-increasing off), 7] because it is
convex (i.e.,h”(z) > 0) on this interval and/(z) = Re{2ie’*¢'(¢*) } implies thath/(r) = Re{—2ig'(—1)} = 0.
Sinceg(0) > 0 is the coefficient of:” in power series expansion, we can simply subtract it (withedtecting the
convexity of h) and assume that(0) = 0 without loss of generality.

This allows us to apply Theorem C.2 to the-periodic functionk. One caveat is thdt may not satisfyi(z) > 0
for x € [0,7]. In this case, revisiting the proof of Theorem C.2 shows that is needed only to provey > 0,
and thereforgy(0) > 0 can be used instead.

Now, we will relate the Fourier transform df to the power series expansion @f If ¢ is analytic onD and
continuous on the entire bounda®p, then we can apply Cauchy’s theorem to get

1 g(z)
=_— d
gn 211 f;D $n+1 v

1 s g(eie) -
o . eiln+1)f

= % _Tr g (ew) e~ qp
D) en()]

-
1

:% .

h(0)e~ "0 dg. (C.1)

Step (a) follows from the fact thatg(e~*’) contributes nothing to the integral. This is becayse) = 0 and
analyticity together imply thag(z) has only positive integer powers mfandff7T e~9d¢ = 0 for non-zero integer
n.

On the other hand, i§ is singular atz = 1, then we can modify the contour to avaid= 1. If we choose the
new contour to be the boundary &f N {z € C| |z — 1| < ¢}, then it can be decomposed into two circular arc
sections:

Cr={zeC||z]=1, ¢ <arg(z) <21 — ¢}
C’2={9§€(C| 1 —az|=¢, —¢ <arg(l —z) <9}
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Therefore, we can write

1 g9(z)
- — d
In 21 Jo,ue, 71 x

1
_ 1 f 9(z)
2mi Jo, antl

1 (Y g(1—ee )ee
o' 4 (1 — 56—1‘9)71—1—1

+ do. (C.2)

The magnitude of the second term can be upper bounded by

1 (Y g(1 —ce)ee
271/_¢ (1= ce )il df| < max

As ¢ — 0, the second term vanishes because of the assumptionithat = g(1 — ) = 0. Furthermore, from
(C.1), the first term on the RHS of (C.2) tends, in the limit weher— 0, to the Fourier transform oi. Therefore,
it follows from (C.1) and Theorem C.2 that, > 0 for any integem > 0. [ |

C. Applications: Non-Negativity Proofs for the Degree Distitions of Some Capacity-Achieving Ensembles

In our study of codes on graphs, the validity of the ensemtiestructed requires the verification that the degree
distributions have non-negative positive power seriesapgions about = 0.

1) Non-Negativity Proof for the Check-Regular NSIRA Ensembief10, Theorem 2], a capacity-achieving
ensemble of non-systematic irregular repeat-accumuN$RA) codes was introduced, achieving the capacity of
a BEC under iterative message-passing decoding with bourwlaglexity per information bit. The d.d. of interest
is given by Eqg. (38), and the construction is only valid for atisalar erasure ratep, if g(z) £ A(z) has a
non-negative power series expansion for that/sing Corollary C.1, we can defirigz) = Re{g (¢'") } and verify
numerically, for anyp, thath”(xz) > 0 for « € [0, x], and alsog(0) > 0. This approach appears to work for all
p € [0,1), hence it verifies the non-negativity of the power series esjua of the left d.dA. In [10, Appendix C],
the non-negativity of the power series expansion afas proved fop € [0,0.95] where the proof there was quite
involved. This approach extends the verification of the nagatieity of the power series expansion dffor all
0 < p < 1, thus proving Conjecture 2 in [10, Section 3].

2) Non-Negativity Proof for the Bit-Regular ARA EnsemitBtarting from (36), let

g(z) £ B

X

Since from (33),5-1(0) = 0, then(0) = 0, so the first non-negative coefficient of the power series esiparof
p(z) aboutz = 0 is the one ofz. Since@(x) in (35) is calculated by an appropriate scaling of the irabof
p over the intervall0, z] so that@Q(1) = 1, then the first non-negative coefficient of the power seriesaesion
of Q(x) is the one ofz2. Finally, from (31), it follows that also the first non-negaticoefficient of the power
series expansion ak(z) aboutr = 0 is the one ofr2. Hence, since?(0) = R/'(0) = 0, then R(x) has a power
series expansion about= 0 whose all coefficients are non-negative if and only if the fiorcg(x) possesses this
property.

Using Corollary C.1, let us definé(z) = Re{g(e®)}. It was verified numerically that ip < 0.26, then
h"(xz) > 0 for = € [0, 7], and alsog(0) > 0. This therefore proves that jf < 0.26, then the functiory(z) (and
hence, also the d.d2?(z)) has a power series expansion about 0 whose coefficients are non-negative.

3) Non-Negativity Proof for the Self-Matched ARA EnsembieSection VI-A, we construct capacity-achieving
ARA ensembles from self-matched LDPC codes. From (45) and (@é)eft and right degree distributions can be
rewritten in the form

_ Ki(=bz—In(1 —bx))
L(z) = 1+¢ (—bw —In(1 - b:E)) ’
_ Ky(—bz—In(1 —bx))
L+ ea(—bw — In(1 — ba))

R(z) (C.3)
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where
K=ot g 1
LT b+ n(1=b)] 2 (A-p)b+In(d-b)]
R S p (C.4)

pb+m(T -0 “T T @-pb+ -

Note thatK; > andc; » are positive for values gb andb in the ranged < p < 1 and0 < b < 1. Hence, in order
to find the region ofp andb where both degree distributions (i.€.(z) and R(x)) have non-negative power series
expansions about = 0, let us find conditions on the parametewhich ensure that

—z —In(1—x2)

1) = —mi =) (C-5)
has a non-negative power series expansion abeut). The first few terms of the expansion are
7
g(@) = D ga(c)2"
n=2
2 3 4 5 2\ .6 7
_ 32742z n (1—-c)x N (3 —5¢c)x n (12 — 26¢ + 9¢*)x n (120 — 308c + 210)x L0 ().

6 4 15 70 840

Applying Corollary C.1 directly to this function does not kobecause the function is neither non-increasing nor
convex. Instead, we remove the first few terms of the poweesenhd apply Corollary C.1 to

~ 1 —z —log(l —x)
g(x)_:1:8<1+c[ x —log(1l — z)] Zgn )
Following the notation in Corollary C.1, let the functiégnbe
h(z) = Re{ﬁ(eix)}

= Slae i),

Numerically, we find that it € [0,0.6], thenh”(z) > 0 for € [0, w]. Checking the first few terms by hand shows
that g¢(c) becomes negative first far> c* £ 13*9\/5 ~ 0.5766. Therefore, we find that the original power series
expansion of the functiog in (C.5) is non-negative if and only if € [0, ¢*]. From (C.3), it follows that the left
and right d.d. {.(x) and R(x), respectively) have non-negative power series expandionta = 0 if and only if
13 — V61 13 — /61
g ——(/——, < —(—
9 9
which based on (C.4), is translated to the condition in (47).

Finally, we consider the question of whether the numericéfigation of convexity on0, 7] is reasonable. While
one could also compute any finite number of terms in the powdgssexpansion and verify their non-negativity,
we note that the next term could always be negative. This ngwoaph is different because, in many cases,
the convexity can be verified numerically in finite time usingngdex interval arithmetic. The basic approach is
by subdividing the interval0, 7] into a large number of small overlapping intervals. For eswtall interval, the
function h” is evaluated using interval arithmetic. If all the value®.(ithe resulting intervals) are non-negative,
then this proves that is convex on[0, 7]. If h also depends on some parameter, then the parameter intarval
also be subdivided into small overlapping subintervalshéf first test succeeds for each parameter subinterval, then
we have shown thal is convex on[0, 7] for all parameter values as well.
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ARA vs. IRA vs. LDPC n=8192 Rate 0.5
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Fig. 8. Simulations for the ensembles of ARA and NSIRA codes constiuoten LDPC codes with self-matched degree distributions
(see Sections VI-A and VI-B), and the ensemble of right-regular L@2BAes in [3]. The plots refer to block lengths of 8192 and 65536
bits (see upper and lower plots, respectively) and a design rate oit6.pds channel use. No high-rate outer code is assumed.
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ARA vs. IRA vs. LDPC n=8192 Rate 0.5
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Fig. 9. Simulations for the ensembles of ARA and NSIRA codes constidoten LDPC codes (see Sections VI-A and VI-B), and right-
regular LDPC codes [3]. The plots refer to block lengths of 8192 arkB6%hits (see upper and lower plots, respectively) and a design rate
of 0.5 bits per channel use. Since the ensemble averaged pertmrisasimulated, high-rate outer codes (ras and $2529, respectively)

are used to lower the error floor due to small stopping sets. These amaes @are chosen uniformly at random from the ensemble of the
binary linear block codes and their rate loss is neglected.
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ARA Self-Matched Rate 0.5
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Fig. 10. Simulations for the ensemble of ARA codes in Section VI-A, coostd from the ensemble of LDPC codes whose degree
distributions are matched to themselves. The design rate of the ensemtiebiss@er channel use. The upper plot refers to the case where
there is no outer high-rate code, and the lower plot refers to the cagse Wiere is such a code.
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ARA Self-Matched Rate 0.7
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Fig. 11. Simulations for the ensemble of self-matched ARA codes wlateds 0.7 bits per channel use, having high-rate outer codes (the
rate of the outer code i$011, 5179 and 3229 for a block length of 1024, 8192 and 65536 bits, respectively.) TiEeuplot refers to the
case where the ensemble of self-matched ARA codes is directly dedignadate of 0.7 (without puncturing), and the lower plot refers to

the design of the self-matched ARA ensemble for a rate of 0.5, and tesasing the rate to 0.6 by random puncturing of the code bits.
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Punctured vs. Non—-Punctured ARA Self-Matched n=8192 Rate 0.7

10 T T T T
/‘_'-—"k
107 . s .
-2
49 lO E|
©
12
[0}
510° :
o
LU I:
© 10" ,
°
=
107 .
—e— WER NP
10° —»—BER NP |4
WER P
-e&-BERP
10_7 ] ] ] ] 1 ] ]
0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
Erasure Probability (p)
o Punctured vs. Non—-Punctured ARA Self-Matched n=65536 Rate 0.7
10 T T T T T T ]
107 F
]
©
@ —4
10
=}
(%]
o
i}
a
=~10°}
°
o
=
-8 Phe
10" r ¢ —e— WER NP||
—»— BER NP
WER P
-e-BERP
10_10 ] ] ] ] ] ] ]

0.26 0265 0.27 0.275 028 0.285 0.29 0.295 0.3
Erasure Probability (p)

Fig. 12. Simulations for the ensemble of punctured ARA codes in SectieA Where we compare the case where the self-matched
ensemble is designed directly to a rate of 0.7 bits per channel uses\vhesgase of designing the ensemble for a rate of 0.5 and increasing
the rate by puncturing. The upper and lower plots refer to block lengtB4@# and 65536 bits, respectively. P and NP stand for 'punctured’
and 'non-punctured’.
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ALDPC Bit-Regular Rate 0.25

[O]
T
[ad
(0]
5
[%2]
o
L
o
B
(@]
= —e— WER N=1024 !
_,| | ——BERN=1024 .
10 'k | —e— WER N=8192 ! ]
| | —— BER N=8192 )
- @ - WER N=65536 i
— - = — I
| = * ~BER N=65536 RN
10 ‘
0.65 0.7 0.75
Erasure Probability (p)
0 ALDPC Bit-Regular Rate 0.25
10 — Py o &
¢ e < * ,
107 b .
[J]
IS
@ —4
© 10" o .e->-d |
= “e - ]
2 1
LI‘_.I 1
= !
om _ 1
=10° ' -
'9 1
(@] 1
= —e— WER N=1024 ]
s | | ——BERN=1024 .
10 ° | —e—WER N=8192 ! i
—— BER N=8192 -
- © - WER N=65536 o
| L% ~BER N=65536

10 :
0.65 0.7 0.75
Erasure Probability (p)

Fig. 13. Simulations for the ALDPC-BR3 ensemble (i.e., bit-regular sxgate-LDPC ensemble whose bit nodes have degree-3); the
design rate of this ensemble is set;]ltd)its per channel use. The upper plot refers to the case where thevehigmrate outer code, and

the lower plot refers to the case where there is such an outer code.ldthegfer to block lengths of 1024, 8192 and 65536 bits; for the

lower plot and these block lengths, the rate of the outer random code a egfps, 5172 and 35520, respectively.




