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Abstract

By generalizing the framework of the second version of the Duman—Salehi bound encom-
passing also deterministic and random codes, we demonstrate its rather broad features and show
that this variation provides the natural bridge between the 1961 and 1965 Gallager bounds. This
approach entails a natural geometric interpretation, encompassing also a large class of efficient
recent bounds (or their Chernoff versions), which are demonstrated to be special cases of the
generalized second version of the Duman—Salehi bound. Implications and applications of these
observations are pointed out, referring to known bounds as well as a novel extended version of
the Shulman—Feder bound. (©) 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Since the error performance of efficiently coded communication systems rarely admits
exact expressions, tight analytical bounds emerge as a useful theoretical and engineering
tool for assessing performance and for acquiring insight into the effect of the main sys-
tem parameters. Specific good codes are not easily identified, giving rise to ensembles
of codes over which performance should be accurately assessed. The motivation for
introducing and applying such bounds has strengthened with the recent introduction of
turbo codes and the rediscovery of the low density parity check (LDPC) codes. Clearly,
the useful bounds must not be subjected to the union bound limitations such as the
cutoff rate limit for long enough codes, as these families of codes perform considerably
beyond the cutoff rate and approach the capacity limit. Useful bounds should also be
applicable to either deterministic codes or ensembles of codes relying on basic features
such as the distance spectrum or input—output weight enumeration functions (IOWEF)
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of the examined codes. Among the classical techniques is the Fano—Gallager [1,2] (re-
ferred to as the 1961 Fano—Gallager and the 1965 Gallager [3] bounds. Several such
bounds have recently been introduced (see Refs. [1,2,4—19] and references in Ref. [16]).

In our work, we focus on the second version of the recently introduced bounds
by Duman—Salehi [5,9,14], whose derivation is based on the 1965 Gallager bounding
technique [3]. Although originally derived for binary signaling over an additive white
Gaussian noise (AWGN) channel, we demonstrate here its rather broad features in
a variety of aspects. In our setting, we shall use and build on some of the interest-
ing results in Ref. [5], where insightful observations on the Duman—Salehi bounding
technique are provided and some efficient and easily applicable bounds are introduced.

2. The Gallager bounds and the Duman and Salehi variation
2.1. The 1965 Gallager bound

The maximum likelihood (ML) decoding error probability conditioned on an arbitrary
transmitted (length — N') codeword x™ (P, ), is upper bounded by the 1965 Gallager
bound [3]:

’ ;L p
P <> oy | Y] (pzv(ylx)> : (1)
Y

i py(ylx™)

where 4,p > 0. Here, y designates the observation vector (with N' components) and
pn(ylx) is the channel’s transition probability measure. The upper bound (1) is usu-
ally?lot easily evaluated in terms of basic features of particular codes, but for ex-
ample, orthogonal codes and the special case, where p=1 and )L:% (yielding the
Bhattacharyya-union bound). For ensembles of random codes, with M independent
codewords selected with the distribution gy(x), the classical Gallager bound on the
average error probability of ML decoding results:

I+p
Po<(M—17Y <ZqN(X)pN(yIX)”““’)> , 2)

y
where 0 < p <1 and where P, designates the average decoding error probability
(where the average is taken over the randomly and independently selected codewords).
For the case of memoryless channel (py(y|x)= Hf\[:l p(yilx;)) and input distribution
(qN(;c):H?/:l q(x;)), the random coding Gallager bound (2) admits the form [3]:

P, < e~ NErc(R,q)

Erc(R,q)= Orgggl(Eo(p,q) — pR),

1+p
Eo(pq)=—1Tn (Zg(x)pmx)”“*p)) , 3)
v RY
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where R=InM/N is the code rate and FErc(R,q) is the random coding error
exponent [3].

2.2. The 1961 Fano—Gallager bound

The 1961 Gallager bound on ML decoding [2] relies on the distance spectrum of
the N-length block code (or ensemble of codes), and therefore can be also applied to
fixed codes or restricted ensembles of codes (differing from the ensemble of the fully
random block codes, as in the 1965 Gallager bound). The derivation of this bound is
based on the 1961 Fano bounding technique [1]. The concept of this bounding is as
follows:

Let x™ be the transmitted codeword and define the tilted ML metric: D()gm,, V)=

In( /N (»)/pn( Z|)£”’/)), where x™ is an arbitrary codeword and f73(y) (may depend
on x™) is an arbitrary function which is positive if py( Z|)£ml) is positive. If the ML
decoding is applied, an error occurs if for some m’ # m:

D™, y) < D", y). (4)
The received space YV is divided into two disjoint subspaces:

Y=y,
Y ={y:D(x", y) < Nd},

Y)Y ={y:D&",y) > Nd}, (5)

where d is an arbitrary real number.
The conditional ML decoding error probability is upper bounded by a sum of two
terms:

Pejy < Prob(y €Y,') + Prob (error, y € ¥,') , (6)

which is the starting point of many efficient bounds [4-6,11,12,16] and references
therein. We restrict now our consideration to the case, where f}j(») can be expressed
in the product form f3(y)= vazl f(»:i), where f is an even function (f(y)= f(—»)).

For the special case of binary linear block codes and a symmetric memoryless chan-
nel, it is demonstrated in Ref. [13] by invoking the Chernoff bounds that

N P
P, < 210 g(sy (=) (Z S,h(r)fgm“) , (7)
=0

where 0 < p < 1 and /y(p) is the binary entropy function. {S;}), designates the dis-
tance spectrum of the considered block code. Based on the symmetry of the channel
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and the function f:

o)1= 5 S P10 + [ ADI )0
y
h(r)=">_[p(»[0)p(y DI £ (3Y (8)
~

with s >0, r <0, —co<d <+ o0, 0 < p <1, and where f is optimized to get the
tightest upper bound (7).

2.3. The Duman—Salehi bound (version II)

The Duman—Salehi bounding technique [9,10], originates from the 1965 Gallager
bound [3] and it yields

’ j. p
iy gy =t | PYE")
P < E;pN(yx) W) (pN(y|xm)> , (9)

where 0 < p <1 and 4> 0, and where y4'(y) is an arbitrary probability measure
(which may also depend on x™).
An alternative form is given by
1—p

P < | DGR (p™)
Y

, AN
myGm 1—-1/p pN(X|£m ) , 10
X ,,%:m zy:PN(ﬂx ) N(Z) (pN(y|x”’) (10)

where 0 < p <1, 2> 0 and the unnormalized tilting measure Gy/(y) satisfies
W)= Gr(¥) pn(ylx™)
=X, G vy

(11)

3. Interconnections and observations
3.1. The Duman—Salehi bound: random coding version
For the ensemble of random codes, where the N-length codewords are randomly

and independently selected with respect to the input distribution gy (x), the generalized
Duman—Salehi bound yields the following upper bound:

Pe<(M—1)0Y" (Z qN(x)pN(yIX)”"> > v pr(ylx'y

Y

p

(12)
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with 0 < p <1, 2> 0 and where the optimal selection for the unnormalized tilting
measure in (10) is

I\ P
pn(yx)
Gy(y)= av() | — o : (13)
V= Z py (™)

For A=1/(1 4+ p), one obtains the standard random coding Gallager bound (2). It
is hence demonstrated that in the standard random coding setting, no penalty is in-
curred for invoking the Jensen inequality in the Duman—Salehi (version II) bounding
technique, as long as the optimization in (12) and (13) is done.

3.2. The connection between the 1961 Fano—Gallager bound with the Duman—Salehi
bounds

Aided by the Chernoff inequality, the optimization over the parameter d yields [5]
1—p

Py <2200 [ py(ylx™) <J(N(y)> S pvyk™
Y

m
pn(yx™) an
' t o s(1-=1/p)\ P
o[ PyQl™) SN) 0<p<l, (14)
pn(ylx™) )\ PRI T s3>0,
Divsalar [5] renames ¢ by A (where ¢ is a non-negative parameter) and also sets
Y
Gvy)=| —— 1 , (15)
M= (™)

reproducing then the Duman—Salehi upper bound (10) with an additional multiplying
factor of 2/2(P) (where 1 < 22(P) < 2). This demonstrates the superiority of the Duman—
Salehi second version bound over the 1961 Fano—Gallager technique when applied for
a particular code or ensemble of codes. It has been demonstrated in Ref. [13] that the
Fano—Gallager technique equals the 1965 standard random coding Gallager bound (12)
up to the 2/2(P) coefficient, where the latter as shown before, agrees with the optimized
Duman—Salehi bound.

3.3. A geometric interpretation of the Gallager-type bounds

The connections between the Fano—Gallager tilting measure and the Duman—Salehi
normalized and unnormalized tilting measures (which are designated here by f73(y),
' (v) and GJ(y), respectively) are indicated in Eqgs. (11) and (15), and they also
proxgde some gegmetric interpretations of various reported bounds. The measure f73/(y)
in the 1961 Fano—Gallager bound, which, in general, does not imply a product forrB,
yields a geometric interpretation associated with the conditions in inequalities (5),
which specify the disjoint regions Y,',Y,Y CY". The geometric interpretation of the
1961 Fano—Gallager bound is not necessarily unique.
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The non-uniqueness emerges due to the shifting and factoring invariance of the
inequality
(I8 ) g (16)
pyv(ylxm)

and due to fact that the parameter d is also subjected to optimization. We demonstrate
this non-uniqueness in Ref. [16] focusing on the Divsalar bound [5], which is associated
with the decision region (N-dimensional sphere with a shifted center)

N
K/N:{HZ(M—WX?")ZSW} , (17)
=1

where y=+/2RE}/Ny is the square root of the signal-to-noise ratio and #,r are param-
eters subjected to optimization. It is verified [16] that the 1961 Fano—Gallager tilting
measures:

N
=11 {exp(; (,17 - 1) (y1)2>} , (18)
=1

N

=11 {exp(é(l - n)x?”yz)} : (19)
=1
N

I3 = {exp(—=003 — dx7))} (20)
=1

where ¢ =y(n+ (1 —n)/20) and 00 in Eq. (20), yield in fact all equivalent regions
to (17).

4. Generalizations and special cases

In this section, we demonstrate that many reported bounds can be considered as
special cases of the generalized (second version) of the Duman—Salehi bound, and
we also propose generalizations of the Shulman—Feder bound [17]. Some of these
observations have been reported in detail in Ref. [16].

4.1. A generalization of the Shulman—Feder bound
In Ref. [16] the generalized version of the Shulman—Feder bound [17] is derived as a

particular case of the generalized Duman—Salehi bound. Let C be a fixed binary linear
block code, where its distance spectrum is designated by {S;}),. We get in Ref. [16]:

1 1
Pyjo < exp — NE(p PR+1n<Zb,< )) :2>, 0<p <.
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where E(p,R,q) is introduced in Eq. (3), v;=8,/M — 1), b,:Z*N(]\l[), (I=0,1,
2,...,N), P>1 and 1/P + 1/O0=1. The Shulman—Feder bound [17] is recognized
as a special case, where P=1, Q — oo. The improvement in the tightness of general-
ized bound (21) (as compared to the Shulman—Feder bound) is expected to take place
for codes whose distance spectrum exponentially deviates from the binomial distribu-
tion of the ensemble of fully random block codes, especially at low Hamming weights
(e.g., turbo and LDPC codes). For a pure binomial distance spectrum operating over
a binary-input and symmetric-output channel, P =1 is optimal and the Shulman—Feder
bound matches the Gallager random coding bound. Consider the inequality for the term
in the error exponent of (21):

1p (& u\e 1
N an(;bl <b1) ) = ND(QH@)

The divergence D(v||b) then constitutes a lower bound on the rate loss as compared
to pure random codes (with binomial distance spectra) and hence it provides some
operative meaning to Battail’s proposition [20] for the design of weakly random-like
turbo codes.

4.2. The Duman—Salehi bound (first version)

The first version of the Duman—Salehi bound [10] for a binary-input AWGN channel
is a particular case of their second version [9], where the normalized tilting measure
in Eq. (9) is

N N 2
o o p|2E
m — _ el _z _ P “ms om 22
() l]}w(m ,Ul \/ 25 ©xP 2<y/ . Nox,> (22)
with o, f parameters being subjected to optimization.

The overall Duman—Salehi bound results by partitioning the code to constant Ham-

ming subcodes and invoking the union bound

N
Pe=P,o < Y Pep(d), (23)
d:dmin

where dyy is the minimum Hamming distance of the N-length block code and P,|o(d)
is the conditioned decoding error probability with respect to the subcode with a constant
Hamming weight d. The Duman-Salehi [10] first version bound then equals

—Np/2 .
Pojo(d) < (Sq)P =02 («— - l) ﬂ exp {N (RE”> [‘1 + By —p)
P Ny a

. * _ P* 2
L P —d/N)B* + (1= B)/p) ]} , (24)

o—(a—1)p
B*=1—(d/N)/(1/o) = d/N(1 = p),

and where 0 < o < 1/(1 — p), 0 < p < 1, are subjected to further optimization.
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4.3. The Viterbi-—Viterbi bound (first version)
The Viterbi—Viterbi bound [18] on the ML decoding error probability for BPSK

modulated block codes operating over a binary-input AWGN channel is given by (23)
with

(25)

P, < (S, eXp(NREb (d/N)p > ,

No 1—d/N(1-p)

where 0 < p < 1. The optimization over the parameter p gives then the Viterbi—Viterbi
upper bound [19] which reads

Pe < eXP(_NEm(’”d)) 5 (26)
where

(Dye—rgy 0<2<L(1— 4y,

Ey (ra) = ra(1 — 4 : (27)
d a ¥,
<\E— dN>’ Ni(l_%)<f<1i/cxzv’
N

_ In(Sa) _ 7 _RE, (28)

METNT TN,

This bound turns to be a special case of the Duman—Salehi first version bound, where
o=1 is substituted in Eq. (24) (see Ref. [16]).

4.4. The Viterbi-Viterbi bound (second version)

The second version of the Viterbi—Viterbi bounds [19] is based on the 1961 Gallager—
Fano bound and it reads

Pejo(l) < exp(=NE,(11)) ,

Ey(r1) = omax,

1 ~
{—pn + In(h(p))

+ <1 - ]\l]> In(d(p)) — (1 = p)In(h(p) + é(p))} ; (29)

where r; =1n(S;)/N. Based on the symmetry of the binary-input and memoryless
channel:

h(p)=>>_ [p(x|0)/ 4 p(—y[0)/ 0= p(]0) p(—]0)] /4,
S

d(p)=">_ [p(¥|0) 7 4 p(—y[0)/ 0700 p(yl0)> ) (30)
y
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This bound is again a special case of the Duman—Salehi bound (second version) using
the unnormalized tilting measure:

N

G =T T{p(110) /5 p(yy[ 1)) p(y|0) =10y 31)
1=1

4.5. The Divsalar bound

The Divsalar bound [5] results also as a particular case of the 1961 Fano—Gallager
bounding technique for a binary-input AWGN channel, as demonstrated in Section 3.3.
It has also been indicated there that several alternative geometrical interpretations can
be used. This bound given in Ref. [5] in closed form reads

N
P, < Z min (exp(—NEp(c,d, *)), S40(V/2dc)), (32)
d=dmin
where
! d
1 (d/N) 2 1 (d/N) 2 1/2
* - _ 2 B
h= lc< (d/N) ) 1 — exp(—274) +< (d/N) ) [(1+¢) 1]]
1 —(d/N)
_<awv>“+c” (34)
1 +oo t2
Q(X)ZE,/X eXp(z) dr (35)

and the parameters ¢ = E;/Ny, rs =In(S;)/N. In fact, it is verified in Ref. [16] that the
Divsalar bound coincides with the corresponding tilting measure of the first version of
the Duman—Salehi bound (22), where o =(20 —1)s+ 1, f=(20 — 1)s + 1 and where
o and s are properly selected parameters [16]. This is the ground for the observation in
Ref. [5] that the Divsalar bound is a closed form version of the Duman—Salehi bound
(first version) [8].

4.6. The fully ideally interleaved fading channels with perfect channel side
information (CSI)

The model here is: y =ax + n, where y stands for the received signal, x stands for
the BPSK modulated input signal (it is 4+/2E,) and n designates the additive zero
mean and Ny/2 variance Gaussian component. The fading a is assumed to be ideally
interleaved and perfectly known at the receiver and hence is considered to be real



S. Shamai, 1. Sason/ Physica A 302 (2001) 22-34 31

valued as the receiver compensates for any phase rotation. The bounds are based on first
decomposing the code to subcodes over which a union bound is applied as in Eq. (23).

4.6.1. Optimized Duman—Salehi bound
In Ref. [14], the measure

N
¥(y,a)=[[vnan, (36)
=1
is optimized as to yield the best possible Duman—Salehi (second version) bound (9),
where (y,a) are interpreted as the available measurements at the receiver.

4.6.2. Exponential tilting measure

In Ref. [15], a sub-optimal selection for y in (36) is suggested which in fact is
motivated by the first version of the Duman—Salehi bound [10], where an exponential
tilting is also applied to the fading sample a (treated as a measurement). This gives
rise to the following exponential tilting measure:

v (0/21) exp[ — 0/2(y — au \/2E;[Ny)* — (w*d’E; /NO)]P(G)
f p(a)exp(—(o?a?E,/Ny)) da

Y(y,a)=
(37)

where o > 0, —0o <u <+o00, —00 < v <+o00, au < 1/(1—p), and where p(a) desig-
nates the probability density function of the independent fading samples. This yields
a closed form bound which reads [15]

(=N(1—p)2) a— INTV2 1 Y
Po(d) < (Sy) ot~V —P [ -
elo(d) < (Sa)' (“ 0 ) (1+—t>

1 dp 1 (N—d)p
P — 38
x (1 +a) (1 +v) ’ (38)

(39)

with
o2 E;

No
E, 1 1 (o — (o —1)/p)?
o= ot e (1-5) - S

Ky 5 o 1 1 (o — (o — 1)/p —22)?
S‘NO[“(” i )<1_p>+p_ a—(a—D)p } '

=

This bound is in fact equivalent to the Divsalar—Biglieri bound [6] which has been
derived via a geometric extension of the associated decision region in the Divsalar
bound [5] (by rotating the displaced sphere region). The bound in Ref. [15] also
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Fig. 1. Block diagram of the ensemble of rate—% and uniformly interleaved RA (repeat and accumulate)
codes.
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Fig. 2. A comparison between bounds of RA codes for a Rayleigh channel: (1) Generalized Duman—Salehi
[14]; (2) Divsalar-Biglieri [6,5]; (3) Engdahl-Zigangirov [11]; (4) Generalized Viterbi—Viterbi [15];
(5) Union bound. These bounds are compared with simulation results of the LOG-Map iterative decoding
algorithm (20 iterations).

particularizes to the Viterbi—Viterbi (first version) extended bound to the fading channel
[15], which results by setting in (39):

p=1, u=1—¢p veT—(=ipp = rtcl=p (40)

2

We demonstrate the comparative tightness of several bounds when applied to the
repeat-accumulate codes [7] of rate %, operating over the ideally interleaved Rayleigh
channel. The system is depicted in Fig. 1. A block of 1024 information bits is encoded
in each block, repeated g =4 times, interleaved by a uniform interleaver of length
N =4096 and finally differentially encoded.

A comparison between upper bounds on the bit error probability, associated with
the ML decoding of the RA coding scheme of Fig. 1, operating over a fully inter-
leaved Rayleigh fading channel with perfect side information on the i.i.d fading

samples is shown in Fig. 2. The following upper bounds are shown: The generalized
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Duman—Salehi second version bound [14]; the Divsalar—Biglieri bound [6] equivalent
also to the bound in Ref. [15]; the generalized Engdahl-Zigangirov bound [14]; the
generalized Viterbi—Viterbi (first version) bound [15]; and the union bound. The upper
bounds on the ML decoding are compared with the computer simulation results of
the log-MAP iterative decoding algorithm with 20 iterations. The relative tightness of
the investigated bounds as well as a marked advantage over the union bound of the
optimized Duman—Salehi bound [14] is clearly demonstrated.

4.7. The Chernoff version of some reported bounds

In his paper [5], Divsalar derived simplified Chernoff versions of some upper bounds,
which result as particular cases of the 1961 Fano—Gallager bounding technique, and
therefore are also special cases of the Duman—Salehi setting. These simplified Chernoff
versions include: the Chernoff version of the sphere bound [5,8], the Chernoff version
of the tangential bound [4,5], the Chernoff version of the tangential sphere bound
[5,12]. In Ref. [16] it is also shown that the Chernoff version of the Engdahl and
Zigangirov bound [11] derived for a binary-input AWGN channel, is a particular case
of the generalized Duman—Salehi bound. The decision region Yév associated with the
transmitted codeword x” for the Engdahl-Zigangirov bound is an N-dimensional plane:

N
1@7={y|2y1x?’>Nd} , (41)

=1

where the associated tilting measure is identified to be

N 1 2E
=11 {exp(—zy% +ﬁyzx7”) } BA\ T (42)
=1

5. Summary and conclusions

In addressing the Gallager bounding techniques and their variations, we focus here on
the Duman—Salehi variation, which originates from the standard 1965 Gallager classical
bound [3]. The considered bounds on the block and bit error probabilities rely on
the calculable distance spectrum and the input—output weight enumerator functions
of the codes. By generalizing the framework of the second version of the Duman-—
Salehi bound (see Section 2), we demonstrate its rather broad features and indeed
this variation provides the natural bridge between the 1961 and 1965 Gallager bounds
([2,3], respectively). It is suitable for both random and specific codes, as well as for
either bit or block error analysis. Some observations and interconnections among the
Gallager and Duman—Salehi bounds for random and deterministic codes are presented
in Section 3, which partially rely on the most insightful observations by Divsalar [5].
Focus is on geometric interpretations of the 1961 Gallager-type bounds as motivated
by the Duman—Salehi setting, reflecting the non-uniqueness of their associated tilting
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measures. We use this unifying framework to generalize the Shulman—Feder bound as
well as to demonstrate that this setting accounts for a large class of recently proposed
bounds. The basic bounding framework can be also applied to the mismatched decoding
setting [16].
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