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Capacity-Achieving Channel Codes

The set-up
» DMC T : X — ) with capacity

C=C(T)=max I(X;Y)
Px

» (n,M)-code: C = (f,g) with encoder f: {1,...,M} — A"
and decoder g : Y" — {1,..., M}

Capacity-achieving codes:

A sequence {C,,}>°,, where each C,, is an (n, M, )-code, is
capacity-achieving if

1
lim —log M,, = C.

n—oo 1



Capacity-Achieving Channel Codes

Capacity-achieving input and output distributions:

Py € argmax I(X;Y) (may not be unique)
Px
Pyt (always unique)

Theorem (Shamai—Verdu, 1997) Let {C,} be any
capacity-achieving code sequence with vanishing error
probability. Then

1
lim —D (PX(,C,[I)

n—oo M,

Py*'n) = O,

where P}(,Cn") is the output distribution induced by the code

C,, when the messages in {1,..., M,} are equiprobable.



Capacity-Achieving Channel Codes

1
lim —D(Pyn||Pin) = 0

n—oo 1

Main message: channel output sequences induced by good
code “resemble” i.i.d. sequences drawn from the CAOD Py

Useful implications: estimate performance characteristics of
good channel codes by their expectations w.r.t. Py, = (Py)"

» often much easier to compute explicitly

» bound estimation accuracy using large-deviation theory
(e.g., Sanov's theorem)

Question: what about good codes with nonvanishing error
probability?



Codes with Nonvanishing Error Probability

Y. Polyanskiy and S. Verdd, “Empirical distribution of good
channel codes with non-vanishing error probability” (2012)

1. Let C = (f,g) be any (n, M, ¢)-code for T

max P (g(Y") # j|f(X") = j) <.

1<j<M

Then D(P)||Py) < nC —log M + o(n).*
2. If {C,}52, is a capacity-achieving sequence, where each
Cn is an (n, M, )-code for some fixed € > 0, then

1
lim —D (Pécr,fl)

n—oo M

Pjn) = 0.

* In some cases, the o(n) term can be improved to O(y/n).



Codes with Nonvanishing Error Probability

D(Pyn||Pyn) < nC —log M + o(n)

The same message: channel output sequences induced by
good codes “resemble” i.i.d. sequences drawn from P

Main technical tool: concentration of measure

Our contribution: sharpening of the Polyanskiy—\Verdu
bounds by identifying explicit expressions for the o(n) term



Preliminaries on Concentration of Measure

Let Z3,...,Z, € Z be independent random variables. We
seek tight bounds on the deviation probabilities

P(f(Z") >r) forr >0
where f: Z" — R is some function with E[f(Z")] = 0.
Subgaussian tails:
log E[etf4™)] < kt?/2, Vit > 0

2

= P(f(Z") >r)<exp <_;_/£)’ Vr >0



Preliminaries on Concentration of Measure

Suppose that Z" is a metric space with metric d(-, ).

L, Wasserstein distance: for any p,v € P(Z2"),

Wi, v) 2 inf  E[d(Z", 2]

VASNITALINY

L, transportation cost inequalities (Marton): ;€ P(Z")
satisfies a T (c) inequality if

Wilp,v) < V2eD(vl|p), Vv <p

Ti(c) implies concentration!



Preliminaries on Concentration of Measure

L, transportation cost inequalities (Marton): © € P(Z")
satisfies a T (c) inequality if

Wl(:u?V) < v 20D(”HN>7 Y < p

Theorem (Bobkov-Gotze, 1999) A probability measure
p € P(2") satisfies T1(c) if and only if

log B, [e!?")] < ct?/2
for all f with E,[f(Z™)] =0 and

A f(z") — f(z")]
1/ llLip = B =y <1




Preliminaries on Concentration of Measure
Endow Z" with the weighted Hamming metric

(=", z" Z Cily,, 4z, for some fixed c1,..., ¢, > 0.
=1

Marton’s coupling argument: Any product measure
=1 Q... uy € P(2™) satisfies T1(c) (relative to d) with

1 n
S
=1

By Bobkov—Gotze, this is equivalent to the subgaussian property

logE, [tf(z )} Zc

forany f: Z" - Rwith E,f =0 and || f||Lip < 1 (another way to
derive McDiarmid's inequality)



Relative Entropy at the Output of a Code
Consider a DMC T : X — Y with T'(:]-) > 0, and let

T(y|z)

In
T(y'|z)

¢(T) = 2max max
zeX yuy'€y

Theorem. Any (n, M, e)-code C for T', where € € (0,1/2),
satisfies

1
1—2¢

1
D(P;(/Cn) P{%) <nC —log M + log . + ¢(T) glog

Remark: Polyanskiy and Verdu show that

(P

P{}n) <nC —logM + a\/n

for some constant a = a(e)



Proof Idea: |

Fix ™ € X™ and study concentration of the function

dPYn|Xn:xn

hen(y™) = log
) arl)

(y")
around its expectation w.r.t. Pyn|xn_gzn:

Efher (Y")| X" = 2] = D(Pyejscncan

RY)

Step 1: Because T'(-|-) > 0, the function A, (y") is
1-Lipschitz w.r.t. scaled Hamming metric

d(y",y") = c(T) Z Liyig)
=1



Proof Idea: |l

Step 1: Because 7'(+|-) > 0, the function h,.(y") is
1-Lipschitz w.r.t. scaled Hamming metric

d(y",y") = c(T) Z Liy#5:1
=1

Step 2: Any product probability measure p on (V" d)
satisfies

242
logE,, [etf(Y”)} < %
for any f with E,f =0 and || F||r;, < L.

Proof: tensorization of the Csiszar—Kullback—Pinsker
inequality, followed by appeal to Bobkov—Gotze.



Proof Idea: IlI

n dPYn Xn=gn
han (y") = log ——X"=2"

yn
ar) )

Bl (Y")|X" = 2] = D(Pyejscncan

RY)

Step 3: For any 2", jt = Pyn|xn—,n is a product measure, so

P(C)>+r><ex 2
v =P ne(T)?

Use this with 7 = ¢(T") /% log 25z

1
P}(/Cn)) +¢(T) glog T 28) <1-2¢

P (hxn(Y”) > D(men:xn

P (hxn (Y™ > D(Pm R

Remark: Polyanskiy-Verdd show Var[h(Y")| X" = 2"] = O(n).



Proof Idea: IV

Recall:

P (hmn Y") > D(Pm Nnan

1
P(C)) T,/ 21 <1-2
v )| +c(T) SlogT—5 | = 5

Step 4: Same as Polyanskiy—Verdu, appeal to Augustin’s
strong converse to get

1

P
v 1—2

1
log M < log = + D(Pyn|Xn
€

C n
PE)) +e(T)y/ 5 log

(P

P{;n>

— D(PYn‘Xn P}tn P)(/cn)

P)((C,B) _ D(Pynlxn

P{)
1
1—2¢

1
<nC —log M + log — + ¢(T) glog
€



Relative Entropy at the Output of a Code

Theorem. Let 7 : X — ) be a DMC with C' > 0. Then,
for any 0 < e < 1, any (n, M, e)-code C for T satisfies

D(PS)||Pga) < nC —log M

1 1 log ||
3/2
e (1o e (1)) (+222)

+ 3logn + log (2| X||V[?).

Remark: Polyanskiy and Verdid show that
D(P}(/Cn)HP*n) <nC —log M + b\/ﬁlogg’mn

for some constant b > 0.



Concentration of Lipschitz Functions

Theorem. Let 7 : X — Y be a DMC with ¢(T") < co. Let
d:Y"x)Y" — R, be a metric, and suppose that Pyn|xn_;n,
™ € X", as well as Py, satisfy T;(c) for some ¢ > 0.

Then, for any € € (0,1/2), any (n, M, e)-code C for T', and
any function f : Y* — R we have

PE(I£(™) —Elf (Y™l 2 7)

<

M |

2
exp (nC —InM + avn — —8c||rf\|2 ) ,Vr>0
Lip

where Y*" ~ Py, and a £ ¢(T)y /4 In .



Proof Idea

Step 1: For each 2" € A", let ¢(a™) £ E[f(Y™)| X" = 2"].
Then, by Bobkov-Gotze,

P(1£0r™) — oa™)] = r|x" = a7) s2eXp< , )

.
2¢|| 117

Step 2: By restricting to a subcode C’ with codewords z™ € X™
satisfying ¢(z™) > E[f(Y*™)] + r, we can show that

1
r < HfHLip\/QC <nC—logM’ + av/n + log ),
5

with M = MP) <<;5(X") > E[f(Y*)] + r). Solve to get

nC—log M+ay/n+log % — W
Lip

P (J6(x™) ~ BLf(r™)]| = ) < 2¢

Step 3: Apply union bound. |



Empirical Averages at the Code Output

» Equip Y™ with the Hamming metric
A", 7") =Y Liyrg)
i=1
» Consider functions of the form
== filw),
i=1

where |fi(yi) — fi(7i)| < L1y, 24,y for all 4,y;,3;. Then
1 flleip < L/n.

> Since Pyn|xn_yn for all 2" and Py, are product measures on
V", they all satisfy T (n/4) (by tensorization)

» Therefore, for any (n, M, e)-code and any such f we have

P (17 (Y™ = E[f(Y™)]| > r)

nr?
exp <nC’—logM+a\/ﬁ— >

< i
- 212

™ |~



Operational Significance
» A bound like
a(T,e)
N

quantifies trade-offs between minimal blocklength required
for achieving a certain gap (in rate) to capacity with a
fixed block error probability €, and normalized divergence
between output distribution induced by the code and the
(unique) CAOD of the channel

» We have identified the precise dependence of a(7,¢) on
the channel 7" and on the block error probability ¢

C(T) —log M > %D(Pﬁ”P;n) -

» These results are similar to a lower bound on rate loss
w.r.t. fully random block codes (whose average distance
spectrum is binomially distributed) in terms of normalized
divergence between the distance spectrum of a specific
code and the binomial distribution (Shamai-Sason, 2002).



Concentration of measure =
powerful tool for studying
nonasymptotic behavior of

stochastic objects in
information theory!

For more information, see M. Raginsky and

|. Sason, “Concentration of Measure Inequalities in
Information Theory, Communications and Coding,”
arXiv:1212.4663



That's All, Folks!



