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Presentation outline

Presentation outline

Main Topics
© Concentration of measures in LDPC code ensembles
@ Background (Doob’s martingale and Azuma's inequality)
@ concentration of conditional entropy
@ concentration of message-passing error probability for ISI channels
© LP decoding using convex optimization
@ Background (LP decoding and optimization)
@ Bounds on interior-point and Newton's method'’s iterations.
@ Application of bounds to an IPM-based LP decoding

© Summary
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Doob’s martingale and Azuma'’s inequality

Doob’s martingale

Definition - [Doob’s Martingale]
Let (2, F,P) be a probability space. Let Fy C F; C ... be a monotonic
sequence of sub o-algebras of F. A sequence Xg, X1, ... of random
variables (RVs) is a martingale if:

QO X,:Q2—R.

Q@ {we: X;(w) <t}eF ViVteR.

@ E[|X;|] < oo.

Q X, = E[X;;+1]F:] almost surely.

Example - Random walk
X, =>1" o Ui where Uj is an i.i.d. sequence of RVs with E[U;] = 0.

V.
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Doob’s martingale and Azuma'’s inequality

Doob’s martingale- Remarks
Remark 1

Given a RV X € L}(Q, F,P) and an arbitrary filtration of sub o-algebras
(i}, let
X, =E[X|F] i=0,1,....

Then, the sequence X, X1, ... forms a martingale.

Remark 2

One can choose
Fo={Q,0}, F,=F

so that Xg, X1,..., X, is a martingale sequence where
Xo = E[X|Fo] =E[X] (since Fy doesn't provide information about X).
X, =E[X|F,) =X as. (since F, provides full information about X).
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Doob’s martingale and Azuma'’s inequality

Azuma-Hoeffding inequality

Theorem - [Azuma-Hoeffding inequality]

Let Xo,..., X, be a martingale. If the sequence of differences are
bounded, i.e.,

|Xi_Xi—1| Sdz Vi= 1,2,...,n a.s.

then

2
]P’(|Xn—X0|2r)§26xp< 35 ), Vr>0.
i=1 7,
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Conditional Entropy of LDPC code ensembles

Theorem | - [Concentration of Conditional Entropy of LDPC
code ensembles (Méasson et al. 2008)]

Let C be chosen uniformly at random from the ensemble LDPC(n, A, p).
Assume that the transmission of the code C takes place over an MBIOS
channel. Let H(X]Y) designate the conditional entropy of the
transmitted codeword X given the received sequence Y from the channel.
Then for any £ > 0,

Pr (|H(X[Y) = Eippc(nn [H(X|Y)]| 2 Vn€) < 2exp(—BE?)

where B £ 2(dmaX+11)2(1—Rd)' d2®* is the maximal check-node degree, and

Ry is the design rate of the ensemble.
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Conditional Entropy of LDPC code ensembles

Proof - [outline]

@ |Introduction of a martingale sequence with bounded differences
Define the RV Z = Hg(X]Y), where G is a graph of a code chosen
uniformly at random from the ensemble LDPC(n, A, p)

Define the martingale sequence Z; =
E[Z|first t parity check equations are revealed] ¢ € {0,1,...,m}.

@ Upper bounds on the differences | Z;11 — Z|
Show that |Z; 1 — Z;| < (r + 1) H(X|Y), where 7 is the degree of the
parity-check equation revealed at time ¢, and X = X, @...8 X, is
the modulo-2 sum of some r bits in the codeword X.

Bound 7 by d™®* (the maximal parity-check node degree).
Bound H(X|[Y) by 1 (since X is a bit).
© Apply Azuma's inequality by using |Zi11 — Z;| < dT®* + 1 for every
t=0,...,m —1 where m = n(1 — R.) is the number of parity-check
nodes, and R, is the code rate.

v
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Conditional Entropy of LDPC code ensembles

Improvement 1 - A tightened upper bound on the conditional entropy

Instead of upper bounding Hg(X|Y) by 1, we rely on the inequality
Hg(X|Y) < hy (#) . Further, for a BSC or BEC, this bound can be

_[1i—2nsta-o)”
improved to hg <1 [1 2 ?2 & )] ) and 1 — C", respectively.

proof -[outline]

© Upper bound H(X’Y) with

H(X}Y) <H X’YZ S e > et p((2g§ 1y Where

g = [Tal)(1+e) tanh? (& ) dl, VpeN and a denotes the
symmetric pdf of the LLR (Sason 2009).

@ Substitute the bound g, > C? and use the power series expansion of
ha(z) to get an explicit bound. For the case of BSC and BEC it is
known that g, = (1 — 25 (1 — C))®, and g, = C respectfully for
all p € N, thus leading to tighter upper bounds.

v
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Conditional Entropy of LDPC code ensembles

Improvement 2 - A more careful consideration of the parity-check
degree distribution

Instead of taking the trivial bound r < d?"® for all m terms in the
Azuma's inequality, one can rely on the degree distribution of the
parity-check nodes from the edge perspective. The number of parity-check
nodes of degree r is n(1 — Rq)T',.

Theorem Il - [Tightened Expressions for 5]

Considering the terms of Theorem |. Applying the two improvements yields
a tighter expressions for B.

@ General MBIOS - B 2 L ——
2(1-Ry) X0 (i41)2T; {hz (15 2 )}
e BSC-B2 ! — —
2(1-Rqg) S0, (i+41)2T [MW)}

e BEC-B 2

gmax 1‘ ]
2(1-Rq) 3235, (i+1)°T; (1-C?)?

v
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Conditional Entropy of LDPC code ensembles

Comparison of Theorem | Vs. Theorem ||

Comparison for the limit where C' — 1 bit per channel use
We consider two cases

@ d"™ < oo - Theorem Il yields B — oo which is in contrast to
Theorem | where the parameter B does not depend on C' and is
finite. Note that B should be indeed infinity for a perfect channel,
and therefore Theorem Il is tight in this case.

@ d" = oo (i.e., tornado codes)- The Value of B in Theorem |
vanishes when d"® = oo and therefore is useless. On the other hand
using the value of B in Theorem Il , it can be shown that if
p'(1) < oo then B — 0.
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Conditional Entropy of LDPC code ensembles

Numerical comparison for BEC and BIAWGN

Consider the (2,20) regular LDPC code ensemble and communication over
a BEC or BIAWGNC with capacity of 0.98 per channel use. Compared to

Theorem | applying Theorem |l results in tighter expressions for B
-2

de
@ BIAWGN - Improvement by factor [hg (#)] =5.134

@ BEC - Improvement by factor ——— = 9.051
(1-cdec)
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Conditional Entropy of LDPC code ensembles

Comparison for Heavy-Tail Poisson Distribution (Tornado Codes)

Consider the capacity-achieving Tornado LDPC code ensemble for a BEC
with erasure probability p. We wish to design a code ensemble that
achieves a fraction 1 — € of the capacity.
@ Theorem I- Since dI"® = oo, then B = 0. Therefore this result is
useless.
@ Theorem II- B scales at least like O (—1 21(1) ) This follows from
og 5
Stability condition - p/(1)A'(0)p < 1.
d2'& and 1/X scales at least like O (log (1)) (Sason 2009).
The parameter B tends to zero slowly as we let the fractional gap e
tend to zero. This demonstrates a rather fast concentration.
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Message-passing error probability for channels with ISI

Theorem - [Message-passing error probability for ISI channels |

Consider an ensemble of regular (n,d,,d.) LDPC codes transmitted over
I
an ISI channel y; = > hjzi—; + ny.

=0

The decoder uses the windowed sum-product algorithm with width W.
Over the probability space of all graphs and channel realizations, assume ¢
iterations passed and let

o Z® - Number of incorrect variable-to-check node messages.
o p¥ - Expected probability of incorrect messages passed along an edge

with a tree-like directed neighborhood of depth £.
(0) : >

o N - The neighborhood of depth £ of an edge &= (v,c).
Then, there exist constants 3, > 0 such that

o Pr (Ng) not tree—Iike) <7

e Foranye>0andn> 2 Pr (‘Z(Z) - ndvp(é)‘ > ndye) < e=Pein

e

v
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Message-passing error probability for channels with ISI

Expressions for v and 3

Denote a = (dy — 1 + 2Wd,)(dc

then
o ’Y(dVa dC7 -[7 W’ E)

NO =1+

0 £=1
NY =14 (d,—142Wd,) 3 o
=0

Q %:8(16d( N2 4 (N2 )/dgwhere
) -1
N =d,@W +1) T o
0 =0 —1
N =14d(dy—1+2Wd,) S «
1=0

2 2
= N\Sg) + g—ch(e) where

[(dv = 1)(de — 1) +2W(1 + dy(dc — 1))] 3 o

— 1) as the expansion factor of the graph

=1

=0
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Message-passing error probability for channels with ISI

d-1
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Message-passing error probability for channels with ISI

Proof outline
© [Neighborhood is tree-like with high probability] -
P9 = Pr (Mot tree—Iike) <2

0 _

We upper bound P, Pf(z) by factorizing it as

Pt(é) = Pr{ éo) is tree} H Pr{ NED i tree\]\/'g*) is tree}

£5=0
For each factor we reveal the edges one by one and bound the
probability that an exposed edge creates a cycle.
@ [Convergence of expectation to cycle-free case] -
IE[Z®)] — ndyp'®| < ndye/2.
Use Pr (./\/(Z)not tree) < I and conditional expectation to upper
bound |E[Z¥] — nd,p®|
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Message-passing error probability for channels with ISI

Proof outline - (cont.)

@ [Concentration around expected value] -
Pr(|2® —E[ZO)] > ndye/2) < e P,

Define a martingale sequence based on Z(©) and the revelation of the
graph and the channel realization.

Show that revealing an edge of the graph or a received value at a
particular message node has an effect on a bounded number of
messages. Thus the sequence of martingale differences is bounded.
Apply Azuma's inequality

Remark

By setting W = I = 0 we can compare the results to the results for the
memoryless case (Richardson and Urbanke, 2001 [3]) :

@ v - Exactly the same expression.

@ (3 - Considerably tightened. However, the bound remains very
pessimistic.

v
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LP decoding using convex optimization
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LP decoding and convex optimization- Background

Theorem - [The ML decoder as a min-sum problem]

For any binary-input memoryless channel, the codeword of minimum cost
is the Maximum-Likelihood codeword.

n
xmL = arg max Pr[y|x] = arg min Zéixi
xeC xeC i—1

where ¢;(y;) = In <%> is the log-likelihood ratio of a code bit z;,

given the received word y.

Complexity

The algorithm’s complexity is NP, since in general, the calculation of the
cost function for all 2 possible codewords is required. Next, a relaxed
presentation of a linear code presented.
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LP decoding and convex optimization- Background

Definition - [The fundamental (relaxed) polytope]

P(H) = {x € R" : x satisfies box and parity constraints}

Box constraints
Vie[l,n], 0<z;<1

Parity constraints

Vie[l,m], VSe€T, Y (1-z)+ > m>1
tesS teA;\S

o A;={je[l,n]:hy =1}, forie [1,m], where h;; is the
(i,7)-element of H.

o T;i(i € [1,m]) is the set of all subsets of odd size in A;, namely
T, ={S C A;:|S| is odd}
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LP decoding and convex optimization- Background

Fundamental polytope's basic properties

@ The considered fundamental polytope is a proper polytope (i.e.,
Pn{0,1}" =C ), thus the ML certificate property holds.

@ For a general linear code with distribution p(x), the total number of

d::nax .
inequalities is M = 2n + md2'® ) gﬂi 1.
=1
o If the row distribution p(z) satisfies p2 = 0, then the point
x©) = (1/2,1/2,...,1/2) is a feasible point (i.e., x € P(H)).

@ The polytope's fractional vertices result in pseudo-codewords.

Codeword (integer vertex)

Pseudo -codeword
(fractional vertex)

P(H)

R. Eshel (Technion) Seminar talk FEBRUARY 2012.

22/ 39



LP decoding and convex optimization- Background

Interior-point method

Convex problem (Inequality constrained)

Outer loop (Logarithmic barrier method)

Inner loop (Newton's method)

{minimize frx)

subjectto f,(x)<0, i=L...M

where f,(x) areconvex

Define

HO=X s,
a1

M
B(x) =3 log (~/,(x))
=1

M=n2+(1-R)2%)
P =(1/21/2...1/2)

Search parameters

{Outer 1©® s e

Inner: &, . line - search method

Eshel (Technion)

t—,ul
x

Minimize

¥, =¢(x)+B(x)

v

M
= < Four ?

M=n(2+(1-R)2%"

)

No

Yes

X=X+, Ax,

=

Compute Newton step

Ax, = -V VY,

Line search
A

ine

—
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LP decoding and convex optimization- Background

Definition - [Backtracking line-search]

Given the line-search parameters a € (0,0.5), 5 € (0,1), and a descent
direction Ax for f(x) at = € dom(f), initialize tjine with tjine := 1 and
perform the following iterative algorithm :

Q If f(z + tineAz) < f(2) + atine Vf(z)T Az, quit.

@ Update tjipe := Biine )

Sle+tAx)

\ Flo) =tV f(r)T Ax e flo) +atVf(e)T Ax
- t

t=0 t
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Convex optimization - complexity bounds

Complexity analysis of the IPM

Definition - [Self-concordant function]

A convex function f : R — R is self-concordant (s.c.) if

f®(@)] < 2f"(2)*

for all x € dom(f).

Assuming the objective function is s.c. (which holds for our LP problem),
we provide analytic bounds on the number of Newton iterations.

First step Un-constrained problems
Second step Extension to inequality-constrained problems
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Convex optimization - complexity bounds

Theorem- [complexity bound for un-constrained s.c. problems
solved with Newton’s method and backtracking line-search]

Consider an un-constrained s.c. problem solved using Newton's method
and backtracking line-search. Let o € (0,1/2) and 3 € (0, 1) be the
parameters of the backtracking line-search. Let npax € (0, %5) be a free

parameter and define n = min %11__25,nmax :

Then the number of Newton iterations is upper bounded by

f (@) —p*
Niotal < Npomped + Noad" = flet) = ot +ec

v

where

v =apfn

()
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Convex optimization - complexity bounds

Graph of typical convergence

Mewton iterations
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Proof outline

Damped phase A\ > 5 with slow convergence.
@ Use the s.c. definition to show that

AF0) > 1 (X)L A 4 log (1 — (MAM)

2(1—a)
f2a(i-a) )

@ Use the backtracking condition Af(™) >
bound the convergence rate Af(™ > "y
o Use A(™) > 5 to globally bound A f(™
Quadratic phase A < 1, t = 1 with fast convergence.
@ Show that if A < %11__2: then t = 1.
@ Recursively use the bound

A+ < % t=1,A<1.

@ Show that ¢, > S min (1,

@ Upper bound A < npax < 3_2*/5 to insure monotonicity

of the recursive bound.

o(A)H)

(e, B, A

v(a, 8,1m)

e Count the iterations from A = n until A = /e.

)

v
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Convex optimization - complexity bounds

Comparison with previously reported results [1]

Original and impraved bounds for NDampEd

Improved bound
riginal bound

N S

R

400
350 |-

150 |-
100 |-

padweq
puroghl

01 015 02 025 03 035 04 045 05

0.05
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Convex optimization - complexity bounds

Theorem- [complexity bound for un-constrained s.c. problems
solved with Newton’s method and pre-determined step-size]

Consider an un-constrained s.c. problem solved using Newton's method.

Let n € (0,1) be chosen arbitrarily, and consider the following
pre-determined choice of the step size (" :

o If AW > 7, then ¢(m)

I EBYCON
o Otherwise, if (") < 7, let t( = arg minge o, G(t, A™),

Then the number of Newton iterations is upper bounded by

Ntotal < (f(m(o)) - p*)/7 +c.

i 0.250 | 0.381 | 0.700 | 0.900 | 0.990 | 1.000
1/y | 37.25 | 17.18 | 5.90 | 3.87 | 3.31 | 3.26
c 4 5 10 35 392 00

The coefficients are given for ¢ = 10719,
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Convex optimization - complexity bounds

Proof outline

Damped phase A\ > 5 with slow convergence.
@ Use the s.c. definition to show that
INAREY ) ()\(n))2 + tA®) 4 1og (1- t(n)/\(n)) ,
o Show that ¢*(") = H% optimize the bound on Af.
= A > A _log (1 4+ AM).
e Use A" > 5 to globally bound Af(™ > 5 —log (1 + 1)
Quadratic phase A\ < 5, with fast convergence.
@ Show that A1) < Gt A(D)HAM) At < 1.
@ Optimize the recursive bound using
t = arg mineg1) G(2, (),
o Count the iterations from A = 7 until A = /€.
Remark : The counting reveals a new transition phase
between the damped and the quadratic phases.
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Convex optimization - complexity bounds

Bounds compared to numerical results
(Backtracking + Pre-determined)

@ Simulated results indicate that the number of iterations scales like

(0))—p*
1=0)=p + c. However, the scaling factor for f (z(?)) — p* is much

smaller then predicted by the bounds.

@ The bounds are mainly loose during the damped phase. The is mainly
because A\(™) was globally bounded (i.e., A" > 7).

@ The pre-determined step-size optimize the bound, but practically it is
less efficient compared to backtracking line-search. This is mainly an
artifact of the domain of the bounds which is At < 1.
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Convex optimization - complexity bounds

Extension of complexity bounds to inequality-constrained problems

Consider an inequality-constrained s.c. optimization problem. Assuming
the problem is solved using an interior-point method (IPM) with
logarithmic barrier (where the parameters of the outer iterations are set to
t©) 11, and the inner iterations are performed using Newton's method),
then the number of Newton iterations is upper bounded by

N_Il_r;etgrality = NouterNVinner + Ninitial
log (M €t(0) M —1-1
g (M/(et'?)) ( (n o8 1! + c) I ]
log 1 v

The numbers v and ¢ are extracted from the bounds on the
un-constrained problem (according to the line-search method used).
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LP decoding - complexity bounds

Complexity bound of the IPM-based LP decoder

Consider the IPM-based LP decoding algorithm. Denote #,,,x as an upper
bound on |¢;(y;)|. The number of Newton iterations is upper bounded by

log (M /(et(® 1 (0)
Nwtg{(’g( /(e ))MM@ 1 logu)+c)+1/2t bua |
log ;1 Y

The numbers v and ¢ are chosen according to the line-search method.

dmax

The number of inequalities is given by M = 2n + mda'® i %H or
i=1

M = 2n + m2%~1 = n(2 + (1 — R)2%1) for regular codes.
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Optimized LP bound

An optimized bound is obtained by choosing the IPM search parameters as:

2cy
* — 1 -
[0 _  V32Mey
Nemax

Assuming M > 2, the bound can be simplified to

N < S () e
¥ 32cy €

Remark on the choice of parameters

+c

Practically, good values of p lie in the range 2-100. We would not use the

value p* =1+ 207 which is far too small.

v
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LP decoding - complexity bounds

Parametric behavior of the optimized bound

@ [Number of Inequalities - M | :
The bound scales like O(v/M In M) as opposed to O(M In M) without
the optimization of ¢ and p.
Trade-off between decoding performance and decoding complexity.
o [Block length - n ] :
General linear codes -
M scales like O(2%) assuming d. scales like O(n).
In general the complexity is exponential in n.
LDPC codes -
The bound scales like O(y/nlnn) (since d. is fixed).
The hessian matrix V?W,(x) is sparse.
The total complexity scales like O(n*-®Inn).
o [Check node degree - d. ] :
Bound on the number of iterations is exponential in d.. Therefore the
complexity of capacity approaching codes (where d® is large) is high.
Alternative polytopes yield lower complexity with respect to d..
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LP decoding - complexity bounds

Numerical comparison
We consider an LDPC(1008,3,6) code transmitted through an AWGN
channel with SNR 2.0 dB. Moreover, for the IPM, the following

parameters are assumed .
Emner = 1073, €outer = 1073, = 0.3, 8 = 0.5, = 20 and p = 20.

Source IPM parameters Search method Iterations
Simulations (1, t9) = (20,20) | (o, B) = (0.3,0.5) | 102
Original bound [2] | (u,t(?) = (20,20) | (o, ) = (0.3,0.5) | 108
Tightened bound | (,t(®) = (20,20) | (e, B) = (0.3,0.5) | 107
Tightened bound | (1,t(®) = (20,20) | Pre-determined ¢ | 10°
Tightened bound | Optimized Pre-determined t | 10*
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Summary and directions for further research

Summary

Concentration @ We tightened a concentration inequality for the
conditional entropy.

@ The improved inequality enables to prove concentration
in the case of Tornado codes, where the original bound
was useless.

@ We provided explicit expressions for the concentration
rate of erroneous messages for ISI channels.

@ The new bounds, particularized to MBIOS channels
tighten known results.

LP decoding e Tightened complexity bounds on the number of Newton
iterations are given for several line-search methods.
@ The bounds were applied to an IPM-based LP decoder.
@ The behavior of the LP decoder’'s complexity is
investigated.
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Summary and directions for further research

Related papers

@ |. Sason and R. Eshel “On concentration of measures for LDPC code ensembles,”
Proceedings 2011 IEEE International Symposium on Information Theory (ISIT
2011), pp. 1268-1272, St. Petersburg, Russia, July 31-Aug 5, 2011

@ C. Méasson, A. Montanari and R. Urbanke, " Maxwell construction: The hidden
bridge between iterative and maximum a-posteriori decoding,” IEEE Trans. on
Information Theory, vol. 54, pp. 5277-5307, December 2008.

© T. Richardson and R. Urbanke, " The capacity of low-density parity check codes
under message-passing decoding.” IEEE Trans. on Information Theory, vol. 47,
pp. 599618, February 2001.

@ A. Kavcic, X. Ma and M. Mitzenmacher, " Binary intersymbol interference
channels: Gallager bounds, density evolution, and code performance bounds,”
IEEE Trans. on Information Theory, vol. 49, no. 7, pp. 1636-1652, July 2003.

© S. Boyd and L. Vanderberghe, Convex Optimization, Cambridge Press, 2004.

@ T. Wadayama, "An LP decoding algorithm based on primal path-following interior
point method,” Proceedings 2009 IEEE International Symposium on Information
Theory, pp. 389-394, Seoul, South Korea, June 28 - July 3, 2009.

R. Eshel (Technion) Seminar talk FEBRUARY 2012. 39 /39



	Presentation outline
	Concentration of measures in LDPC code ensembles
	Doob's martingale and Azuma's inequality
	Conditional Entropy of LDPC code ensembles
	Message-passing error probability for channels with ISI
	LP decoding using convex optimization
	LP decoding and convex optimization- Background
	Convex optimization - complexity bounds
	LP decoding - complexity bounds
	Summary and directions for further research

