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Presentation outline

Presentation outline

Main Topics

1 Concentration of measures in LDPC code ensembles
1 Background (Doob’s martingale and Azuma’s inequality)
2 concentration of conditional entropy
3 concentration of message-passing error probability for ISI channels

2 LP decoding using convex optimization
1 Background (LP decoding and optimization)
2 Bounds on interior-point and Newton’s method’s iterations.
3 Application of bounds to an IPM-based LP decoding

3 Summary
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Concentration of measures in LDPC code ensembles

Concentration of measures in LDPC code ensembles
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Doob’s martingale and Azuma’s inequality

Doob’s martingale

Definition - [Doob’s Martingale]

Let (Ω,F ,P) be a probability space. Let F0 ⊆ F1 ⊆ . . . be a monotonic
sequence of sub σ-algebras of F . A sequence X0, X1, . . . of random
variables (RVs) is a martingale if:

1 Xi : Ω→ R.

2 {ω ∈ Ω : Xi(ω) ≤ t} ∈ Fi ∀i,∀t ∈ R.

3 E[|Xi|] <∞.
4 Xi = E[Xi+1|Fi] almost surely.

Example - Random walk

Xn =
∑n

i=0 Ui where Ui is an i.i.d. sequence of RVs with E[Ui] = 0.
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Doob’s martingale and Azuma’s inequality

Doob’s martingale- Remarks
Remark 1

Given a RV X ∈ L1(Ω,F ,P) and an arbitrary filtration of sub σ-algebras
{Fi}, let

Xi = E[X|Fi] i = 0, 1, . . . .

Then, the sequence X0, X1, . . . forms a martingale.

Remark 2

One can choose
F0 = {Ω, ∅}, Fn = F

so that X0, X1, . . . , Xn is a martingale sequence where

X0 = E[X|F0] = E[X] (since F0 doesn’t provide information about X).

Xn = E[X|Fn] = X a.s. (since Fn provides full information about X).

R. Eshel (Technion) Seminar talk FEBRUARY 2012. 5 / 39



Doob’s martingale and Azuma’s inequality

Azuma-Hoeffding inequality

Theorem - [Azuma-Hoeffding inequality]

Let X0, . . . , Xn be a martingale. If the sequence of differences are
bounded, i.e.,

|Xi −Xi−1| ≤ di ∀ i = 1, 2, . . . , n a.s.

then

P(|Xn −X0| ≥ r) ≤ 2 exp

(
− r2

2
∑n

i=1 d
2
i

)
, ∀ r > 0.
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Conditional Entropy of LDPC code ensembles

Theorem I - [Concentration of Conditional Entropy of LDPC
code ensembles (Méasson et al. 2008)]

Let C be chosen uniformly at random from the ensemble LDPC(n, λ, ρ).
Assume that the transmission of the code C takes place over an MBIOS
channel. Let H(X|Y) designate the conditional entropy of the
transmitted codeword X given the received sequence Y from the channel.
Then for any ξ > 0,

Pr
(
|H(X|Y)− ELDPC(n,λ,ρ)[H(X|Y)]| ≥

√
n ξ
)
≤ 2 exp(−Bξ2)

where B , 1
2(dmax

c +1)2(1−Rd)
, dmax

c is the maximal check-node degree, and

Rd is the design rate of the ensemble.
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Conditional Entropy of LDPC code ensembles

Proof - [outline]

1 Introduction of a martingale sequence with bounded differences
I Define the RV Z = HG(X|Y), where G is a graph of a code chosen

uniformly at random from the ensemble LDPC(n, λ, ρ)
I Define the martingale sequence Zt =

E[Z|first t parity check equations are revealed] t ∈ {0, 1, . . . ,m}.
2 Upper bounds on the differences |Zt+1 − Zt|

I Show that |Zt+1 −Zt| ≤ (r+ 1)H(X̃|Y), where r is the degree of the
parity-check equation revealed at time t, and X̃ = Xi1 ⊕ . . .⊕Xir is
the modulo-2 sum of some r bits in the codeword X.

I Bound r by dmax
c (the maximal parity-check node degree).

I Bound H(X̃|Y) by 1 (since X̃ is a bit).

3 Apply Azuma’s inequality by using |Zt+1 − Zt| ≤ dmax
c + 1 for every

t = 0, . . . ,m− 1 where m = n(1−Rc) is the number of parity-check
nodes, and Rc is the code rate.
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Conditional Entropy of LDPC code ensembles

Improvement 1 - A tightened upper bound on the conditional entropy

Instead of upper bounding HG(X̃|Y) by 1, we rely on the inequality

HG(X̃|Y) ≤ h2

(
1−C

r
2

2

)
. Further, for a BSC or BEC, this bound can be

improved to h2

(
1−
[
1−2h−1

2 (1−C)
]r

2

)
and 1− Cr, respectively.

proof -[outline]

1 Upper bound H(X̃
∣∣Y) with

H(X̃
∣∣Y) ≤ H(X̃

∣∣Yi1 , . . . , Yir) ≤ 1− 1
2 ln 2

∑∞
p=1

(gp)r

p(2p−1) where

gp ,
∫∞

0 a(l)(1 + e−l) tanh2p
(
l
2

)
dl, ∀ p ∈ N and a denotes the

symmetric pdf of the LLR (Sason 2009).

2 Substitute the bound gp ≥ Cp and use the power series expansion of
h2(x) to get an explicit bound. For the case of BSC and BEC it is

known that gp =
(
1− 2h−1

2 (1− C)
)2p
, and gp = C respectfully for

all p ∈ N, thus leading to tighter upper bounds.
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Conditional Entropy of LDPC code ensembles

Improvement 2 - A more careful consideration of the parity-check
degree distribution

Instead of taking the trivial bound r ≤ dmax
c for all m terms in the

Azuma’s inequality, one can rely on the degree distribution of the
parity-check nodes from the edge perspective. The number of parity-check
nodes of degree r is n(1−Rd)Γr.

Theorem II - [Tightened Expressions for B]

Considering the terms of Theorem I. Applying the two improvements yields
a tighter expressions for B.

General MBIOS - B , 1

2(1−Rd)
∑dmax

c
i=1 (i+1)2Γi

[
h2

(
1−C

i
2

2

)]2
BSC - B , 1

2(1−Rd)
∑dmax

c
i=1 (i+1)2Γi

[
h2

(
1−[1−2h−1

2 (1−C)]i

2

)]2
BEC - B , 1

2(1−Rd)
∑dmax

c
i=1 (i+1)2Γi (1−Ci)2
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Conditional Entropy of LDPC code ensembles

Comparison of Theorem I Vs. Theorem II

Comparison for the limit where C → 1 bit per channel use

We consider two cases

dmax
c <∞ - Theorem II yields B →∞ which is in contrast to

Theorem I where the parameter B does not depend on C and is
finite. Note that B should be indeed infinity for a perfect channel,
and therefore Theorem II is tight in this case.

dmax
c =∞ (i.e., tornado codes)- The Value of B in Theorem I

vanishes when dmax
c =∞ and therefore is useless. On the other hand

using the value of B in Theorem II , it can be shown that if
ρ′(1) <∞ then B →∞.
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Conditional Entropy of LDPC code ensembles

Numerical comparison for BEC and BIAWGN

Consider the (2, 20) regular LDPC code ensemble and communication over
a BEC or BIAWGNC with capacity of 0.98 per channel use. Compared to
Theorem I applying Theorem II results in tighter expressions for B

BIAWGN - Improvement by factor

[
h2

(
1−C

dc
2

2

)]−2

= 5.134

BEC - Improvement by factor 1(
1−Cdc

)2 = 9.051
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Conditional Entropy of LDPC code ensembles

Comparison for Heavy-Tail Poisson Distribution (Tornado Codes)

Consider the capacity-achieving Tornado LDPC code ensemble for a BEC
with erasure probability p. We wish to design a code ensemble that
achieves a fraction 1− ε of the capacity.

Theorem I- Since dmax
c =∞, then B = 0. Therefore this result is

useless.

Theorem II- B scales at least like O

(
1

log2
(

1
ε

)). This follows from

I Stability condition - ρ′(1)λ′(0)p ≤ 1.
I davgc and 1/λ2 scales at least like O

(
log
(
1
ε

))
(Sason 2009).

The parameter B tends to zero slowly as we let the fractional gap ε
tend to zero. This demonstrates a rather fast concentration.
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Message-passing error probability for channels with ISI

Theorem - [Message-passing error probability for ISI channels ]

Consider an ensemble of regular (n, dv, dc) LDPC codes transmitted over

an ISI channel yt =
I∑
i=0

hixt−i + nt.

The decoder uses the windowed sum-product algorithm with width W .
Over the probability space of all graphs and channel realizations, assume `
iterations passed and let

Z(`) - Number of incorrect variable-to-check node messages.

p(`) - Expected probability of incorrect messages passed along an edge
with a tree-like directed neighborhood of depth `.

N (`)
~e - The neighborhood of depth ` of an edge ~e = (v, c).

Then, there exist constants β, γ > 0 such that

Pr
(
N (`)
~e not tree-like

)
≤ γ

n

For any ε > 0 and n > 2γ
ε , Pr

(∣∣Z(`) − ndvp(`)
∣∣ > ndvε

)
≤ e−βε2n
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Message-passing error probability for channels with ISI

Expressions for γ and β

Denote α ≡ (dv − 1 + 2Wdv)(dc − 1) as the expansion factor of the graph
then

1 γ(dv, dc, I,W, `) = N
(`)
v

2
+ dc

dv
N

(`)
c

2
where

I N
(`)
v = 1 + [(dv − 1)(dc − 1) + 2W (1 + dv(dc − 1))]

`−1∑
i=0

αi

I N
(`)
c = 1 + (dv − 1 + 2Wdv)

`−1∑
i=0

αi

2 1
β = 8

(
16dv(N

(`)
e )2 + (N

(`)
Y )2

)
/d2

v where

I N
(`)
Y = dv(2W + 1)

`−1∑
i=0

αi

I N
(`)
e = 1 + dc(dv − 1 + 2Wdv)

`−1∑
i=0

αi
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Message-passing error probability for channels with ISI
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Message-passing error probability for channels with ISI

Proof outline
1 [Neighborhood is tree-like with high probability] -

P
(`)

t
≡ Pr

(
N (`)
~e not tree-like

)
≤ γ

n

I We upper bound P
(`)
t = 1− P (`)

t
by factorizing it as

P
(`)
t = Pr

{
N (0)
~e is tree

} `−1∏
`∗=0

Pr
{
N (`∗+1)
~e is tree|N (`∗)

~e is tree
}

I For each factor we reveal the edges one by one and bound the
probability that an exposed edge creates a cycle.

2 [Convergence of expectation to cycle-free case] -∣∣E[Z(`)]− ndvp(`)
∣∣ < ndvε/2.

I Use Pr
(
N (`)
~e not tree

)
≤ γ

n and conditional expectation to upper

bound
∣∣E[Z(`)]− ndvp(`)

∣∣
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Message-passing error probability for channels with ISI

Proof outline - (cont.)

1 [Concentration around expected value] -

Pr
(∣∣Z(`) − E[Z(`)]

∣∣ > ndvε/2
)
≤ e−βε2n.

I Define a martingale sequence based on Z(`) and the revelation of the
graph and the channel realization.

I Show that revealing an edge of the graph or a received value at a
particular message node has an effect on a bounded number of
messages. Thus the sequence of martingale differences is bounded.

I Apply Azuma’s inequality

Remark

By setting W = I = 0 we can compare the results to the results for the
memoryless case (Richardson and Urbanke, 2001 [3]) :

γ - Exactly the same expression.

β - Considerably tightened. However, the bound remains very
pessimistic.
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LP decoding using convex optimization

LP decoding using convex optimization
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LP decoding and convex optimization- Background

Theorem - [The ML decoder as a min-sum problem]

For any binary-input memoryless channel, the codeword of minimum cost
is the Maximum-Likelihood codeword.

xML = arg max
x∈C

Pr [y|x] = arg min
x∈C

(
n∑
i=1

`ixi

)

where `i(yi) = ln
(
Pr[yi|xi=0]
Pr[yi|xi=1]

)
is the log-likelihood ratio of a code bit xi,

given the received word y.

Complexity

The algorithm’s complexity is NP, since in general, the calculation of the
cost function for all 2k possible codewords is required. Next, a relaxed
presentation of a linear code presented.
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LP decoding and convex optimization- Background

Definition - [The fundamental (relaxed) polytope]

P(H) = {x ∈ Rn : x satisfies box and parity constraints}

Box constraints
∀j ∈ [1, n], 0 ≤ xj ≤ 1

Parity constraints

∀i ∈ [1,m], ∀S ∈ Ti,
∑
t∈S

(1− xt) +
∑

t∈AirS
xt ≥ 1

Ai = {j ∈ [1, n] : hij = 1}, for i ∈ [1,m], where hij is the
(i, j)-element of H.

Ti(i ∈ [1,m]) is the set of all subsets of odd size in Ai, namely
Ti = {S ⊂ Ai : |S| is odd}
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LP decoding and convex optimization- Background

Fundamental polytope’s basic properties

The considered fundamental polytope is a proper polytope (i.e.,
P ∩ {0, 1}n = C ), thus the ML certificate property holds.

For a general linear code with distribution ρ(x), the total number of

inequalities is M = 2n+mdavgc

dmax
c∑
i=1

ρi2
i−1

i .

If the row distribution ρ(x) satisfies ρ2 = 0, then the point
x(0) = (1/2, 1/2, ..., 1/2) is a feasible point (i.e., x ∈ P(H)).

The polytope’s fractional vertices result in pseudo-codewords.
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LP decoding and convex optimization- Background

Interior-point method
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LP decoding and convex optimization- Background

Definition - [Backtracking line-search]

Given the line-search parameters α ∈ (0, 0.5), β ∈ (0, 1), and a descent
direction ∆x for f(x) at x ∈ dom(f), initialize tline with tline := 1 and
perform the following iterative algorithm :

1 If f(x+ tline∆x) ≤ f(x) + αtline∇f(x)T∆x, quit.

2 Update tline := βtline
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Convex optimization - complexity bounds

Complexity analysis of the IPM

Definition - [Self-concordant function]

A convex function f : R→ R is self-concordant (s.c.) if

|f (3)(x)| ≤ 2f ′′(x)3/2

for all x ∈ dom(f).

Assuming the objective function is s.c. (which holds for our LP problem),
we provide analytic bounds on the number of Newton iterations.

First step Un-constrained problems

Second step Extension to inequality-constrained problems
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Convex optimization - complexity bounds

Theorem- [complexity bound for un-constrained s.c. problems
solved with Newton’s method and backtracking line-search]

Consider an un-constrained s.c. problem solved using Newton’s method
and backtracking line-search. Let α ∈ (0, 1/2) and β ∈ (0, 1) be the

parameters of the backtracking line-search. Let ηmax ∈ (0, 3−
√

5
2 ) be a free

parameter and define η ≡ min
(

1
2

1−2α
1−α , ηmax

)
.

Then the number of Newton iterations is upper bounded by

Ntotal ≤ Nbound
Damped +Nbound

Quad =
f
(
x(0)

)
− p∗

γ
+ c

where

γ = αβη2

c =

⌈
log2

(
log2(

√
ε/(1− η)2)

log2(η/(1− η)2)

)⌉
.
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Convex optimization - complexity bounds

Graph of typical convergence
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Convex optimization - complexity bounds

Proof outline

Damped phase λ(n) > η with slow convergence.

Use the s.c. definition to show that
∆f (n) ≥ t(n)

(
λ(n)

)2
+ t(n)λ(n) + log

(
1− t(n)λ(n)

)
.

Show that tbk ≥ βmin
(

1, 2(1−α)
1+2λ(1−α)

)
.

Use the backtracking condition ∆f (n) ≥ α
(
λ(n)

)2
t
(n)
bk to

bound the convergence rate ∆f (n) ≥ γ(n)(α, β, λ(n)).
Use λ(n) > η to globally bound ∆f (n) ≥ γ(α, β, η)

Quadratic phase λ(n) ≤ η, t = 1 with fast convergence.

Show that if λ ≤ 1
2

1−2α
1−α then t = 1.

Recursively use the bound

λ(n+1) ≤ (λ(n))2

(1−λ(n))
2 t = 1, λ < 1.

Upper bound λ ≤ ηmax <
3−
√

5
2 to insure monotonicity

of the recursive bound.
Count the iterations from λ = η until λ =

√
ε.
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Convex optimization - complexity bounds

Comparison with previously reported results [1]

R. Eshel (Technion) Seminar talk FEBRUARY 2012. 29 / 39



Convex optimization - complexity bounds

Theorem- [complexity bound for un-constrained s.c. problems
solved with Newton’s method and pre-determined step-size]

Consider an un-constrained s.c. problem solved using Newton’s method.
Let η ∈ (0, 1) be chosen arbitrarily, and consider the following
pre-determined choice of the step size t(n) :

If λ(n) ≥ η, then t(n) = 1
1+λ(n) .

Otherwise, if λ(n) < η, let t(n) = arg mint∈(0,1]G(t, λ(n)).

Then the number of Newton iterations is upper bounded by

NTotal ≤
(
f(x(0))− p∗

)
/γ + c.

η 0.250 0.381 0.700 0.900 0.990 1.000

1/γ 37.25 17.18 5.90 3.87 3.31 3.26
c 4 5 10 35 392 ∞

The coefficients are given for ε = 10−10.
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Convex optimization - complexity bounds

Proof outline

Damped phase λ(n) > η with slow convergence.

Use the s.c. definition to show that
∆f (n) ≥ t(n)

(
λ(n)

)2
+ t(n)λ(n) + log

(
1− t(n)λ(n)

)
.

Show that t∗(n) = 1
1+λ(n) optimize the bound on ∆f .

⇒ ∆f∗(n) ≥ λ(n) − log
(
1 + λ(n)

)
.

Use λ(n) > η to globally bound ∆f (n) ≥ η − log (1 + η)

Quadratic phase λ(n) ≤ η, with fast convergence.

Show that λ(n+1) ≤ G(t(n), λ(n))λ(n), λt < 1.
Optimize the recursive bound using
t(n) = arg mint∈(0,1]G(t, λ(n)).
Count the iterations from λ = η until λ =

√
ε.

Remark : The counting reveals a new transition phase
between the damped and the quadratic phases.
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Convex optimization - complexity bounds

Bounds compared to numerical results
(Backtracking + Pre-determined)

Simulated results indicate that the number of iterations scales like
f(x(0))−p∗

γ + c. However, the scaling factor for f
(
x(0)

)
− p∗ is much

smaller then predicted by the bounds.

The bounds are mainly loose during the damped phase. The is mainly
because λ(n) was globally bounded (i.e., λ(n) ≥ η).

The pre-determined step-size optimize the bound, but practically it is
less efficient compared to backtracking line-search. This is mainly an
artifact of the domain of the bounds which is λt < 1.
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Convex optimization - complexity bounds

Extension of complexity bounds to inequality-constrained problems

Consider an inequality-constrained s.c. optimization problem. Assuming
the problem is solved using an interior-point method (IPM) with
logarithmic barrier (where the parameters of the outer iterations are set to
t(0), µ, and the inner iterations are performed using Newton’s method),
then the number of Newton iterations is upper bounded by

N Inequality
Total = NouterNinner +Ninitial

≤

⌈
log
(
M/(εt(0))

)
logµ

⌉(
M (µ− 1− logµ)

γ
+ c

)
+Ninitial

The numbers γ and c are extracted from the bounds on the
un-constrained problem (according to the line-search method used).
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LP decoding - complexity bounds

Complexity bound of the IPM-based LP decoder

Consider the IPM-based LP decoding algorithm. Denote `max as an upper
bound on |`i(yi)|. The number of Newton iterations is upper bounded by

Ntot ≤

⌈
log
(
M/(εt(0))

)
logµ

⌉(
M (µ− 1− logµ)

γ
+ c

)
+

1/2t(0)`maxn

γ
+ c

The numbers γ and c are chosen according to the line-search method.

The number of inequalities is given by M = 2n+mdavgc

dmax
c∑
i=1

ρi2
i−1

i , or

M = 2n+m2dc−1 = n(2 + (1−R)2dc−1) for regular codes.
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LP decoding - complexity bounds

Optimized LP bound

An optimized bound is obtained by choosing the IPM search parameters as:

µ∗ = 1 +

√
2cγ

M

t(0)∗ =

√
32Mcγ

n`max
.

Assuming M ≥ cγ
20 , the bound can be simplified to

N∗total ≤

√
8cM

γ

[
ln

(√
M

32cγ

`maxn

ε

)
+ 1

]
+ c

Remark on the choice of parameters

Practically, good values of µ lie in the range 2-100. We would not use the

value µ∗ = 1 +
√

2cγ
M which is far too small.
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LP decoding - complexity bounds

Parametric behavior of the optimized bound

[Number of Inequalities - M ] :
I The bound scales like O(

√
M lnM) as opposed to O(M lnM) without

the optimization of t and µ.
I Trade-off between decoding performance and decoding complexity.

[Block length - n ] :
I General linear codes -

F M scales like O(2dc) assuming dc scales like O(n).
F In general the complexity is exponential in n.

I LDPC codes -
F The bound scales like O(

√
n lnn) (since dc is fixed).

F The hessian matrix ∇2Ψt(x) is sparse.
F The total complexity scales like O(n1.5 lnn).

[Check node degree - dc ] :
I Bound on the number of iterations is exponential in dc. Therefore the

complexity of capacity approaching codes (where dmax
c is large) is high.

I Alternative polytopes yield lower complexity with respect to dc.
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LP decoding - complexity bounds

Numerical comparison

We consider an LDPC(1008,3,6) code transmitted through an AWGN
channel with SNR 2.0 dB. Moreover, for the IPM, the following
parameters are assumed :
εInner = 10−3, εOuter = 10−3, α = 0.3, β = 0.5, t(0) = 20 and µ = 20.

Source IPM parameters Search method Iterations

Simulations (µ, t(0)) = (20, 20) (α, β) = (0.3, 0.5) 102

Original bound [2] (µ, t(0)) = (20, 20) (α, β) = (0.3, 0.5) 108

Tightened bound (µ, t(0)) = (20, 20) (α, β) = (0.3, 0.5) 107

Tightened bound (µ, t(0)) = (20, 20) Pre-determined t 106

Tightened bound Optimized Pre-determined t 104
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Summary and directions for further research

Summary

Concentration We tightened a concentration inequality for the
conditional entropy.
The improved inequality enables to prove concentration
in the case of Tornado codes, where the original bound
was useless.
We provided explicit expressions for the concentration
rate of erroneous messages for ISI channels.
The new bounds, particularized to MBIOS channels
tighten known results.

LP decoding Tightened complexity bounds on the number of Newton
iterations are given for several line-search methods.
The bounds were applied to an IPM-based LP decoder.
The behavior of the LP decoder’s complexity is
investigated.
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Summary and directions for further research
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